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Cut-generating linear programs (CGLPs) play a key role as a separation oracle to produce valid inequalities
for the feasible region of mixed-integer programs. When incorporated inside branch-and-bound, the cutting
planes obtained from CGLPs help to tighten relaxations and improve dual bounds. However, running the
CGLPs at the nodes of the branch-and-bound tree is computationally cumbersome due to the large number
of node candidates and the lack of a priori knowledge on which nodes admit useful cutting planes. As a
result, CGLPs are often avoided at default settings of branch-and-cut algorithms despite their potential
impact on improving dual bounds. In this paper, we propose a novel framework based on machine learning
to approximate the optimal value of a CGLP class that determines whether a cutting plane can be generated
at a node of the branch-and-bound tree. Translating the CGLP as an indicator function of the objective
function vector, we show that it can be approximated through conventional data classification techniques. We
provide a systematic procedure to efficiently generate training data sets for the corresponding classification
problem based on the CGLP structure. We conduct computational experiments on benchmark instances
using classification methods such as logistic regression. These results suggest that the approximate CGLP
obtained from classification can improve the solution time compared to that of conventional cutting plane
methods. Our proposed framework can be efficiently applied to a large number of nodes in the branch-and-

bound tree to identify the best candidates for adding a cut.
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1. Introduction

Solving optimization problems with a large number of constraints can be computation-
ally challenging due to explicit representation of all constraints in the base model. In this
situation—if the problem structure allows—a cut-generating linear program (CGLP) is em-
ployed as a separation oracle to add cutting planes successively to a relaxation of the model.
This oracle is particularly useful in computing the projection of a set onto a lower-dimensional

space, which is a common technique for tightening relaxations of mixed integer programs
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(MIPs). The core structure of this projection procedure is given in the following proposition;

see |Conforti et al.| (2014) for a detailed account on the role of CGLPs in MIPs.

PROPOSITION 1. Consider a set S ={(a,8) € RPF*?| Aae+ BB < ~}, where A, B, and v
are parameter matrices of matching dimensions. Then, the collection of inequalities x BB <
xy for all feasible solutions & € C := {x € R} |£A =0} describes the projection of S onto the
B-space, denoted by projs(S). Further, for any point B €RY, if max{x(BB —~)|xcC}=0,
then B € proj4(S). Otherwise, if max{z(BB—~)|x €C} >0 with an optimal ray x, then B
can be separated from projs(S) by xBA <xzy. [

In view of Proposition , the problem max{z(BB —~) |z € C} is referred to as the CGLP
associated with the projection of S. This CGLP is a critical tool for solving both special-
structured and general MIPs in lower-dimensional spaces. For instance, CGLPs form the
basis of disjunctive programming |Balas (1979)) as a predominant method to obtain strong
cutting planes; see Nemhauser and Wolsey! (1999)). In this approach, a convex hull description
of the MIP is constructed in a higher-dimensional space through convexifying the disjunctive
union of a finite number of polyhedra, which is then projected onto the space of original
variables through solving a CGLP. The resulting inequalities are added to the relaxations of
the problem as separating cutting planes.

In the CGLP of Proposition , different values of the point B which is desired to be
separated—Ilead to different objective functions, while the feasible region defined by the poly-
hedral cone C remains the same. Depending on the objective function, the optimal value
of the CGLP can be either 0 or oo, indicating whether or not the point can be separated
from the projection. In MIP applications, this oracle is often invoked at the nodes of the
branch-and-bound (B&B) tree to obtain cutting planes that separate the optimal solution
of the LP relaxation to improve the dual bound. Even though the CGLP is a linear pro-
gram, solving it repeatedly at the nodes of the B&B tree can be computationally prohibitive
even for moderate-size problems. Various studies in the literature are devoted to finding
an approximate CGLP by reducing variables and constraints with the goal of reducing the
solution time at the price of producing potentially weaker cuts; see |Balas and Perregaard
(2002). Despite the time improvement achieved by such approximate models, their repetitive
invocation at the massive scales required in branch-and-cut methods could still render them

practically expensive.
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A recent study by Davarnia et al. (2022) shows that a new class of cutting planes that
targets consistency of the partial assignments corresponding to the nodes of the B&B tree
can be more effective than the traditional cutting planes in reducing memory allocation and
solution time. It is shown in this work that consistency cuts can be generated based only on
the optimal value of the CGLP, unlike traditional cutting planes that require the optimal
solution of the CGLP in addition to its optimal value. To generate consistency cuts, we
only need the characterization of the indicator function of the CGLP that has two possible
outcomes: 0 when the optimal value of the CGLP is 0; and 1 when the optimal value of the
CGLP is oo; see Rockafellar| (1997)) for properties of indicator functions of convex programs.

A common occurrence when implementing CGLPs inside of a branch-and-cut scheme is
that the CGLP is solved numerous times over a fized cone at a given layer of the B&B tree.
This observation raises the question: whether one can find an approximation of the CGLP
indicator function over the entire domain of the objective function vectors, so that for any
given vector, we can quickly evaluate the approximate indicator function without the need
to solve an LP or an approximation model? Even though such an approximate function will
not guarantee the precise output value of a given input, it can identify a priori best node
candidates in the B&B tree that are most likely to admit cutting planes. When used as a
preprocessing technique in the B&B, this approach can lead to a substantial time save for
large-scale repetitive invocation of CGLPs. In this paper, we propose a new framework to
approximate the CGLP indicator function through the lens of function approximation and
machine learning.

Function approximation has a rich history in mathematics and computer science; see Rivlin
(1969) for an introduction. One of its most common applications is concerned with situations
where the explicit form of the underlying function is difficult to obtain, and evaluating the
function at a point is expensive. As a result, a subset of critical points in the domain of the
function is selected, for which the function value is calculated. Then, an approximate function
is computed by minimizing the residual error between the estimate value and the actual value
of the selected points in the domain. This approach is sometimes referred to as interpolation
in the literature. Viewing the selected points as input and the actual function value as
response, the interpolation technique shares core principles with machine learning methods in
finding the best fit for the underlying function when considering the least-squared error as the

objective (Busoniu et al.|2017). For instance, the neural network at the core of deep learning
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is a classical example of function approximation (Wasserman 2006). Non-parametric machine
learning models such as k-nearest neighbor and support-vector machines are also directly
used for function approximation (Hammer and Gersmann|2003). Even parametric models
such as regression can be used for interpolation when the objective is to find estimators that
minimize the least-squared error (Friedman|/1994).

Using the above analogy, we employ standard machine learning and, specifically, classi-
fication methods to approximate the indicator function of the CGLP. The use of machine
learning in the branch-and-cut process has rapidly grown over the past few years due to their
potential in assisting with B&B strategies such as node selection and branching order (Khalil
et al.|[2016, Alvarez et al.| 2017, [Zarpellon et al. 2020)). In cutting plane domains, machine
learning methods have been used to select valid inequalities from a pool of candidate cuts
Tang et al. (2020), Balcan et al.| (2021). The main limitation of the above approaches is that
they work best when the target value of the output is categorical, i.e., they select candi-
dates (node, branch, or cut) among a given pool of finitely many alternatives. As a result,
such techniques are not viable for producing new cutting planes that have not been previ-
ously identified, and hence machine learning methods have never been used in combination
with cut-generating efforts inside B&B. We address this gap in this paper by providing a
novel perspective to model the CGLP through function approximation and use classification
methods to produce new cutting planes.

The contributions of this paper are as follows. We design a novel framework based on
machine learning to approximate CGLPs. To our knowledge, this is the first work that takes
advantage of data classification to help with cut-generating efforts in the branch-and-cut
process. This framework is applicable to a broad range of optimization problems beyond
CGLP such as the convex hull membership problem as a fundamental problem in computer
science and mathematics. Further, we develop a theoretical and systematic procedure to
efficiently generate different types of training data sets for our classification problem. We
show how these methods can be effectively implemented inside branch-and-cut. Preliminary
computational experiments suggest that the resulting approximation improves the solution
time of the cut-generating efforts compared to that of the conventional cutting plane methods
that rely on solving the CGLP to produce cuts.

The remainder of the paper is organized as follows. In Section [2| we introduce structural
properties of the CGLP that allow for transforming it into a classification problem. In addi-

tion, we develop a theoretical framework to identify class-0 and class-1 data points that will
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be used as training sets for classification. We discuss how the developed framework can be
applied to a CGLP problem during B&B in Section [3] Section ] evaluates the performance of
the proposed approach through computational experiments. Concluding remarks are given
in Section p] Additional results and discussions are provided in Appendices that can be found
in the online supplement.

Notation. We use bold letters to denote vectors. To simplify notation, we do not use the
transposition symbol when representing the scalar products between vectors. For instance,
the product xy implies that x is a row vector and ¥y is a column vector of matching dimen-

sions.

2. Formulation and Classification

Consider a general polyhedral cone C ={xz € R"|a'x <0, Vi € [}, where a' is a row vector
of appropriate dimension, and I ={1,...,m,m+1,...,m + n} represents the index set of
constraints, including the non-negativity bounds on variables as the last n constraints, i.e.,
a™ = —el for j€ N={1,...,n} where €’ is the jth unit vector in R". It is easy to verify
that the projection cone of the CGLP of Proposition [1| can be formulated in the form of C.

For any given ¢ € R", we are interested in solving z*(¢) = max{cx |x € C}, which is re-
ferred to as the support function of C in the literature (Rockafellar [1997)). This support
function can have two outcomes z*(¢) € {0,00}, which can be translated into an indicator
function with values 0 if 2*(¢) =0, and 1 if 2*(¢) = co. The goal is to use data classification
techniques to approximate the value of this indicator function without solving the corre-
sponding optimization problem. In particular, we aim to classify vectors ¢ € R" into class-0
if 2*(¢) =0 and class-1 if 2*(¢) = oco. To this end, we propose to train a machine learning
model based on some given pairs of input and response variables of the form (c*, 2*(c*)) for
k € K, where K is a data set.

To build a training set that is representative of the actual geometry of the input vector
space for z*(e¢), we require a balanced data set composed of both classes. In the sequel,
we first identify the structure of vectors ¢ that belong to each class, and then choose an
appropriate subset of such vectors in our training set with an emphasis on the efficiency
of generation. Define the polar of C as C° ={y € R"|yx < 0,Vx € C}. It is clear from this

definition that C° can be described as the cone generated by vectors a’ for i € I.

PROPOSITION 2. A wvector ¢ € R™ belongs to class-0 if and only if c € C°.
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Proof.  For the direct implication, assume that ¢ belongs to class-0, i.e., z*(¢) = 0. By
definition of 2*(¢), we have that cx <0 for all & € C. For the reverse implication, assume
that c € C°, i.e., z*(c) = max{cx |x € C} <0. Since the origin is a feasible solution to this
optimization problem, we conclude that z*(¢) =0. O

REMARK 1. In addition to representing the CGLP, the indicator function z*(¢) can also
be used to solve combinatorial problems such as the convex hull membership (CHM) problem,
which is the problem of deciding whether a given point belongs to the convex hull of a
finite number of points. The CHM has applications in computer science [Karmarkar| (1984)),
computational geometry (Toth et al. (2017)), dynamic programming [Bertsekas| (2017), and
decision diagrams |Davarnia and van Hoeve, (2020), Davarnia| (2021)), Salemi and Davarnia
(2022)). To illustrate this relation, consider the set of points &’ € R" for i =1,...,k, and a
point & € R™. It is easy to verify that,  belongs to the convex hull of = for i =1,... k if
and only if the extended vector ¢ = (1, ) belongs to the cone generated by the extended
vectors a’ = (1,x%) i =1,..., k; see Section 2 of Rockafellar| (1997) for a detailed account.
Such a cone can be viewed as a polar cone C° associated with the indicator function z*(c).
As a result, the classification techniques we develop in this paper can also be applied to the
CHM problem. We present computational experiments for such application in Section [4.1

The goal of classification is to find a classifier that separates class-0 and class-1 vectors.
It follows from Proposition [2] that these two classes are separated by the boundary of the
polar cone C°. As a result, we seek to train a classifier that approximates the boundary of
the polar cone. As common in function approximation, selecting critical points from the
domain of the unknown function is key to obtain good approximations for that function.
Critical points are representative of main functional patterns over the domain of the function.
While characterizing such subset of points is difficult for general functions, they are often
selected from the vicinity of the breakpoints that form the boundary of the graph of indicator
functions, which maps to the boundary of C° in our problem. Such a selection that contains
points on both sides of the boundary improves the approximation accuracy as illustrated in
Figures[l]and [2} In particular, Figure[l] shows the restriction of the cone C = {z € R?: a'z <
0,i=1,2} to the unit disc. The corresponding polar cone C is generated by vectors a' and
a?. Assuming that all vectors ¢ are normalized, class-0 vectors correspond to the dashed arc
between a' and a?, while the complementary solid arc on the disc represents class-1 vectors.

Vectors @' and @' for i = 1,2 in Figure [2| respectively represent class-0 and class-1 training
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data close to the boundary vectors a’. Using this data, the goal is to obtain a classifier such

as L that separates the dashed and solid arc, and thereby yielding the desired approximation.

Figure 1 The CGLP projection cone and its polar cone.

Figure 2 Classification of class-0 and class-1 with respect to the polar of the projection cone.

In the remainder of this section, we identify vectors of class-0 and class-1 close to the
boundary of the polar cone. Identifying class-0 vectors in the vicinity of the boundary is

achieved by the conic combination of vectors generating the polar cone, as demonstrated
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next. In our derivation, we use the fact that C° is the cone generated by the constraint
vectors of C, i.e., {a'}icr; see Rockafellar| (1997). Further, for any weight vector w € R™*™,
we denote the corresponding normalized linear combination of these constraint vectors by

d(w) = H%Mizaal\ when w # 0, and d(w) = 0 otherwise.
i€l 7t

PROPOSITION 3. Vector ¢ € R™ belongs to class-0 if and only if ¢ =u + ed(w) for some

u on the boundary of C°, € >0 and w; >0 for allieI.

Proof.  For the direct implication, assume that ¢ = u+ ed(w) for some u on the boundary
of C°, ¢ >0 and w; > 0 for all 7 € I. Then, ¢ can be viewed as a conic combination of the
constraint vectors {a'};c;, implying that ¢ € C°. For the reverse implication, assume that
c € C°. Therefore, we can write that ¢ = Y";c;w;a’ with w; > 0. The result holds by setting
€ =||S,e;wiall], w = w, and u =0 as the origin is a point on the boundary of C° by
definition. [

In view of Proposition [3| we note that, if the resulting vector ¢ is not on the boundary
of the polar cone, its closeness to the boundary of the polar cone is controlled by e. In
other words, it can be viewed as the step length in the direction of d(w) as we move away
from vector w on the boundary of C°. This statement implies that, given a vector w on the
boundary of the polar cone and a normalized direction vector d(w), smaller values of € lead
to vectors ¢ that are closer to the boundary of the polar cone. More specifically, for a given
distance r > 0, we can pick any € <r to ensure that the distance of ¢ from w calculated as
llc — u|| = ||u+ ed(w) — u|| = € is no larger than r.

The following corollary presents a special case for using the results of Proposition |3| to
generate class-0 vectors arbitrarily close to the boundary of the polar cone. We will use
this method to efficiently generate class-0 vectors in the training set for our computational
experiments given in Section [4]

COROLLARY 1. Let i€ I be the index of a constraint of C. Then, for any € >0 and v;<0

for all j € N, the vector ¢ = a' + ev, where v = ﬁ if v=#£0, and v =0 otherwise, belongs to

class-0.

Proof. We consider two cases. First, assume that the constraint with index ¢ is non-
redundant in C. Then, a’ is on the boundary of C°. The result follows from Proposition [3| by
setting u =a’, e=¢, w; =0 for j=1,...,m, and wy,, = —vy, for all k € N. Second, assume

that the constraint with index 7 is redundant in C. Proposition 3 implies that a’ = u + éd(w)
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for some w on the boundary of C°, € >0 and w; > 0 for all j € I with w # 0. There are

two cases. If v =0, then ¢ = a’ = u + éd(w), proving the result because of Proposition . If

v # 0, then we write that ¢ =a’+ év = u + ed(w) where w; = % for j=1,...,m,
- EW; EVj_pm . . .
w; = ||Zi€1JU7iaiH — Tk forall j=m+1,...,m+n, and € = || > ;c;w;a’||. The result follows

from Proposition O

Unlike the above results for class-0 vectors that can be directly obtained from a conic
combination of vectors describing C°, the concept of class-1 vectors close to the boundary
of C° requires further development. In particular, we need to understand how to perturb a
given vector u on the boundary of C° to obtain vectors in the vicinity of w but outside of
the polar cone. In the following derivations, we define C/ =CN{x € R"|a/xz =0,Vj € J} for
any J C I. We set that C? =C.

PROPOSITION 4. Let uw be a point on the boundary of C°, i.e., there exists J C I such that
U=y v;a’ where v; >0 for all j € J. Let K C I be a subset of constraint indices such
that C” ¢ CX. Then, u—ed(w) belongs to class-1 for any € >0 and any w € R™™ such that
wg >0 for all k€ K, and wy >0 for all ke I\ J.

Proof. First, we verify the correctness of the opening statement of the proposition, i.e.,
there exists J C I such that w=3,c;v;a’ where v; >0 for all j € J. By definition, w can
be obtained as a conic combination of extreme rays of C° as the vector is on its boundary.
The fact that C° is the cone generated by the constraint vectors of C implies that the set
of extreme rays of C° is a subset of {a'};c;. As a result, the constraint indices with positive
coefficients in the conic combination will form J. Note that if w is the origin, we have J = ().
For the second part of the proposition, pick any € > 0 and any w € R™"" such that w; > 0
for all k € K, and wy, >0 for all k€ I'\ J. To prove that u — ed(w) belongs to class-1, i.e.,
max{(u —ed(w))x|x € C} = o0, it suffices to show that (u —ed(w))x > 0 for some x € C.
It follows from the assumption C’ € C¥ that there exists a point &* € C/ C C such that

x* ¢ CK ie., a* x* <0 for some k* € K. We write that

*

(u—ed(w)) " =ux” —ed(w)x
= Zvjaj:c* — ezwiaim*
jed il

= Zvjaﬂa:* —€ Z w;alx — ewga® x>0,
jed iel\{k*}
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where w; = HZ:JW for i € I. In the above equations, the second equality is implied by
the definitions of w and d(w) as a normalized combination of constraint vectors, and the
last inequality follows from the facts that a’x* =0 for all j € J, a’z* <0 and w; > 0 for all
i€\ J,and a* =* <0 with weight Wy >0 as k* € K. O

Proposition 4] gives a method to generate class-1 vectors arbitrarily close to the boundary
of the polar cone C°. In this proposition, similarly to the results of Proposition [3} ¢ controls
the closeness of the generated class-1 vectors to the boundary of the polar cone. We next
show that all class-1 vectors can be generated through a similar method relative to the
boundary of C°; hence providing a necessary and sufficient condition to generate class-1

vectors analogous to those of class-0 vectors given in Proposition [3]

PROPOSITION 5. Let ¢ be a vector of class-1. Then, there exists
(i) a vector w on the boundary of C°, i.e., u=73;c; v;al for some J C I where v; >0 for
all j € J,
(ii) a subset K C I of constraint indices such that C’ ¢ CX,
(iii) and parameters € >0 and w € R™™ such that wy, >0 for all k € K, and wy, >0 for all
kel\J,
such that ¢ =u — ed(w).

Proof. Since ¢ is a vector of class-1, it does not belong to C° by Proposition [2] It is easy
to verify that C° is full-dimensional because C° is the cone generated by vectors a’ for i € [
which includes all negative unit vectors —e’ for j € N. Pick a point b in the interior of C°, i.e.,
b=, tia for some L C I where t; >0 for all | € L, and vectors a' are linearly independent.
Let point w denote the intersection of the line connecting ¢ and b with the boundary of C°.
It follows from the proof of Proposition 4 that uw=73,c; v;a’ for some J C I where v; > 0 for
all j € J, satisfying condition (i). Define K = L\ J. Note that K must include an index k*
whose corresponding vector a*” does not belong to the linear space spanned by the vectors
in J, since otherwise b would be on a face of C°, and not in its interior. This implies that
there exists a vector @ in the linear space orthogonal to the space spanned by the vectors
in J, but not orthogonal to a*". In particular, @’ =0 for j € J, and a*" & < 0 as C° is a
convex cone, and thus the normal vector of one of its facets makes an obtuse angle to any

vector in the cone that is not on that facet. As a result, we have that C/ ¢ C¥| satisfying

(b=
[lb—

condition (ii). We can write ¢ as u — ||c — ul| Zf‘ by construction. Define d(w) = 2=%

[l
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where w € R™*" is defined as wy =t — vy for k€ JN L, w, = —vy, for k € J\ L, wy, =t} for
ke K, and wy =0 for k€ I\ KU L. Finally, setting € = ||c — u|| will complete the proof as
condition (iii) is satisfied. [

The difference between generating class-0 vectors through Proposition [3| and class-1 vec-
tors through Proposition [4] is in the efficiency of the approach. While we can efficiently
obtain class-0 vectors through any arbitrary conic combination of vectors a‘, we still need
to determine indices J and K in Proposition [4| to produce class-1 vectors—a process that
can be computationally expensive for a large data set. For our classification approach, it is
critical to generate training data sets efficiently. In other words, we need to select vectors
whose class is identified immediately without solving the CGLP, since otherwise the process
of determining the class of a set of arbitrary vectors would be computationally demanding.
The efficiency of generating training data sets is particularly important when implementing
the classification approach inside of B&B framework, where training is done online, at each
layer of the B&B tree, during the optimization process; see Section [3| for more details on
such implementations. We next give several results that help generate class-1 vectors more
efficiently by applying findings of Propositions [4| and |5| to special cases. We start with a case
where the negative of a conic combination of constraint vectors yields a class-1 vector as

long as one of the combination weights is non-zero.

COROLLARY 2. Let k* € I be a constraint index such that C¥Y £ C. Then, for any weight

vector w € R such that wy- > 0, the vector —d(w) belongs to class-1.

Proof. Pick w =0 on the boundary of C°. According to Proposition [4} we have J = 0.
Note that C7 =C. Set K = {k*}. We have that CX C C’ by definition, as the former set is
a face of the latter set. Therefore, the assumption that C* # C’ implies that C/ ¢ C¥. The
result follows from Proposition 4| by setting e=1. [

It follows from Corollary [2 that the negative of any constraint that does not contain the
entire cone C is a class-1 vector. This is a simple and quick approach to generate class-1
vectors in practice. This derivation can be streamlined further under the full-dimensionality

assumption, as described next.

COROLLARY 3. Assume that C is full-dimensional. Then, for any nonzero weight vector

w € RT™", the vector —d(w) belongs to class-1.
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Proof. Since C is full-dimensional, it is not contained in the face defined by any of its
constraints, i.e., CI¥} £ C for all k € I. The result follows from Corollary [2| by setting k* to
be the index of a nonzero component of w. [

The next corollary prescribes a method to produce class-1 vectors for a non-zero cone.

COROLLARY 4. Under the assumption that C # {0}, the vector —d(w) belongs to class-1

for any weight vector w € RP™ such that wy,y; >0 for alli € N.

Proof. Pick u= 0 on the boundary of C°. According to Proposition [4 we have J = (), and
hence C7=C. Set K ={m+1,...,m+n}. It follows that CX = {0} as 7, =0 for all k€ K
for any point & € CX. Since C’ # C¥, and considering the fact that CX C C’, we conclude
that C/ ¢ C*. The result follows from Proposition |4| by setting e=1. [

The next result proposes an efficient method to generate vectors of class-1 for non-

redundant constraints.

COROLLARY 5. Let j7* € I be the index of a non-redundant constraint of C. Then, the
vector @’ — ed(w) belongs to class-1 for any € >0 and any w € R™*" that satisfies any of
the following conditions:

(1) wp >0 for all ke I\ {j*}, and wy, >0 for all k=m+1 withi € N,
(ii) wy, >0 for all k € I\ {j*}, and wy >0 for all k =m+1i with i € N such that a >0,
(iii) wy, >0 for all k€ I\ {j*}, and wy, >0 for all k=m+1i with i € N such that a <0,

Proof. Since @’ x < 0 is not redundant, @’ cannot be represented as a conic combination
of distinct constraint vectors of C. As a result, @’” is a vector on the boundary of C°. Set
u=a’" and J = {j*}.

(i) Set K = {m + i}ien. It follows that CX = {0}. Since a’ = < 0 is non-redundant, the
restriction of C at this constraint must be non-zero. Therefore, C’ € C¥. The result
follows from Proposition []

(ii) Set K = {m+1i} for all i € N such that a/ > 0. Non-redundancy of a/*2 < 0 implies that
there exists a non-zero point @ € C such that @’ & =0, i.e., & € C’. It follows from & # 0
that there exists a coordinate ¢* € N such that z,~ > 0 and ag: > 0, since otherwise the
point would not satisfy a’" & = 0. Note that C¥ is the restriction of C at the hyperplane
H={xecR"|z;=0,Vi e N such that a/ >0}. Therefore, & ¢ CX because i* is one of
the indices of variables that are fixed at zero in the definition of H. We conclude that

C! ¢ CK as & €C’ and & ¢ C*. The result follows from Proposition .
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(iii) This result follows from an argument similar to that of condition (ii) by setting K =
{m+1} for all i € N such that o/ <O0.
O

3. Implementation in Branch-and-Cut.

The framework of Section [2| can be applied to any CGLP at the nodes of the B&B tree to pro-
duce different classes of cutting planes, from disjunctive cuts (Balas|[1985) to reformulation-
and-linearization technique (RLT) cuts (Sherali and Adams||1994) through an appropriate
projection. To illustrate, in this paper, we focus on a CGLP that generates a new class
of cutting planes called consistency cuts. The application to other classes of CGLP follows
similarly; see Remark [4| at the end of this section. It is shown in (Davarnia et al. |2022),
both theoretically and computationally, that consistency cuts can be more effective than the
classical cutting planes such as RLT cuts in reducing the total solution time of the branch-
and-cut process by directly targeting the size reduction in the B&B tree. Inspired by these
results, we aim to assess the effectiveness of the proposed machine learning method in further
improving this solution time. First, we give a brief introduction to the concept of consistency
in integer programming (IP) and provide results for constructing the CGLP; see (Davarnia
et al.|2022)) for a detailed account. Then, we show how to transform the CGLP structure to
make it amenable to the machine learning framework of the previous section.

In the following, since the CGLP model has the central role in our paper, we use variables
(x,y) for the CGLP and variables (e, 8) for the original IP, which is often reversed in the
IP literature. Consider a 0-1 set S ={a € {0,1}"| A < b} for some matrix A and vector b
of proper dimensions. We refer to the LP relaxation of S as Spp. Forany J C N ={1,... ,n},
let a; be the tuple containing the variables in {o; | j € J}. A partial assignment to o is a
0-1 assignment of values to a; for some J C N. A partial assignment ay is referred to as a
full solution. The following definition of LP-consistency ensues.

DEFINITION 1. We say that a 0-1 set S={a € {0,1}"| Aae < b} is LP-consistent if any
partial assignment a; = v; with J C N such that Spp N {a € R" : ay = vy} # ) can be
extended to a full feasible solution of S.

This definition implies that an LP-consistent set completely eliminates backtracking during
the B&B search because the LP relaxation at a node of the B&B tree will be infeasible if
it does not contain any integer solution, which makes the algorithm prune that node right

away without creating new branches. It is known that modifying a general set to make
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it LP-consistent is NP-hard Davarnia et al. (2022). As a result, a generalized variant of
LP-consistency is proposed that controls the level of backtracking elimination through the
concept of ranks. This structure provides a substantial practical flexibility, as reducing the
rank of LP-consistency leads to more computationally-affordable implementations.

DEFINITION 2. Let S ={a € {0,1}"| A < b} be a 0-1 set, and consider a subset I C N.
Then S has partial LP-consistency of rank v over I, where 0 <1 <n— |I|, if for every partial
assignment a; = vy such that S;pN{a € R": ay =v;} # 0, and every J C N\ [ with |J| =71,
there exists a 0—1 value assignment oy = v, such that Spp N{a € R : ;= vy} # 0.

Intuitively, partial LP-consistency of rank r means that there is no backtracking in the
next r levels of the B&B tree. Algorithm [1| provides a systematic procedure to achieve partial
LP-consistency.

Since generating all the inequalities describing the projection R(Spp)|; can be compu-
tationally prohibitive, a CGLP is designed to produce a small subset of these inequalities,

which are referred to as consistency cuts, through separation.

PROPOSITION 6. Consider a 0-1 set S ={a € {0,1}" | Aae < b} whose constraints include
the bounds on variables. Select a subset I C N, and a positive number 0 <r <n —|I|. Let
R(Sip) = {Ara; + Ajoy + BB < d} be the lifted linear system generated in Algorithm [1
Consider the following CGLP

w*(vy) =max (A;v;—d)x (1a)

Algorithm 1: Algorithm to achieve partial LP-consistency
Require: A 0-1set S={a€{0,1}"| Aa <b}, a subset I C N, and a positive number

r<n-—|I

Ensure: A set S that has partial LP-consistency of rank r over [

1: Initialize S = S

2: Generate the nonlinear augmented system (Aa—b)[T;e, @ [Tjen s, (1 —ay) <0 for all
JC N with |J|=r,and J; CJ

3: Linearize the above system by replacing a? with «;, and [],cx o with new variable Bx
for each K C N that appears in the system. Denote the resulting linear constraint set
by R(SLp), and its projection onto the space of variables a; by R(Srp)|;-

4: Add to & the inequalities in R(Sp)|;-
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Bx=0 (1c)
x>0 (1d)

where variables @ represent the dual weight vector associated with constraints of R(SLp).

Define S to be the set obtained by adding to S constraints of the form xAjo; < xd, where T

is an optimal ray of (La)-(Ld), for all v; € {0,1}1! that yield the optimal value w*(v;) = oc.
Then S has partial LP-consistency of rank v or higher over I. [J

We refer the interested reader to the discussion in Appendix C and the references therein
for a detailed account on the possibility of achieving LP-consistency of ranks higher than r
through the above proposition.

REMARK 2. The consistency cuts produced in Proposition [6] have an important computa-
tional advantage compared to traditional cutting planes such as RLT cuts. When w*(v;) > 0,
the purpose of adding the valid inequality x A;a; < @d is to separate the partial assignment
oy =wv;. Alternatively, this solution can also be separated by adding a so-called clausal in-
equality of the form Y ;7. —o 0 + Y icrm—1(1 —a;) > 1. As a result, the consistency cuts can
be produced based only on the optimal value of the CGLP f without the need for
an optimal solution. This property is particularly useful for the machine learning approach
of Section [2| where the optimal value of the CGLP is approximated through classification.

REMARK 3. Consistency cuts are globally valid, implying that they can be generated
and added at any point during the B&B process, including at the root node. In the event
that they are generated locally at a node of the B&B tree based on the particular partial
assignment in that node, they can be alternatively viewed as a pruning technique. Instead of
generating a clausal inequality at a node of the B&B tree, one can immediately prune that
node.

The CGLP of Proposition [6] can be solved at the nodes of the B&B tree to produce
consistency cuts. Such implementation, however, can be computationally cumbersome due
to the large number of node candidates to invoke the CGLP at. To circumvent this difficulty,
the machine learning method can be used to approximate the optimal value of the CGLP
without the need to solve it, thereby reducing the implementation time. To this end, the
results obtained for C in Sectioncan be applied to the projection cone — by breaking

the equality constraints into two inequalities with opposite signs. However, this approach
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has two computational drawbacks: (i) it increases the size of the problem which can result
in a larger training data set and longer training time; and (ii) such representation limits our
options to generate class-1 vectors as the assumptions of Corollaries [2] and |3| would not be
satisfied. To mitigate these drawbacks, we next show how the equality constraints in the

CGLP of Proposition [f] can be represented as inequalities without the need to break them.

PROPOSITION 7. Consider the setting of Proposition[t, and define

w*(vy) =max (A;v;—d)x (
st. Alx>0 (2b
Bz >0 (2¢
x> 0. (2d

Then, w*(vy) = w*(vy) for all vy € {0,1}11

Proof. Define R(Spp) = {Aja;+ Aja;+ BB <d, —a; <0, -3 <0} It is easy to ver-
ify that R(Spp) = R(Scp) since the added non-negativity bounds are implied by the set of
constraints generated in Algorithm . As a result, R(Sp)|r = R(Stp)|;- The CGLP corre-
sponding to R(Syp)| is given by (La)—(Ld). We need to show that the CGLP corresponding
to R(Stp)|; is obtained by (2a)—(2d). Let @, y and z be the dual vectors corresponding to
the constraints in 7_3(8Lp). The CGLP associated with Q(SLP)| 7 1s as follows.

w*(vy) =max (Avr—d)z (3a)
x
Atl=1lo | |—| o
s.t y|=|— (3b)
BT 0 |—-1||— 0
z
x,y,220, (3¢c)

where the first and second row blocks in (3b]) represent the constraints associated with the
projection of variables ax; and 3, respectively. The column blocks of the coefficient matrix in
(3b)) represent variables @, y and z, respectively. This problem structure allows for removing

variables y and z from the feasible region and replacing the equality constraints with >

inequalities, yielding the CGLP —. U
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In view of Proposition [7] for any component in the vectors a; and B that obtains a non-
negativity bound as a result of the inequalities generated in Algorithm [I} i.e., the bound is
included in A;a;+ Aja;+ BB < d, we can replace the dual variables y and z corresponding
to that inequality with the @ coordinate in the proof of Proposition[7] Consequently, following
the closing arguments in the proof, this & variable will be removed from the constraints in
7, reducing the size of the CGLP. We further note that the above arguments can
be used to transform equality constraints to inequalities for any CGLP that has a [lift-and-
project type structure such as those producing disjunctive, split, and RLT cuts. We present
computational results for using the machine learning approach to generate consistency cuts
inside of B&B in Section [£.2]

REMARK 4. As deduced from Algorithm [T, the consistency cuts presented in this section
can be obtained from a special projection of the CGLP associated with the RLT cuts as one
of the most general forms of the CGLP. Such projections can be used in any other CGLP
model to produce a variant of the consistency cuts corresponding to that CGLP. As a result,
the machine learning framework can be applied in a similar way to any form of the CGLP
that is used during branch-and-cut.

We conclude this section by highlighting the possible approaches to incorporate our pro-
posed framework in the branch-and-cut process. In general, there are two ways that the
outcome of the approximate CGLP can be used at the layers of the B&B process. The first
approach is a greedy application, where the outcome of the classification replaces that of
the CGLP entirely. This approach can lead to generating invalid cutting planes at a node
associated with a falsely positive classification value. In this case, the solution of the branch-
and-cut process is not guaranteed to be optimal, but it can be used as a fast heuristic to
obtain feasible solutions, and hence a primal bound. The second approach is a conserva-
tive application, where the outcome of the classification is used as a filtering mechanism
to identify the best node candidates that are most likely to admit cutting planes. At these
filtered node candidates, the CGLP is solved to determine whether a cutting plane can be
added. This approach saves time by avoiding solving the CGLP at the nodes that have lower
likelihood for admitting cutting planes, while preserving optimality guarantee of the end

solution.
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4. Computational Results.

In this section, we present preliminary computational experiments to show the potential of
the proposed machine learning approach in improving the CGLP solution time. These results
will be divided in two parts. The first part, as given in Section evaluates the outcome
of the machine learning method when applied to the CHM problem. These results not only
represent an application of our proposed framework to combinatorial problems beyond cut-
generation, they will also allow us to study the performance of the approach on benchmark
instances in direct comparison to the outcome of modern solvers in a controlled environment
without being impacted by B&B elements. The second part, as given in Section assesses
the effectiveness of our approach to produce cutting planes in comparison with the conven-
tional CGLP implementation inside of B&B for benchmark IP instances. These models are
coded in Python v2.7 on a computer with specifications Intel Core i7 1.8 GHz computer pro-
cessing unit (CPU) and 8 GB of random access memory (RAM). For the machine learning
experiments, the scikit-learn package Version 1.1 has been used. The optimization problems

are solved by the CPLEX solver Version 12.8.0 at its default setting, unless stated otherwise.

4.1. Convex Hull Membership Problem.

As discussed in Section [2| our goal is to use classification methods in machine learning
to separate class-0 and class-1 vectors ¢ corresponding to the CGLP defined by z*(¢) =
max{cz |x € C} where C={x eR"|a'x <0,Viel} and I={1,....mym+1,...,m+n}.
To generate test instances for the CGLP, we use the data characterization given in |Kalantari
and Zhang] (2022)) for the CHM problem, as solving the CHM reduces to that of a CGLP; see
Remark [I] We consider three categories for the problem size: (i) n =300, m = 100; (ii) n =
1000, m = 200; (iii) n = 2000, m = 500. For each size category, we create 5 random instances
with the following specifications. Adapting the method used in Kalantari and Zhang| (2022)
to generate point coordinates for the CHM problem, we create the CGLP’s coefficient matrix
randomly from a discrete uniform distribution between [—100, 100] with the conditions that
(i) the coefficients of a constraint cannot be all positive since otherwise C would contain the
origin only; and (ii) the coefficients of a constraint cannot be all negative since otherwise the
constraint would be implied by the nonnegativity constraints. We normalize the resulting
vectors that form the polar cone C° to make their magnitudes uniform, while maintaining

the constraint structure in C.
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We aim to approximate the indicator function of the CGLP by a classifier that is trained
over a pre-determined set of vectors in both classes. While increasing the number of data
points in the training set can improve the training accuracy, it also leads to an increase
in the training time. Based on our experiments (see Appendix B), setting the number of
data points proportional to the number of constraints of the CGLP model, including the
variable bounds, leads to a reasonable trade-off, which is chosen for these experiments. More
specifically, the size of the training set for each test instance is chosen to be 4(m+n). These
training data sets are generated based on the results developed in Section [2} In particular,
we create (m +n) class-0 data points through using Corollary (1| for each constraint ¢ € I of
C by setting components of vector v randomly from a discrete uniform distribution between
[0,10000] for each i € I, and setting € = 0.001. We create another (m + n) class-0 vectors
according to the above method. We create (m+n) class-1 training data points through using
Corollary [2] to include the negative of each constraint vector with index k* € I by setting
the weight vector w = e* . Note that the assumption of this corollary is satisfied as long as
the entire cone C is not restricted to the hyperplane defined by a* x = 0. We also create
another (m 4+ n) class-1 training data points by applying Corollary (1) to each constraint
index j* € I with w,,; =1 for all : € N, w, =0 for all other components, and € = 0.001.
Since this corollary requires a non-redundancy assumption on constraints of C, we study
sensitivity of the classifier to changes in the representation of C by adding redundancy; see
Appendix B. That section also includes the sensitivity analysis for the classifier accuracy
with respect to the proximity of the training data to the boundary of the polar cone.

For the test set, we generate class-1 vectors randomly with components chosen from a
uniform distribution between [—100, 100] and then normalize them. The class of these vectors
is verified through solving the CGLP. Class-0 vectors in the test set are generated through
a conic combination of constraint vectors a’ for i € I with weights being randomly selected
from a uniform distribution between [0,100]. The size of the test set is equal to ~ 30% of
the size of the training set for each problem.

We use different classifiers in machine learning to approximate the indicator function of
the CGLP. For a detailed account on the machine learning methods that can be used for
function approximation, we refer the readers to Hammer and Gersmann| (2003)), Wasserman
(2006). Table [1] reports the summary of the classification results for different problem sizes
and classification methods, namely the random forest (RF), the k-nearest neighbor (KNN),
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logistic regression (LR), support vector machines (SVM), and neural network (NN). The
detailed reports that include the classification results for individual instances, the main
algorithmic choices and parameter settings for each method, and the elements of confusion
matrix are given in Appendix A.

In Table[l], columns “Size” and “Method” represent the size category and the classification
method, respectively. Column “data” distinguishes the results for the training and the test set
for each instance. For the training set, the true class of the vectors are known by construction
through the results of Section [2} For the test set, the true class of the vectors are determined
based on the optimal value of the CGLP. Column “Accuracy” reports the accuracy of the
trained classifier calculated as %, where TN, TP, FP, and FN are the elemtns
of the confusion matrix reported in corresponding tables in Appendix A. These results are
obtained by taking the average over the individual instances as shown in Appendix A. The
entry under column “ML Time” in the row corresponding to the training set contains the
average time (in seconds) that it takes to train the classifier. The entry under column “ML
Time” in the row corresponding to the test set shows the average time it takes for the trained
classifier to identify the class of a given vector in the test set. Column “CGLP Time” reports
the average time that it takes to solve the CGLP for a given objective function vector in the
test set.

As observed in Table [I the LR, SVM and NN methods yield high training and test
accuracy compared to the RF and KNN. Considering both accuracy and run time, LR is the
superior classifier among others. Comparing the classification time of the above algorithms
with the solution time of the CGLP, we observe the LR, SVM and NN methods respectively
achieve an average of 10%, 10? and 10 orders of magnitude improvement over the CGLP
time for the first problem size category. This improvement factor becomes even larger as the
problem size increases. These results show a significant time save when using a classification
approach to identify the optimal value of the CGLP with a remarkably high accuracy. As
noted in Section [I} this approach is most advantageous when there is a large number of
objective function vectors that need to be optimized over a fixed cone in the CGLP, which
is the case for the CHM problem. In the B&B settings, for instance, at layer [ of the B&B
tree, at most 2! objective function vectors (one for each node candidate at that layer) need

to be solved through CGLP over the same projection cone of the underlying disjunctions.
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Considering the training time for the size category 100 x 300, the LR method saves time at
any [ > 5. We will showcase the impact of such time saves inside of B&B in Section 4.2

It is worth noting that the high training accuracy observed in these tables is the result of
the artificially-generated training data sets. Unlike the conventional machine learning set-
tings that could flag such high accuracy as overfitting, this occurrence is desirable in function
approximation settings. In particular, in function approximation, there is no randomness in
the underlying population. The training set is produced artificially with the goal of repre-
senting critical points of the domain of the function, which is deterministic. The test set is
the entire function domain, which is the n-dimensional space in our model. Consequently,
we seek to find a classifier that achieves high accuracy for the training set as a measure
for the quality of the approximation of the underlying function. We further note that the
higher accuracy level for the test set compared to the training set for some of the instances
in Tables can be attributed to the fact that the training set is designed in such a way
that most of its data points are close to the boundary of the polar cone, which makes the
classification problem more difficult, leading to a lower training accuracy. The test set, on the
other hand, includes any vector in the space whose class can be more accurately identified
by the classifier; see Table [11]in Appendix B for a sensitivity analysis on the impact of the
distance of the test data sets from the boundary of the polar cone on the accuracy of the

test set.

4.2. 0-1 Programs.

To assess the potential performance of the machine learning approach in the B&B process, we
conduct preliminary computational experiments on benchmark 0-1 programs. We emphasize
that our goal in this paper is to evaluate the performance of the machine learning approach
in comparison with that of the CGLP during B&B. As common in such studies in the MIP
community, to have a fair and meaningful comparison between these two approaches, we turn
off the presolve, heuristics, and cutting plane features in the solver, leading to a controlled
B&B algorithm as the basis of our implementation. Based on our experiments, these solver
features affect the B&B trees generated from these two approaches differently, creating bias
in the end results and invalidating the requirements needed for a controlled test environment.
We will compare the result of adding consistency cuts to the base model at the nodes of
the B&B tree when the corresponding CGLP is solved exactly by the solver and when it is
approximated by the classification method. The LP relaxations at each node of the B&B
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Table 1 Summary of classification results for the CHM problem
Size Method | Data | Accuracy | ML Time | CGLP Time
train | 0.99 0.34 -
RF
test |0.81 1.67e-5 0.01
train | 0.73 0.03 -
KNN
test |0.6 0.002 0.01
train | 0.9 0.09 -
100x300 |LR
test 10.99 2.00e-6 0.01
train | 0.87 0.68 -
SVM
test |1 0.0003 0.01
train | 0.93 13.7 -
NN
test |0.98 2.6e-6 0.01
train | 0.99 1.89 -
RF
test |0.84 1.12e-5 0.09
train | 0.77 0.45 -
KNN
test |0.61 0.02 0.09
train | 0.95 1.07 -
200x 1000 | LR
test |0.99 4.28e-6 0.09
train | 0.98 13.90 -
SVM
test |0.99 0.002 0.09
train | 0.99 66.24 -
NN
test |0.99 5.13e-6 0.09
train | 0.99 4.58 -
RF
test |0.79 1.17e-5 0.54
train | 0.92 1.83 -
KNN
test | 0.58 0.07 0.54
train | 0.99 3.67 -
500x2000 | LR
test |0.99 5.46e-6 0.54
train | 0.99 66.9 -
SVM
test |0.96 0.006 0.54
train | 0.99 1114 -
NN
test |0.98 6.22¢e-6 0.54
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tree are solved by the CPLEX solver at its default settings. For the B&B process, we use
a fixed branching order based on the order of variable indices 1,...,n. Considering a fixed
variable order is a common practice when studying consistency properties, such as adaptive
consistency, in constraint programming; see [Hooker (1998)), [Bessiere (2006)), [Balafrej et al.
(2016)) for a detailed account on this concept. For these experiments, we set the time limit
to 86400 seconds (i.e., 24 hours).

As discussed in Section [3] it is established in the literature that the consistency cuts can be
substantially more effective than the classical cuts such as RLT in reducing the B&B tree size
and solution time; see Appendix C for a comparison between the performance of consistency
cuts and the strong branching approach. In the sequel, we evaluate the effectiveness of
the classification approach for the consistency framework in further improving its solution
time. We conduct our experiments on random instances that are created similarly to the
benchmark instances studied in Davarnia et al. (2022)). To implement the consistency cuts,
we solve the CGLP of Proposition [f] at each node of the B&B tree. For the classification
approach, we use the LR method, which showed the best performance among other methods
in individual tests as reported in Section [£.1} At each layer of the B&B tree, we generate
the training data set similarly to the method used in Section [4.1] as detailed below. Let
C={x eR"|a’z <0, Vi€ I} represent the feasible region of the CGLP of Proposition [7}
For each constraint ¢ € I, we generate two sets of class-0 vectors according to Corollary [1| by
selecting the components of vector v randomly from a discrete uniform distribution between
[0,10000] for each i € I, and setting € = 0.001. To have a balanced training set, we also
generate two sets of class-1 vectors. For the first set, we use Corollary [2| to include the
negative of each constraint vector with index k* € I by setting the weight vector w = e*".
For the second set, we apply the result of Corollary (1) to each constraint index j* € I with
Wi =1 for all 1 € N, wg =0 for all other components, and € =0.001. The number of these
class-0 and class-1 vectors is equal to the number of constraints of the CGLP model including
the variable bounds. For the LR hyperparameters, we set the solver as [iblinear, the inverse
of regularization strength parameter C'= 0.06, and the threshold probability P=0.6.

The computational results are reported in Table 2| for the classical multi-knapsack problem
structures studied in Table 6.1 in Davarnia et al. (2022)). These problem instances are of
a general 0-1 programming (multi-knapsack) form max{ca : Ao < b, € {0,1}"}, where

the parameters are randomly generated from a discrete uniform distribution on [—100, 100].
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In Table 2, the columns “n” and “m” represent the number of variables and constraints,
respectively. For each problem size, we consider five random instances reported in the third
column. The columns under “B&B” show the number of B&B nodes and the time to solve
each problem. For these experiments, we use the breadth-first branching strategy that allows
for implementing the ML approach over the fixed projection cone in the same layer of the
B&B tree. We note here that because of this branching strategy, the results obtained for
the consistency cuts in this paper are different from those reported in Davarnia et al.| (2022)
where the default branching strategy of the CPLEX solver is used. The symbol “~” indicates
that the problem was not solved to optimality within the time limit.

Columns 6-9 under “CGLP” show the result of solving the CGLP f to add con-
sistency cuts of rank one at the nodes of the B&B tree; see Appendix D for a computational
study of using the ML approach to produce consistency cuts of higher ranks. The column
“nodes” contains the B&B tree size, and the next column shows the percentage of reduction
in the B&B tree size obtained by adding consistency cuts when compared with the base
B&B approach. The column “time” reports the total solution time for the consistency ap-
proach, and the next column shows the percentage of time reduction achieved by adding
consistency cuts when compared with the base B&B approach. These results confirm that
the consistency cuts can significantly reduce the B&B tree size and the total solution time
when implemented inside of the B&B algorithm.

Columns 10-13 under “LR” are defined similarly as above for the machine learning ap-
proach where the outcome of the LR classifier is used as an approximation for the optimal
value of the CGLP. Depending on the LR results, clausal inequalities will be added as a con-
sistency cut according to the greedy method discussed in Section [3} see Remark [2| for more
details. The time reported in column 12 contains the entire B&B solution time, including
the training time for the LR method at each layer of the B&B tree. We note that all the in-
stances have been solved to optimality. In this table, the bold numbers under a column mark
the approach that achieves the best result for that criterion. It is evident from these results
that the LR method has a significant impact on reducing the total solution time compared
to both the base B&B and the consistency approaches. This gap widens as the problem size
increases. In terms of the B&B tree size, it is clear that the largest reduction is obtained by
the consistency approach as it solves the CGLP exactly, whereas the LR method classifies

only a subset of all node candidates that admit a consistency cut. Despite this trade-off, the
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Table 2 Classification results for general multi-knapsack 0-1 programs
N B&B CGLP LR
nodes | time nodes | A (%) | time A (%) |nodes | A (%) | time A (%)
1 134473 |3142.60 |2383 |93 1103.69 | 64 3109 90 803.37 74
2 | 82417 | 7496.14 | 5625 |93 3548.07 | 52 4677 | 94 920.39 87
401503 | 78965 |7167.15 |5225 |93 2197.50 |69 17587 | 77 2090.72 | 70
4 1124327 |11377.96 |5863 | 95 2682.24 | 76 14113 | 88 1784.86 | 84
5 1126209 |11700.49 6197 |95 3120.76 | 7% 6821 94 1126.00 | 90
1 11050459 | 119705.93 | 63677 | 93 31929.71| 78 161395 | 84 16446.59 | 86
2 | 57621 0449.79 | 3519 | 93 2116.51 |61 5907 |89 1613.00 | 70
451553 | 94281 | 8424.51 4693 |95 2965.73 | 64 5171 94 1513.17 |82
4 1450175 |44544.77 | 22645 | 94 13808.84 | 69 31817 | 92 3994.38 | 91
5 630449 |65030.67 | 44875 | 92 26270.06 | 59 252237159 25428.00 | 60
1 1989029 |116212.23 | 54721 | 94 35255.78 | 69 180123 | 81 18588.75 | 84
2 1257217 |25121.01 1732193 9948.30 | 60 83747 | 67 8792.25 |65
45160 |3 | 249869 |23936.52 | 14063 | 94 7917.20 | 66 35897 | 85 4355.84 | 81
4 |- >86400 | 56847 | - 31665.33 | >63 | 81637 |- 29929.28 | > 65
5 320967 |31300.88 |17925 | 94 12102.74 | 61 56093 | 82 6487.29 | 79
11329277 |31947.91 12393 | 96 11852.70 | 62 12365 | 96 3025.14 | 90
2 | 531833 |54939.26 | 22885 | 95 20104.97 | 63 76523 | 85 9224.31 |83
501603 |- >86400 | 93375 | - 70096.13 | >18 | 103369 | - 11917.21 | >86
4 1174357 116540.17 | 8533 | 95 T478.74 | 54 23853 | 86 4164.15 | 74
S |- >86400 | 53671 |- 44288.28 | >48 | 43507 | - 6007.04 | >93

LR approach is successful in reducing the B&B tree size substantially compared with the
base B&B approach, and within a close interval to that of the consistency approach.
Lastly, we apply our framework to a few benchmark problems from MIPLib MIPLIB 2
(1996)) that are studied in Davarnia et al.| (2022]). We chose pure 0-1 programs that generated
search trees that are large enough for a meaningful comparison, but small enough for the
algorithms to run without a memory error. The results are reported in Table [3| where the
first column shows the name of the test problem in the MIPLib, and the other columns are
defined similarly to those of Table [2 It follows from the results of Table [3] that the general
pattern discussed in reference to Table [2 holds for these benchmark instances; see Appendix
A for more detailed reports that show the classification results for each layer of the B&B

tree for some of the instances studied in this section. These results also confirm that the
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Table 3  Classification results for MIPLIB benchmark instances
B&B CGLP LR
nodes |time |nodes |A (%) |time A (%) |nodes | A (%) | time A (%)
p0033 |33 |15 |32117 |2961.55|385 98 283.14 | 90 1927 | 94 205.16 |93
pipex |41 |48 |1057 |1933.48|623 41 1484.10| 23 687 35 947.2 51
sentoy |60 |30 |703 391.12 | 271 63 187.27 | 53 275 61 207.93 | 47
stein27 |27 | 1186099 |2474.1 |4823 22 2115.07| 15 5245 | 14 1583.46 | 36
enigma |100 |42 |98545 |7413.51|21679 |78 2669.5 | 64 39417 | 60 1260.7 |83
lseu 89 |28 ]219597|4138.8 |186963| 15 37242 |10 191363 | 13 2627.64 | 37

Class n |m

machine learning approach tends to be more effective when the B&B tree size is large, as
it fails to outperform the consistency approach for the problem sentoy that has a small
B&B tree size. Overall, the experiments presented in this section suggest that the machine
learning approach is promising in improving both memory- and time-efficiency of adding
cutting planes inside of a branch-and-cut framework.

Because this work introduces a new path toward integrating machine learning into the
branch-and-cut process, we believe that the presented framework can be used as a foundation
to pursue this direction and expand its scope. We hope that the preliminary computational
results presented in this paper can motivate and encourage broader and more extensive
experiments to unlock the full potential of the machine learning approach in cut-generating
efforts when solving challenging MIPs through modern solvers. Several directions of future
research are of interest, such as applying the ML framework to different problem structures,
adapting the approach for different classes of cutting planes, and incorporating the method
in combination with modern solver’s features such as presolve, cutting planes, and dynamic

branching.

5. Conclusion.

In this paper, we propose a framework that views CGLP as a classification problem and
makes use of machine learning methods to approximate the indicator function associated
with the CGLP. To apply the classification framework, we develop a methodology to generate
training data sets that include both class-0 and class-1 vectors. These data sets are then used
through computational experiments to evaluate the performance of the developed framework
on benchmark combinatorial problems and integer programs. The results are presented for
different machine learning methods, and sensitivity analysis is conducted to identify the

marginal impact of some of the data generation factors on the outcome.
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Appendix A: Omitted Computational Results

In this section, we present the detailed reports for the classification results for the problems studied in Sec-
tion [4} First, we provide the numerical results for the CHM problem. In particular, Tables [ report the
classification results for the random forest (RF), the k-nearest neighbor (KNN), logistic regression (LR),
support vector machines (SVM), and neural network (NN), respectively. For each of the classification meth-
ods, the main algorithmic choices and parameter settings are reported in the caption of the corresponding
tables. These parameter values are selected through tuning and cross validation. Once selected, these settings
remain the same as “universal settings” across all problem instances and size categories.

In Tables [@H8| columns “Size” and “#” represent the size category and the test instance number, respec-
tively. Column “data” distinguishes the results for the training and the test set for each instance. The entries

of the confusion matriz as a result of the training are given in columns “TN”, “FP” “FN” and “TP”. Col-

TN+TP
TN4+TP+FP+4+FN

columns “ML Time” and “CGLP Time” are defined similarly to those in Table [I] in Section [£1]

umn “Accuracy” reports the accuracy of the trained classifier calculated as The entry under

Next, we present detailed reports for some instances of the binary programs studied in Section that
include the classification results for each layer of the B&B tree. Table [0] shows the results for the first
instance, i.e., instance #1 of size n =40 and m = 50, of the multi-knapsack problems of Table 2] Similarly,
Table [I0] shows the results for the first instance, i.e., instance p0033, of the benchmark problems of Table [3]
In these tables, each row contains the classification outcome for each layer of the B&B tree. The layer number
(depth) is reported in the first column of these tables. At each layer, the LR classifier is trained based on
the projection cone of the CGLP that is solved at the nodes of that layer. The training time is reported
in the second column of Tables [9] and Then, for each unpruned node in that layer, the classification is
performed on the vector defined by the fixed partial assignment in that node used in the objective function
of the CGLP; see Section [£.2] for a detailed account on the derivation procedure and algorithmic settings.
The classification results are compared with the true values obtained from solving the CGLP at each node.
Columns 3-6 in Tables[9] and [I0] represent the elements of the confusion matrix for all the nodes in the layer.
The accuracy of the classification approach for each layer is reported in the last column.

In view of the results of Tables[9] and we observe that the overall accuracy often decreases as the B&B
tree depth increases. Note that size of the the CGLP formed for each node of the B&B tree decreases as
the depth of that node increases due to the fact that the number of unfixed variables used in Algorithm [I]
to multiply with the constraints of the original problem decreases. This leads to a CGLP model with fewer
variables and constraints. Therefore, as observed in the CHM results, the classification approach yields a
lower accuracy for smaller problem sizes. Nevertheless, the reduction in accuracy is mostly attributed to the
increase in the false negative misclassification, as a result of which a cut is not added to the model. This
misclassification does not lead to excluding feasible solutions. Furthermore, the above-mentioned decrease in
the size of the underlying CGLPs also leads to a smaller training time as the depth of the B&B tree increases.
Lastly, we note that the total number of nodes reported in the confusion matrix entries in Tables [0 and [I0] is
smaller than the size of the B&B tree reported in Tables [2| and [3|since the LR method is only applied to the
nodes that are not pruned by the solver after creation, which are still counted to calculate the total B&B

tree size.
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Table 4 Classification results for the Random Forest with tree number k =18
Size # | Data| TN |FP |FN | TP | Accuracy | ML Time | CGLP Time
train [ 800 |0 [3 |797 |0.99 0.36 -
! test |200 |50 |51 199 |0.79 1.99e-5 | 0.01
train [800 |0 |8 |792 |0.99 0.32 -
’ test | 185 |65 |59 |191 |0.75 2.19e-5 ]0.01
L00x300 |3 train [800 |0 |5 |795 |0.99 0.33 -
test | 231 |19 |45 [205 [0.87 1.39e-5 | 0.01
train | 799 |1 |1 |799 {0.99 0.34 -
! test | 209 |41 [41 |209 |0.83 1.39e-5 | 0.01
train [800 [0 |1 |799 |0.99 0.32 -
’ test | 223 |27 |56 |194 |0.83 1.39e-5 | 0.01
train [ 2400 |0 |9 |23910.99 1.99 -
! test | 607 |93 | 146|554 |0.82 1.42e-5 | 0.09
train | 24000 |11 |23890.99 2.02 -
’ test |H88 | 112|128 |572 |0.82 1.14e-5 | 0.08
train [ 2400 |0 |6 2394 |0.99 1.59 -
20010001 3 test | 690 |10 |128|572 |0.90 1.14e-6 | 0.08
train | 24000 |8 |2392{0.99 1.81 -
! test | 586 | 114|166 |534 |0.8 7.14e-6 ] 0.09
train | 24000 |4 |2396{0.99 2.04 -
’ test | 688 |12 |149 2396 |0.88 1.21e-5 | 0.09
train | 5000 |0 |7 4993 |0.99 6.42 -
! test | 824 | 676|266 |1234|0.68 1.70e-5 1.28
train | 5000 |0 |12 | 4988 |0.99 7.19 -
’ test | 1298 (202|271 |1229|0.84 1.59e-5 | 0.36
train | 5000 |0 |4 | 4996 | 0.99 3.48 -
P00>20001 3 test | 1310|190 | 269 | 1231 |0.84 8.00e-6 | 0.36
train | 5000 |0 |10 |4990 | 0.99 2.93 -
! test | 1372|128 284 |1216|0.86 7.33e-6 | 0.36
train | 5000 |0 |8 |49920.99 291 -
’ test | 1080 | 420 | 245 | 1255 | 0.77 1.06e-5 | 0.36
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Table 5 Classification results for the K-Nearest Neighbor with number of neighbors k =4
Size # | Data| TN |FP|FN |TP |Accuracy | ML Time | CGLP Time
train [800 |0 |435 |365 |0.72 0.03 -
! test [250 [0 |186 |64 |0.62 0.002 0.01
train [800 |0 |426 |374 |0.73 0.03 -
’ test (243 |7 |196 |54 ]0.59 0.002 0.01
train [800 |0 |428 |372 |0.73 0.03 -
10030013 test | 247 |3 207 |43 |0.58 0.002 0.01
train [800 |0 |445 |355 |0.72 0.03 -
! test (249 |1 |197 |53 ]0.60 0.002 0.01
train [800 |0 |419 |381 |0.73 0.03 -
° test |250 |0 |193 |57 |0.61 0.002 0.01
train | 2400 [0 | 966 |1434|0.79 0.45 -
! test [700 |0 |553 |147 |0.60 0.03 0.09
train [ 2400 |0 | 1002|1398 |0.79 0.46 -
? test [699 |1 |531 |169 |0.62 0.03 0.08
train | 2400 [0 | 994 | 1406 |0.79 0.46 -
20010001 3 test |676 |24 |539 |161 |0.59 0.02 0.08
train | 2400 [0 | 1014 | 1386 | 0.78 0.41 -
! test | 667 |33 |555 | 145 |0.58 0.02 0.09
train | 2400 |0 | 1004 | 1396 | 0.81 0.42 -
° test 699 |1 |543 |157 |0.61 0.02 0.09
train | 5000 [0 | 796 | 4204 |0.92 2.84 -
! test |1471(29 1191|309 |0.59 0.11 1.28
train | 5000 |0 | 802 |4198{0.91 2.96 -
: test |1448 |52 | 1183|317 |0.58 0.06 0.36
train | 5000 |0 | 826 |4174|0.91 1.41 -
20020001 3 test | 14964 |1198]302 |0.59 0.06 0.36
train [ 5000 |0 | 789 |4211]0.92 1.12 -
! test | 1388 |12 | 1173|327 |0.60 0.06 0.36
train | 5000 [0 | 799 |4201 |0.92 1.11 -
° test [ 1407 |93 | 1202|298 |0.56 0.05 0.36
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Table 6  Classification results for the Logistic Regression with solver=liblinear, inverse of regularization

strength C =1, and probability P =0.5

Size # | Data| TN |FP |FN|TP | Accuracy | ML Time | CGLP Time
train | 651 | 1491 | 799 [0.90 0.09 -
! test [250 |0 |1 [249 ]0.99 0.0 0.01
train | 642 | 158 |0 [800 |0.90 0.09 -
’ test |250 |0 |1 249 [0.99 1.99e-6 | 0.01
train | 635 | 1650 | 800 |0.89 0.09 -
100300 1 test [250 |0 |0 |250 |1 2.00e-6 | 0.01
train | 644 | 1561 [799 |0.90 0.09 -
! test 1250 |0 |0 |250 |1 4.00e-6 | 0.01
train | 648 | 1521 |799 [0.90 0.10 -
’ test |350 |0 |1 249 [0.99 2.00e-6 | 0.01
train | 2212|188 |0 | 2400 | 0.96 1.16 -
! test |700 |0 |0 |700 |1 4.99¢-6 | 0.09
train | 2189 | 211 |0 | 2400 | 0.95 1.22 -
’ test |700 [0 |2 |698 |0.99 2.85e-6 | 0.08
20051000 | 3 train | 2186|214 |0 | 2400 | 0.95 1.07 -
test |700 |0 |1 699 [0.99 6.42e-6 | 0.08
train | 2173|227 |0 |2400|0.95 0.96 -
! test |700 |0 |0 |700 |1 3.57e-6 | 0.09
train | 2195|2050 | 2400 |0.95 0.96 -
° test |700 |0 |0 |700 |1 3.57e-6 | 0.09
train | 4942 |58 |0 | 5000 |0.99 5.30 -
! test | 15000 |4 ]14960.99 6.33e-6 1.28
train | 4960 |40 [0 | 5000 |0.99 3.62 -
? test | 15000 |3 |1497(0.99 7.66e-6 | 0.36
train [ 4948 |52 |0 [ 5000 | 0.99 3.12 -
P00>20001 3 test [ 15000 |6 [1494]0.99 4.99e-6 | 0.36
train | 497525 |0 | 5000 |0.99 3.31 -
! test | 15000 |9 |1491(0.99 4.33e-6 | 0.36
train | 4924 |76 |0 | 5000 |0.99 3.03 -
° test [ 15000 |9 [1491]0.99 3.99¢e-6 | 0.36
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Table 7 Classification results for the Support Vector Machine with kernel=linear and regularization parameter
C=04
Size # | Data| TN |FP |FN | TP | Accuracy | ML Time | CGLP Time
train [602 [198 |0 |800 |0.87 0.70 -
! test |250 |0 0 250 |1 0.0003 0.01
train | 600 | 2000 |800 |0.87 0.71 -
’ test |250 |0 0 250 |1 0.0003 0.01
L00x300 |3 train | 602 | 198 |0 | 800 |0.87 0.67 -
test |250 |0 0 250 |1 0.0003 0.01
train | 600 | 2000 |800 |0.87 0.66 -
! test |250 |0 0 250 |1 0.0003 0.01
train | 606 | 194 |0 800 |0.87 0.66 -
° test |250 |0 0 250 |1 0.0003 0.01
train | 2346 |54 |0 | 2400 0.98 15.53 -
! test | 700 |0 5) 695 |0.99 0.003 0.09
train | 2342 |58 |0 24001 0.98 13.91 -
’ test | 700 |0 9 691 |0.99 0.002 0.08
20051000 | 3 train | 2317 (83 |0 |2400|0.98 13.96 -
test | 700 |0 13 | 687 10.99 0.002 0.08
train | 230496 |0 24001 0.98 13.24 -
! test | 700 |0 4 696 |0.99 0.002 0.09
train | 2317 |83 |0 [2400]0.98 12.90 -
° test | 700 |0 6 694 | 0.99 0.002 0.09
train | 5000 |0 |2 4998 ]0.99 100.63 -
! test | 1500 |0 84 | 1416 | 0.97 0.009 1.28
train | 5000 |0 |5 [4995]0.99 73.96 -
’ test | 1500|0 1091|1391 | 0.96 0.005 0.36
50052000 | 3 train [ 5000 |0 [2 4998 |0.99 51.58 -
test | 1500 |0 95 | 1405 |0.96 0.004 0.36
train [ 5000 [0 |6 4994 | 0.99 59.99 -
! test | 1500 |0 11813821 0.96 0.004 0.36
train | 4998 |2 |3 4997 0.99 52.90 -
° test | 1500 |0 75 11425 |0.97 0.005 0.36
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Table 8 Classification results for the Neural Network with hidden layer = 18, activation function= identity,
solver = sgd, batch size =100, regularization parameter o = 0.01, learning rate = adaptive, initial learning rate

=0.0007, and maximum number of iterations = 1500

Size # | Data| TN |FP |FN|TP | Accuracy | ML Time | CGLP Time
train [ 696 | 104 |6 |[794 |0.93 12.88 -
! test [250 |0 |6 [244 ]0.98 4.00e-6 0.01
train | 712 |88 |2 [798 |0.94 14.36 -
’ test 250 |0 |5 |245 |0.99 4.00e-6 0.01
L00x300 |3 train | 712 |88 |3 |797 [0.94 14.37 -
test [250 |0 |6 [244 ]0.98 1.99e-6 0.01
train | 704 |96 |9 [791 ]0.93 13.25 -
! test |250 |0 |8 [242 |0.98 2.00e-6 0.01
train | 708 192 |8 [792 |0.93 13.71 -
° test [250 |0 |8 [242 ]0.98 1.99¢-6 0.01
train | 238020 |1 |2399]0.99 65.60 -
! test | 700 |0 |7 [693 ]0.99 6.42e-6 0.09
train | 2383 | 17 |2 [23981]0.99 69.05 -
’ test | 700 |0 |16 [684 ]0.98 4.28e-6 0.08
train | 237624 |1 [23990.99 62.59 -
200x1000 | 3
test | 700 |0 |19 [681 |0.98 3.57e-6 0.08
train | 2367 |33 |1 [2399]0.99 65.45 -
! test | 700 |0 |14 [686 |0.99 6.42e-6 0.09
train | 2367 |33 |4 [2396|0.99 63.31 -
° test |700 |0 |9 [691 ]0.99 5.00e-6 0.09
train (4994 |6 |1 [49990.99 158.87 -
! test | 150010 |25 [1475/0.99 7.66e-6 1.28
train | 4998 |2 |2 [49980.99 111.11 -
’ test | 15000 |31 [1469]0.98 8.33e-6 0.36
train [4995|5 |2 [499810.99 110.06 -
P00>20001 3 test | 15000 |24 |1476]0.99 5.33e-6 0.36
train (49991 |3 |49970.99 86.85 -
! test | 15000 |31 |[14690.98 4.66e-6 0.36
train 4987 |13 |2 [499810.99 92.90 -
’ test | 15000 |36 |1464]0.98 5.33e-6 0.36
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Table 9 Classification results for each layer of the B&B tree for the first instance of Table

B&B Tree Depth | Train Time | True Negative | False Positive | False Negative | True Positive | Accuracy
1 20.83 2 0 0 0 1.00
2 20.42 2 0 0 2 1.00
3 19.42 2 0 0 2 1.00
4 18.19 2 0 0 2 1.00
5 17.75 4 0 0 0 1.00
6 16.72 7 0 0 1 1.00
7 15.54 9 1 0 4 0.93
8 15.10 10 1 1 6 0.89
9 13.53 11 0 1 10 0.95
10 12.76 20 0 2 2 0.92
11 12.53 20 0 3 16 0.92
12 11.63 20 2 3 17 0.88
13 10.70 22 0 4 17 0.91
14 10.44 22 0 4 19 0.91
15 9.64 23 2 5 18 0.85
16 8.67 30 0 9 13 0.83
17 8.09 26 1 14 35 0.80
18 7.34 34 0 23 22 0.71
19 6.65 33 0 24 21 0.69
20 5.99 23 1 47 30 0.52
21 5.45 38 0 31 12 0.62
22 4.58 52 0 33 15 0.67
23 3.40 44 0 54 36 0.60
24 2.97 38 0 62 10 0.44
25 2.58 46 0 51 17 0.55
26 2.27 44 1 46 18 0.57
27 1.93 53 0 42 0 0.56
28 1.65 43 0 54 0 0.44
29 1.40 23 0 56 0 0.29
30 1.15 41 0 35 0 0.54
31 0.95 36 0 29 0 0.55
32 0.80 33 0 22 0 0.60
33 0.61 17 0 15 0 0.53
34 0.40 17 0 9 0 0.65
35 0.33 7 0 8 0 0.47
36 0.18 4 0 2 0 0.67
37 0.10 4 0 1 0 0.80
38 0.04 1 0 0 0 1.00
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Table 10  Classification results for each layer of the B&B tree for the first instance of Table

B&B Tree Depth | Train Time | True Negative | False Positive | False Negative | True Positive | Accuracy
1 6.0372 2 0 0 0 1.00
2 5.5961 3 0 0 1 1.00
3 5.1293 3 0 1 2 0.83
4 4.9456 4 1 0 3 0.88
5 4.7717 5 0 1 2 0.88
6 4.5564 7 0 1 1 0.89
7 4.0524 6 1 2 4 0.77
8 3.8808 7 0 4 3 0.71
9 3.7526 10 0 3 7 0.85
10 3.3934 12 2 5 6 0.72
11 2.9123 14 0 8 8 0.73
12 2.6759 17 1 12 6 0.64
13 2.4469 12 2 13 10 0.59
14 2.2926 19 0 13 4 0.64
15 2.0172 23 0 22 13 0.62
16 1.8169 31 0 23 21 0.69
17 1.6957 29 1 36 24 0.59
18 1.6244 32 0 41 20 0.56
19 1.4567 35 0 44 12 0.52
20 1.2023 31 0 53 20 0.48
21 0.7969 26 0 40 14 0.50
22 0.6471 24 0 38 10 0.47
23 0.5648 28 0 31 7 0.53
24 0.4168 26 0 26 8 0.57
25 0.3536 23 0 22 4 0.55
26 0.2855 20 0 15 0 0.57
27 0.1453 17 0 8 0 0.68
28 0.1172 14 0 5 0 0.74
29 0.0871 7 0 2 0 0.78
30 0.0694 5 0 1 0 0.83
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Appendix B: Sensitivity Analysis

As noted in Section , one set of class-1 vectors in the training data set is generated based on the
result of Corollary (i)7 which requires non-redundancy of constraints of C. Since checking redundancy of
constraints in practical applications is time-consuming, we perform sensitivity analysis on the redundancy
ratio of constraints to evaluate its impact on classification results. For this analysis, we study different
redundancy ratios as in Figure 22 of |Kalantari and Zhang] (2022)) by creating redundant vectors through a
conic combination of vectors of C and adding them to the cone. We conduct these experiments on the first
instance of each size category. These results for the top three classifiers LR, SVM and NN are summarized
in Figure As shown in these figures, the classification accuracy for training data declines slightly as
the redundancy ratio increases. This decline is due to the fact that the training data generated through
Corollary [5{i) are not guaranteed to be a class-1 vector when the base constraint is redundant. These vectors,
however, are labeled as class-1 in the training set, leading to a potential misclassification. Nevertheless, it
is inferred from these experiments that the impact of this source of misclassification is reduced due to the
balance in the remaining sets of training data, which results in maintaining high accuracy of the test set
across different redundancy ratios and problem sizes.

Another deciding factor in creating training data set is €, which determines the proximity of class-0 and
class-1 vectors to the boundary of the polar cone. To investigate the marginal impact of different values of e
on the classification performance, we next conduct sensitivity analysis on the first instance of each problem
size category and each classification method. These results for the top three classifiers LR, SVM and NN are
summarized in Figure[d] As observed in these figures, the common trend across all classification methods and
problem sizes is that, increasing the e value leads to a higher training accuracy and a lower test accuracy.
This trend is expected as the larger € values broaden the spatial gap between class-0 and class-1 training

data, which enables the classifier to improve training accuracy at the expense of reducing test accuracy.
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Figure 3 Sensitivity analysis results for redundancy ratio



Rajabalizadeh and Davarnia: Solving a Class of CGLPs via ML

39

Example 1 Example 1
1.050
1.0 4
1.025 4 .
1.000 - —x 097
3 0.975 A 9
g g 0.87
3 =]
$ 0.950 g
£ 0.7 1
= 0.925 A hd
0.900 4 061
0.875 4
0.5 | n
0.850 1= : : . . T . : : : : :
0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010
Epsilon Epsilon
Example 2 Example 2
1.050
1.0 1 -
1.025 4
1.000 A —=- P 0.9 4
2 0.975 >
g © 0.81
3 =1
$ 0.950 1 g
3 % 0.7
= 0.925 A 2
0.900 4 061
0.875 4
0.5 -%
0.850 1= . . . . . . . : : : :
0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010
Epsilon Epsilon
Example 3 Example 3
1.050
1.0 4
1.025 4
1.000 A %— % 091
> i >
g 0.975 S o8
3 E
$ 0,950 g
£ 7 0.7 1
= 0.925 A 2
0.900 1 0.6 1
0.875 4
0.5 =
0.850 1= T T T T T T . . . . .
0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010
Epsilon Epsilon
Method

=J= Logistic Regression

== Support Vector Machine

=#- Neural Network

Figure 4  Sensitivity analysis results for values of ¢
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As noted in Section 4.1, we have used 4(m + n) data points in our training set for the CHM problem. In
Figures [p] and [6 we show the relationship between the size of the training set and the training time and
accuracy of the classification for the LR method. We conduct these experiments on one instance of each size
category (100 x 300), (200 x 1000), and (500 x 2000). We consider four different sizes for the training set
as multiples of the total number of constraints in the cone C, namely 2(m +n), 4(m +n), 6(m + n), and
8(m+mn). All the other parameters are set similarly to those used in the experiments reported in Section 4.1.
As observed in these figures, increasing the size of the training set leads to increasing the accuracy at the
price of increasing the training time. Based on these results, the choice of 4(m + n) provides a reasonable

trade-off between the training time and accuracy.

== @= Examplel cc«@ee Example2  e==jll==Example 3

Training time (s)
o a N w b
[0, - wv N wv w (%2} D wv

o

2 4 6 8

Size of the training set

Figure 5 The impact of the size of the training set on the training time for the LR method in CHM problem.
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Figure 6 The impact of the size of the training set on the training accuracy for the LR method in CHM problem.

For the next sensitivity analysis, we consider the test accuracy for the LR method applied to the CHM
problem for different categories of test instances based on their distance from the boundary of the polar

cone. To this end, we use similar settings to those mentioned in Section 4.1 to train a LR classifier for one
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Table 11 Classification results for the Logistic Regression approach for test instances with different distance

values from the boundary of the polar cone

Size € TN |FP|FN | TP | Accuracy
0.0005 | 774 |26 | 190|610 |0.87
0.001 {793 |7 |149|651 |0.91
100300 [0.0015|800 [0 {94 |706 |0.95
0.002 |800 |0 |61 |739 |0.98
0.0025 (800 |0 |15 |785 {0.99
0.0005 | 2359 | 41 | 394 | 2006 | 0.91
0.001 [2385|15 |191|2209|0.94
2001000 | 0.0015 {2400 |0 | 117]2283|0.98
0.002 24000 |46 |2354{0.99
0.0025 {2400 |0 |0 |2400|1
0.0005 [ 5000 | 0 | 855 |4145{0.92
0.001 [5000|0 |504 |4496 |0.96
5002000 | 0.0015 | 5000 |0 |57 |4943|0.99
0.002 {50000 |0 |5000(1
0.0025 {5000 [0 |0 |5000 |1

instance of each size category. Then, we use the resulting classifier to predict the class of data points in the

test sets that are generated based on a similar method used to generate the training set where the proximity

of the generated vector is determined by the € value in Corollary 1 for class-0 and Corollary 5(i) for class-1.

As noted in Section 4.1, the vectors produced in this process are normalized to have a uniform scaling for all

data points in class-1 and class-0. We consider five categories for € € {0.0005,0.001,0.0015,0.002,0.0025} to

represent different distance values. For each distance category of the problem size (100 x 300), (200 x 1000),

and (500 x 2000), we consider the test set size 1600, 4800, and 10000, respectively. The accuracy results,

including the elements of the confusion matrix, are given in Table [IT] and Figure [} As observed from these

plots, the test accuracy increases with the distance of the data points from the boundary of the polar cone.
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Figure 7  The test accuracy for different distance categories for the LR method in CHM problem.

Appendix C: Consistency Cuts and Strong Branching

As mentioned in Section [3] the goal of using consistency cuts is to achieve (partial) LP-consistency. An
alternative approach to ensure partial-LP consistency for rank r at any node of the B&B tree associated
with the partial assignment a; =v; such that Spp N{a € R": a; = v} # 0 is to check whether there exists
J C N\ I with |J] =r such that the LP relaxations described by Spp N{ax € R": ;5 =vrus} is infeasible
for every 0—1 value assignment a; =wv;. In this case, the node will be pruned. This approach is similar to
the so-called strong branching technique frequently used in B&B by solvers. It is shown in [Davarnia et al|
that the consistency cut framework has a computational advantage compared to the strong branching

method as outlined next. In particular, Proposition 5.5 in [Davarnia et al.| (2022) shows that applying the

CGLP of Proposition|[f for a certain rank r can achieve LP-consistency of ranks higher than 7. In other words,
the CGLP obtained from the intersection of the multilinear constraints produced by the multiplication with
unfixed variables can lead to separating inconsistent faces that remain feasible if we consider the disjunctive

model for each unfixed variable individually (which is equivalent to the outcome of the strong branching);

see Example 5.3 in[Davarnia et al.[(2022)) for an illustration. This property can lead to a significant reduction

in the B&B tree size when using the CGLP approach compared to the strong branching approach. As a
numerical evidence for the above property, we present in Tables [[2] and [I3] computational experiments on
the instances of Tables [2] and [3] respectively, which show that the outcome of the consistency approach

outperforms that of the strong branching method in terms of both the tree size and the solution time.
Appendix D: Machine Learning Approach for Higher Consistency Ranks

In this section, we present computational results to evaluate the performance of the ML approach in ap-
proximating the CGLP corresponding to partial LP-consistency of higher ranks compared to that of rank
one presented in Table [2] of Section [£:2] To obtain the CGLP for rank r, following Algorithm [T} we need to
multiply each constraint of the original model with all 2" product combinations of every tuple of size r of
unfixed variables at each node of the B&B tree. As a result, increasing r leads to larger problem sizes in

terms of both the number of variables and constraints in the CGLP that is solved at each node of the B&B
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Table 12 Comparison of the consistency cuts and the strong branching approach for multi-knapsack problems

B&B CGLP Strong Branching
o # nodes | time nodes | A (%) | time A (%) |nodes | A (%) | time A (%)
1 134473 |3142.60 |2383 |93 1103.69 | 64 12755 | 63 1351.06 | 57
2 | 82417 | 7496.14 | 5625 |93 3548.07 | 52 26373 | 68 4122.8 | 45
40150 |3 | 78965 |7167.15 |5225 |93 2197.50 |69 25269 | 68 2436.78 | 66
4 1124327 |11377.96 | 5863 | 95 2682.24 | 76 36055 | 71 3754.41 | 67
5 126209 |11700.49 |6197 |95 3120.76 |73 37863 | 70 3393.05 | 71
1 11050459 | 119705.93 | 63677 | 93 31929.71 | 73 189083 | 82 49079.07 | 59
2 157621 | 5449.79 |3519 |93 2116.51 |61 17863 | 69 2288.58 | 58
45|55 |3 | 94281 | 8424.51 4693 |95 2965.73 | 64 26399 | 72 3875.14 | 54
4 | 450175 |44544.77 |22645| 9/ 13808.84 | 69 112543 | 75 18708.34 | 58
5 630449 |65030.67 | 44875 | 92 26270.06 | 59 176525 | 71 279629 |57
1 1989029 |116212.23 54721 |9/ 35255.78 | 69 326379 | 67 48809.14 | 58
2 | 257217 |25121.01 |17321 |93 9948.30 |60 56587 | 78 11304.45 | 55
45160 |3 | 249869 |23936.52 | 14063 | 94 7917.20 |66 59969 | 76 9335.40 | 61
4 |- >86400 | 56847 | - 31665.33 | >63 | 239325 - 38016.84 | >56
5 320967 |31300.88 |17925 | 94 12102.74 | 61 80241 | 75 13772.13 | 56
1 1329277 131947.91 | 12393 |96 11852.70 | 62 8945 72 14696.62 | 54
2 | 531833 |54939.26 | 22885 | 95 20104.97 | 63 106367 | 80 21975.36 | 60
50603 |- >86400 | 93375 | - 70096.13 | >18 | 103369 | - 76896.19 | >11
4 | 174357 |16540.17 | 8533 | 95 7478.74 | 54 41845 | 76 9262.45 | 44
5 |- >86400 | 53671 |- 44288.28 | >48 |43507 |- 50112.72 | >42
Table 13  Comparison of the consistency cuts and the strong branching approach for MIPLIB problems
Class o |m B&B CGLP Strong Branching
nodes |time |nodes |A (%) |time A (%) | nodes | A (%) | time A (%)
p0033 |33 |15 |32117 |2961.55|385 98 283.14 | 90 5139 |84 887.3 70
pipex |41 |48 |1057 |1933.48|623 41 1484.10 | 23 707 33 1527.07 |19
sentoy |60 |30 |703 391.12 | 271 63 187.27 |53 365 48 218.96 | 44
stein27 |27 |118 6099 |[2474.1 |4823 |22 2115.07 | 15 4819 |21 1927.38 | 22
enigma |100|42 |98545 |7413.51 (21679 |78 2669.5 |64 55185 | 44 3632.37 | 51
lseu 89 |28 |219597|4138.8 | 186963 | 15 3724.2 | 10 193245 | 12 3806.96 |8

tree, which leads to an extensive computational burden. For example, for most of the instances studied in
Table [2] we ran into memory errors when using the CGLP of rank r =2. As an example, when there are 10

unfixed variables remaining at a layer of the B&B tree, to obtain the CGLP for rank r =1, the number of
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constraints in the linearized system will be multiplied by 20, whereas for CGLP of rank r =2, this size will
be multiplied by 180. Nonetheless, to provide some insight on the performance of the ML approach for ranks
higher than one, we present in Table [I4] computational experiments that compare the outcome of using ML
for rank 7 =1 and r =2 for instances of Section

For these experiments, due to extensive computational burden of applying the consistency framework for
higher ranks at each node of the B&B tree, as discussed above, we have used the common (K, L) approach
described as follows. The goal is to reduce the implementation time by (i) applying the CGLP (or its
alternative ML approach in this case) in certain layers of the B&B tree only, and (ii) choosing a subset of
unfixed variables to multiply with the constraints. We represent the layer candidates for applying the CGLP
by K, and the variable indices used for multiplication by L. It is intuitive to pick top layers of the B&B tree
to be included in K, and choose variable indices at the bottom layers of the tree to be included in L; see
Davarnia et al.| (2022)) for further illustration of this approach. For the experiments presented in Tables
and we have chosen K =10 and L =10 for both ML approaches targeting partial LP-consistency of rank
one and two to provide a fair comparison in a controlled setting. The columns in these tables are defined
similarly to those of Tables [2 and [3] with a difference that the subcolumns under “LR, r =1” and “LR,
r=2" include the B&B tree size and solution time for applying the logistic regression approach for partial
LP-consistency of rank one and two using the (K, L) approach. The implementation and algorithmic settings
are similar to those used in Section All instances in these experiments have been solved to optimality for
both approaches. As observed in Tables[I4] and [T5] the logistic regression method when used to approximate
the outcome of the CGLP of rank r = 2 outperforms that used for rank » =1 in both B&B tree size and

total solution time in most of the instances.
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Table 14 Comparison of the ML approach for different consistency ranks for multi-knapsack problems
B&B LR, r=1,and K=L=10 LR, r=2,and K=L=10
o # nodes | time nodes | A (%) | time A (%) [nodes | A (%) | time A (%)
1134473 | 3142.60 |26651 23 2453.62 22 22967 | 34 2186.80 | 31
2 | 82417 | 7496.14 76177 8 7051.42 6 54347 | 35 5116.49 | 32
401503 | 78965 7167.15 78717 0 7258.27 —1 69523 |12 6524.29 |9
4 1124327 | 1137796 |117233 |6 10832.11 |5 101065 | 19 9421.17 |18
5 1126209 |11700.49 |98121 24 9072.97 23 61539 |52 5772.71 | 51
1 1050459 | 119705.93 | 1035775 | 2 116557.46 | 3 190993 | 81 17972.34 | 85
2 | 57621 5449.79 | 53507 8 4265.75 22 32073 | 45 2971.28 | 46
45155|3 |94281 8424.51 62925 34 5876.83 30 12029 |87 1149.06 | 86
4 1450175 |44544.77 | 398539 |12 39966.08 | 11 286923 | 37 27952.67 | 38
5 1630449 |65030.67 |630449 |0 65690.10 | -2 263239 | 58 25554.13 | 61
11989029 |116212.23|951755 |4 104927.14 | 10 779599 | 22 85763.15 | 27
2 |257217 |25121.01 |255045 | I 23902.25 |5 207051 | 20 19344.72 | 24
45160 |3 |249869 |23936.52 |233177 |7 21761.88 |10 63619 | 74 5980.96 | 76
4 - >86400 | 823355 |- 90986.38 | - 641949 | - 77075.34 | -
5 1320967 |31300.88 |320363 |0 31782.85 | -2 182909 | 45 16944.11 | 46
11329277 |31947.91 |270375 |18 25977.05 | 20 166139 | 50 15501.51 | 52
2 | 531833 [54939.26 | 516531 |3 52111.54 |6 93973 |82 8679.84 | 85
50(60|3 |- >86400 |- - - - - - - -
4 | 174357 |16540.17 |171407 |2 15523.94 |7 151981 | 13 13994.98 | 16
S |- >86400 |- - - - - - - -
Table 15 Comparison of the ML approach for different consistency ranks for MIPLIB problems
Class - B&B LR,r=1,and K=L=10 LR, r=2 and K=L=10
nodes |time |nodes |A (%) |time A (%) |nodes | A (%) | time A (%)
p0033 33 |15 |32117 |2961.55 (22161 |31 2191.14 | 26 13811 | 57 1658.16 | 44
pipex |41 |48 |1057 1933.48 | 983 7 1875.01 | 3 865 18 1643.5 |15
sentoy |60 |30 |703 391.12 |611 18 336.16 14 505 28 273.7 30
stein27 |27 | 1186099 |2474.1 |5001 18 2152.37 | 13 4879 20 2251.34 | 9
enigma |100|42 |98545 |7413.51|70951 |28 5782.14 | 22 57155 | 42 4077.15 | 45
lseu 89 |28 |219597 |4138.8 |217401 | 1 4183.11 | —1 199833 | 9 3641.44 | 12
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