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Abstract

In transportation problems and in many other planning problems, there are im-
portant sources of uncertainty that must be addressed to find effective and efficient
solutions. A common approach for solving these dynamic and stochastic problems is
the Multiple Scenario Approach (MSA), that has been proved effective for transporta-
tion problems, but it does not provide flexibility for finding solutions that take into
account all the uncertainty of the problem. Alternative approaches for solving prob-
lems with finite number of scenarios are the Progressive Hedging Algorithm (PHA)
and the Subgradient Algorithm (SA). The similarity between PHA and SA are many,
however, there are some differences that lead them to have very different theoretical
guarantees and performance. We present a new exact algorithm, the Dynamic Pro-
gressive Hedging Algorithm, for which we provide theoretical guarantees that helps to
understand both this algorithm and the PHA from a new point of view. In addition,
we propose a DPHA-based Heuristic (DPHH), and show optimality guarantees for the
solution obtained. Then, we present the MSA and the SA with consensus functions.
Our analysis allows us to highlight the advantages and disadvantages of the DPHA,
the SA and the MSA, which gives guidance for future research in choosing the proper
method for the problem in hand. In a computational study, we study the Stochas-
tic Server Location Problem (SSLP) and the Two-Stage Stochastic Assignment and
Team-Orienteering Problem (TSSATOP), and we show the empirical performance of
the proposed Scenario Consensus Algorithms (SCA).

Keywords: mixed-integer stochastic programming, progressive hedging, lagrangian
duality, consensus functions
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1 Introduction

In transportation problems and in many other planning problems, there are important
sources of uncertainty that must be addressed to find effective and efficient solutions. In
recent years, services for which information is only partially known have grown in impor-
tance, such as ride-sharing, food delivery services or e-commerce, where it is expected that
the service does not fail and that the delivery is fulfilled in a very short time. For all these
problems, there are multiple sources of uncertainty. Some examples are: travel times between
two points in a route; delivery service times; customer demands, both in terms of volume
and quantity of the delivery; and, the requirements for delivery time, which may even take
place during the same day that is being planned.

In transportation and logistics, a common approach for solving these dynamic and
stochastic problems is the Multiple Scenario Approach (MSA). This approach, proposed
by Bent and Van Hentenryck [5], consists of generating scenarios that represent future states
of the current decision time, finding feasible solutions for each of these scenarios and then
determing a single plan to be executed by the planner.

One of the main problems with this approach, that can be seen as a solving approach
for Two-Stage Stochastic Mixed-Integer Programs (TSMIP), is that there is no room for the
different scenarios to coordinate after a solution is found. Each scenario is solved once and
then a consensus plan is determined. If this consensus plan is not good enough for some
(or all) scenarios, the MSA does not provide flexibility for finding new solutions that can
be better considering all scenarios. This motivates the study of other approaches to better
coordinate scenario solutions, which leads to Stochastic Programming [6].

Stochastic problems, in which random factors are approximated using a set of future
scenarios, have been extensively studied. Since the size and complexity of the problems
grows with the number of scenarios, decomposition methods are used. In these approaches,
like the MSA, the scenario problems are solved independently. Two of the most well-known
approaches are the Progressive Hedging Algorithm (PHA) and dual decomposition or sub-
gradient methods.

1.1 Preliminaries

We consider two-stage stochastic programs of the following form,

min Eξ̃(F (x, ξ̃)), (1a)

s.t. x ∈ X ⊆ ZN−P × RP , (1b)

where ξ̃ is a random vector defined on a probability space (Ξ,A ,P). The objective function
is to minimize the expected cost of the second stage problem F (x, ξ̃), which for a particular
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realization ξ of ξ̃, we consider it as follows,

F (x, ξ) := min c(ξ)ᵀy, (2a)

s.t. W (ξ)y ≥ h(ξ)− T (ξ)x, (2b)

y ∈ ZM−Q × RQ. (2c)

The matrices W (ξ) and T (ξ), and the vectors c(ξ) and h(ξ), depend on the realization of ξ̃
and have rational components. In the first stage, the decisions x are made before uncertainty
is revealed and, in the second stage, recourse actions are taken. The objective in the second
stage is given by c(ξ), so it is linear on y and the decisions are restricted by constraints (2b).
The first-stage decision variables x constrain y variables through the matrix T (ξ).

The two-stage problem is usually simplified by assuming that the random variable ξ̃
has only finite K ∈ Z+ many realizations ξ. The support of ξ̃ is Ξ = {ξk}k∈[K], with

P(ξ̃ = ξk) = pk and pk positive probabilities, for all k ∈ [K] := {1, . . . , K}. In this setting,
we redefine the parameters T (ξk) := Tk, W (ξk) := Wk and h(ξk) := hk, to simplify notation.
Also, note that the expected value can be rewritten as

∑
k∈[K] pkF (x, ξk) =

∑
k∈[K] pkFk(x),

with F (x, ξk) := Fk(x).
A common approach for solving (1) considers reformulating the problem by creating a

copy of x for each scenario, xk, k ∈ [K]. Then,

min
∑

k∈[K]

pkFk(xk), (3a)

s.t. xk = xk+1 k ∈ [K − 1], (3b)

xK = x1 (3c)

xk ∈ X , k ∈ [K]. (3d)

Constraints (3b) and (3c) are known as non-anticipativity or implementability constraints
and they impose that first stage variables are independent of the realized scenario. An easier
way of handling these constraints is aggregating them using the scenarios probabilities. The
following problem is equivalent to (3),

min
∑

k∈[K]

pkFk(xk), (4a)

s.t. xk =
∑

i∈[K]

pixi, k ∈ [K], (4b)

xk ∈ X , k ∈ [K]. (4c)

Solving the scenario formulation (4) is difficult for most practical problems, because of
the large number of scenarios and the mixed-integer nature of the problem. This motivates
to dualize the non-anticipativity constraints (4b), and exploit the scenario decomposition
structure. The resulting formulation has a well-known block diagonal structure, which per-
mits to manage the problem complexity. Multiplying constraints (4b) by pk and using the
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Lagrange duals λk ∈ RN for each constraint k ∈ [K], we have the following Lagrange function
L,

L(X,Λ) :=
∑

k∈[K]

pkFk(xk) +
∑

k∈[K]

pkλ
ᵀ
k


xk −

∑

i∈[K]

pixi


 ,

=
∑

k∈[K]

pkFk(xk) +
∑

k∈[K]


pkλᵀk −

∑

i∈[K]

pipkλ
ᵀ
i


xk,

=
∑

k∈[K]

pkFk(xk) +
∑

k∈[K]

pk


λk −

∑

i∈[K]

piλi




ᵀ

xk,

with Λ =



λ1

. . .
λK


 ∈ RKN and X =



x1

. . .
xK


 ∈ RKN .

Note that shifting the multipliers λk, k ∈ [K], by a constant vector does not change the
value of the term λk −

∑
i∈[K] piλi, so we can assume w.l.o.g. that these multipliers hold,

∑

i∈[K]

piλi = 0, (5)

and, consequently, we can formulate the dual problem as,

max L(Λ), (6a)

s.t. Λ ∈ D, (6b)

where,

D :=



Λ =



λ1

. . .
λK



∣∣∣∣∣∣

∑
k∈[K] pkλk = 0,

λk ∈ RN , k ∈ [K].



 ,

with the corresponding Lagrangian relaxation L given by,

L(Λ) := min
xk∈X ,k∈[K]

∑

k∈[K]

pk (Fk(xk) + λᵀkxk) =
∑

k∈[K]

pkLk(λk), (7)

and Lk(λk) := minxk∈X Fk(xk) + λᵀkxk.
The Subgradient Algorithm (SA) (also known as the dual decomposition or subgradient

method) solves the problem (7) using the subgradient of the function. Starting with a
solution Λ0 ∈ D, the optimal value of L is successively approximated by using the solution
of the scenario subproblems. Let xk ∈ X be an optimal solution to Lk(λk), for some λk. The
dual updating is given by,

λ′k = λk + α(xk − x̂), (8)
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with x̂ =
∑

k∈[K] pkxk. The weights α must define a sequence of decreasing values along the
iterations. This algorithm guarantees convergence of the Lagrangian function to the optimal
value but not to a primal solution.

The PHA also updates the dual multipliers using the equation (8), but in this case, the
α value must be constant along iterations. The PHA, unlike the SA, solves a non-linear
problem since a quadratic term is added to the subproblem objective function. In addition,
it requires the subproblem to be solved by considering a convex set for the variables (so the
variables nature cannot be integer), but it guarantees a dual and primal solution will be
found. Finally, as the SA, the value of the objective function converges to the Lagrangian L
optimal value.

1.2 Research Motivations and Contributions

The similarity between the PHA and SA are many, however, there are some differences that
lead them to have very different theoretical guarantees and performance. One of the first
motivations is to understand why these differences generate two algorithms with different
convergence results: the PHA for the primal and dual solutions, while the SA only for the
Lagrangian function.

For this it is important to understand the PHA from a more “OR” point of view. The
algorithm was introduced by Rockafellar and Wets [30], where a proof based on monotone
operators is given [29]. Since then, similar proofs have been offered. These operators do
not correspond to the common approach used in OR to understand algorithm’s convergence.
Even though these operators have a connection with the subgradient of a function, it is
important to establish an explanation that uses a more well-known approach. We present a
new exact algorithm, the Dynamic Progressive Hedging Algorithm (DPHA), a generalization
of PHA, and we provide a proof that allows to understand this algorithm and the PHA from
a different angle. This approach offers a new perspective for extensions of the DPHA.

This algorithm, the DPHA, allows to adjust the value of the weight α, so that it is not
a constant value during the execution of the algorithm. In Mulvey and Vladimirou [25] a
dynamic strategy is used to solve a stochastic network problem, where it is determined that
this strategy is superior to the constant value strategy. The authors present this PHA-based
algorithm as a heuristic, in our work we prove this is an exact algorithm.

The PHA is commonly used as a heuristic for stochastic problems with integer variables,
where the scenario subproblems are solved on a non-convex set. The theoretical guarantees of
the PHA are not valid for this case. We provide optimality guarantees for the implementable
solution obtained using PHA-based heuristics. These guarantees allow us not only to give
clarity of a widely used algorithm, but also to explain a trade-off often reported in the
literature: the faster the convergence speed, the lower the quality of the solution. We also
show an efficient method to solve the Two-Stage Stochastic Mixed-Integer with Pure First-
Stage Binary Variables Problem (TSMIPB) using the DPHA. We refer to this DPHA-based
heuristic as the Dynamic Progressive Hedging Heuristic (DPHH).

Consensus functions and MSA have been extensively studied, especially in the trans-
portation field. Therefore, efficient methods have been proposed to solve the symmetry of
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the scenario solutions and to establish low-cost plans for first-stage decisions. The Subgra-
dient Algorithm, on the other hand, finds lower bounds to the problem and does not provide
feasible solutions. We propose to combine these two approaches together and, at each it-
eration, find feasible solutions using consensus functions. This allows to find high quality
solutions from the scenarios coordination made by the SA with no additional computational
cost (it does not require solving any problem). This new approach provides the flexibility
for coordinating first-stage solutions that the MSA does not have.

We have called Scenario Consensus Algorithms (CSA) to the algorithms that find an
unique plan by solving independent subproblems from scenarios representing future states.
In a computational study we show the differences of all the CSA we propose, testing on
instances of the Stochastic Server Location Problem (SSLP) and the Two-Stage Stochastic
Assignment and Team-Orienteering Problem (TSSATOP). For the SSLP, we solve some
instances studied in Ntaimo and Sen [27] and also, some instances from Lim et al. [23]. For
the last ones, we provide the best solutions found so far. In the TSSATOP, the symmetry
of the integer solution is an important factor to address for the solving approach, so it is
a relevant setting in which we can study our algorithms. From the results obtained, we
show that the DPHH is the best approach in terms of balancing running time and solution
quality. This also shows that the DPHH is a promising approach to solve other stochastic
and dynamic vehicle routing problems.

This paper is organized as follows. In Section 2 we present the relevant literature. In
Section 3 we present the DPHA, the algorithm’s convergence theoretical results, the DPHH
and the guarantees of this heuristic. In Section 4 we describe the MSA and some of the
consensus functions, while in Section 5 we present the SA with consensus functions. At
the end of this section, we make a brief comparison of the SA with the DPHA. Finally, in
Section 6 is the computational study and in Section 7 we conclude and discuss future work.

2 Literature Review

The methods discussed in this work have been extensively studied. The PHA, presented in
Rockafellar and Wets [30], is one of the most widely used algorithms and currently under
very active research. Several improvements have been proposed to the original version, such
as: calculation of initial weights based on the instance data [36]; lower bound calculations
for measuring solution quality [16], or for obtaining initial solutions for other decomposition
methods [18]; integration of the PHA with simplicial decomposition methods [7]; or, integra-
tion with a branch-and-bound method for finding provable optimal solutions for non-convex
problems [3]). It should be noted that only in Rockafellar and Wets [30] the PHA’s theoret-
ical guarantees are provided and that the improvements that have been made subsequently
rely on them.

A dynamic strategy for weights {αν}ν≥0 for the PHA has been studied in the literature. In
Mulvey and Vladimirou [25] the authors study the Two-Stage Generalized Network Problem,
a problem defined on convex sets, which is solved using sequences of weights that gradually
increase until converging to a finite value. In Crainic et al. [12] a dynamically adjusted
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strategy, with a monotonically increasing sequence of weights, is also proposed, although, it
does not converge to a finite value. In Escudero et al. [14] a PHA-based heuristic is used
where the sequence of weights is updated. This update is not monotone: depending on the
subgradient direction the current iteration ν ≥ 0 weight αν is updated by multiplying by a
number greater or less than 1. In all these works, computational experiments support that
a dynamic strategy is an effective approach.

One of the most important uses of the PHA is as a heuristic, where the set of feasible sub-
problem solutions is restricted to non-convex sets. These subproblems are usually solved to
optimality, but it is the convergence to an implementable solution that makes this approach
a heuristic. In general, these heuristics are considered to be an efficient approach to solving
combinatorial stochastic optimization models. They have been studied in different contexts,
such as the stochastic network design [10, 11] management of hydroelectric reservoir system
[9], forestry production planning [34], fisheries management and application [19], hydrother-
mal systems operations planning application [13] and for hospital surgery planning [17].
There are also cases in which the PHA subproblem is solved heuristically, as in Løkketangen
and Woodruff [24], where the algorithm for the subproblems is the tabu search.

There are few applications of the PHA for Vehicle Routing Problems (VRP). It highlights
the work in Hvattum et al. [20], where the Dynamic Stochastic Hedging Heuristic (DSHH)
is proposed for solving a dynamic and stochastic VRP. This algorithm is inspired by the
PHA, but it has many differences with respect to the PHA-based heuristics found in the
literature. In the DSHH, using a finite set of randomly generated scenarios, a subset of the
deterministic customers is found. Then, all identified customers from the set are included
at some vehicle (one by one) by locking pairs customer-vehicle at the final solution. This
procedure, unlike the PHA-based heuristic, finds a consensus in a greedy way. In Hvattum
and Løkketangen [21], the Stochastic Inventory Routing Problem is solved using a PHA-
based heuristic solving the subproblems with a GRASP and a dynamic adjustment strategy
for the weights. Recently, in Jalilvand et al. [22] is proposed a PHA-based heuristic for
solving Vehicle Routing Problems with stochastic service times.

The MSA has been used in several transportation and logistics contexts, both for dy-
namic and stochastic problems, such as the Dynamic VRP with Stochastic Customers [5],
the Same-Day Delivery Problem [35], the Stochastic Team Orienteering with Consistency
Constraints Problem [33], and recently, the menu design problem for peer-to-peer trans-
portation platforms providers [4]. In these works, different consensus functions are proposed
to deal with the nature of solutions that usually arise in the context of vehicle routing. For
a review of this and other approaches for dynamic routing problems, see Soeffker et al. [31].

The subgradient or dual decomposition method has been intensively studied. In Carøe
and Schultz [8] a decomposition method for multistage problems with mixed-integer vari-
ables, integrated with a branch-and-bound strategy to find feasible solutions, is proposed.
The method of Aravena and Papavasiliou [1] also develops a Lagrangian relaxation for non-
anticipativity constraints with an incremental method to solve the dual problem. They
integrate this approach with primal solution recovery methods. They extend this method in
Aravena and Papavasiliou [2], exploiting the parallelization of the subproblems and propos-
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ing different heuristics to recover a primal solution. It is worth noting that none of these
heuristics has any resemblance with the consensus functions in the literature. Finally, in
Lim et al. [23], an asynchronous dual decomposition method is studied, in which not all
subproblems are solved to perform duals updating.

3 Dynamic Progressive Hedging Algorithm

In this section we present the generalization of the Progressive Hedging Algorithm (PHA),
the Dynamic Progressive Hedging Algorithm (DPHA). Then, we introduce the DPHA-based
heuristic, the DPHH, and provide theoretical guarantees for the solution found. Finally, we
show how to exploit the structure of the problem when the first-stage variables are binary
using the DPHH.

3.1 Algorithm

The PHA works on convex sets, so we redefine the previous functions for variables on convex
sets. For the reader’s sake we keep the same notation but we add a (c) superscript to the
function when it is defined for convex sets. Let conv(Z) be the convex hull of a set Z. For
a set Y ⊆ ZM−Q × RQ, a scenario k ∈ [K] and x ∈ conv(X ), we define

F c
k (x) := min cᵀky, (9a)

s.t. Wky ≥ hk − Tkx, (9b)

y ∈ conv(Y), (9c)

which corresponds to the formulation (2) with variables y defined on the convex hull of Y .
We have the primal problem,

min
∑

k∈[K]

pkF
c
k (xk), (10a)

s.t. xk =
∑

i∈[K]

pixi, k ∈ [K], (10b)

xk ∈ conv(X ), k ∈ [K], (10c)

and the dual problem,

max Lc(Λ), (11a)

s.t. Λ ∈ D, (11b)

with Lc(Λ) := minxk∈conv(X )

∑
k∈[K] pk (F c

k (xk) + λᵀkxk). Similarly, we define Lc(X,Λ) :=∑
k∈[K] pk (F c(xk) + λᵀkxk).

For practical proposes, it is usually assumed that there exists a solution X∗ ∈ conv(X )K ,
that is implementable and feasible for all second stage scenarios k ∈ [K], and also that there
exists a Λ∗ ∈ D dual optimal solution.
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Assumption 1. There exist X∗ ∈ conv(X )K and Λ∗ ∈ D optimal solutions for problems
(10) and (11), respectively.

For a given Λ ∈ D vector, the problem minX∈conv(X )K L
c(X,Λ) can be solved indepen-

dently for each scenario. In the PHA, this decomposable structure is maintained, but the
subproblem considers has an extra term that penalizes deviations of the scenario k ∈ [K]
solution vector xk with respect to an estimate x̂ (an implementable solution as reference).
For a given α > 0, the problem that is solved by the PHA, for each k ∈ [K], is the following,

min
xk∈conv(X )

F c
k (xk) + λᵀkxk +

α

2
‖xk − x̂‖2. (12)

The addition of this penalty term is motivated by the augmented Lagrangian approach
that, in contrast to ordinary Lagrangian function, is not limited in its numerical usefulness
[30]. Note that in this approach, unlike the augmented Lagrangian method, the problem is
decomposable by scenario, so each scenario can be solved independently.

The Dynamic Progressive Hedging Algorithm (DPHA) is similar to the PHA, but the
parameter α can change from one iteration to another. Let {αν}∞ν=0 be a non-decreasing
sequence (αν+1 ≥ αν), with positive (αν > 0) and bounded (αν < ∞) values, for all ν ≥ 0.
Note that the definition of αν generalizes the case with αν = αν+1, ν ≥ 0, of the PHA. At
iteration ν ≥ 0, let λνk be the dual vector for scenario k ∈ [K] and let xν+1

k be an optimal
solution to (12) with dual Λν and weight αν . The DPHA is detailed in Algorithm 1.

1 find a x0
k ∈ argminxk∈conv(X ) F

c
k (xk), for all k ∈ [K];

2 let λ0
k = 0 and x̂0 =

∑
k∈[K] pkx

0
k, for all k ∈ [K];

3 set ν = 0;
4 for each k ∈ [K] get xν+1

k by solving,

xν+1
k ∈ argmin

xk∈conv(X )

F c
k (xk) + λνᵀk xk +

αν

2
‖xk − x̂ν‖2 ;

5 compute x̂ν+1 =
∑

k∈[K] pkx
ν+1
k ;

6 if xν+1
k = x̂ν+1 for all k ∈ [K] then

7 stop;
8 else
9 get λν+1

k = λνk + αν(xν+1
k − x̂ν+1);

10 ν ← ν + 1 and go to line 4;

11 end

Algorithm 1: Dynamic Progressive Hedging Algorithm.

The DPHA starts with a solution x0
k for each scenario k ∈ [K], that minimizes the

function F c
k (xk) with xk ∈ conv(X ). Then we compute an estimate of the first stage vector

x̂0 as the weighted average of x0
k solutions. The initial multiplier λ0

k is set to the vector zero,
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for all scenario k ∈ [K]. At each iteration ν ≥ 0, we solve the problem (12) using the λνk
multiplier, the weight αν and the estimate x̂ν vector for xk. We get an optimal solution
xν+1
k . If for all k ∈ [K] it holds xν+1

k = x̂ν+1, then we stop, the solution is implementable.
Otherwise, we update the dual vectors λν+1

k = λνk + αν(xν+1
k − x̂ν+1) and we continue with a

new iteration.
We show that the DPHA algorithm converges to an optimal solution. The proof is based

on Rockafellar and Wets [30] Theorem 5.2’s proof. In our case, we do not use maximal
monotone operators, but subgradients of the functions. In order to make the proof easier to
follow we have split the proof in different propositions, explaining the connection between
them explicitly.

We start by defining the following function for (x̄,Λ) ∈ conv(X )×D,

G(x̄,Λ) := min




∑

k∈[K]

pk (F c
k (xk) + λᵀkxk)

∣∣X ∈ S(x̄)



 , (13)

with S(x̄) :=
{
X ∈ conv(X )K

∣∣∣
∑

k∈[K] pkxk = x̄
}

.

We have the following two properties of function G, whose proofs are in Appendix A.1.

Proposition 1. If a solution (x∗,Λ∗) ∈ conv(X )×D is optimal for G, then X∗ = (x1, x2, . . . xK),
with xk = x∗ for all k ∈ [K], and Λ∗ are optimal for Lc.

Proposition 2. The function G(x̄,Λ) is convex in x̄ ∈ conv(X ) and concave in Λ ∈ D.

We now show that the solution (Xν+1,Λν+1), obtained at iteration ν ≥ 0, is a saddle
point for the following augmented Lagrangian function Lν+, (with constant vectors x̂ν and
λν), for X ∈ conv(X ) and Λ ∈ D,

Lν+(X,Λ) :=
∑

k∈[K]

pk

(
F c
k (xk) + λᵀkxk +

αν

2
‖x̂ν − x̂‖2 − 1

2αν
‖λk − λνk‖2

)
, (14)

with x̂ =
∑

k∈[K] pkxk.

Proposition 3. At iteration ν ≥ 0, the solution (Xν+1,Λν+1) obtained by Algorithm 1 is a
saddle point of the function Lν+.

Proof. We have the following equation,
∑

k∈K

pk‖xν+1
k − x̂ν+1‖2 =

∑

k∈K

pk
(
‖xν+1

k ‖
2 − 2x̂ν+1ᵀxν+1

k + ‖x̂ν+1‖2
)
,

=
∑

k∈K

pk
(
‖xν+1

k ‖
2 − ‖x̂ν+1‖2

)
,

=
∑

k∈K

pk
(
‖xν+1

k ‖
2 − 2xν+1ᵀ

k x̂ν + ‖x̂ν‖2 − ‖x̂ν‖2 + 2x̂ν+1ᵀx̂ν − ‖x̂ν+1‖2
)
,

=
∑

k∈K

pk
(
‖xν+1

k − x̂ν‖2 − ‖x̂ν − x̂ν+1‖2
)
.
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In addition, it holds,

∑

k∈[K]

pkλ
νᵀ
k x

ν+1
k =

∑

k∈[K]

pkλ
νᵀ(xν+1

k − x̂ν+1),

=
∑

k∈[K]

pk
(
λν+1
k − αν(xν+1

k − x̂ν+1)
)ᵀ

(xν+1
k − x̂ν+1),

=
∑

k∈[K]

pkλ
ν+1ᵀ
k (xν+1

k − x̂ν+1)− pkαν‖xν+1
k − x̂ν+1‖2,

=
∑

k∈[K]

pkλ
ν+1ᵀ
k xν+1

k − pkαν‖xν+1
k − x̂ν+1‖2.

Using the previous equations, we have,

min
xk∈conv(X )

∑

k∈[K]

pk (F ck (xk) + λᵀkxk +
αν

2
‖xk − x̂ν‖2

)
=
∑

k∈[K]

pk

(
F ck (xν+1

k ) + λνᵀk xν+1
k +

αν

2
‖xν+1

k − x̂ν‖2
)
,

=
∑

k∈[K]

pk

(
F ck (xν+1

k ) + λνᵀk xν+1
k +

αν

2
(‖x̂ν − x̂ν+1‖2 + ‖xν+1

k − x̂ν+1‖2)

)
,

=
∑

k∈[K]

pk

(
F ck (xν+1

k ) + λν+1ᵀ
k xν+1

k +
αν

2
(‖x̂ν − x̂ν+1‖2 − ‖xν+1

k − x̂ν+1‖2)

)
,

=
∑

k∈[K]

pk

(
F ck (xν+1

k ) + λν+1ᵀ
k xν+1

k +
αν

2
‖x̂ν − x̂ν+1‖2 − 1

2αν
‖λν+1

k − λνk‖2
)
,

and thus, Xν+1 is optimal for Lν+(X,Λν+1).
For Λ ∈ D, we have that the function Lν+(Xν+1,Λ) can be also written as,

Lν+(Xν+1,Λ) =
∑

k∈[K]

pk

(
F c
k (xν+1

k ) + λᵀk(x
ν+1
k − x̂ν+1) +

αν

2
‖x̂ν − x̂ν+1‖2 − 1

2αν
‖λk − λνk‖2

)
,

which is concave on Λ. Taking the derivative of the function with respect to λk, k ∈ [k],
and finding the λ∗k that makes the equation equal to zero, we have,

(xν+1
k − x̂ν+1) =

1

αν
(λ∗k − λνk),

λ∗k = λνk + αν(xν+1
k − x̂ν+1) = λν+1

k ,

so the Λν+1 computed by the algorithm is an optimal solution.

The previous proposition allows us to get one of the most important results of the DPHA:
at every iteration the progress made by the DPHA is guaranteed (i.e., the primal or dual
or both solutions are “closer” to an optimal solution). For this result, the following norm
definition is useful.

11



For any Λ,Λ′ ∈ D, we define,

‖Λ− Λ′‖2
p :=

∑

k∈[K]

pk‖λk − λ′k‖2. (15)

Proposition 4. Consider an optimal solution (x∗,Λ∗) ∈ conv(X ) × D for G. At every
iteration ν ≥ 0 of the Algorithm 1, we have that,

‖x̂ν+1 − x∗‖2 +
1

αν2
‖Λν+1 − Λ∗‖2

p + ‖x̂ν+1 − x̂ν‖2 +
1

αν2
‖Λν+1 − Λν‖2

p

≤ ‖x̂ν − x∗‖2 +
1

(αν−1)2
‖Λν − Λ∗‖2

p.
(16)

Proof. For an optimal primal and dual solution (x∗,Λ∗), we have that for any (x̂ν+1,Λν+1) ∈
conv(X )×D, it holds,

G(x̂ν+1,Λ∗) ≥ G(x∗,Λ∗),

G(x∗,Λν+1) ≤ G(x∗,Λ∗),

so, G(x∗,Λν+1)−G(x̂ν+1,Λ∗) ≤ 0.
Now, note that the function Lν+ evaluated at (Xν+1,Λν+1), satisfies,

Lν+(Xν+1,Λν+1) =
∑

k∈[K]

pk

(
F c
k (xν+1

k ) + λν+1,ᵀ
k xν+1

k +
αν

2
‖x̂ν − x̂ν+1‖2 − 1

2αν
‖λν+1

k − λνk‖2

)
,

= min




∑

k∈[K]

pk
(
F c
k (xk) + λν+1ᵀ

k xk
)
∣∣∣∣∣∣
xk ∈ conv(X ),

∑

k∈[K]

pkxk = x̂ν+1





+
∑

k∈[K]

pk

(
αν

2
‖x̂ν − x̂ν+1‖2 − 1

2αν
‖λν+1

k − λνk‖2

)
,

= G(x̂ν+1,Λν+1) +
αν

2
‖x̂ν − x̂ν+1‖2 − 1

2αν
‖Λν+1 − Λν‖2

p,

and since (Xν+1,Λν+1) is a saddle point, we have (0, 0) ∈ ∂Lν+(Xν+1,Λν+1), which, by
subgradient calculus is equivalent to,

αν(x̂ν − x̂ν+1) ∈ ∂x̄G(x̂ν+1,Λν+1), (17)

1

αν
pk(λ

ν+1
k − λνk) ∈ ∂λkG(x̂ν+1,Λν+1), k ∈ [K]. (18)

The function G(x̄,Λ) is convex in x̄ and concave on Λ, so, by subgradient definition (and
notation abuse), we have,

∂x̄G(x̂ν+1,Λν+1)ᵀ(x∗ − x̂ν+1) +G(x̂ν+1,Λν+1) ≤ G(x∗,Λν+1),

∂ΛG(x̂ν+1,Λν+1)ᵀ(Λ∗ − Λν+1) +G(x̂ν+1,Λν+1) ≥ G(x̂ν+1,Λ∗).

12



Combining the above,

∂x̄G(x̂ν+1,Λν+1)ᵀ(x∗ − x̂ν+1) +G(x̂ν+1,Λ∗)− ∂ΛG(x̂ν+1,Λν+1)ᵀ(Λ∗ − Λν+1) ≤ G(x∗,Λν+1),

and so,

αν(x̂ν − x̂ν+1)ᵀ(x∗ − x̂ν+1)− 1

αν

∑

k∈[K]

pk(λ
ν+1
k − λνk)ᵀ(λ∗k − λν+1

k ) ≤ G(x∗,Λν+1)−G(x̂ν+1,Λ∗) ≤ 0,

− (x̂ν − x̂ν+1)ᵀ(x∗ − x̂ν+1) +
1

αν2

∑

k∈[K]

pk(λ
ν
k − λν+1

k )ᵀ(λν+1
k − λ∗k) ≥ 0.

Finally, note that,

‖Λν − Λ∗‖2
p =

∑

k∈[K]

pk‖(λνk − λν+1
k ) + (λν+1

k − λ∗k)‖2,

=
∑

k∈[K]

pk
(
‖λνk − λν+1

k ‖
2 + 2(λνk − λν+1

k )ᵀ(λν+1
k − λ∗k) + ‖λν+1

k − λ∗k‖2
)
,

and also,

‖x̂ν − x∗‖2 = ‖(x̂ν − x̂ν+1)− (x∗ − x̂ν+1)‖2,

= ‖x̂ν − x̂ν+1‖2 − 2(x̂ν − x̂ν+1)ᵀ(x∗ − x̂ν+1) + ‖x∗ − x̂ν+1‖2,

which leads to,

‖x̂ν+1 − x∗‖2 +
1

αν2
‖Λν+1 − Λ∗‖2

p + ‖x̂ν+1 − xν‖2 +
1

αν2
‖Λν+1 − Λν‖2

p,

≤ ‖x̂ν − x∗‖2 +
1

αν2
‖Λν − Λ∗‖2

p,

≤ ‖x̂ν − x∗‖2 +
1

(αν−1)2
‖Λν − Λ∗‖2

p.

The last inequality comes from the fact that the sequence {αν}ν≥0 is non-decreasing.

Let zν+1 = ‖x̂ν+1 − x∗‖2 + 1
αν2
‖Λν+1 − Λ∗‖2

p, for all ν ≥ 0. In the following Theorem, we
show that the sequence {zν}ν≥0 converges to zero so both x̂ν and Λν must converge to an
optimal solution.

Theorem 1. Let x∗ and Λ∗ be optimal solutions for problems (10) and (11), respectively.
The sequences {x̂ν}ν≥0 and {Λν}ν≥0 of primal and dual solutions generated by Algorithm 1
converge to (x∗,Λ∗).

13



Proof. Proposition 4 implies that zν+1 ≤ zν , with strict inequality when the algorithm has
not converged yet. Noticing that zν+1 ≥ 0 for all ν ≥ 0, then there must exist a µ ≥ 0 such
that limν→∞ z

ν = µ, and

lim
ν→∞

(
zν+1 + ‖x̂ν+1 − x̂ν‖2 +

1

αν2
‖Λν+1 − Λν‖2

p

)
≤ lim

ν→∞
zν ,

then,

lim
ν→∞

(
‖x̂ν+1 − x̂ν‖2 +

1

αν2
‖Λν+1 − Λν‖2

p

)
= 0,

thus, there exists a x̃ = limν→∞ x̂
ν and a Λ̃ = limν→∞ Λν (αν is bounded). This also means

that 0 ∈ ∂x̄G(x̃, Λ̃) and 0 ∈ ∂ΛG(x̃, Λ̃) (see equations (17) and (18)) so (x̃, Λ̃) is optimal for
G. By Proposition 1, the point (x̃, Λ̃) is optimal for Lc.

The parameters αν , ν ≥ 0, control the speed at which primal and dual solutions are
updated in the algorithm: a sequence {αν}ν≥0 with large values leads to a faster primal
solution convergence, while a sequence with small values, leads to a faster dual convergence.
This observation is more clear when the augmented Lagrangian function (14) is analyzed.

The DPHA provides a flexible framework in which the {αν}ν≥0, sequence can be adapted
so controlling the speed at which solutions converge. Through a computational study, Mulvey
and Vladimirou [25] show that a dynamic adjustment of the penalty parameter αν is a
strategy that improves the overall convergence behavior. They propose a sequence, that
starts with a relatively low value, and then it is gradually raised to a limiting value. According
to their analysis, this choice avoids the algorithm gets stalled at a suboptimal solution. The
initial iterations prioritize the updating of dual variables, while the last ones, the updating
of the primal variables. The DPHA in the work of Mulvey and Vladimirou [25] is used as a
heuristic, even though, as we show in Theorem 1, it is an exact method.

3.2 DPHA-based Heuristic

One approach for solving the Two-Stage Stochastic Mixed-Integer Problem (TSMIP) using
DPHA is to solve the deterministic quadratic subproblems over a convex relaxation of the
feasible set and then, once the algorithm converges, if the solution does not satisfy the
integrally constraints, continue with a branch-and-bound strategy. This method is proposed
and computational study in Atakan and Sen [3]. However, in practice, the subproblem is
usually solved over the non-convex set of mixed-integer solutions rather the convex set, and
the algorithm is used as a heuristic (e.g., Gade et al. [16]). In this section, we present the
DPHA-based Heuristic (DPHH) for the TSMIP and we provide optimality guarantees for
the DPHH and comment extensions that can be studied for this approach.

The DPHH is the same as Algorithm 1 but it solves subproblems (line 4) with solution
set X (instead of conv(X )) and x0

k ∈ argminx∈X Fk(xk), k ∈ [K] in the first iteration.
The last section in Rockafellar and Wets [30] is dedicated to the case when the primal

problem is non-convex. The authors suggest that the PHA is an effective strategy for solving
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this class of problems, as it has been confirmed in practice. In Theorem 6.1, they show that
the solution obtained is a stationary point that is not necessarily optimal to the original
problem but that it is an optimal solution for a slightly different problem. For this, they
assume that the algorithm “converges to something”. We also assume the DPHH converges
to a feasible solution when the subproblem is solved on a non-convex set for the following
proposition (this result is not covered in Rockafellar and Wets [30]).

Proposition 5. At each iteration ν ≥ 0 the solution vector xν+1
k , k ∈ [K], is optimal for

the following problem,

min
xk∈X

{
Fk(xk) + λνᵀk xk +

αν

2
‖xk − x̂ν‖2

}
.

If the sequence {x̂ν}ν≥0 generated by the DPHH does converge to an implementable solu-
tion x∗ then, ∑

k∈[K]

pkFk(x̄) +
α∞

2
‖x̄− x∗‖2 ≥

∑

k∈[K]

pkFk(x
∗), (19)

with x̄ ∈ X an optimal solution for problem (4) and α∞ the corresponding weight associated
to solution x∗.

Proof. At each iteration ν ≥ 0 and k ∈ [K], we have that,

Fk(x̄) +
αν

2
‖x̄− x̂ν‖2 ≥ min

xk∈X

{
Fk(xk) + λνᵀk xk +

αν

2
‖xk − x̂ν‖2

}
,

= Fk(x
ν+1
k ) + λνᵀk x

ν+1
k +

αν

2
‖xν+1

k − x̂ν‖2,

with x̄ ∈ X an optimal solution. Thus, taking limit ν →∞, we have,

Fk(x̄k) +
α∞

2
‖x̄− x∗‖2 ≥ Fk(x

∗).

When the first-stage variables are binary, i.e., when X ⊆ {0, 1}N , we can extend the
previous proposition. Noticing for binary variables it holds ‖x̄ − x∗‖2 ≤ N , we get the
following corollary.

Corollary 1. For X ⊆ {0, 1}N , if the generated sequence {x̂ν}ν≥0 does converge to a solution
x∗ then, ∑

k∈[K]

pkFk(x̄) +
α∞

2
N ≥

∑

k∈[K]

pkFk(x
∗). (20)

15



Note that both equation (20) and the augmented Lagrangian function in (14) help to ex-
plain the classical trade-off seeing in practice when using PHA-based heuristics: convergence
speed of the solution versus the quality of the solution found. For large values of {αν}ν≥0,
the primal convergence is prioritized over dual, but the cost of that prioritization is paid
in the solution quality bound in (20). Small values for the sequence provide high quality
solutions but it might require several iterations to converge.

Many alternative cases can be considered for Proposition 5, not only quadratic regular-
ization term as we have for the DPHH. The result is valid for any function that measures
the distance between the scenario solution xk, k ∈ [K], and the estimate x̂. For example,
we can consider a different norm (e.g., ‖xk − x̂‖1) as proposed in Escudero et al. [15], but
also functions like log (‖xk − x̂‖2) or exp (‖xk − x̂‖2), and the result in Proposition 5 is es-
sentially the same. Also, as propose in Rockafellar and Wets [30], the subproblem can be
solved heuristically (i.e., not finding an optimal solution) and the bound adapted with an
additional term.

3.3 DPHH for Solving the TSMIPB

In the transportation field, many stochastic problems have binary variables for decision
making, specially when it involves vehicle routing planning. This means that an important
class of problems requires a solution approach that can handle the coordination of binary
variables along different scenarios. We consider the problem (4) with the first-stage-variables
set restricted to binary values, X ⊆ {0, 1}N . This problem corresponds to a Two-Stage
Stochastic Mixed-Integer with Pure First-Stage Binary Variables Problem (TSMIPB).

If we restrict the algorithm to solve the subproblems over a mixed-integer set with first-
stage variables defined in X ⊆ {0, 1}N , we can solve a simpler problem: instead of a quadratic
objective function, we have a linear one, so the subproblem can be solved as a MIP. Given
xk ∈ X , we have ‖xk‖2 =

∑
i∈[N ] x

2
ki =

∑
i∈[N ] xki, so,

‖xk − x̂‖2 = ‖xk‖2 − 2xᵀkx̂+ ‖x̂‖2,

= 1Txk − 2xᵀkx̂+ ‖x̂‖2,

= (1− 2x̂)ᵀ xk + ‖x̂‖2.

For λk and x̂ vectors given, and omitting the constant term ‖x̂‖2 from the objective
function, we can reformulate the problem (12) as a deterministic MIP,

min cᵀky +
(
λk +

α

2
1− αx̂

)ᵀ
xk, (21a)

s.t. Wky ≥ hk − Tkxk, (21b)

y ∈ ZQ × RM−Q, (21c)

xk ∈ X . (21d)

The linear structure of problem (21) is not only algorithmically attractive (solve a linear
problem is usually more efficient in practice than a quadratic problem for the same instance
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size), but also it allows to integrate this method with other approaches. In particular,
a decomposition approach, such as branch-and-price (column generation), can be easily
included for solving the subproblem. In this case, the columns generated from previous
iterations or even for different subproblems can be used for solving the current subproblem.
The column generation method advantages (e.g., better problem linear relaxations) are then
inherited by the DPHH.

4 Multiple Scenario Approach and Consensus Func-

tions

The Multiple Scenario Approach (MSA), a common approach for solving stochastic and
dynamic problems in transportation, which was introduced by Bent and Van Hentenryck [5]
for the Vehicle Routing Problem with Stochastic Customer. As with the DPHA approach,
a finite set of scenarios are generated from known probability distributions that represent
the random variables associated to the problem. Then, a solution is found for each scenario,
independently, and a consensus plan is determined.

We consider the TSMIP for presenting the MSA. The solution obtained for each scenario
is projected to a set of solutions P in which there is only deterministic information. Then,
a consensus plan ρ ∈ P for the first-stage variables is generated. In order to determine this
plan, a similarity function Ψ : P2 → {0, 1} and a scoring function Φ : P → N are defined.
The similarity function measures whether two plans ρ1, ρ2 ∈ P are identical (Ψ(ρ1, ρ2) = 1)
or not (Ψ(ρ1, ρ2) = 0). This allows us to obtain a score Φ(ρ) for each plan ρ, as follows,

Φ(ρ) :=
∑

ρ′ 6=ρ

Ψ(ρ, ρ′). (22)

This score reflects how many plans ρ′ (from different scenarios) are identical to ρ. The
consensus function identifies the plan ρ∗ that has the highest score and proposes that plan
for decision making,

ρ∗ = argmax
ρ
{Φ(ρ)}. (23)

The resulting distinguished plan is not too different to other plans, in a kind of least com-
mitment strategy.

An alternative consensus function is proposed in Song et al. [33], which addresses the
symmetry of scenario solutions. This function is based on the Hamming distance, function
that measures the difference between vectors or matrices by comparing pairs of entries. Given
solutions for scenarios k, k′ ∈ [K], the Hamming distance for solutions xk, xk′ is defined as,

H(xk, xk′) :=
∑

i∈[N ]

|xki − xk′i|. (24)
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The scenario solution that is chosen is the one with the smallest distance value,

xk∗ = argmin





∑

k′∈[K],k′ 6=k

H(xk, xk′)

∣∣∣∣∣xk, k ∈ [K]



 . (25)

Many combinatorial problems have equivalent solutions but have different vectors of first
stage variables associated with them. For example, for a vehicle routing problem, where
the first stage solution represents the customers that are assigned to the vehicles, different
vectors can be obtained by simply permuting the order in which the vehicles are represented.
This is why the symmetry of the solution must be identified and addressed, allowing the
consensus function to be used in an efficient way. In Song et al. [33] a strategy for dealing
with symmetry is proposed. Understanding that trying all possible combinations to permute
the obtained solutions is not practical computationally, the authors propose a lexicographic
heuristic.

The lexicographic heuristic can be applied to any TSMIPB. For a given scenario, the
obtained solution is ordered by first considering the sequences that have a higher number of
ones (the first-stage is binary so it only has zeros and ones). In case there are two sequences
with the same number of ones, then we continue with a lexicographic rule: we order the
sequences considering the indices of entries with ones, starting with the smallest index.

In our computational study in Section 6, we implement these consensus functions, pre-
senting a vehicle routing problem variant for which the lexicographic rule is very effective.

5 Subgradient Algorithm

In this section, we present a Subgradient Algorithm (SA) to solve problem (6), in which
lower bound values are found by solving a MIP for each scenario and upper bound values
(and feasible solutions) are found using the consensus functions presented in Section 4. We
present in detail this algorithm and provide some theoretical guarantees.

The SA works in a similar way DPHA works: we solve simple independent subproblems
for each scenario, and sequentially update the multipliers associated to non-anticipativity
constraints by approximating the Lagrangian dual function from above. However, for the
SA, we initially need make an additional assumption: all scenarios have the same realization
probability, pk = 1/K for all k ∈ [K]. After presenting the SA and its properties, we show
how we can relax this assumption and consider instead any rational pk > 0.

Consider the TSMIP. For each scenario k ∈ [K], we solve Lk(λk),

min
xk∈X

Fk(xk) + λᵀkxk, (26)

with Λ ∈ D.
For a given optimal solution to (26), we can easily compute a lower bound for the optimal

value of the primal formulation (4).
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Proposition 6. Let Λ ∈ D be a dual multiplier. For an optimal solution x∗ for problem (4),
with xk = x∗, k ∈ [K]. We have 1

K

∑
k∈[K] Lk(λk) ≤

1
K

∑
k∈[K] Fk(x

∗).

Proof. Details in Appendix A.1.

For a given solution xk, k ∈ [K], of problem (26), we update the dual values in the direc-
tion in which the Lagrangian function increases the most. This update helps to coordinate
the xk solutions be the same by adding penalties or rewards associated to the first-stage
variables in the objective function. The approach, similar to the Gradient Descent, requires
the subgradient of the Lagrangian function and the step size for each iteration.

Let xk be an optimal solution of formulation (26) when using multipliers Λ. A subgradient
of L(Λ), g(Λ) ∈ ∂L(Λ), at point Λ ∈ D, is given by, gk(Λ) = 1

K
xk. Expressing g as a vector,

we have g(Λ) = 1
K

(x1, . . . , xK) = 1
K
X.

Lemma 1. For a given Λ0 ∈ D, the vector g(Λ0) is a subgradient of L(Λ) at Λ0.

Proof. Details in Appendix A.1.

Given a xk ∈ X , k ∈ [K], an optimal solution to (26) when multipliers Λ ∈ D are used,
we update the dual multipliers using the subgradient presented above. A new λ′k multiplier
is computed as follows,

λ′k = Π (λk + αgk(λ)) ,

= Π

(
λk + α

1

K
xk

)
,

= λk + α
1

K
xk −

1

K

∑

i∈[K]

(
λi + α

1

K
xi

)
,

= λk +
α

K
(xk − x̂) ,

where α > 0 is an step size, and the operator Π(·) is the projection function onto the set
D. Note that w.l.o.g, we can assume that α absorbs the constant term 1

K
, so we just refer

to αν as the step size for iteration ν ≥ 0.
The Subgradient Algorithm is the following.
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1 let λ0
k = 0, k ∈ [K];

2 set ν = 0;
3 for each k ∈ [K] get xν+1

k by solving,

xν+1
k ∈ argmin

xk∈X
Fk(xk) + λνᵀk xk;

4 compute x̂ν+1 = 1
K

∑
k∈[K] x

ν+1
k ;

5 find a feasible solution x̃ν+1 using consensus function;

6 update Lbest(ν) and Ubest(ν);

7 if Lbest(ν) = Ubest(ν) then
8 stop, x̃ν+1 is optimal;
9 else

10 get λν+1
k = λνk + αν(xν+1

k − x̂ν+1);
11 ν ← ν + 1 and go to line 3;

12 end

Algorithm 2: Subgradient Algorithm.

We start with multipliers λ0
k = 0, for all k ∈ [K], and iteration index ν = 0. We solve

problem (26), getting an optimal solution xν+1
k . With this solution, we compute the average

vector x̂ν+1 = 1
K

∑
k∈[K] x

ν+1
k (an implementable solution) and a feasible solution x̃ν+1 using

the consensus function (an admissible solution). We then update the best lower bound Lbest(ν)

and the best upper bound Ubest(ν) at iteration ν ≥ 0, Lbest(ν) = max{Lbest(ν−1), L(λν)} and

Ubest(ν) = min
{
Ubest(ν−1), 1

K

∑
k∈[K] Fk(x̃

ν+1
k )

}
. We check the condition Lbest(ν) = Ubest(ν). If

it holds, we stop, the first-stage solution x̃ν+1 is optimal; otherwise, we update the multipliers
λν+1
k = λνk+αν(xν+1

k − x̂ν+1), k ∈ [K], we increase the iteration index ν ← ν+1 and continue
with a new iteration in line 3. The sequence of step size {αν}∞ν=0 is any sequence with αν > 0,

for all ν ≥ 0, such that
∑η
ν=0 α

ν2∑η
ν=0 α

ν

η→∞−−−→ 0.

The binary case, when X ⊆ {0, 1}N , has an useful interpretation of the algorithm duals
updating. For a given feasible solution xk, k ∈ [K], with xik = 1 for a component i ∈ [N ],
the multiplier λik is updated adding the value α(1− x̂ik) ∈ [0, α]. If for many scenarios the
i-th component of x̄ is zero, then a penalty (whose value is close to α) is included for that
component. This penalty motivates that the next iteration subproblem (26) is solved, the
resulting xki is zero. When xik = 0 for some i ∈ [N ], the i-th component for λk is updated
adding −αx̂ik ∈ [−α, 0]. Again, if for many scenarios the i-th component of the first-stage
solution is one, then a reward is added, which promotes this variable to be equal to one the
next time we solve (26). This is the way this approach coordinates first-stage variables, by
adding penalties and rewards according to the scenario solution values majority.

In the following Theorem, we show that the Lagrangian function of the SA converges to
an optimal solution value. This result is provided by Polyak [28], where it is proved that the
SA converges when the sequence of αν satisfies the conditions we stated previously. However,
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unlike the DPHA, the convergence is not to an optimal primal and dual solutions but to a
Lagrangian solution value.

Theorem 2. Let Λ∗ be an optimal solution for problem (6), and let {Lbest(ν)}ν≥0 be the
sequences of best Lagrangian function values that the Algorithm 2 generates. The sequence
{Lbest(ν)}ν≥0 converges to L(Λ∗).

Proof. Details in Appendix A.1.

The optimal value of the Lagrangian function L(Λ∗) is equal to the problem (4) solved
on the convex hull.

Proposition 7. Let Λ∗ be an optimal solution for problem (6). The optimal value L(Λ∗)
equals the optimal value of the problem (10).

Proof. Details in Appendix A.1.

In this algorithm we compute upper bound values using the consensus function presented
in Section 4. This allows us to have feasible solutions that improve over iterations (so does
the upper bound value). This approach takes advantage of all the benefits that the consensus
function has. First, it allows us to find a plan (first-stage variables values) that is the most
similar to scenarios’ plans; second, in the case of full-recourse, this solution is also feasible
and implementable; and finally, it addresses the symmetry that the first stage solutions may
have. The algorithm we propose is an extension of the well-known subgradient method by
finding feasible solutions through efficient methods, the consensus functions.

We initially assume that pk = 1
K

, k ∈ [K]. Even though in many practical cases this
simplification is not a problem, we show how we can recover a setting with probabilities that
can be any positive rational number. In Algorithm 2, we change how the implementable
solution x̂ν+1 is computed: as in the DPHA, we use x̂ν+1 =

∑
k∈[K] pkx

ν+1
k . The following

proposition shows that this modification does not change the SA convergence guaranty.

Proposition 8. The convergence of Algorithm 2 to an optimal solution value (stated in
Theorem 2), holds for formulation (4) with rational pk > 0, k ∈ [K], and

∑
k∈[K] pk = 1.

Proof. Details in Appendix A.1.

5.1 Connection with the DPHA

After presenting the SA and the DPHA, we can show the similarities and differences between
them. There are several points to highlight:

1. Both algorithms converge to the optimal value of problem (10), but the DPHA con-
verges to a dual and a primal solution, while the SA only to the value of the objective
function. The main reason for this is that in the DPHA an augmented Lagrangian is
solved (indirectly we solve function (14)), while in SA only the Lagrangian function.
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This shows one of the major advantages of using DPHA: the scenario subproblems are
independent each other but the algorithm has guarantees like those of the augmented
Lagrangian method.

2. In both algorithms the duals updating is performed using the distance of the scenario
solutions with respect to the average multiplied by the weights αν , ν ≥ 0. However,
in the SA the sequence of these weights is decreasing while in DPHA the sequence has
to be bounded and non-decreasing. The reason for this is that, in the DPHA case, the
weights simultaneously affect both the dual and the primal solutions, so they must not
have extreme values (i.e., αν → 0 or αν →∞), while in the SA, they only update dual
variables.

3. This last point also means that the DPHA guarantees improvements at each iteration,
as stated in Proposition 4, while the SA can have a convergence that oscillates (a
lower bound value that is not monotone), because the αν , ν ≥ 0, only affects the dual
variables.

4. An advantage of the SA over the DPHA is that at each iteration lower bounds are ob-
tained for the problem. Since we also propose an efficient way to find feasible solutions,
for a given optimality tolerance, the SA allows earlier stopping.

5. The SA solves a MIP for each scenario subproblem while the DPHA solves a quadratic
problem on a convex set. In general, the convex hull of the problem is not available, so
the DPHA requires additional work. For example, in Boland et al. [7] it is proposed to
use a SDM. When the DPHA is restricted to solve a mixed-integer quadratic problem
for subproblems, a heuristic is obtained; for the SA, solving a MIP is an exact method.

6 Computational Experiments

We test our algorithms for two different problems, the canonical Stochastic Server Location
Problem (SSLP) and the Two-Stage Stochastic Assignment and Team-Orienteering Problem
(TSSATOP). The SSLP is one of the most popular problems considered for studying the
PHA or subgradient methods, so it is a natural setting for our experiments. The TSSATOP,
introduced in Song et al. [33], is studied using the MSA with a lexicographic rule consensus
function, which we consider a relevant problem setting with an interesting approach for
comparing our consensus algorithms.

All experiments are implemented using the Java programming language, with CPLEX
12.4 as the optimization solver. The computer servers employed for computation use CentOS
Linux with four eight-core Intel Xeon E5-2670 processor and 128 GB of RAM. Both SSLP
and TSSATOP instances are run for up to two hours, with up to 5 subproblems running
in parallel for each instance. Since most of the algorithms run for several iterations with
scenario subproblems that differ only in the objective function from the previous iteration,
we initialize these subproblems with the last solution found for each of them.
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In our computational experiments we do not study the DPHA since it is already proven
in Mulvey and Vladimirou [25] to be an efficient strategy for solving stochastic convex prob-
lems. Here we focus on comparing different consensus algorithms for problems with integer
variables, so we can indicate which are the best algorithms for problems that are usually
studied in the literature.

In this section, we first show the sequences we use for our consensus algorithms and then,
we present each problem, the SSLP and the TSSATOP, reporting the results for each of
them.

6.1 Sequences

For the SA it is known that the best strategy is to use a sequence αν = L√
ν+1

for ν ≥ 0, with
L a constant. This sequence guarantees the converge of the algorithm and also it is the one
with the fastest rate (see Nesterov [26] equation (3.2.10)). Our experiments consider this
sequence with different values for L.

For the DPHH we consider a step size drawn from the step size we use for the SA. For
the DPHH we need a non-decreasing sequence, so we propose,

αν = L

(
1− 1√

1 + ν

)
, ν ≥ 0, (27)

with L > 0, a constant. In our experiments, we also consider different values for L.
In Figure 1, we plot the sequence given by equation (27) for L = 10, 50, 100. In this class

of sequences, in the first few iterations the sequence reaches an important fraction of the
value L, having then iterations with small marginal increments.

Inspired by Mulvey and Vladimirou [25]’s adjustment sequences, we consider a sequence
with multiplicative updates, with a multiplier θ ≥ 1 and an exponent determined by the
Riemann zeta function ζ(f), f > 1. We define the following function,

ζν(f) :=
ν∑

i=1

1

if
. (28)

Thus, we have ζ(f) = limν→∞ ζ
ν(f). Note that when f = 2, we get the known limit

ζ(2) = π2

6
≈ 1.64. For a given f > 1 and θ ≥ 1, the sequence of {αν}ν≥0 is,

αν =

{
1, ν = 0,
θζ

ν(f), ν ≥ 1,
(29)

so, in the limit, α∞ = θζ(f).
We can rewrite the value of αν recursively as follows,

αν = θ
∑ν
i=1

1

if ,

= θ
1

νf
+
∑ν−1
i=1

1

if ,

= αν−1θ
1

νf ,
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Figure 1: Non-decreasing sequence αν = L√
ν+1

, ν ≥ 0, for the DPHH with values L =
10, 50, 100.

expression that shows that the sequences we propose differed from the one suggested in
Mulvey and Vladimirou [25]. They have a strategy where both αν−1 and θ are updated by
the exponent f . Out strategy provides more control and flexibility on the sequence growth.

In Figure 2 we plot sequences defined in (29), all with limiting value of 50, and with
factors f = 1.2, 1.5, 1.8. The multipliers θ are adjusted accordingly, so we have θ = 2.01 for
f = 1.2, θ = 4.47 for f = 1.5, and θ = 8.01 for f = 1.8. In these sequences we can see the
effect of factor f in the speed of converge, with f = 1.2 the slowest growth and f = 1.8 the
fastest.

6.2 Stochastic Server Location Problem

We consider the Stochastic Server Location Problem (SSLP) studied in Ntaimo and Sen
[27]. This problem is motivated by the servers location problem a telecommunication service
provider faces, where it has to be determined the most profitable plan for serving potential
customers. By using future scenarios that are deemed possible, a plan is chosen, where a
scenario corresponds to a set of potential clients that do materialize. In Appendix A.2 we
describe in detail this problem and formulate it as a TSMIPB.

We consider 9 instances studied in Ntaimo and Sen [27]1, with locations ranging from
5 to 15, and 8 instances studied in Lim et al. [23]2 that have a larger number of locations,
ranging from 20 to 90. Details can be found in Table 1. In the first column of the table is the
source of the instance; in the second column is the instance name; in the third column is the

1available in https://www2.isye.gatech.edu/ sahmed/siplib/sslp/sslp.html
2available in https://limconghan.github.io/smip/

24



Iterations

αν

αν1 = 2.01ζ
ν (1.2)

αν2 = 4.47ζ
ν (1.5)

αν3 = 8.01ζ
ν (1.8)

20 40 60 80 100

10

20

30

40

50

60

Figure 2: Non-decreasing sequence in (29) for the DPHH, with values f = 1.2, 1.5, 1.8. All
sequences converge to 50.

number of locations; and, in the fourth and fifth columns are the number of clients and the
number of scenarios, respectively. In the “Best Known” column is the best known objective
function value for the instance. For Ntaimo and Sen [27] instances, these values are optimal,
while for Lim et al. [23] no best values are known, since the methodology developed here is
for finding lower bounds for the instances and not feasible solutions. In the “Best Found”
column, we report the best value found by any of the implemented algorithms. Note that
for the Ntaimo and Sen [27] instances our proposed methods are able to find the best known
solution for each instance. Finally, in the “Gap (%)” column, we report the optimality gap
obtained by our proposed methods (percentage computed using the best lower bound and the
best upper bound found). When the gap is zero, we guarantee optimality for the instance.
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Source Instance Locations Clients Scenarios Best Known Best Found Gap (%)

N
ta

im
o

a
n
d

S
e
n

[2
7
]

SSLP-L5C25S50 5 25 50 -121.6 -121.6 optimal
SSLP-L5C25S100 5 25 100 -127.37 -127.37 optimal
SSLP-L10C50S50 10 50 50 -364.64 -364.64 optimal
SSLP-L10C50S100 10 50 100 -354.19 -354.19 0.05
SSLP-L10C50S500 10 50 500 -349.14 -349.14 0.53
SSLP-L10C50S1000 10 50 1000 -351.71 -351.71 0.61
SSLP-L15C45S5 15 45 5 -262.4 -262.4 optimal
SSLP-L15C45S10 15 45 10 -260.5 -260.5 optimal
SSLP-L15C45S15 15 45 15 -253.6 -253.6 optimal

L
im

et
a
l.

[2
3
]

SSLP-L20C100S50 20 100 50 - -846.26 0.25
SSLP-L20C100S200 20 100 200 - -839.33 0.73
SSLP-L30C100S50 30 100 50 - -855.84 0.21
SSLP-L30C100S200 30 100 200 - -845.02 0.68
SSLP-L60C60S50 60 60 50 - -489.96 optimal
SSLP-L60C60S200 60 60 200 - -476.99 0.47
SSLP-L90C45S50 90 45 50 - -339.58 0.76
SSLP-L90C45S200 90 45 200 - -331.63 1.64

Table 1: SSLP instances. For each instance we report the source, details about the instance,
the best known solution value, the solution value and the optimality gap we found in our
computational study.

In this work we are able to find feasible solutions for all Lim et al. [23] instances, prove
optimality for one of the instances (SSLP-L60C60S50), and report optimality gaps mostly
less than 1 %.

We consider the MSA, the PHA-based Heuristic (PHH), the DPHH and the SA for solving
the instances. For the DPHH, different parameters were tested for the sequences {αν}ν≥0.
The parameters of these sequences are determined so that the resulting limits are 10, 50 and
100. In the case of DPHH with square-root sequences (as in equation (27)), the values of
L are defined according to these limits. For the sequences defined in (29), three values are
taken for f , f = 1.2 (slow growth); f = 1.5 (moderate growth); and f = 1.8 (fast growth).
In all cases, the value of the multipliers are adjusted so that the sequences converge to 10,
50, and 100. For the PHH with fixed parameter, four values are considered for α, 1, 10, 50,
and 100. Finally, for the SA, four values are taken for L, L = 1, 10, 50, 100, generating the
sequences αν = L√

ν+1
, ν ≥ 0.

The Table 2 contains a summary of the results produced by the algorithms. In the first
column is the algorithm. For the DPHH we have two types of sequences, one generated
according the equation (29), which we refer to as DynamicMult(θ, f), and another one using
equation (27), which we refer to as DynamicSquare(L). The PHH is represented by PHH(α),
with α the fixed parameter of the algorithm, while the SA corresponds to Subgradient(L).
The “Parameters” column contains the parameters that have been used for each algorithm.
The “Optimal” column has the number of instances in which the algorithm proves optimality,
while the “Feasible” column contains the number of instances in which the algorithm finds
a feasible solution, within the two hours time limit. The “Gap Opt” column corresponds
to the average optimality gap, while “Gap Alg” shows the average gap guaranteed by the
algorithm, i.e., the best lower bound that the method can guarantee with respect to the
best feasible solution found. The “Gap Best” column shows the average of the gap of the
best solution found by any of the algorithms with respect to the solution of the method for
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all instances. Finally, the “Iterations” and “Runtime” columns have the average number of
iterations and the average time (in seconds), respectively.

Algorithm Parameters Solution Gap
Optimal Feasible Opt Alg Best Iterations Runtime (s)

DynamicMult(θ, f)

1.51 1.20 0 12 0.15 3.77 0.04 58.53 3674
2.01 1.20 0 13 0.24 4.19 0.04 31.18 2839
2.28 1.20 0 16 0.42 4.86 0.10 26.12 2499
2.41 1.50 0 13 0.24 4.20 0.04 34.18 2816
4.47 1.50 0 17 0.60 5.24 0.25 15.65 1497
5.83 1.50 0 17 0.75 5.38 0.40 11.35 1030
3.40 1.80 0 14 0.27 4.15 0.08 29.59 2570
8.01 1.80 0 17 0.81 5.44 0.46 10.71 1001

11.58 1.80 0 17 0.76 5.40 0.42 7.71 665

DynamicSquare(L)
10 0 13 0.26 3.99 0.09 34.06 2975
50 0 17 0.71 5.35 0.36 9.29 814
100 0 17 0.80 5.44 0.45 8.18 400

MSA 0 17 7.60 11.92 7.28 1.00 116

PHH(α)

1 0 6 0.00 1.99 0.00 152.71 5646
10 0 15 0.39 4.60 0.11 23.94 1888
50 0 17 0.67 5.32 0.33 7.47 380
100 0 17 1.83 6.42 1.48 5.76 238

Subgradient(L)

1 3 17 0.85 2.38 0.51 439.12 6140
10 4 17 0.72 0.84 0.37 144.53 6006
50 6 17 0.59 1.01 0.25 135.35 5377
100 3 17 0.43 1.62 0.08 299.35 6017

Table 2: Summary results for SSLP instances.

From the table, we see that only the SA proves optimality. For all other algorithms, the
best lower bound is obtained in the first iteration, when the duals are λk = 0, k ∈ [K]. This
shows that the lower bound can be improved for some instances using the SA, and that many
of these instances have no optimality gap. Note also that the algorithms are only executed
for 2 hours, so there may be other instances to which optimality can be guaranteed. In
the “Feasible” column we see that for several instances both PHH and DPHH cannot find
feasible solutions within 2 hours. In particular, all cases with {αν}ν≥0 sequences converging
to 10 or less have problems (e.g., θ = 3.4 and f = 1.8). Also, the DPHH configurations
with slow growth (f = 1.2), are not able to find feasible solutions for all instances, even
when convergence is to 100 (θ = 2.28). However, for the approaches that do not find feasible
solutions for all instances, the solution quality is high, as shown in the “Gap Opt” column.
This supports studies in which this trade-off between running times and solution quality is
reported [25, 36]. Finally, a correlation between the number of iterations and the execution
time is observed: the higher the number of iterations, the higher the average running times.
The only exception is the SA, where the number of iterations has no predictable pattern.

To perform a further analysis of the algorithms that find feasible solutions for all in-
stances (17 in total), we generate a plot of the average running time and optimality gap
for each algorithm in Figure 3 (we exclude MSA). We observe that all approaches are com-
petitive (except the MSA). For the majority, the average optimality gap are around 0.7%.
The PHA-based algorithms have low average execution times, less than 1500 seconds, with
DynamicMult(4.47, 1.5) being the algorithm with the longest running times but the one with
the highest average solution quality. We can also see that PHH(100) converges in a very
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Figure 3: Average running time and optimality gap for algorithms that find feasible solutions
for all instances (excluding MSA). [Labels: “DMult” = DynamicMult; “DSqrt” = DynamicSquare;

“Subgrad” = SA.]

short time, but it is the algorithm with the lowest solution quality. The SA methods have
longer running times, but it is one of them, the Subgradient(100), that finds the best feasible
solutions (the algorithm that has the smallest average optimality gap). Moreover, all SA
methods find feasible solutions for all instances.

The equation (19) shows that the number of scenarios does not affect the quality of the
solution obtained by the PHA-based heuristic, but rather the number of variables in the first
stage of the problem. For further analysis of this point, we consider the best of the SSLP
algorithms (in terms of running time and solution quality), DynamicMult(4.47,1.5), and the
instances for which the optimality of the solution has been proved. The instances considered
are those proposed by Ntaimo and Sen [27] and the instance of Lim et al. [23] for which
we were able to prove optimality, SSLP-L60C60S50. In Table 3 we show details for each
instance. The first column has the value found by the DynamicMult(4.47,1.5) algorithm;
the second, the optimal value for the instance; and, the last one, the percentual difference
between the first two columns.
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Instance DynamicMult Optimal Gap
SSLP-L5C25S50 -118.98 -121.60 2.15
SSLP-L5C25S100 -127.37 -127.37 0.00
SSLP-L10C50S50 -364.64 -364.64 0.00
SSLP-L10C50S100 -354.19 -354.19 0.00
SSLP-L10C50S500 -349.14 -349.14 0.00
SSLP-L10C50S1000 -351.71 -351.71 0.00
SSLP-L15C45S5 -259.20 -262.40 1.22
SSLP-L15C45S10 -260.50 -260.50 0.00
SSLP-L15C45S15 -251.60 -253.60 0.79
SSLP-L60C60S50 -489.96 -489.96 0.00

Table 3: Optimal results and the best solution value found by algorithm Dynamic-
Mult(4.47, 1.5) for instances SSLP.

From the table it can be noted that for instances with 10 locations, the algorithm finds
optimal solutions for all of them. This is independent of the number of scenarios, which for
instances with 10 locations (L10), ranges from 50 to 1000. For instances with 5 locations
(L5) and those with 15 (L15), we see that the number of scenarios is not a decisive factor of
the quality of the solution found by the algorithm. However, the solution quality dependency
on the number of first stage variables of the instance (determined by the number of potential
locations) is not clear for this problem.

Several conclusions can be drawn from the SSLP instances. In this problem, we can see
the typical trade-off between convergence speed and solution quality, shown in the perfor-
mance of the PHA-based algorithms. We can also see that DPHH is a competitive approach,
having high quality solutions in short running times. Of these DPHH, there are some that
show better performances than others. The version of DPHH with multiplicative sequences
has more promising results than the version with square-root sequences. This square-root
sequence, that is optimal for the subgradient method, it is not optimal for the DPHH, at
least for the SSLP. The best performing PHA-based algorithms converge to the value 50,
which may be a number that is associated to the parameters of the instances studied in
this work. We also highlight that algorithms whose sequences converge to the same values
(e.g., 50), have different performances, being an important factor to consider at the moment
of algorithm’s tuning. Finally, the SA achieves to improve the lower bound for the SSLP
instances, showing that many of them do not have an optimality gap. For 7 instances out of
17, optimality can be proved within 2 hours of algorithm execution. It is possible that for
other instances optimality can be proven if the SA is run longer.

6.3 Two-Stage Stochastic Assignment and Team-Orienteering Prob-
lem

The Two-Stage Stochastic Assignment and Team-Orienteering Problem (TSSATOP) is in-
troduced in Song et al. [33] and it is mainly motivated by the delivery operations of a large
European grocery chain.
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A company, that manages customer orders, has two type of customers, subscription and
on-demand customers. The subscription customers are served daily and, each time the
customer is visited, the same driver must deliver the order. Customers require the same
driver delivers the order, since building trust between the customer and the driver is an
important component of the service: the delivery drive enters the customers’ home to place
groceries into the customers’ refrigerators. The on-demand customers require the service
the same day so the company does not know in advance the information associated to these
customers. The company might or might not serve them but if it does, a reward is gained
and also these customers might subscribe the service in the future, so it is important to serve
them.

A finite fleet of vehicles is available to serve customers. Also a finite number of sampled
scenarios represents realizations of on-demand customers. A routing and assignment plan is
needed, that includes all subscription customers and a subset of on-demand customers for
each scenario, so the difference between the expected routing cost and revenue is minimized.
This problem is a two stage problem. In the first stage, subscription customers are assigned to
drivers, while in the second stage a set of on-demand customer are selected and route together
with subscription customers. Details of the TSSATOP and the mathematical formulation
can be found in Appendix A.3.

For the experiments carried out in this work, new instances were generated. We fol-
low the approach taken in Song et al. [33], in which the instances of Solomon [32] are
used as a basis, and adapted to generate subscription and on-demand customers. The only
difference with the Song et al. [33]’s’ approach is how we generate the distribution of on-
demand customers: instead of generating a set of clients once and then sample scenarios
based on that fixed set customers, we generate different sets of customers, so that for the
same instance, the scenarios might have completely different customers. We generate in-
stances with 10, 15 and 20 subscription customers, and with clustered and random locations
distributions. For each of these combinations, 5 instances were generated, so the total
number of instances is 30. Each instance has 10 scenarios. Our instances are available in
https://github.com/felipelagos/tssatop.

For this problem, only one DPHH (DynamicMult) is considered, where parameters for
the sequence with good performance are detected for this problem: we use θ = 2.41 and
f = 1.5 (so the limit converges to 10). For the SA, we take L = 50. To compare the
performance of these algorithms, the MSA and the PHH with fixed parameter α = 1 and
α = 10 are considered. All algorithms executions run for up to 2 hours under the same
computing conditions as the SSLP instances.

A summary of the results obtained by each algorithm for the 30 TSSATOP instances
can be found in the Table 4. In the first column, it is the solving algorithm. The second
column, the “Feasible” column, contains the number of instances for which a feasible solution
was found. The “Opt Gap” and “Best Gap” columns show the optimality gap and the gap
with respect to the best solution found by any of the approaches, respectively. Finally, the
“Iterations” column contains the average number of iterations and the “Runtime” column
shows the average time (in seconds).
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Algorithm Feasible Opt Gap Best Gap Iterations Runtime (s)
MSA 30 6.88 2.44 1.00 70
DynamicMult(2.41, 1.50) 30 4.44 0.14 4.67 947
PHH(1) 25 2.60 0.02 7.17 771
PHH(10) 29 5.40 1.25 3.93 648
Subgradient(50) 30 4.28 0.00 318.83 6982

Table 4: Summary results for TSSATOP instances.

The PHH cannot solve all instances, the PHH(1) only manages to solve 25, while PHH(10)
solves 29 (out of 30). The DPHH, as well as the SA and the MSA, solve all instances. The
SA is the best solving approach in terms of solution quality, finding the best solution for all
instances (Best Gap equal to zero). However, the number of iterations and running times
are very large. It is worth noting that for this problem, unlike the SSLP, the optimality gap
is not closed: for no instance the lower bound value is better than the one found in the first
iteration (when λk = 0, k ∈ [K], i.e., when the non-anticipativity constraint is relaxed).
The iteration numbers of DPHH are greater than those of PHH(10), but less than those
of PHH(1), while the average running time of DPHH is greater than that of both PHH’s.
Again, the DPHH shows that it is able to find high quality solutions in short running times,
with better convergence stability than the PHH.

To illustrate the convergence of these algorithms, we have two plots in Figure 4. We have
the instances R103S10 and C101S10, both with 10 subscription customers, where C101S10
has a clustered distribution for the locations and R103S10 has a random distribution. On the
y-axis, it is the objective value of the primal solution, while on the x-axis, it is the iterations
number. For instance R103S10, both the PHH(1) and the PHH(10), do not converge to
a feasible solution within 2 hours. While the pattern of PHH(10) shows some regularity
(which could support the development of some cycle detection strategy), the PHH(1) has no
predictable convergence. In instance C101S10, the PHH(1) does also not converge, showing,
again, not very predictable convergence. In this case, the PHH(10) does converge, but the
convergence is not as monotonic as it is in the DPHH. In both examples the DPHH has a
stable convergence which helps to explain the high performance of this algorithm. Finally,
note that the SA always finds better solutions than those of the MSA: in the first iteration
both approaches are equal, but the SA has more iterations after that to find better solutions.

PHH(1) PHH(10)
Feasible Gap Runtime (s) Feasible Gap Runtime (s)

Customers
10 5 0.00 636.44 9 0.56 274.90
15 10 0.00 237.15 10 0.35 108.72
20 10 0.03 134.59 10 0.49 61.61

Distribution
C 14 0.00 242.96 15 0.37 43.61
R 11 0.03 765.22 14 1.03 401.62

Table 5: Analysis results for TSSATOP instances using PHH(1) and PHH(10). Two in-
stances dimensions are considered: number of subscription customers and customer distri-
butions.
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Figure 4: Algorithms convergences for two instances, R103S10 and C1010S10. In the x-axis
is the iterations, while in the y-axis is the value of the primal solution.

To analyze the impact of the instances design with respect to the performance of the
PHH(1) and PHH(10), we have Table 5. We decide to analyze the performance of the PHH
instead of the DPHH, since the later one shows a high performance for this problem, making
the analysis difficult (almost for all instances the DPHH finds the known best solution). Here
two dimensions are analyzed for the instances: the number of subscription customers and
the instance distribution. The analysis of the number of feasible solutions (column “Fea-
sible”), the average gap with respect to the best solution found (“Gap”), and the average
time (“Runtime”) are carried out for both algorithms. Note that for both algorithms clus-
tered instances are easier to solve than random instances. Clustered instances have fewer
“attractive” solutions for the scenarios, so it is easier to coordinate the different solutions. In
addition, the distance between the solution found by the algorithm and an optimal one can
be large in random instances, so the guarantees that PHA-based heuristics have are of lower
quality (equation (20)). With respect to the number of subscription customers, instances
with 10 customers show greater complexity than those with 15 or 20. While the number of
first stage variables is higher for these instances with 15 or 20 customers, it is more difficult

32



to coordinate solutions along the scenarios when the number of customers is 10.
The TSSATOP problem, unlike the SSLP, exhibits an optimality gap that is not closed

by the SA, which can be inherent of the Stochastic Vehicle Routing Problem nature of the
TSSATOP. The DPHH has the best convergence performance, while the PHH (with different
values for α) is not the most efficient approach for finding feasible solutions. Finally, the
number of first stage variables is not always the only factor to take into account to understand
the complexity of the problem, in some cases the number of potential solutions for the
scenarios may be more decisive. Thus, factors such as the locations distribution and number
of subscription customers are relevant components for understanding the performance of the
algorithms.

7 Conclusions and Future Work

In this paper we study Scenario Consensus Algorithms: considering a set of scenarios that
represent future outcomes, these algorithms solve subproblems independently to find a feasi-
ble solution. We present a new exact algorithm, the DPHA, for which we provide theoretical
guarantees that helps to understand both this algorithm and the PHA from a new point of
view. In addition, we propose a DPHA-based heuristic, the DPHH, and show optimality
guarantees for the solution obtained. Then, we show the MSA and the SA with consen-
sus functions. Our analysis allows us to highlight the advantages and disadvantages of the
DPHA, the SA, and the MSA, which gives guidance for future research in choosing the
proper method for the problem in hand. In a computational study, we study the SSLP and
the TSSATOP, and we show the empirical performance of the proposed algorithms.

There are many next steps that can be studied for future research.
We present the DPHA for two-stage stochastic problems, mainly because the analysis

and notation is simpler and easier to follow. The approach to be used for the multi-stage
case is the same, but requires a clear presentation. A future research direction includes
extending the DPHA for multi-stage stochastic problems, not only for the exact version of
the algorithm, but also for the heuristic we propose, the DPHH.

In this paper we present a generalization of the PHA. For the PHA several improvements
have been proposed. A future direction is to incorporate and study those improvements
to the DPHA. In particular, the improvements presented in Boland et al. [7], that allow
solving the PHA subproblem efficiently, are interesting extensions to the DPHA. Also, the
exact algorithm of Atakan and Sen [3], which integrates the PHA with a branch-and-bound
method, can be studied for the DPHA.

The guarantee we propose for the DPHH assumes that the algorithm converges to an
implementable solution. Empirically, in most of the cases, this is confirmed. There are
exceptions. For example, in our computational study, when the {αν}ν≥0 sequence is constant,
the heuristic does not always converge. In contrast, when we use the DPHH, the dynamic
strategy of the sequence leads to higher stability and therefore convergences in few iterations.
An interesting research direction is to determine under what conditions the DPHH has a
provable convergence. In particular, problems with binary first-stage variables is a setting
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that usually arises in practice, so theoretical guarantees for this case are valuable to the
community.

The DPHH we propose can be studied in more detail. We consider the case with a
quadratic regularization term, but other functions can be studied to incorporate into the
objective function. As we mentioned in the optimality guarantee in Proposition 5, the
function used determines how close the solution is to the optimal solution. Another extension
that can be carried out is to integrate the DPHH (and the resulting MIP) with a column
generation approach. An PHA-based approach with such a decomposition approach has
never been studied.

We propose a new subgradient method with consensus functions. For many problems the
lower bound and the upper bound provided by this algorithm do not converge to the same
value, so it is important to understand under what conditions the optimality of the feasible
solution found can be guaranteed. Can the SA converge to the Lagrangian function optimal
value without finding the optimal (implementable and admissible) solution of the problem
along the way?

Finally, an important motivation of this work is to solve stochastic and dynamic problems
that arise in the transportation field. One direction of future work is to study consensus
algorithms for dynamic problems, such as the Same-Day Delivery Problem studied in Voccia
et al. [35]. That is, to propose an online approach for solving these problems, so handling
the uncertainty of the problem and finding efficient plans. This approach could not only be
efficient for real life problems, but could also be used to train offline methods, so an efficient
policy can be learned for the problem.
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A Appendix

A.1 Mathematical Proofs

Proof of Proposition 1. Note that the vector x∗ satisfies the implementable condition (i.e.,
it satisfies the non-anticipativity constraints). Indeed, for contradiction suppose for some
k1, k2 ∈ [K] x̃k1 6= x̃k2 with (x̃1, . . . , x̃K) ∈ argminG(x∗,Λ). W.l.o.g we assume that ‖x̃k1‖2 ≥
‖x̃k2‖2, so ‖x̃k1‖2 − x̃ᵀk1x̃k2 > 0. Consider the vector D = (d1, . . . , dK) with dk1 =

x̃k1
pk1

and

dk2 = − x̃k1
pk2

, and dk = 0 for all k 6= k1 and k 6= k2. It holds D ∈ D.

Note that Λ∗+γD ∈ D, for any γ ≥ 0, so (x∗,Λ∗+γD) is a feasible solution for G, then,

G(x∗,Λ∗ + γD) =
∑

k∈[K]

pk (F c
k (x̃k) + (λk + γdk)

ᵀx̃k) ,

=
∑

k∈[K]

pk (F c
k (x̃k) + λ∗ᵀk x̃k + γdᵀkx̃k) ,

= G(x∗,Λ∗) + γ(‖x̃k1‖2 − x̃ᵀk1x̃k2).

Making γ → ∞ we have that G(x∗,Λ∗ + γD) → ∞ contradicting the fact (x∗,Λ∗) is a
saddle point.

Thus, we can write the function G evaluated at (x∗,Λ), with Λ ∈ D, as follows,

G(x∗,Λ) =




∑

k∈[K]

pkF
c
k (xk)

∣∣∣xk = x∗, k ∈ [K]



 =

∑

k∈[K]

pkF
c
k (x∗) = Lc(X∗,Λ).

For all (x̄,Λ) ∈ conv(X )×D we have the following equivalence,

G(x̄,Λ) = min
x∈conv(X )K




∑

k∈[K]

pk (F c
k (xk) + λᵀkxk)

∣∣∣
∑

k∈[K]

pkxk = x̄



 ,

≤
∑

k∈[K]

pk (F c
k (xk) + λᵀkxk) , ∀X ∈ S(x̄),

so we have,

G(x∗,Λ∗) ≤ G(x̄,Λ∗), ∀x̄ ∈ conv(X ),

=⇒ G(x∗,Λ∗) ≤
∑

k∈[K]

pk (F c
k (xk) + λᵀkxk) , ∀X ∈ S(x̄),∀x̄ ∈ conv(X ),

=⇒ G(x∗,Λ∗) ≤ Lc(X,Λ∗), ∀X ∈ conv(X )K .

Finally, since (x∗,Λ∗) is a saddle point of G, we have,

G(x∗,Λ∗) ≤ G(x̄,Λ∗), ∀x̄ ∈ conv(X ),

G(x∗,Λ∗) ≥ G(x∗,Λ), ∀Λ ∈ D,
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so using the previous inequalities, we have that (X∗,Λ∗) is also a saddle point for Lc.

Proof of Proposition 2. We first prove that the function G(x̄,Λ) is convex. Take any x̄1, x̄2 ∈
conv(X ), Λ ∈ D and α ∈ [0, 1]. Let x1 ∈ argminx∈S(x̄1){G(x̄1,Λ)} and let x2 ∈ argminx∈S(x̄2){G(x̄2,Λ)}.
Using that the function F c

k (x) is convex in x ∈ conv(X ), we have,

G(αx̄1 + (1− α)x̄2,Λ) = min




∑

k∈[K]

pk (F c
k (xk) + λᵀkxk)

∣∣x ∈ S(αx̄1 + (1− α)x̄2)



 ,

≤
∑

k∈[K]

pk
(
F c
k (αx1

k + (1− α)x2
k) + λᵀk(αx

1
k + (1− α)x2

k)
)
,

≤
∑

k∈[K]

pk
(
αF c

k (x1
k) + (1− α)F c

k (x2
k) + αλᵀkx

1
k + (1− α)λᵀkx

2
k

)
,

= αG(x̄1,Λ) + (1− α)G(x̄2,Λ).

Similarly, in order to show that the function G(x̄,Λ) is concave in Λ ∈ D, we take any
Λ1,Λ2 ∈ D, x̄ ∈ conv(X ) and α ∈ [0, 1]. Let x∗ ∈ argminx∈S(x̄) G(x̄, αΛ1 + (1 − α)Λ2), we
have,

G(x̄, αΛ1 + (1− α)Λ2) =
∑

k∈[K]

pk (F c
k (x∗k) + (αλ1k + (1− α)λ2k)

ᵀx∗k) ,

=
∑

k∈[K]

pk (α(F c
k (x∗k) + λᵀ1kx

∗
k) + (1− α)(F c

k (x∗k) + λᵀ2kx
∗
k)) ,

≥ αG(x̄,Λ1) + (1− α)G(x̄,Λ2).

Proof of Proposition 6. Take any optimal solution x∗ for (4). We have,

1

K

∑

k∈[K]

Lk(λk) =
1

K

∑

k∈[K]

min
xk∈X

{Fk(xk) + λᵀkxk} ,

≤ 1

K

∑

k∈[K]

Fk(x
∗) + λᵀkx

∗,

=
1

K

∑

k∈[K]

Fk(x
∗).

39



Proof of Lemma 1. Note that, for any Λ ∈ D, we have,

L(Λ) = min
xk∈X

1

K

∑

k∈[K]

(Fk(xk) + λᵀkxk) ,

= min
xk∈X

1

K

∑

k∈[K]

(
Fk(xk) + λ0ᵀ

k xk + λᵀkxk − λ
0ᵀ
k xk

)
,

≤ min
xk∈X

1

K

∑

k∈[K]

(
Fk(xk) + λ0ᵀ

k xk
)

+
1

K

∑

k∈[K]

x0ᵀ
k (λk − λ0

k),

= L(Λ0) +
∑

k∈[K]

gk(Λ
0)ᵀ(λk − λ0

k),

= L(Λ0) + g(Λ0)ᵀ(Λ− Λ0).

Proof of Theorem 2. We start by computing the distance between Λν and Λ∗, which allows
us to find an upper bound for L∗ − Lbest(ν), with L∗ = L(Λ∗).

At any iteration ν ≥ 0, we have,

1

K

∑

k∈[K]

‖λν+1
k − λ∗k‖2 =

1

K

∑

k∈[K]

‖λνk + αν(xνk − x̂ν)− λ∗k‖2

=
1

K

∑

k∈[K]

‖λνk − λ∗k‖2 +
1

K

∑

k∈[K]

2αν(xνk − x̂ν)ᵀ(λνk − λ∗k) +
1

K

∑

k∈[K]

αν2‖xνk − x̂ν‖2,

≤ 1

K

∑

k∈[K]

‖λνk − λ∗k‖2 + 2αν(L(Λν)− L∗) +
1

K

∑

k∈[K]

αν2‖xνk − x̂ν‖2,

Summing inequalities up for ν = 0, . . . , η, we have,

1

K

∑

k∈[K]

‖λη+1
k − λ∗k‖2 ≤ 1

K

∑

k∈[K]

‖λ∗k‖2 + 2

η∑

ν=0

αν(L(Λν)− L∗) +
1

K

∑

k∈[K]

η∑

ν=0

αν2‖xνk − x̂ν‖2,

≤ 1

K

∑

k∈[K]

‖λ∗k‖2 + 2

η∑

ν=0

αν(L(Λν)− L∗) +N

η∑

ν=0

αν2,

≤ 1

K

∑

k∈[K]

‖λ∗k‖2 + 2(Lbest(η) − L∗)
η∑

ν=0

αν +N

η∑

ν=0

αν2,

It follows,

0 ≤ L∗ − Lbest(η) ≤
1
K

∑
k∈[K]‖λ∗k‖2 +N

∑η
ν=0 α

ν2

2
∑η

ν=0 α
ν

η→∞−−−→ 0,

and since for all Λ ∈ D, L(Λ) ≤ L∗, we conclude.
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Proof of Proposition 7. For proving this result we just need note that solving a mixed-integer
problem is equivalent to solve it on the convex hull of the variables set and that for convex
sets we can swap the min for the max.

L(Λ∗) = max
Λ∈D

min
xk∈X

1

K

∑

k∈[K]

F (xk) + λᵀkxk,

= max
Λ∈D

min
xk∈conv(X )

1

K

∑

k∈[K]

F (xk) + λᵀkxk,

= min
xk∈conv(X )

max
Λ∈D

1

K

∑

k∈[K]

F (xk) + λᵀkxk,

= min





1

K

∑

k∈[K]

F (xk)

∣∣∣∣∣
xk = 1

K

∑
i∈[K] xi, k ∈ [K],

xk ∈ conv(X ), k ∈ [K].



 .

Proof of Proposition 8. Consider any pk > 0 rational, k ∈ [K], with
∑

k∈[K] pk = 1, and take
K ′ the minimum integer such that pkK

′ ∈ N. Note that the rational assumption of scenarios
probabilities guarantees this K ′ exists. For each k ∈ [K], we create identical Ek := pkK

′

copies of scenario k. We now use an induction argument for showing the result.
At iteration ν = 0 for the SA and for each scenario j ∈ Ek, k ∈ [K], we solve the

subproblem and get an optimal solution x1
j ∈ argminxj∈X Fj(xj), and since the subproblem

is the same for all j ∈ Ek, we can pick the same solution for each j. We have that, for all
k1, k2 ∈ Ek, x1

k1
= x1

k2
, for all k ∈ [K].

For the implementable solution we have,

x̂1 =
1

K ′

∑

k∈[K′]

x1
k =

1

K ′

∑

k∈[K]

∑

j∈Ek

x1
j =

1

K ′

∑

k∈[K]

|Ek|x1
k =

∑

k∈[K]

pkx
1
k,

and for each λ1
j ,

λ1
j = λ0

j + α1(x1
j − x̂1) = α1(x1

j − x̂1),

so λ1
k1

= λ1
k2

, for all k1, k2 ∈ Ek.
At iteration ν ≥ 0, using a similar argument, we show that the subproblem copies, j ∈ Ek,

k ∈ [K], have the same dual multipliers λν+1
j , so we can pick the same optimal solution for

all of them. Indeed, we solve xν+1
j ∈ argminxj∈X Fj(xj) + λνᵀj xj, so for all k1, k2 ∈ Ek,

xν+1
k1

= xν+1
k2

. The implementable solution x̂ν+1 holds that x̂ν+1 =
∑

k∈[K] pkx
ν+1
k and the

new dual multipliers,
λν+1
j = λνj + αν+1(xν+1

j − x̂ν+1),

so for all k1, k2 ∈ Ek, λν+1
k1

= λν+1
k2

.
We conclude the Lagrangian function of the SA converges an optimal L(Λ∗) for any

formulation with pk > 0 rational, k ∈ [K], and
∑

k∈[K] pk = 1.
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A.2 SSLP Formulation

The SSLP considers a I number of potential locations for servers, a J number of clients
and a S number of zones. Each server can serve up to u amount of resource to clients and
the location cost it in j ∈ [J ] is cj. The revenue generated by serving client j ∈ [J ] from
location i ∈ [I] is rij and the total demand for the pair location-client (i, j) is dij. If from
a server at j more units of resource has to be supplied, a shortage cost qi (penalty) is paid.
A maximum number of v servers can be installed. The original formulation of Ntaimo and
Sen [27] considers zones, geographical areas that have locations assigned, however, in the
benchmark instances there are no zones. The locations for zone s ∈ [S] are indexed with Is
and a minimum of `s servers has to be installed in s.

The formulation considers K scenarios that represent possible clients outcomes. The
parameter γkj , j ∈ [J ] and k ∈ [K], is equal to one if the customer j is present in scenario k;
zero, otherwise.

Let xi be a binary variable that is equal to one if a server is installed in i ∈ [I]; zero,
otherwise; and let ykij be a binary variable that is equal to one if location i ∈ [I] serves client
j ∈ [J ] in scenario k ∈ [K]; zero, otherwise. The variable zki corresponds to the demand
overflow due to server capacity limitations at i ∈ [I] in scenario k ∈ [K].

min
∑

i∈[I]

cixi +
1

K

∑

k∈[K]


qizki −

∑

j∈[J ]

rijy
k
ij


 , (30a)

s.t.
∑

i∈[I]

xi ≤ v, (30b)

∑

j∈[J ]

dijy
k
ij ≤ uxi + zki , i ∈ [I], k ∈ [K], (30c)

∑

i∈[I]

ykij = γkj , j ∈ [J ], k ∈ [K], (30d)

∑

i∈Is

xi ≥ `s, s ∈ [S], (30e)

xi ∈ {0, 1}, i ∈ [I],

ykij ∈ {0, 1}, i ∈ [I], j ∈ [J ], k ∈ [K],

zki ≥ 0, i ∈ [I], k ∈ [K].

The objective function in (30a) is to minimize the total expected cost of installing servers
and satisfying client demands. Constraint (30b) enforces that no more than v servers are
installed. Constraints (30c) impose the client demands are served, while constraints (30d) en-
sure all realized clients in a given scenario have a server associated. Finally, constraints (30e)
impose the minimum number of servers for each zone.
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A.3 TSSATOP Formulation

A two-stage formulation of this problem is provided by Song et al. [33]. Subscription cus-
tomers are indexed by VS and all on-demand customers (each potential customer requiring
the service on any day) are represented by VD, with N = |VS ∪ VD|. The depot is indexed
by 0 and N + 1. Sampled scenarios represent realizations of VD. We consider K the number
of scenarios and for each of them, a known set VD is associated, V k

D, k ∈ [K]. Each scenario
has the same realization probability of 1

K
. The set of all locations for a given scenario k is

V k = Vs ∪ V k
D ∪ {0, N + 1}.

To serve customers, a fleet of M vehicles is available. Each vehicle must start at the
depot and return before a time tmax. Not all vehicles have to be used during a day but each
of them can be assigned to at most one route. Each i ∈ VD ∪ Vs has a fixed time window
[`i, ui] and a location associated, so the travel cost cij and time tij between i ∈ VD ∪ Vs and
any j ∈ VD ∪ Vs is known. Travel times and cost are assumed to be symmetric and positive.
Also, for any customer a service time τi > 0 is known. It is also assumed the time windows
are hard, so a vehicle that arrives early must wait until `i and it cannot arrive after ui.
The subscription customers must be served by the same driver and their locations and time
window are known in advance. Each served on-demand customer i ∈ VD earns a reward
ρi > 0 and it is not required to server all on-demand customers.

The binary variable that assigns subscription customers to vehicles is x, which corre-
sponds to the first-stage variable of the formulation. For a customer i ∈ VS and a vehicle
m ∈ [M ], xim is equal to one if the customer i is assigned to m, zero otherwise. For the
second-stage, we consider the binary variable ykijm, which is equal to one if the vehicle m
goes from location i ∈ V k to j ∈ V k in scenario k; zero otherwise; the binary variable zki
which is equal to one if the location i ∈ V k is visited in scenario k ∈ [K]; zero otherwise;
and the non-negative variable tki that corresponds to the arrival time to location i ∈ V k in
scenario k. The zero value for tki means there is no arrival at location i.
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min
∑

k∈[K]

1

K


 ∑

m∈[M ]

∑

i∈V k,j∈V k
cijy

k
ijm −

∑

i∈V kD

ρiz
k
i


 , (31a)

s.t.
∑

m∈[M ]

xim = 1, i ∈ VS (31b)

∑

j∈V k
ykijm = xim, i ∈ VS,m ∈ [M ], k ∈ [K] (31c)

∑

j∈V k
ykjim =

∑

j∈V k
ykijm, i ∈ V k \ {0, N + 1},m ∈ [M ], k ∈ [K]

(31d)
∑

i∈V k
y0jm ≤ 1 m ∈ [M ], k ∈ [K] (31e)

zki =
∑

m∈[M ]

∑

j∈V k
ykijm, i ∈ V k

D, k ∈ [K], (31f)

tkj ≥ tki + (tij + τi +M)
∑

m∈[M ]

ykijm −M, k ∈ [K], i ∈ V k \ {N + 1}, j ∈ V k \ {0},

(31g)

`i ≤ tki ≤ ui, i ∈ V k, k ∈ [K], (31h)

xim ∈ {0, 1}, i ∈ VS,m ∈ [M ],

ykijm ∈ {0, 1}, i ∈ V k, j ∈ V k,m ∈ [M ], k ∈ [K],

zki ∈ {0, 1}, i ∈ V k
D, k ∈ [K].

Constrains (31b) impose all subscription customers are served and constrains (31c) forces
that the assignment of vehicles to subscription customers is the same for all scenarios. The
vehicle flow conservation is enforced by constrains (31d). The z variable, that represent if a
customer is served in a given scenario, is defined by constrains (31f). Visiting time constrains
are represented by (31g) and the time windows conditions are imposed by constrains (31h).
The objective function (31a) minimizes the expected routing cost minus the expected revenue
gained by serving on-demand customers.
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A.4 Results Details for TSSATOP

Instance Best
DynamicMult(2.41, 1.50)

Lower Found Runtime (s) Iterations
C101S10 59.61 53.67 59.92 236.71 6
C101S15 125.12 121.58 125.12 89.51 5
C101S20 176.46 171.44 176.46 824.00 3
C102S10 90.20 87.03 90.20 30.29 3
C102S15 111.22 108.57 111.22 206.03 2
C102S20 181.36 178.93 181.36 117.43 3
C103S10 74.41 72.09 74.41 50.10 4
C103S15 110.13 105.84 112.09 234.09 5
C103S20 176.46 171.44 176.46 56.88 3
C104S10 51.63 48.23 51.63 41.42 3
C104S15 102.55 97.59 102.55 561.14 5
C104S20 181.87 180.23 181.87 72.02 2
C105S10 59.03 55.47 59.03 55.78 5
C105S15 119.48 115.66 119.48 825.26 5
C105S20 135.14 133.80 135.14 385.04 2
R101S10 55.03 51.59 55.03 64.20 4
R101S15 60.32 60.32 60.32 41.48 1
R101S20 136.51 134.69 136.51 250.83 3
R102S10 76.94 70.59 77.26 40.37 7
R102S15 67.84 65.03 67.84 2087.52 4
R102S20 136.14 133.00 136.14 806.05 3
R103S10 70.16 66.43 70.46 1159.91 4
R103S15 88.19 86.15 88.19 1310.64 4
R103S20 143.60 142.53 143.60 1076.69 3
R104S10 57.22 50.94 57.22 7134.18 5
R104S15 97.12 93.78 97.12 934.45 3
R104S20 140.31 137.39 141.24 1504.41 3
R105S10 45.97 41.78 47.56 6252.09 4
R105S15 95.68 92.87 95.68 1627.33 4
R105S20 145.49 140.67 145.49 361.93 2

Table 6: Result details for instances TSSATOP. The column “Best” contains the best solution
found by any of the executed algorithms. The remaining columns have details for the DPHA
configuration with the best performance.
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