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Abstract. By exploiting double-penalty terms for the primal subproblem, we develop a novel
relaxed augmented Lagrangian method for solving a family of convex optimization problems
subject to equality or inequality constraints. This new method is then extended to solve
a general multi-block separable convex optimization problem, and two related primal-dual
hybrid gradient algorithms are also discussed. Convergence results about the sublinear and
linear convergence rates are established by variational characterizations for both the saddle-
point of the problem and the first-order optimality conditions of involved subproblems. A large
number of experiments on testing the linear support vector machine problem and the robust
principal component analysis problem arising from machine learning indicate that our proposed
algorithms perform much better than several state-of-the-art algorithms.
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1 Introduction

An advanced interesting work, that is the Balanced Augmented Lagrangian Method (abbrevi-
ated by B-ALM) proposed by He-Yuan [22], aims to solve the following convex optimization
problem subject to linear equality or inequality constraints:

min
{
θ(x)| Ax = b (or ≥ b), x ∈ X

}
, (1)

where θ : Rn → R is a closed proper convex function; X ⊆ Rn is a closed convex set;
A ∈ Rm×n and b ∈ Rm are given. Hereafter, the symbols R,Rn(Rn

+),Rm×n denote the sets
of real numbers, n dimensional real (nonnegative) column vectors, and m × n real matrices,
respectively. The bold I denotes the identity matrix and 0 stands for zero matrix/vector with
proper dimensions. Q ≻ 0 means Q is symmetric positive definite matrix, and ∇f(x) denotes
the gradient of differentiable function f at x. We use ∥ · ∥ and ⟨·, ·⟩ to denote the standard
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Euclidean norm and inner product, respectively. Given H ≻ 0, we define ∥w∥H =
√

⟨w, Hw⟩.
Throughout this paper, the solution set of the problem (1) is assumed to be nonempty.

A fundamental tool to solve the problem (1) is the Augmented Lagrangian Method (ALM,
[16, 33]) by exploring the following two steps:{

xk+1 = argmin
x∈X

L(x, λk) + r
2∥Ax− b∥2,

λk+1 = λk − r(Axk+1 − b),

where r > 0 denotes penalty parameter for the violation of the linear constraints and L(x, λ) =
θ(x) − ⟨λ,Ax − b⟩ denotes the corresponding Lagrangian function. With simple algebra, the
core subproblem of ALM amounts to

xk+1 = argmin
x∈X

θ(x)−
⟨
x, ATλk + rATb

⟩
+

1

2

∥∥x∥∥2
rATA

. (2)

It is often complicated and has no efficient solution if without employing some inexact approx-
imate techniques. As described in [22], the B-ALM reads xk+1 = argmin

x∈X
L(x, λk) + r

2

∥∥x− xk
∥∥2 ,

λk+1 = argmaxL([2xk+1 − xk], λ)− 1
2

∥∥λ− λk
∥∥2

1
r
AAT+δI

,

whose convergence depends on the positive definiteness of the block matrix

[
rI AT

A AAT/r + δI

]
for any r, δ > 0. One may use a general form Q+ AAT/r for any Q ≻ 0 to replace the above
lower-right block so as to guarantee the convergence. The major merit of B-ALM is that
it greatly weakens the convergence conditions of some ALM and related first-order splitting
algorithms [5, 11, 14, 18, 20, 31, 39]. Namely, the parameter r does not depend on ρ(ATA),
where ρ(·) represents the spectrum radius of a matrix. Another merit of B-ALM is that it
simplifies the solving difficult of the subproblems to a relatively easier proximal estimation,
which may have a closed-form solution in many practical applications. However, it will needs
an inner solver to tackle the dual subproblem or the Cholesky factorization to deal with an
equivalent linear equation of the dual subproblem.

Motivated by these observations, we will develop and analyze a new double-penalty ALM
with a relaxation step (abbreviated by P-rALM) for solving the problem (1). This method
could reduce the difficulty of updating the dual variable while still maintaining the weak con-
vergence condition and having a fast convergence behavior. For the sake of conciseness, we
first present the framework of P-rALM as the following:

Initialize (x0, λ0), and choose γ ∈ (0, 2), r > 0, Q ≻ 0;
While stopping criteria is not satisfied do

x̃k = argmin
x∈X

θ(x)−
⟨
λk, Ax− b

⟩
+ r

2

∥∥A(x− xk)
∥∥2 + 1

2

∥∥x− xk
∥∥2
Q
;

λ̃k = PΛ

(
λk − r

[
A(2x̃k − xk)− b

] )
;(

xk+1

λk+1

)
=

(
xk

λk

)
+ γ

(
x̃k − xk

λ̃k − λk

)
;

End while
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In the above framework, PΛ(·) denotes the projection operator onto the set

Λ =

{
Rm, if Ax = b,
Rm

+ , if Ax ≥ b.

For the problem (1) subject to Ax ≥ b, the dual update reduces to λ̃k = max
(
λk − r

[
A(2x̃k −

xk)− b
]
,0
)
. Main features of this P-rALM are summarized as four aspects:

• Unlike the construction of the classical ALM, the x-subproblem of P-rALM utilizes two

different quadratic penalty terms r
2

∥∥A(x− xk)
∥∥2 and 1

2

∥∥x− xk
∥∥2
Q
. Equivalently,

x̃k = argmin
x∈X

θ(x)−
⟨
x, ATλk + (Q+ rATA)xk

⟩
+

1

2

∥∥x∥∥2
Q+rATA

, (3)

which is clearly different from (2) since the iterate x̃k doesn’t depend on the data b but
the previous iterate xk. In particular, taking Q = τI − rATA with τ > r∥ATA∥ could
convert (3) to the following proximity operator

proxθ,τ (x) = argmin
x∈X

θ(x) +
τ

2

∥∥∥x− xk − 1

τ
ATλk

∥∥∥2,
which has a unique global solution and further allows a closed-form solution when X is
simple. For this case, by taking γ = 1, τ = r

α for some α > 0, our P-rALM reduces
to [29, the scheme (38)], which indicates that the new algorithm is more general than
some in the literature. If proxθ,τ (x) is not available but θ is smooth, then user could
exploit linearization technique or select an inner solver such as conjugate gradient method
to solve the x-subproblem inexactly, or use the formula provided by [32] for accurately
approximating the proximal operator.

• The dual update λ̃k is the same as that in [11] but is comparatively easier than that of
B-ALM. It combines the information of both the current iterate x̃k and the extrapolation
iterate x̃k − xk. Moreover, after the primal-dual updates, a relaxation step is adopted to
accelerate the convergence of the algorithm from theoretical and numerical interests.

• As said before, compared to some existing splitting algorithms, the global convergence
of P-rALM will no longer depend on ρ(ATA), although P-rALM with the choice Q =
τI − rATA reduces to [27, Algorothm 1] with η = 0 involved (in fact, the convergence
of this algorithm depends on ρ(ATA)). However, as analyzed in Section 2.3, the double-
penalty terms in P-rALM can be extended to the general Bregman distance while still
ensure the convergence of P-rALM under a proper assumption.

• We show two elegant results as in Theorem 2.2 and Corollary 2.1, that is, the primal
residual and the objective gap converge in a sublinear convergence rate. Motivated by
the structure of H in (8), we also discuss a generalization of P-rALM and two new-types
of Primal-Dual Hybrid Gradient algorithm (PDHG) for solving the multiple block sep-
arable convex optimization and the saddle-point problem, respectively. The connection
between P-rALM and its variants is that all of them can be analyzed by variational
characterization with similar structured matrices to the block matrix H in the sense of
primal-dual and dual-primal frameworks, respectively. The linear convergence rate of
P-rALM is indicated under similar assumptions as the analysis for the new PDHG in
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the appendix. Performance the proposed P-rALM and its two-block extensions are veri-
fied by testing two popular examples in machine learning and by comparing with several
well-established algorithms in the literature.

The paper is organized as follows. In Section 2, we analyze the global convergence and sub-
linear convergence rate of P-rALM. A linearized P-rALM is also discussed when the objective
function is smooth. Section 3 extends the proposed P-rALM to solve the multi-block separable
convex programming and also shows a dual-primal version of the extended P-rALM. Section
4 investigates the performance of the proposed algorithm and its extensions. In the appendix,
we further discuss the convergence complexity of two related PDHG algorithms based on the
construction of P-rALM for solving a family of convex-concave saddle-point problems.

2 Convergence analysis of P-rALM

2.1 Variational characterization

Let us first recall the following fundamental lemma in e.g. [21] which will be used to characterize
the saddle-point of (1) and the iterates of P-rALM.

Lemma 2.1 Let Ω ⊆ Rn be a closed convex set, f(x) and h(x) be convex functions. If h
is differentiable on an open set which contains Ω, and the solution set of the minimization
problem min {f(x) + h(x) | x ∈ Ω} is nonempty. Then, we have

x∗ ∈ argmin
{
f(x) + h(x) | x ∈ Ω

}
if and only if

x∗ ∈ Ω, f(x)− f(x∗) +
⟨
x− x∗,∇h(x∗)

⟩
≥ 0, ∀x ∈ Ω.

From the perspective of optimization, a point w∗ = (x∗;λ∗) ∈ M := X × Λ is called the
saddle-point of (1) if

L (x∗, λ) ≤ L (x∗, λ∗) ≤ L (x, λ∗) , ∀λ ∈ Λ,x ∈ X ,

which, by Lemma 2.1, is explicitly rewritten as{
x∗ ∈ X , θ(x)− θ(x∗) + ⟨x− x∗,−ATλ∗⟩ ≥ 0, ∀x ∈ X ,
λ∗ ∈ Λ, ⟨λ− λ∗, Ax∗ − b⟩ ≥ 0, ∀λ ∈ Λ.

These inequalities can be further expressed as the following more compact form

VI(θ,J ,M) : θ(x)− θ(x∗) +
⟨
w −w∗,J (w∗)

⟩
≥ 0, ∀w ∈ M, (4)

where

w =

(
x
λ

)
and J (w) =

(
−ATλ
Ax− b

)
.

Similar characterization can be found in e.g. [3, 19]. An equivalent expression of (4) is

θ(x)− θ(x∗) +
⟨
w −w∗,J (w)

⟩
≥ 0, ∀w ∈ M, (5)
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since it holds by the monotonicity of J (w) that⟨
w − w̄,J (w)− J (w̄)

⟩
= 0, ∀w, w̄ ∈ M. (6)

Notice that the solution set of (4) is nonempty by the previous assumption that the solution
set of (1) is nonempty, and it can be characterized as (see [17, Theorem 2.1])

M∗ =
∩

w∈M

{
ŵ | θ(x)− θ(x̂) +

⟨
w − ŵ,J (w)

⟩
≥ 0
}
.

Obviously, w∗ satisfies (4) if and only if it is a primal-dual solution of (1). Next, we charac-
terize the sequence generated by P-rALM as a mixed variational inequality with the aid of the
auxiliary notation w̃k = (x̃k; λ̃k).

Lemma 2.2 The sequence {wk} generated by P-rALM satisfies

w̃k ∈ M, θ(x)− θ(x̃k) +
⟨
w − w̃k,J (w)

⟩
≥
⟨
w − w̃k,H(wk − w̃k)

⟩
(7)

for any w ∈ M, where

w̃k =

(
x̃k

λ̃k

)
and H =

[
rATA+Q AT

A 1
r I

]
(8)

is symmetric positive definite for any r > 0 and Q ≻ 0.

Proof. By Lemma 2.1 the first-order optimality condition of the x-subproblem in P-rALM is

x̃k ∈ X , θ(x)− θ(x̃k) +
⟨
x− x̃k,−ATλk + (rATA+Q)(x̃k − xk)

⟩
≥ 0, ∀x ∈ X ,

equivalently,

θ(x)− θ(x̃k) +
⟨
x− x̃k,−ATλ̃k

⟩
≥
⟨
x− x̃k, (rATA+Q)(xk − x̃k) +AT(λk − λ̃k)

⟩
, ∀x ∈ X . (9)

Besides, it follows from the dual update that λ̃k ∈ Λ and⟨
λ− λ̃k, Ax̃k − b

⟩
≥
⟨
λ− λ̃k, A(xk − x̃k) +

1

r
(λk − λ̃k)

⟩
, ∀λ ∈ Λ. (10)

Combine the above inequalities (9)-(10) together with the structure of H given in (8) and the
property in (6) to ensure the result in (7).

Observing that the symmetric matrix H has the following decomposition:

H =

[
rATA AT

A 1
r I

]
+

[
Q 0
0 0

]
=

( √
rAT

1√
r
I

)(√
rA,

1√
r
I

)
+

[
Q 0
0 0

]
.

For any w = (x;λ) ̸= 0 we have

wTHw =
∥∥∥√rAx+

1√
r
λ
∥∥∥2 + ∥∥x∥∥2Q > 0

and therefore H is a positive definite matrix. �
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2.2 Convergence and convergence rate

The following theorem shows that the sequence {wk} generated by P-rALM is contractive
under the H-weighted norm and thus converges to the solution point of VI(θ,J ,M).

Theorem 2.1 For any γ ∈ (0, 2), the sequence {wk} generated by P-rALM satisfies∥∥wk+1 −w∗∥∥2
H

≤
∥∥wk −w∗∥∥2

H
− 2− γ

γ

∥∥wk −wk+1
∥∥2
H
, ∀w∗ ∈ M∗. (11)

Moreover, there exists a point w∞ ∈ M∗ such that lim
k→∞

wk = w∞.

Proof. Setting w = w∗ in (7) together with (4) is to achieve⟨
w̃k −w∗,H(wk − w̃k)

⟩
≥ θ(x̃k)− θ(x∗) +

⟨
w̃k −w∗,J (w∗)

⟩
≥ 0.

Combining the above property with the update

wk+1 = wk + γ(w̃k −wk), (12)

we have ∥∥wk −w∗∥∥2
H
−
∥∥wk+1 −w∗∥∥2

H

=
∥∥wk −w∗∥∥2

H
−
∥∥wk −w∗ +wk+1 −wk

∥∥2
H

= 2γ
⟨
wk −w∗,H(wk − w̃k)

⟩
− γ2

∥∥w̃k −wk
∥∥2
H

= 2γ
⟨
wk − w̃k + w̃k −w∗,H(wk − w̃k)

⟩
− γ2

∥∥wk − w̃k
∥∥2
H

= γ(2− γ)
∥∥wk − w̃k

∥∥2
H
+ 2γ

⟨
w̃k −w∗,H(wk − w̃k)

⟩
≥ γ(2− γ)

∥∥wk − w̃k
∥∥2
H

=
2− γ

γ

∥∥wk −wk+1
∥∥2
H
.

Then, rearrange this inequality to obtain the inequality (11).

Note that the inequality (11) implies that the sequence {wk} is bounded and lim
k→∞

∥∥wk −

wk+1
∥∥2
H

= 0. Namely, lim
k→∞

(wk −wk+1) = 0, which by the relation (12) also shows

lim
k→∞

(w̃k −wk) = 0. (13)

Let w∞ be any accumulation point of {w̃k}. Then, (taking a subsequence of {w̃k} if necessary)
it follows from (7) and (13) that

θ(x)− θ(x∞) + ⟨w −w∞,J (w∞)⟩ ≥ 0, ∀w ∈ M.

This indicates w∞ ∈ M∗ compared to (4). So, by (11) again we have∥∥wk −w∞∥∥2
H

≤
∥∥wj −w∞∥∥2

H
for all k ≥ j.

Finally, it follows from w∞ being an accumulation point that lim
k→∞

wk = w∞. �
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Before establishing the sublinear convergence rate of P-rALM for the following average iter-
ates (it was firstly used in [6] to accelerate the convergence of a stochastic method)

wT :=
1

T + 1

T+κ∑
k=κ

w̃k and xT :=
1

T + 1

T+κ∑
k=κ

x̃k, ∀κ ≥ 0, T > 0, (14)

we would analyze the convergence complexity of the pointwise iterates (see also [7, Theorem
6]) and the primal residual, where the notation ∂θ(x) represents its sub-differential at x, and
NX (x) denotes the normal cone of X at x.

Theorem 2.2 For any k > 0, there exists an integer t ≤ k such that

∥∥wt+1 −wt
∥∥2
H

≤ ϱ

k + 1
and

∥∥st∥∥2
H

≤ ϱ

k + 1

∥∥ diag(rATA+Q,AT)
∥∥2
H

γ2
, (15)

where st ∈ Rn satisfies ATλ̃t − st ∈ ∂θ(x̃t) +NX (x̃
t) and ϱ = γ

2−γ

∥∥w∗ −w0
∥∥2
H
.

Proof. Let k > 0 be a fixed constant and t ≤ k be a positive integer such that∥∥wt+1 −wt
∥∥2
H

= min
{∥∥wl+1 −wl

∥∥2
H

| l = 0, . . . , k
}
.

Summing up (11) over k = 0, · · · ,∞ immediately gives

∞∑
k=0

∥∥wk −wk+1
∥∥2
H

≤ γ

2− γ

∥∥w∗ −w0
∥∥2
H

< ∞,

which further shows ∥∥wt+1 −wt
∥∥2
H

≤ ϱ

k + 1
. (16)

Now, it follows from (9) that by defining

st = (rATA+Q)(x̃t − xt) +AT(λ̃t − λt) ∈ Rn, (17)

we have
θ(x)− θ(x̃t)+(x̃t − x)T(ATλ̃t − st) ≥ 0, ∀x ∈ X ,

which implies ATλ̃t − st ∈ ∂θ(x̃t) +NX (x̃
t). By (17) and (12) again, we have∥∥st∥∥

H
=

∥∥ diag(rATA+Q,AT)(w̃t −wt)
∥∥
H

=
∥∥1
γ
diag(rATA+Q,AT)(wt+1 −wt)

∥∥
H

≤ 1

γ

∥∥ diag(rATA+Q,AT)
∥∥
H

∥∥wt+1 −wt
∥∥
H
,

which together with (16) ensures the right inequality in (15). �
The forthcoming remark suggests that our analysis of Theorem 2.2 is much easier than the

analysis in e.g. [19], although the iteration-complexity results are consistent. And the second
remark shows that the pointwise iteration complexity can be still ensured by regarding the
relaxation factor γ as some special sequences.
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Remark 2.1 Analogous to the technique [19] to establish the sublinear convergence rate in a
pointwise sense, by adding the inequality (7) with w := w̃k+1, i.e.,

θ(x̃k+1)− θ(x̃k) +
⟨
w̃k+1 − w̃k,J (w̃k+1)

⟩
≥
⟨
w̃k+1 − w̃k,H(wk − w̃k)

⟩
to the inequality (7) at (k + 1)-th iteration with w := w̃k, i.e.,

θ(x̃k)− θ(x̃k+1) +
⟨
w̃k − w̃k+1,J (w̃k)

⟩
≥
⟨
w̃k − w̃k+1,H(wk+1 − w̃k+1)

⟩
together with the property (6), we have⟨

w̃k − w̃k+1,H(wk − w̃k + w̃k+1 −wk+1)
⟩
≥ 0.

Then, adding the term
∥∥wk − w̃k + w̃k+1 −wk+1

∥∥2
H

to both sides of the above inequality and

using wTHw = 1
2

∥∥w∥∥2
H+HT and (12) will lead to

1

2

∥∥wk − w̃k + w̃k+1 −wk+1
∥∥2
H+HT ≤

⟨
wk −wk+1,H(wk − w̃k + w̃k+1 −wk+1)

⟩
= γ

⟨
wk − w̃k,H(wk − w̃k + w̃k+1 −wk+1)

⟩
. (18)

So, we have from (18) and the identity ∥a∥2H − ∥b∥2H = 2⟨a,H(a− b)⟩ − ∥a− b∥2H that∥∥wk − w̃k
∥∥2
H
−
∥∥wk+1 − w̃k+1

∥∥2
H

= 2
⟨
wk − w̃k,H(wk − w̃k + w̃k+1 −wk+1)

⟩
−
∥∥wk − w̃k + w̃k+1 −wk+1

∥∥2
H

≥
∥∥wk − w̃k + w̃k+1 −wk+1

∥∥2
H̃
,

where H̃ = 1
γ (H +HT)−H = 2−γ

γ H ≻ 0. By (12) again, the above inequality further shows∥∥wk −wk+1
∥∥2
H

≥
∥∥wk+1 −wk+2

∥∥2
H
, ∀k ≥ 0,

which using (11) gives

γ

2− γ

∥∥wκ −w∗∥∥2
H

≥
T+κ∑
k=κ

∥∥wk −wk+1
∥∥2
H

≥ (T + 1)
∥∥wT+κ −wT+κ+1

∥∥2
H
.

That is,
∥∥wT+κ −wT+κ+1

∥∥2
H

≤ 1
T+1

γ
2−γ

∥∥wκ −w∗∥∥2
H

and it is consistent with the left result of

(15). Especially, taking κ = 0 is to obtain
∥∥wT −wT+1

∥∥2
H

≤ ϱ
T+1 .

Remark 2.2 Because the relaxation parameter γ appears in the iteration complexity results
of (15), one may select a proper fixed value belonging to (0, 2) to do experiments or update it
adaptively by the following strategies for any k > 0:

(S1) By updating γk = 2k
2k+c where c > 0 is any real number, we will have γk

2−γk = k
k+c < 1; or

(S2) By updating γk = 2k(k+2)
2k2+6k+3

, we will obtain γk

2−γk = k(k+2)
(k+1)(k+3) < 1;

Then, it follows from (11) that
∥∥wk − wk+1

∥∥2
H

≤
∥∥wk − w∗∥∥2

H
−
∥∥wk+1 − w∗∥∥2

H
and then∥∥wt−1 − wt

∥∥2 ≤ 1
k

∥∥w∗ − w0
∥∥2
H
. Meanwhile, the convergence rates of

∥∥st∥∥2 and the residual

θ(xt)− θ(x∗) + η
∥∥Axt − b

∥∥ are still O(1/k), where η ≥ ∥λ∥ is a constant as shown in (23).
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(S3) Finally, at each step we may choose a random number from 0 to 2. In this case, P-rALM
still converges with a sublinear convergence rate.

Theorem 2.3 Let T > 0, κ ≥ 0. Then, for any r > 0, Q ≻ 0, the sequence {wk} generated by
P-rALM satisfies

θ(xT )− θ(x) +
⟨
wT −w,J (w)

⟩
≤ 1

2γ(T + 1)

∥∥wκ −w
∥∥2
H
, ∀w ∈ M. (19)

Proof. The inequality (7) and the relation (12) indicate

γ
[
θ(x)− θ(x̃k) +

⟨
w − w̃k,J (w)

⟩]
≥
⟨
w̃k −w,H(wk+1 −wk)

⟩
=

1

2

{∥∥w̃k −wk
∥∥2
H
−
∥∥wk+1 − w̃k

∥∥2
H
+
∥∥wk+1 −w

∥∥2
H
−
∥∥wk −w

∥∥2
H

}
, (20)

in which the equality uses the identity⟨
p− q,H(u− v)

⟩
=

1

2

{∥∥p− v
∥∥2
H
−
∥∥p− u

∥∥2
H
+
∥∥q− u

∥∥2
H
−
∥∥q− v

∥∥2
H

}
(21)

with specifications p := w̃k,q = w,u = wk+1 and v := wk. Note that∥∥w̃k −wk
∥∥2
H
−
∥∥wk+1 − w̃k

∥∥2
H

=
∥∥w̃k −wk

∥∥2
H
−
∥∥wk − w̃k +wk+1 −wk

∥∥2
H

=
∥∥w̃k −wk

∥∥2
H
−
∥∥wk − w̃k + γ(w̃k −wk)

∥∥2
H

= γ(2− γ)
∥∥w̃k −wk

∥∥2
H

≥ 0.

Summing the inequality (20) over k = κ, κ+ 1, . . . , κ+ T , we have

(T + 1)θ(x)−
κ+T∑
k=κ

θ(x̃k) +
⟨
(T + 1)w −

κ+T∑
k=κ

w̃k,J (w)
⟩
+

1

2γ

∥∥w −wκ
∥∥2
H

≥ 0,

which, by the definition of wT and xT , gives

1

T + 1

κ+T∑
k=κ

θ(x̃k)− θ(x) +
⟨
wT −w,J (w)

⟩
≤ 1

2γ(T + 1)

∥∥w −wκ
∥∥2
H
. (22)

Because θ is convex function and has the property θ(xT ) ≤ 1
T+1

∑κ+T
k=κ θ(x̃k), the inequality

(19) is obtained by plugging this property into (22). �
Theorem 2.3 illustrates that the proposed P-rALM converges in a sublinear ergodic conver-

gence rate. Furthermore, for any η > 0, by letting Γη = {λ | ∥λ∥ ≤ η} and

γη = inf
x∗∈X

sup
λ∈Λ

∥∥w −wκ
∥∥2
H
, (23)

we can get the following tight result whose proof is similar to that of [4, 36] and thus is omitted
here. We can see from Corollary 2.1 that the residual θ(xT ) − θ(x∗) + η

∥∥AxT − b
∥∥ converges

still in the worst O(1/T ) convergence rate.

Corollary 2.1 For any η > 0, let γη be defined in (23) and xT be defined in (14). Then, the
sequence {wk} generated by P-rALM satisfies

θ(xT )− θ(x∗) + η
∥∥AxT − b

∥∥ ≤ γη
2γ(T + 1)

, ∀x∗ ∈ X .
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2.3 Two special cases

In this section, we would like to discuss two interesting cases on exploiting the Bregman distance
and developing a linearized version of P-rALM, respectively.

Case 1: The double-penalty terms in P-rALM can be extended to the Bregman distance

Dφ(x,x
k) = φ(x)− φ(xk)−

⟨
∇φ(xk),x− xk

⟩
, ∀x ∈ X ,

where φ is a strictly convex and continuously differentiable function. For this case, by combining
the optimality condition (see e.g. [40, lemma 2]) of the corresponding x-subproblem and the
previous inequality (10), we can deduce⟨

w̃k −w∗,H(wk − w̃k)
⟩
−
⟨
x̃k − x∗, (rATA+Q)(xk − x̃k)

⟩
≥ Dφ(x̃

k,xk) +Dφ(x
∗, x̃k)−Dφ(x

∗,xk),

that is ∥∥w∗ −wk
∥∥2
H
+ 2Dφ(x

∗,xk)−
∥∥x∗ − xk

∥∥2
rATA+Q

≥
∥∥w∗ − w̃k

∥∥2
H
+ 2Dφ(x

∗, x̃k)−
∥∥x∗ − x̃k

∥∥2
rATA+Q

+
∥∥w̃k −wk

∥∥2
H
+ 2Dφ(x̃

k,xk)−
∥∥x̃k − xk

∥∥2
rATA+Q

. (24)

Denote H̃ = H − diag(Q,0). Under the assumption that

Dφ(x, x̄) ≥
1

2

{∥∥x− x̄
∥∥2
rATA

−
∥∥w − w̄

∥∥2
H̃

}
(25)

for any w, w̄ ∈ M, the corresponding modified P-rALM is convergent. When w = w̄, (25)

holds obviously; when w and w̄ are different points, we have
∥∥w − w̄

∥∥2
H̃

≥ 0 and hence there

exists a constant c > 0 such that
∥∥w− w̄

∥∥2
H̃

≤ c
2

∥∥x− x̄
∥∥2
rATA

. As a result, (25) reduces to the
assumption on the kernel function φ:

φ(x)− φ(x̄)−
⟨
∇φ(x̄),x− x̄

⟩
≥ 1− c

2

∥∥x− x̄
∥∥2
rATA

.

If we take φ = 1
2

∥∥x∥∥2
rATA

, then Dφ(x, x̄) =
1
2

∥∥x− x̄
∥∥2
rATA

, showing that the assumption holds
clearly, and finally the inequality (24) with simple algebra will reduce to (11).

Case 2: If the objective function θ(x) is smooth and its gradient is Lipschitz continuous
with constant Lθ, which implies

θ(y) ≤ θ(z) + ⟨∇θ(z), y − z⟩+ Lθ

2
∥y − z∥2 (26)

for every y, z ∈ X , then one may update the x̃k-subproblem as the following

x̃k = argmin
x∈X

⟨∇θ(xk)−ATλk,x⟩+ r

2

∥∥A(x− xk)
∥∥2 + 1

2

∥∥x− xk
∥∥2
Q
, (27)

which, by takingQ = τI−rATA with τ > r∥ATA∥, will become x̃k = PX
(
xk − [∇θ(xk)−ATλk]/τ

)
,

where PX (x) denotes the projection of x ∈ Rn onto X . With the new update (27), a similar

10



inequality to (11) can be also obtained. In fact, the first-order optimality condition of (27) are
x̃k ∈ X and ⟨

x− x̃k,∇θ(xk)−ATλk + (rATA+Q)(x̃k − xk)
⟩
≥ 0, ∀x ∈ X ,

which, by using the convexity of θ and the inequality (26) with (y, z) := (x̃k,xk), shows⟨
x− x̃k, ATλk + (rATA+Q)(xk − x̃k)

⟩
≤

⟨
x− x̃k,∇θ(xk)

⟩
=
⟨
x− xk + xk − x̃k,∇θ(xk)

⟩
≤ θ(x)− θ(xk) + θ(xk)− θ(x̃k) +

Lθ

2

∥∥xk − x̃k
∥∥2.

Rearrange it to get

θ(x)− θ(x̃k) + ⟨x− x̃k,−ATλk⟩ ≥ ⟨x− x̃k, (rATA+Q)(xk − x̃k)⟩ − Lθ

2
∥xk − x̃k∥2.

Combine the last inequality with the inequality (10) to achieve

w̃k ∈ M, θ(x)− θ(x̃k) +
⟨
w − w̃k,J (w)

⟩
≥
⟨
w − w̃k,H(wk − w̃k)

⟩
− Lθ

2
∥xk − x̃k∥2

with H given by (8). Similar to the proof of Theorem 2.1, we will deduce∥∥wk+1 −w∗∥∥2
H

≤
∥∥wk −w∗∥∥2

H
− 2− γ

γ

∥∥wk −wk+1
∥∥2
H̃
, ∀w∗ ∈ M∗, (28)

where H̃ = H − diag
(

Lθ
2−γ I,0

)
. Clearly, if r > 0 and Q ≻ Lθ

2−γ I, then (28) implies that this

linearized P-rALM converges with the same convergence rate as P-rALM.

3 Extensions of P-rALM for multi-block problem

In this section, we discuss two interesting extensions of P-rALM for solving the following multi-
block separable convex minimization problem

min
{
θ(x) :=

p∑
i=1

θi(xi)|
p∑

i=1

Aixi = b (or ≥ b), xi ∈ Xi

}
, (29)

where θi : Rni → R, i = 1, 2, · · · , p are closed proper convex functions; Xi ⊆ Rni are closed
convex sets; Ai ∈ Rm×ni and b ∈ Rm are given data. For this problem, we denote

M :=

p∏
i=1

Xi × Λ, where Λ :=

{
Rm, if

∑p
i=1Aixi = b,

Rm
+ , if

∑p
i=1Aixi ≥ b.

An extended primal-dual version of P-rALM (denoted by PD-rALM) is described as follows.

11



Initialize (x0
1, . . . ,x

0
p, λ

0), choose γ ∈ (0, 2), ri > 0, Qi ≻ 0 for i = 1, 2, . . . , p;

While stopping criteria is not satisfied do
For i = 1, 2, · · · , p, parallelly update

x̃k
i = arg min

xi∈Xi

{
θi(xi)− ⟨λk, Aixi − b⟩+ ri

2

∥∥Ai(xi − xk
i )
∥∥2 + 1

2

∥∥xi − xk
i

∥∥2
Qi

}
;

End for

λ̃k = PΛ

(
λk − 1∑p

j=1
1
rj

[∑p
i=1Ai(2x̃

k
i − xk

i )− b
] )

;


xk+1
1
...

xk+1
p

λk+1

 =


xk
1
...
xk
p

λk

+ γ


x̃k
1 − xk

1
...

x̃k
p − xk

p

λ̃k − λk

 ;

End while

Analogous to the analysis in Section 2, the saddle-point w∗ = (x∗
1; · · · ;x∗

p;λ
∗) ∈ M of the

Lagrangian function of (29) will satisfy the previous VI(θ,J ,M) but with new notations

w =

(
x
λ

)
=


x1
...
xp

λ

 , J (w) =


−AT

1 λ
...

−AT
p λ∑p

i=1Aixi − b

 .

Compared to the traditional ALM, the above PD-rALM is capable of exploiting the proper-
ties of each component objective function and could make the subproblems much easier. Next,
we briefly analyze the convergence of this PD-rALM.

Lemma 3.1 The sequence {wk} generated by PD-rALM satisfies

w̃k ∈ M, θ(x)− θ(x̃k) +
⟨
w − w̃k,J (w)

⟩
≥
⟨
w − w̃k,H(wk − w̃k)

⟩
(30)

for any w ∈ M, where

w̃k =

(
x̃k

λ̃k

)
, H =



r1A
T
1A1 +Q1 0 · · · 0 AT

1

0 r2A
T
2A2 +Q2 · · · 0 AT

2
...

...
. . .

...
...

0 0 · · · rpA
T
pAp +Qp AT

p

A1 A2 · · · Ap

p∑
i=1

1
ri
I


(31)

is symmetric positive definite for any ri > 0 and Qi ≻ 0. Moreover, we have∥∥wk+1 −w∗∥∥2
H

≤
∥∥wk −w∗∥∥2

H
− 2− γ

γ

∥∥wk −wk+1
∥∥2
H
, ∀w∗ ∈ M∗. (32)

Proof. First of all, it follows from first-order optimality condition of the xi-subproblem (i =
1, 2, . . . , p,) in PD-rALM that x̃k

i ∈ Xi and

θi(xi)− θi(x̃
k
i ) +

⟨
xi − x̃k

i ,−AT
i λ

k +
(
riA

T
i Ai +Qi

)
(x̃k

i − xk
i )
⟩
≥ 0, ∀xi ∈ Xi,
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in other words,

θi(xi)− θi(x̃
k
i ) +

⟨
xi − x̃k

i ,−AT
i λ̃

k
⟩
≥
⟨
xi − x̃k

i ,
(
riA

T
i Ai +Qi

)
(xk

i − x̃k
i ) +AT

i (λ
k − λ̃k)

⟩
.(33)

Besides, it follows from the update of λ̃k that λ̃k ∈ Λ and⟨
λ− λ̃k,

p∑
i=1

Aix̃
k
i − b

⟩
≥
⟨
λ− λ̃k,

p∑
i=1

Ai(x
k
i − x̃k

i ) +

p∑
j=1

1

rj
(λk − λ̃k)

⟩
, ∀λ ∈ Λ. (34)

Finally, combine the inequalities (33)-(34) together with the structure of H and the monotonic-
ity of J (w) to confirm the result in (30).

Note that the matrix H = H̄ + diag(Q1, · · · , Qp,0) where

H̄ =


r1A

T
1A1 · · · 0 AT

1
...

. . .
...

...
0 · · · rpA

T
pAp AT

p

A1 · · · Ap

p∑
i=1

1
ri
I



=


r1A

T
1A1 · · · 0 AT

1
...

. . .
...

...
0 · · · 0 0
A1 · · · 0 1

r1
I

+ · · ·+


0 · · · 0 0
...

. . .
...

...
0 · · · rpA

T
pAp AT

p

0 · · · Ap
1
rp
I



=



√
r1A

T
1

0
...
0
1√
r1
I


(
√
r1A1,0, . . . ,0,

1
√
r1
I

)
+ . . .+


0
...
0√
rpA

T
p

1√
rp
I


(
0, . . . ,0,

√
rpAp,

1
√
rp
I

)

For any w = (x;λ) ̸= 0, we have

wTHw =

p∑
i=1

∥∥∥√riAixi +
1

√
ri
λ
∥∥∥2 + p∑

i=1

∥∥xi

∥∥2
Qi

> 0

and hence the matrix H is symmetric positive definite. Similar to the proof of Theorem 2.1,
the inequality (32) can be also obtained. �

According to the preliminary Lemma 3.1, the global convergence of PD-rALM and its sub-
linear convergence rate can be established as the rest parts of Section 2. Motivated by the
structure of H in (31), we next present a dual-primal update of PD-rALM, which can be also
regarded as a dual-primal extension of P-rALM.

Suppose ri > 0, si > 0 and Qi ≽ riA
T
i Ai for i = 1, 2, · · · , p. Consider the following block

matrix

H =



Q1 + s1I 0 · · · 0 −AT
1

0 Q2 + s2I · · · 0 −AT
2

...
...

. . .
...

...
0 0 · · · Qp + spI −AT

p

−A1 −A2 · · · −Ap

p∑
i=1

1
ri
I


. (35)
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This new matrix H is symmetric positive definite since

H ≽


r1A

T
1A1 · · · 0 −AT

1

...
. . .

...
...

0 · · · 0 0
−A1 · · · 0 1

r1
I

+ · · ·+


0 · · · 0 0
...

. . .
...

...

0 · · · rpA
T
pAp −AT

p

0 · · · −Ap
1
rp
I


︸ ︷︷ ︸

=



√
r1A

T
1

0
...
0

− 1√
r1
I


(
√
r1A1,0,...,0,− 1√

r1
I

)
+...+



0
...
0√
rpA

T
p

− 1√
rp
I


(
0,...,0,

√
rpAp,− 1√

rp
I

)

+


s1I · · · 0 0
... · · ·

...
...

0 · · · spI 0
0 . . . 0 0

 ,

and

wTHw =

p∑
i=1

∥∥√riAixi −
1

√
ri
λ
∥∥2 + p∑

i=1

si
∥∥xi

∥∥2 > 0

for any w = (x;λ) ̸= 0. Substituting the above H into (30), it is not difficulty to obtain the
following dual-primal updates (denoted by DP-rALM).

Initialize (x0
1, . . . ,x

0
p, λ

0), choose γ ∈ (0, 2), ri > 0, si > 0, Qi ≻ riA
T
i Ai for i = 1, 2, . . . , p;

While stopping criteria is not satisfied do

λ̃k = PΛ

(
λk − 1∑p

j=1
1
rj

[∑p
i=1Aix

k
i − b

])
;

For i = 1, 2, · · · , p, parallelly update

x̃k
i = arg min

xi∈Xi

{
θi(xi)− ⟨2λ̃k − λk, Aixi − b⟩+ 1

2

∥∥xi − xk
i

∥∥2
Qi+siI

}
;

End for
xk+1
1
...

xk+1
p

λk+1

 =


xk
1
...
xk
p

λk

+ γ


x̃k
1 − xk

1
...

x̃k
p − xk

p

λ̃k − λk

 ;

End while

Although the condition of Qi is strict than that in the previous PD-rALM, similar results
to Lemma 3.1 can be obtained. In fact, For each i = 1, 2, · · · , p, the first-order optimality
conditions of x̃k

i -subproblem is x̃k
i ∈ Xi and

θi(xi)− θi(x̃
k
i ) +

⟨
xi − x̃k

i ,−ATλ̃k
⟩
≥
⟨
xi − x̃k

i , (Qi + siI)(x
k
i − x̃k

i )−AT
i (λ

k − λ̃k)
⟩

(36)

for any xi ∈ Xi. Meanwhile, the update of λ̃k implies λ̃k ∈ Λ and

⟨
λ− λ̃k,

p∑
i=1

Aix̃
k
i − b

⟩
≥
⟨
λ− λ̃k,−

p∑
i=1

Ai(x
k
i − x̃k

i ) +

p∑
j=1

1

rj
(λk − λ̃k)

⟩
, ∀λ ∈ Λ. (37)

Combining (36) and (37), the inequalities (30) and (32) also hold but with the matrix H
replaced by (35). So, this DP-rALM also converges with a sublinear convergence rate.
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4 Numerical experiments

In this section, we investigate the performance of the proposed algorithm for solving two popular
optimization problems in machine learning. All the forthcoming experiments are implemented
in MATLAB R2019b (64-bit) and performed on a PC with Windows 10 operating system, with
an Intel i7-8565U CPU and 16GB RAM.

4.1 Linear support vector machine

One fundamental function of machine learning is to make classification from a number of labeled
training data. Suppose these training data are {(xi, yi)}mi=1, where xi ∈ Rn are feature vectors
and yi ∈ {−1, 1} are the labels of sample. If these two kinds of examples formulate two disjoint
convex hulls in Rn, then we can find a hyperplane {x | wTx+a = 0} to separate them because
of the well-known strong separation theorem. The linear support vector machine (abbreviated
by SVM, see e.g. [28]) is to find the maximum margin hyperplane separating two classes of
data as much as possible, which leads to the following optimization problem

min
w∈Rn,a∈R

{1
2

∥∥w∥∥2 | yi(wTxi + a
)
≥ 1, i = 1, · · · ,m

}
.

Introduce the following new notations

u =

(
w
a

)
, F =

(
I 0
0 0

)
, A =

 y1(x
T
1 , 1)
...

ym(xTm, 1)

 and b =

 1
...
1


to reformulate the above SVM model as

min
u∈Rm+1

{1
2
∥Fu∥2 | Au ≥ b

}
(38)

which is clearly a special case of the problem (1). In fact, SVM had been successfully applied
in aero-engine fault diagnosis [10, 15]. This subsection aims to test the numerical performance
of our proposed method for solving the problem (38). Applying the proposed P-rALM with
Q = ϱI− rATA to (38), the resulting key iterations are ũk = (FTF + ϱI)−1(ATλk + ϱuk),

λ̃k = PRm
+

[
λk − r(A(2ũk − uk)− b)

]
.

An inverse operation is involved in the update of ũk, but it is a fixed constant in the loop.
The penalty parameter r plays an important role in the performance of ALM. To achieve a
relatively better value of the penalty parameter r, we first test its effect on the performance of
our basic algorithms P-rALM and DP-rALM for solving the problem (38) with different data
number m. Throughout this subsection, the training data is generated by random numbers
satisfying a normal distribution, and the following stopping criterion

Opt err(k) = max
{
∥FTFuk −ATλk∥, ∥min(Auk − b,0)∥

}
< tol (39)
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is used to terminate P-rALM and DP-rALM under the maximal iteration number 2×106. With
the same initial points (u0, λ0) = (ones(3,1), zeros(m,1)), Figure 1 shows the results about
“Iter” (the number of iterations) and “CPU” (CPU time in seconds) along with the increase
of r. We fix the tolerance tol = 10−2 and the parameters (ϱ, γ) = (r(ρ(ATA) + 0.1), 1.8) for
P-rALM, while (Q, s, γ) = (ϱI, 10−3, 1.8) for DP-rALM. We didn’t test other values of r since
the reporting iteration numbers and CPU time are worse than the results in Figure 1. It can
be seen from Figure 1 that both P-rALM and DP-rALM are competitive and sensitive to r.
After checking the reporting results of both iter and CPU in Figure 1, we find that r = 10−3

is relatively reasonable for m = 600 to 900, while r = 3× 10−4 for m = 200 to 500.
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Figure 1: Effect of the parameter r on the performance of P-rALM and DP-rALM for solving (38).

To investigate the effect of the relaxation factor γ ∈ (0, 2) on the performance of P-rALM and
DP-rALM, Figure 2 presents some comparative results of using different γ under tol = 10−8,
from which we can see that γ = 1.9 performs relatively better and it is set as the default value
in the following experiments. Besides, it can be seen from Figure 2 that both P-rALM and
DP-rALM enjoying a smaller γ ∈ (0, 1) leads to much worse results.
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Figure 2: Effect of the relaxation parameter γ on the performance of P-rALM and DP-rALM.

A number of comparative experiments are further presented by comparing the following
well-established first-order algorithms with our proposed algorithms P-rALM, DP-rALM, P-
rALM with S1-S3, DP-rALM with S1-S3 (the strategies S1-S3 are emphasized in Remark 2.2),
N-PDHG1 and N-PDHG2 together with the same relaxation step as P-rALM:

• I-IDL-ALM [23] with parameters (τ, r) = (0.75, βρ(ATA)+0.1) as the authors mentioned
but with β = 0.004, which gives better performance than the original setting β = 0.01;

• C-PPA [18] with (γ, s) = (1.9, 1.01ρ(ATA)/r) where we use adaptive value r = m/8.5;

• Generalized Primal-Dual Algorithm (G-PDA, [25]) with parameters

τ = c1/
√

(1− α+ α2)ρ(ATA), σ = c2/
√

(1− α+ α2)ρ(ATA)

to satisfy the convergence condition 1
τσ > (1 − α + α2)ρ(ATA), and we set (c1, c2, α) =

(2, 1/c1 − 0.001, 0.5) in the next experiments;

• G-PDHG [26] with the same setting as G-PDA for the parameters (τ, σ) to satisfy the
convergence condition 1

τσ > 0.75ρ(ATA).

Here, we emphasize that although the parameters of G-PDHG and G-PDA are chosen in the
same way, their frameworks are different. More specifically, the dual subproblem of G-PDA
enjoys an expansion step with stepsize parameter α ∈ [0, 1], while G-PDA doesn’t exploit this
step; G-PDA has a correction step for the dual variable, while G-PDHG has a correction step
for the primal variable. The primal-dual algorithms G-PDA, G-PDHG, N-PDHG1 and N-
PDHG2 are used to solve the saddle-point problem of (38): minumaxλ≥0

1
2∥Fu∥2−⟨λ,Au−b⟩.

The parameters of our proposed algorithms use the tuned values as we mentioned before, and
the parameter c in Remark 2.2 is taken as 0.1.
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Size P-rALM DP-rALM
m Iter CPU It err Opt err Iter CPU It err Opt err
300 2747 0.0163 1.0250e-9 9.9916e-9 2746 0.0169 1.0363e-9 9.9119e-9
400 11352 0.1108 6.0521e-10 9.7526e-9 11352 0.0911 5.9308e-10 9.5964e-9
500 8115 0.0942 2.3510e-10 9.9957e-9 8116 0.0671 2.3558e-10 9.8216e-9
600 7518 0.0567 1.4976e-10 9.9693e-9 7518 0.0650 1.4987e-10 9.9922e-9
700 13464 0.1546 1.3101e-10 9.9949e-9 13464 0.1205 1.3062e-10 9.9744e-9
800 15411 0.1324 6.0571e-11 9.8826e-9 15411 0.1268 6.0614e-11 9.8904e-9
900 9213 0.0932 8.2811e-11 9.9745e-9 9213 0.1169 8.2823e-11 9.9762e-9
Size P-rALM with S1 DP-rALM with S1
m Iter CPU It err Opt err Iter CPU It err Opt err
300 5229 0.0284 5.3706e-10 9.9946e-9 5226 0.0302 5.4623e-10 9.9787e-9
400 21576 0.1711 2.8475e-10 9.8869e-9 21575 0.1350 2.7884e-10 9.9433e-9
500 15427 0.1048 1.0254e-10 9.8898e-9 15428 0.1034 1.0238e-10 9.9169e-9
600 14028 0.0982 7.6785e-11 9.9603e-9 14028 0.1158 7.6858e-11 9.9523e-9
700 25591 0.1787 6.8756e-11 9.9926e-9 25591 0.1642 6.8552e-11 9.9717e-9
800 29286 0.1856 3.2832e-11 9.9382e-9 29286 0.2233 3.2879e-11 9.9459e-9
900 17508 0.1449 4.3011e-11 9.9947e-9 17508 0.1421 4.3017e-11 9.9966e-9
Size P-rALM with S2 DP-rALM with S2
m Iter CPU It err Opt err Iter CPU It err Opt err
300 5237 0.0329 5.3541e-10 9.9660e-9 5234 0.0284 5.4445e-10 9.9477e-9
400 21585 0.1284 2.8481e-10 9.8627e-9 21584 0.1182 2.7889e-10 9.9193e-9
500 15435 0.1122 1.0230e-10 9.9962e-9 15437 0.1154 1.0255e-10 9.8377e-9
600 14037 0.1453 7.6807e-11 9.8755e-9 14037 0.1030 7.6880e-11 9.8675e-9
700 25600 0.2132 6.8760e-11 9.9934e-9 25600 0.1822 6.8555e-11 9.9726e-9
800 29295 0.1888 3.2903e-11 9.9494e-9 29295 0.1926 3.2950e-11 9.9571e-9
900 17517 0.1580 4.2983e-11 9.9851e-9 17517 0.1441 4.2990e-11 9.9870e-9
Size P-rALM with S3 DP-rALM with S3
m Iter CPU It err Opt err Iter CPU It err Opt err
300 5245 0.0310 4.0011e-10 9.9876e-9 5257 0.0448 7.2148e-10 9.9437e-9
400 21370 0.1374 3.3819e-10 9.8724e-9 21593 0.1257 4.7754e-10 9.8583e-9
500 15386 0.1312 1.8824e-10 9.7337e-9 15483 0.1071 1.8188e-10 9.7578e-9
600 14288 0.1476 1.1117e-10 9.9965e-9 14160 0.1205 7.0168e-12 9.9993e-9
700 25430 0.1951 4.7062e-11 9.9807e-9 25717 0.1783 1.3591e-10 9.9731e-9
800 29274 0.2409 4.1498e-11 9.9694e-9 29288 0.2682 4.8997e-11 9.9513e-9
900 17522 0.2200 8.3521e-11 9.9658e-9 17522 0.2013 6.3857e-11 9.9893e-9
Size I-IDL-ALM C-PPA
m Iter CPU It err Opt err Iter CPU It err Opt err
300 43099 0.2509 5.4987e-11 9.9979e-9 4791 0.0347 2.7731e-10 9.9823e-9
400 166303 0.5714 4.0977e-11 9.9895e-9 18504 0.1404 2.6511e-10 9.8792e-9
500 88062 0.3580 2.1486e-11 9.9728e-9 9840 0.0788 1.4402e-10 9.9608e-9
600 35955 0.2108 4.2482e-11 9.9628e-9 17021 0.1465 2.4382e-10 9.9742e-9
700 77014 0.4201 3.1677e-11 9.7316e-9 13047 0.1274 2.8562e-11 9.9909e-9
800 80489 0.4837 2.0271e-11 9.9714e-9 8872 0.0826 8.2374e-11 9.9742e-9
900 47650 0.3991 1.9483e-11 9.9859e-9 10383 0.1382 1.4948e-10 9.9613e-9
Size G-PDA G-PDHG
m Iter CPU It err Opt err Iter CPU It err Opt err
300 27323 0.1607 9.3168e-11 9.9999e-9 27590 0.5680 9.3168e-11 9.9999e-9
400 91678 0.3795 7.0041e-11 9.9984e-9 87249 1.0196 7.9698e-11 9.9924e-9
500 47391 0.2808 1.5299e-11 9.9853e-9 42990 0.6013 2.3046e-11 9.9574e-9
600 19717 0.1511 6.0752e-11 9.9740e-9 13448 0.2437 5.2588e-11 9.9894e-9
700 29052 0.2019 6.0593e-11 9.9939e-9 31107 0.5585 6.0509e-11 9.9908e-9
800 32069 0.2502 2.8833e-11 9.9958e-9 31693 0.6043 5.6301e-11 9.9095e-9
900 14741 0.1709 4.4148e-11 9.9775e-9 17512 0.3928 5.3862e-11 9.9896e-9
Size N-PDHG1 N-PDHG2
m Iter CPU It err Opt err Iter CPU It err Opt err
300 2747 0.0231 1.0250e-9 9.9916e-9 3410 0.0212 1.4921e-10 9.9875e-9
400 11352 0.1095 6.0521e-10 9.7526e-9 11342 0.1076 5.9802e-10 9.7723e-9
500 8115 0.0691 2.3510e-10 9.9957e-9 9590 0.0916 2.5845e-10 9.5993e-9
600 7518 0.0570 1.4976e-10 9.9693e-9 5720 0.0595 9.2440e-11 9.9107e-9
700 13464 0.1211 1.3101e-10 9.9949e-9 13519 0.1520 1.2677e-10 9.9502e-9
800 15411 0.1339 6.0571e-11 9.8826e-9 6721 0.0538 3.1910e-11 9.9920e-9
900 9213 0.0843 8.2811e-11 9.9745e-9 7081 0.0574 1.2773e-10 9.9970e-9

Table 1: Comparative results of different algorithms for solving the problem (38).
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Table 1 reports some comparative results of with different settings of total data number
under given tolerance tol = 10−8, where Opt err denotes the final obtained residuals defined in
(39) and It err denotes the final obtained primal residuals defined as It err(k) = ∥uk+1 − uk∥.
The bold value in Table 1 denotes the smallest one for each problem and the italic value
means a relatively smaller value. We also set n = 2 to visualize the comparative classification
results of m ∈ {300, 900} as shown in Figures 3-4. Figure 5 depicts the convergence curves
of Opt err(k) versus Iter when applying these state-of-the-art algorithms to solve (38) with
m = 900. We didn’t depict the curves about I-IDL-ALM in Figure 5 since it performs much
worse than others. Figure 6 further shows the comparison of different algorithms for solving
(38) with m = 900 under lower and higher tolerance errors. It can be seen from experimental
results listed in Table 1 and convergence curves shown in Figures 5-6 that:
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Figure 3: Classification results with 300 data points by state-of-the-art algorithms.
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Figure 4: Classification results with 900 data points by state-of-the-art algorithms.
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• The proposed methods P-rALM and DP-rALM are competitive and perform significantly
better than each of them with S1-S3, which suggests that using a large fixed relaxation
factor is better than using an adaptive sequence.

• Both P-rALM and DP-rALM perform significantly better than the recent developed
methods I-IDL-ALM, G-PDA and G-PDHG for solving SVM (38) whether a lower or
higher tolerance is required. In addition, both N-PDHG1 and N-PDHG2 (see appendix)
are competitive to P-rALM and perform also better than I-IDL-ALM, G-PDA and G-
PDHG, while N-PDHG2 seems more suitable for solving the large-scale SVM.

• Although C-PPA was proposed ten years ago, it performs sometimes competitive with
our P-rALM, which is perhaps due to the adaptive update rules we suggested. However,
in many cases this method performs worse than our P-rALM and DP-rALM, which can
be observed from the reported Iter and CPU. Compared to all algorithms, I-IDL-ALM
needs relatively more iteration numbers to satisfy the stopping condition (39).

Figure 5: Comparison of Opt err versus Iter by different algorithms for solving (38) with m = 900.

Figure 6: Comparison of different algorithms for solving (38) with m = 900 under different tol.

4.2 Robust principal component analysis

The Robust Principal Component Analysis (RPCA) was developed originally by Candes et al.
[12], which aims to decompose a data matrix D ∈ Rm×n into a low-rank matrix L and a sparse
matrix S containing outliers and corrupt data. The principal components of L are robust to
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the outliers and corrupt data in S. This decomposition has a wide range of applications in e.g.
video surveillance, face recognition, latent semantic indexing, machine learning and so forth,
see e.g. [1, 9, 30, 34]. Mathematically, the goal is to find L and S satisfying the following
separable nonconvex optimization problem

min
L,S∈Rm×n

{
rank(L) + ∥S∥0 | L+ S = D

}
.

However, it is not a tractable optimization due to the non-convexity of rank function rank(L)
and the sparse norm ∥S∥0. Similar to the technique to reformulate the compressed sensing
problem, most researchers turn to the following convex relaxation form:

min
L,S∈Rm×n

{
∥L∥∗ + ν∥S∥1 | L+ S = D

}
, (40)

where ∥ · ∥∗ denotes the nuclear norm of a matrix (the sum of its singular values), ∥ · ∥1 denotes
the so-called l1 norm of a matrix (the sum of its absolute values), and ν is a positive weighting
parameter that provides a trade-off between the sparse and low rank components and usually it
takes 1/

√
max(m,n). Clearly, the problem (40) is a special case of the previous model (29) and

hence the extended algorithms PD-rALM and DP-rALM in section 3 can be applied to solve
it. For example, applying PD-rALM with Qi = ϱiI for i = 1, 2, the resulting key iterations are

L̃k = arg min
L∈Rm×n

∥L∥∗ +
r1 + ϱ1

2

∥∥∥L− Lk − Λk

r1 + ϱ1

∥∥∥2
F
,

S̃k = arg min
S∈Rm×n

ν∥S∥1 +
r2 + ϱ2

2

∥∥∥S − Sk − Λk

r2 + ϱ2

∥∥∥2
F

= Shrink
(
Sk +

Λk

r2 + ϱ2
,

ν

r2 + ϱ2

)
,

Λ̃k = Λk − 1

1/r1 + 1/r2

[
(2L̃k − Lk) + (2S̃k − Sk)−D

]
,

where Shrink(·, ·) is the soft shrinkage operator (see e.g. [37]). And the L-subproblem admits
the following explicit solution

L̃k = Uk diag
(
max

{
σk
i − 1

r1 + ϱ1
, 0
})

(V k)T ,

where Uk ∈ Rl×r, V k ∈ Rn×r are obtained by the singular value decomposition: Lk + Λk

r1+ϱ1
=

UkΣk(V k)T with Σk = diag
(
σk
1 , σ

k
1 , · · · , σk

r

)
∈ Rr×r.

By comparing to several well-established algorithms, in what follows we test the performance
of the preliminary algorithms PD-rALM and DP-rALM for solving the problem (40) with Yale
B database which consists of cropped and aligned images of 38 individuals under 9 poses and 64
lighting conditions1. The penalty parameter of the standard ADMM is fixed as mn

4∥D∥1 according

to [9, Page 109]. Similar to the parameter choice in ADMM, we set r1 = r2, Q1 = Q2 = ϱI
with (r1, γ, ϱ) = ( mn

5∥D∥1 , 1.75, 10
−6) for PD-rALM, while we set s1 = s2 with (ϱ, s1) = (r1(1 +

10−3), 10−4) for DP-rALM. The existing methods DP-BALM [38], PDHG [11], G-PDHG and
G-PDA are used to solve the corresponding saddle-point problem min

L,S∈Rm×n
max

Z∈Rm×n
{∥L∥∗ +

1The database can be downloaded at http://vision.ucsd.edu/∼iskwak/ExtYaleDatabase/ExtYaleB.html.
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ν∥S∥1 + ⟨L+ S −D,Z⟩}. The parameters of DP-BALM is fixed as (α, β, δ) = (1.9, 100, 10−3),
both G-PDA and G-PDHG use the suggested values as mentioned in the second experiments
[38] since the involved parameters (τ, σ) are restricted by the same condition τσ∥KKT∥ < 4/3
and here K = [I; I]. Due to the recent work [2], we set the inertial parameter θ = 0.8 for
PDHG. All mentioned algorithms are terminated when the following criterions

RelChg(k) :=

∥∥Lk+1 − Lk
∥∥
F
+
∥∥Sk+1 − Sk

∥∥
F∥∥Lk

∥∥
F
+
∥∥Sk

∥∥
F
+ 1

< ϵ1, Res(k) :=
∥D − Lk+1 − Sk+1∥F

∥D∥F
< ϵ2

are satisfied with the same initial feasible points (Λ0, S0) = (L0, D − L0), where (ϵ1, ϵ2) are
given tolerance and L0 is obtained by the truncated singular value decomposition:

L0 = F(:,1:l)Sigma(1:l,1:l)N(:,1:l) where [F,Sigma,N]=svd(D,’econ’);l=3.

(ϵ1, ϵ2) Methods Iter rank(L) Time(s) RelChg Res

PD-rALM 194 37 17.6648 9.9673e-5 6.8302e-6
DP-rALM 192 37 18.4554 9.9661e-5 6.8722e-6

(10−4, 10−5) ADMM 254 31 21.0341 9.8391e-5 4.0032e-6
DP-BALM 225 31 21.7985 5.9275e-5 9.9039e-6
PDHG 280 31 23.0072 1.9046e-5 9.9674e-6
G-PDHG 271 31 22.5811 2.0347e-5 9.9877e-6
G-PDA 271 31 22.0591 1.9011e-5 9.9877e-6

PD-rALM 343 31 30.8044 9.8724e-6 7.4143e-7
DP-rALM 360 31 32.4381 9.9899e-6 5.6868e-7

(10−5, 10−6) ADMM 395 31 38.1146 9.8640e-6 4.7239e-7
DP-BALM 469 31 46.5738 8.7892e-6 9.9287e-7
PDHG 516 31 53.5624 1.8649e-6 9.9971e-7
G-PDHG 508 31 49.6827 2.0340e-6 9.9375e-7
G-PDA 508 31 48.8102 1.9017e-6 9.9375e-7

PD-rALM 582 31 53.7565 9.9349e-7 9.5168e-8
DP-rALM 605 31 56.6440 9.9954e-7 8.6355e-8

(10−6, 10−7) ADMM 619 31 57.4334 9.9702e-7 4.4109e-8
DP-BALM 864 31 85.6948 9.9842e-7 7.0061e-8
PDHG 988 31 93.3656 1.2053e-7 9.9848e-8
G-PDHG 976 31 89.9472 1.4532e-7 9.9761e-8
G-PDA 976 31 86.8632 1.2596e-7 9.9761e-8

Table 2: Comparative results of the state-of-the-art algorithms under different tolerances.

We report some comparative results of several state-of-the-art algorithms in Table 4.2 under
different tolerances (ϵ1, ϵ2). The original columns of D, along with the low-rank and sparse
components decomposed by different algorithms under (ϵ1, ϵ2) = (10−5, 10−6), are shown in
Figure 7, and Figure 8 shows the comparative convergence curves of the relative residual
Res(k) obtained along with the increasing of the CPU time and the iteration number. From
Table 4.2 and Figure 8, it can be seen that both PD-rALM and DP-rALM perform better than
other comparative methods in terms of the number of iterations and CPU time, and they can
effectively fill in occluded regions of the image, corresponding to shadows. In the low-rank
component L as shown in Figure 7, shadows under different lighting conditions are removed
and filled in with the most consistent low-rank features from the eigenfaces.
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Figure 7: Output of different algorithms for the 4th(rows 1-3), 18th(rows 4-6) and 46th(rows 7-9) images in the
Yale B database. From left to right: PD-rALM, DP-rALM, ADMM, DP-BALM, PDHG, G-PDHG, G-PDA,
respectively.
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Figure 8: Comparative convergence curves of Res versus CPU time and iteration, respectively.
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5 Appendix: discussions on two new PDHG

In this appendix, we discuss two new types of PDHG algorithm without relaxation step for
solving the convex-concave saddle-point problem of the form

min
x∈X

max
y∈Y

Φ(x,y) := θ1(x)− yTAx− θ2(y), (41)

or, equivalently, the composite problem min
x∈X

{
θ1(x) + θ∗2(−Ax)

}
, where X ⊆ Rn,Y ⊆ Rm are

closed convex sets, both θ1 : X → R and θ2 : Y → R are convex but possibly nonsmooth
functions, θ∗2 is the conjugate function of θ2, and A ∈ Rm×n is a given data. A lot of practical
examples can be reformulated as a special case of (41), see e.g. [27, Section 5]. Note that
Problem (41) could reduce to the dual of (1) by letting θ2 = −λTb,y = λ and Y = Λ.
Hence, the convergence results also hold for the previous P-rALM. Throughout the forthcoming
discussions, the solution set of this problem is assumed to be nonempty.

The original PDHG proposed in [41] is to solve some TV image restorations models. Ex-
tending it to the problem (41), we get the following scheme: xk+1 = argmin

x∈X
Φ(x,yk) + r

2∥x− xk∥2,
yk+1 = argmax

y∈Y
Φ(xk+1,y)− s

2∥y − yk∥2,

where r, s are positive scalars. He, et al. [20] pointed out that convergence of the above
PDHG can be ensured if θ1 is strongly convex and rs > ρ(ATA). To weaken these convergence
conditions, e.g., the function θ1 is only convex and the parameters r, s do not depend on
ρ(ATA), we develop the following novel PDHG (N-PDHG1) for solving the problem (41):

Initialize (x0, λ0) and choose r > 0, Q ≻ 0;
While stopping criteria is not satisfied do

xk+1 = argmin
x∈X

Φ(x,yk) + 1
2

∥∥x− xk
∥∥2
rATA+Q

;

yk+1 = argmax
y∈Y

Φ(2xk+1 − xk,y)− 1
2r∥y − yk∥2;

End while

Another related algorithm (denoted by N-PDHG2) is just to modify the final subproblem of
PDHG, whose framework is described as follows. A similar quadratic term was adopted in [24]
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to solve a special case of the problem (41). We can observe that N-PDHG1 has certain connec-
tions with P-rALM, since the first-order optimality conditions of their involved subproblems
are reformulated as similar variational inequalities with the same block matrix H, see (7) and
the next (42). Actually, their x-subproblems enjoy the same proximal term. Another observa-
tion is that N-PDHG2 is developed from N-PDHG1 by just modifying the involved proximal
parameters, and one of their subproblems could enjoy a proximity operator directly.

Initialize (x0, λ0) and choose r > 0, Q ≻ 0;
While stopping criteria is not satisfied do

xk+1 = argmin
x∈X

Φ(x,yk) + r
2

∥∥x− xk
∥∥2 ;

yk+1 = argmax
y∈Y

Φ(2xk+1 − xk,y)− 1
2∥y − yk∥2

AAT/r+Q
;

End while

5.1 Sublinear convergence under general convex assumption

Because the above two algorithms are very similar, in the following we just analyze basic
convergence properties of N-PDHG1 under general convex assumption and then briefly discuss
the convergence of the second algorithm. For convenience, we denote U := X × Y and

θ(u) = θ1(x) + θ2(y), u =

(
x
y

)
, uk =

(
xk

yk

)
and M =

[
0 −AT

A 0

]
.

Lemma 5.1 The sequence {uk} generated by N-PDHG1 satisfies

uk+1 ∈ U , θ(u)− θ(uk+1) +
⟨
u− uk+1,Mu

⟩
≥
⟨
u− uk+1, H(uk − uk+1)

⟩
(42)

for any u ∈ U , where H is given by (8). Moreover, we have

θ(u)− θ(uk+1) +
⟨
u− uk+1,Mu

⟩
≥ 1

2

(∥∥u− uk+1
∥∥2
H
−
∥∥u− uk

∥∥2
H

)
+

1

2

∥∥uk − uk+1
∥∥2
H
. (43)

Proof. According to the first-order optimality condition of the x-subproblem in N-PDHG1, we
have xk+1 ∈ X and

θ1(x)− θ1(x
k+1) +

⟨
x− xk+1,−ATyk +

(
rATA+Q

)
(xk+1 − xk)

⟩
≥ 0, ∀x ∈ X , (44)

that is,

θ1(x)− θ1(x
k+1) +

⟨
x− xk+1,−ATyk+1

⟩
≥
⟨
x− xk+1,

(
rATA+Q

)
(xk − xk+1) +AT(yk − yk+1)

⟩
. (45)

Similarly, we have yk+1 ∈ Y and

θ2(y)− θ2(y
k+1) +

⟨
y − yk+1, A(2xk+1 − xk) +

1

r
(yk+1 − yk)

⟩
≥ 0, ∀y ∈ Y, (46)
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that is,

θ2(y)− θ2(y
k+1) +

⟨
y − yk+1,ATxk+1

⟩
≥
⟨
y − yk+1, A(xk − xk+1) +

1

r
(yk − yk+1)

⟩
. (47)

Combine the inequalities (45)-(47) and the structure of H given by (8) to have

θ(u)− θ(uk+1) +
⟨
u− uk+1,Muk+1

⟩
≥
⟨
u− uk+1,H(uk − uk+1)

⟩
,

which together with the the property
⟨
u− uk+1,M(u− uk+1)

⟩
= 0 confirms (42). The in-

equality (43) can be obtained by applying (42) and the identity in (21). �
Now, we discuss the global convergence and sublinear convergence rate of N-PDHG1. Let

u∗ = (x∗;y∗) ∈ U be a solution point of the problem (41). Then, it holds

Φy∈Y(x
∗,y) ≤ Φ(x∗,y∗) ≤ Φx∈X (x,y

∗),

namely, {
x∗ ∈ X θ1(x)− θ1(x

∗) + ⟨x− x∗,−ATy∗⟩ ≥ 0, ∀x ∈ X ,
y∗ ∈ Y θ2(y)− θ2(y

∗) + ⟨y − y∗, Ax∗⟩ ≥ 0, ∀x ∈ Y.

So, finding a solution point of (41) amounts to finding u∗ ∈ U such that

u∗ ∈ U , θ(u)− θ(u∗) + ⟨u− u∗,Mu∗⟩ ≥ 0, ∀u ∈ U . (48)

Setting u := u∗ in (43) together with (48) gives∥∥∥u∗ − uk+1
∥∥∥2
H

≤
∥∥∥u∗ − uk

∥∥∥2
H
−
∥∥∥uk − uk+1

∥∥∥2
H
, (49)

that is, the sequence generated by N-PDHG1 is contractive that thus N-PDHG1 converges
globally. The last inequality together with the analysis of P-rALM indicates that N-PDHG1
with a relaxation step also converges, and the sublinear convergence rate of N-PDHG1 is
similar to the proof of P-rALM. Note that convergence of N-PDHG1 does not need the strongly
convexity of θ1 and allows more flexibility on choosing the proximal parameter r.

Finally, it is not difficulty from the first-order optimality conditions of the involved subprob-
lems in N-PDHG2 that

uk+1 ∈ U , θ(u)− θ(uk+1) +
⟨
u− uk+1,Mu

⟩
≥
⟨
u− uk+1, H̃(uk − uk+1)

⟩
for any u ∈ U , where

H̃ =

[
rI AT

A 1
rAA

T +Q

]
and H̃ is positive definite for any r > 0 and Q ≻ 0. So, N-PDHG2 also converges globally
with a sublinear convergence rate. This matrix H̃ is what we discussed in Section 1 and could
reduce to that in [22] with Q = δI for any δ > 0.
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5.2 Linear convergence under strongly convexity assumption

The linear convergence rate of N-PDHG1 will be investigated in this subsection under the
following assumptions:

(a1) The matrix A is full row rank and X = Rn;

(a2) The function θ1 is strongly convex with modulus ν > 0 and ∇θ1 is Lipschitz continuous
with constant L > 0.

From the second part of (a2) and the first-order optimality condition of xk+1-subproblem in
N-PDHG1, we have

−∇θ1(x
k+1) = −ATyk +

(
rATA+Q

)
(xk+1 − xk). (50)

Together with this equation and the first part of (a2), it holds

θ1(x)− θ1(x
k+1) ≥

⟨
x− xk+1,∇θ1(x

k+1)
⟩
+

ν

2

∥∥x− xk+1
∥∥2 ⇒

θ1(x)− θ1(x
k+1) +

⟨
x− xk+1,−ATyk+1

⟩
≥ ν

2

∥∥x− xk+1
∥∥2 +⟨

x− xk+1,
(
rATA+Q

)
(xk − xk+1) +AT(yk − yk+1)

⟩
,

which implies that the extra term ν
2

∥∥x− xk+1
∥∥2 will be added to the right-hand-side of (42)

and finally gives∥∥u∗ − uk+1
∥∥2
H

≤
∥∥u∗ − uk

∥∥2
H
−
∥∥uk − uk+1

∥∥2
H
− ν
∥∥x∗ − xk+1

∥∥2. (51)

Note that the equation (50) can be equivalently rewritten as

ATyk+1 = ∇θ1(x
k+1) +AT(yk+1 − yk) +

(
rATA+Q

)
(xk+1 − xk). (52)

Besides, the solution (x∗;y∗) satisfies

∇θ1(x
∗) = ATy∗. (53)

Combining the equations (52) and (53) together with (a1)-(a2) is to obtain

σA
∥∥yk+1 − y∗∥∥2 ≤ ∥∥AT(yk+1 − y∗)

∥∥2
=

∥∥∇θ1(x
k+1)−∇θ1(x

∗) +AT(yk+1 − yk) +
(
rATA+Q

)
(xk+1 − xk)

∥∥2
≤ 3

{∥∥∇θ1(x
k+1)−∇θ1(x

∗)
∥∥2 + ∥∥AT(yk+1 − yk)

∥∥2 + ∥∥(rATA+Q
)
(xk+1 − xk)

∥∥2}
≤ 3

{
L2
∥∥xk+1 − x∗∥∥2 + ∥A∥2

∥∥yk+1 − yk
∥∥2 + ∥∥(rATA+Q

)
(xk+1 − xk)

∥∥2},
where σA > 0 denotes the smallest eigenvalue of AAT due to (a1). So, we have∥∥u∗ − uk+1

∥∥2
H

≤ ∥H∥
{∥∥x∗ − xk+1

∥∥2 + ∥∥y∗ − yk+1
∥∥2}

≤ ∥H∥
{
(1 + 3L2σ−1

A )
∥∥x∗ − xk+1

∥∥2 + 3σ−1
A ∥A∥2

∥∥yk+1 − yk
∥∥2

+ 3σ−1
A

∥∥(rATA+Q
)
(xk+1 − xk)

∥∥2}. (54)
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By the structure of H and the Young’s inequality, it follows that∥∥uk − uk+1
∥∥2
H

=
∥∥(rATA+Q

)
(xk+1 − xk)

∥∥2 + 1

r

∥∥yk+1 − yk
∥∥2 + 2

⟨
xk+1 − xk, AT(yk+1 − yk)

⟩
≥

∥∥(rATA+Q
)
(xk+1 − xk)

∥∥2 + 1

r

∥∥yk+1 − yk
∥∥2

−
{
δ0
∥∥xk+1 − xk

∥∥2 + 1

δ0
∥ATA∥

∥∥yk+1 − yk
∥∥2},

≥
∥∥(rATA+Q

)
(xk+1 − xk)

∥∥2 − δ0
∥∥xk+1 − xk

∥∥2 + (1
r
− ∥ATA∥

δ0

)∥∥yk+1 − yk
∥∥2, (55)

where δ0 ∈ (r∥ATA∥, ∥rATA+Q∥2) exists for proper choices of r and Q. Now, Let

δk = min

{
ν

(1 + 3L2σ−1
A )∥H∥

,
δ0 − r∥ATA∥

3rδ0σ
−1
A ∥A∥2∥H∥

,
∥rATA+Q∥2 − δ0

3σ−1
A ∥H∥ ∥(rATA+Q) (xk+1 − xk)∥2

}
.

Then, combining the above inequalities (51) and (54)-(55), we can deduce

(1 + δk)
∥∥u∗ − uk+1

∥∥2
H
−
∥∥u∗ − uk

∥∥2
H

≤ δk
∥∥u∗ − uk+1

∥∥2
H
−
∥∥uk − uk+1

∥∥2
H
− ν
∥∥x∗ − xk+1

∥∥2
≤

{
δk(1 + 3L2σ−1

A )∥H∥ − ν
}∥∥x∗ − xk+1

∥∥2 + {3δkσ−1
A ∥A∥2∥H∥ − 1

r
+

∥ATA∥
δ0

}∥∥yk+1 − yk
∥∥2

+
(
3δkσ−1

A ∥H∥ − 1
)∥∥(rATA+Q

)
(xk+1 − xk)

∥∥2 + δ0
∥∥xk+1 − xk

∥∥2. (56)

Observing from the definition of δk, it holds
δk(1 + 3L2σ−1

A )∥H∥ − ν ≤ 0,

3δkσ−1
A ∥A∥2∥H∥ − 1

r +
∥ATA∥

δ0
≤ 0,(

3δkσ−1
A ∥H∥ − 1

) ∥∥(rATA+Q
)
(xk+1 − xk)

∥∥2 + δ0
∥∥xk+1 − xk

∥∥2 ≤ 0,

and finally ensures the following Q-linear convergence rate:∥∥u∗ − uk+1
∥∥2
H

≤ 1

1 + δk
∥∥u∗ − uk

∥∥2
H
.

The above analysis also indicates that our proposed P-rALM for solving the problem (1) will
converge Q-linearly under the similar assumptions that θ1(x) is strongly convex, its gradient
∇θ1 is Lipschitz continuous, the matrix A has full row rank and X = Rn.

5.3 Linear convergence under error bound condition

In this section, we use ∂f(x) to denote the sub-differential of the convex function f at x. f is
said to be a piecewise linear multifunction if its graph Gr(f) := {(x, y) | y ∈ f(x)} is a union
of finitely many polyhedra. The previous projection PC(x) is nonexpansive, i.e.,

∥PC(x)− PC(z)∥ ≤ ∥x− z∥, ∀x, z ∈ Rn. (57)
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For any H ≻ 0, we define distH(x, C) := min
z∈C

∥x − z∥H . When H = I, we simply denote it

dist(x, C). For any u ∈ U and α > 0, the set-valued mapping eU (u, α) is defined as

eU (u, α) :=

(
eX (u, α) := x− PX

[
x− α(ξx −ATy)

]
eY(u, α) := y − PY [y − α(ξy +Ax)]

)
, (58)

where ξx ∈ ∂θ1(x), ξy ∈ ∂θ2(y). Note that a point

u∗ ∈ U∗ = {û ∈ U | dist (0, eU (û, α)) = 0}

is the solution of (41) if and only if eU (u
∗, α) = 0. Different from the assumptions (a1)-(a2),

we next investigate the linear convergence rate of N-PDHG1 under the following error bound
condition in terms of the mapping eU (u, 1):

(a3) Assume that there exists a constant ζ > 0 such that

dist (u,U∗) ≤ ζ dist (0, eU (u, 1)) , ∀u ∈ U . (59)

The condition (59) is generally weaker than the strong convexity assumption and hence
can be satisfied by some problems that have non-strongly convex objective functions. Note
that if the sub-differentials ∂θ1(x) and ∂θ2(y) are piecewise linear multifunctions and the
constraint sets X ,Y are polyhedral, then both PX and PY are piecewise linear multifunctions
by [13, Prop. 4.1.4] and hence eU (u, α) is also a piecewise linear multifunction. Followed by
Robinson’s continuity property [35] for polyhedral multifunctions, the assumption (a3) holds
automatically. For convenience of the sequel analysis, we denote

Q =

[
(rATA+Q)T(rATA+Q) +ATA 0

0 1
r I+AAT

]
. (60)

It is easy to check that Q is symmetric positive definite because ∥u∥2Q > 0 for any u ̸= 0. By
equivalent expressions for the first-order optimality conditions (44) and (46) together with the
structure of Q, we have the following estimation on the distance of 0 to eU (u

k+1, 1), which
follows the similar proof as that in [8, Sec. 2.2].

Lemma 5.2 Let Q be given in (60). Then, the iterates generated by N-PDHG1 satisfy

dist2
(
0, eU (u

k+1, 1)
)
≤ 2
∥∥uk − uk+1

∥∥2
Q. (61)

Proof. The first-order optimality condition in (44) implies

xk+1 = PX

{
xk+1 −

[
ξk+1
x −ATyk +

(
rATA+Q

)
(xk+1 − xk)

]}
.

This, together with the definition of distH(·, ·) and the property in (57), shows

dist2
(
0, eX (u

k+1, 1)
)
= dist2

(
xk+1, PX

{
xk+1 −

[
ξk+1
x −ATyk+1

]})
≤

∥∥∥AT(yk − yk+1) +
(
rATA+Q

)
(xk − xk+1)

∥∥∥2
≤ 2

(∥∥AT(yk − yk+1)
∥∥2 + ∥∥(rATA+Q

)
(xk − xk+1)

∥∥2) = 2
∥∥uk − uk+1

∥∥2
Q1

, (62)
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where Q1 = diag
(
(rATA+Q)T(rATA+Q), AAT

)
. Similarly, we have from (46) that

yk+1 = PY

{
yk+1 −

[
ξk+1
y +A(2xk+1 − xk) +

1

r
(yk+1 − yk)

]}
and

dist2
(
0, eY(u

k+1, 1)
)
= dist2

(
yk+1, PY

{
yk+1 −

[
ξk+1
y +Axk+1

]})
≤

∥∥∥A(xk − xk+1) +
1

r
(yk − yk+1)

∥∥∥2
≤ 2

(∥∥A(xk − xk+1)
∥∥2 + ∥∥1

r
(yk − yk+1)

∥∥2) = 2
∥∥uk − uk+1

∥∥2
Q2

, (63)

where Q2 = diag
(
ATA, 1r I

)
. The above inequalities (62)-(63) immediately gives (61) due to

the relation Q = Q1 +Q2. �
Based on Lemma 5.2 and the conclusion (49), we next provide a global linear convergence

rate of N-PDHG1 with the aid of the notations λmin(H) and λmax(H) which denote the smallest
and largest eigenvalue of the positive definite matrix H, respectively.

Theorem 5.1 Let Q be given in (60). Then, there exists a constant ζ > 0 such that the
iterates generated by N-PDHG1 satisfies

dist2H(uk+1,U∗) ≤ 1

1 + ζ̂
dist2H(uk,U∗), (64)

where the constant ζ̂ = λmin(H)
2ζ2λmax(Q)λmax(H)

> 0.

Proof Because U∗ is a closed convex set, there exists a u∗
k ∈ U∗ satisfying

distH(uk,U∗) =
∥∥uk − u∗

k

∥∥
H
. (65)

By the condition (59) and Lemma 5.2 there exists a constant ζ > 0 such that

dist2
(
uk+1,U∗) ≤ 2ζ2

∥∥uk − uk+1
∥∥2
Q ≤ 2ζ2λmax(Q)

λmin(H)

∥∥uk − uk+1
∥∥2
H
. (66)

Note by the definition of distH(·, ·), we have

1

λmax(H)
dist2H

(
uk+1,U∗) ≤ dist2

(
uk+1,U∗). (67)

Combine (66)-(67) and (49) to have

dist2H(uk+1,U∗) ≤
∥∥uk+1 − u∗

k

∥∥2
H

≤
∥∥uk − u∗

k

∥∥2
H
−
∥∥uk − uk+1

∥∥2
H

≤ dist2H(uk,U∗)− λmin(H)

2ζ2λmax(Q)λmax(H)
dist2H

(
uk+1,U∗).

Rearranging the above inequality is to confirm (64). �
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Corollary 5.1 Let ζ̂ > 0 be given in Theorem 5.1 and the sequence {uk} be generated by
N-PDHG1. Then, there exists a point u∞ ∈ U∗ such that∥∥uk − u∞∥∥

H
≤ Cϵk, (68)

where

C =
2distH(u0,U∗)

1− ϵ
> 0 and ϵ =

1√
1 + ζ̂

∈ (0, 1).

Proof Let u∗ ∈ U∗ such that (65) holds and let

uk+1 = uk + dk. (69)

Then, it follows from (49) that
∥∥uk+1 − u∗∥∥

H
≤
∥∥uk − u∗∥∥

H
which further implies∥∥dk

∥∥
H

=
∥∥uk+1 − uk

∥∥
H

≤
∥∥uk+1 − u∗∥∥

H
+
∥∥uk − u∗∥∥

H

≤ 2
∥∥uk − u∗∥∥

H
= 2distH(uk,U∗)

≤ 2ϵk distH
(
u0,U∗), (70)

where the final inequality follows from (64). Because the sequence {uk} generated by N-PDHG1
converges to a u∞ ∈ U∗, we have by (69) that u∞ = uk +

∑∞
j=k d

j , which by (70) indicates

∥∥uk − u∞∥∥
H

≤
∞∑
j=k

∥dj∥H ≤ 2 distH(u0,U∗)

∞∑
j=k

ϵj

= 2distH(u0,U∗)ϵk
∞∑
j=0

ϵj ≤ ϵk
[
2 distH(u0,U∗)

1

1− ϵ

]
.

So, the inequality (68) holds, that is, uk converges u∞ R-linearly. �

Remark 5.1 Consider the following general saddle-point problem

min
x∈X

max
y∈Y

Φ(x,y) := f(x) + θ1(x)− yTAx− θ2(y),

or, equivalently, the composite problem min
x∈X

{
f(x) + θ1(x) + θ∗2(−Ax)

}
, where f(x) : X → R

is a smooth convex function and its gradient is Lipschitz continuous with constant Lf , and
the remaining notations have the same meanings as before. For this problem, similar to the
previous case 2 in Section 2.3 we can develop the following iterative scheme xk+1 = argmin

x∈X
θ1(x) +

⟨
∇f(xk)−ATyk,x

⟩
+ 1

2

∥∥x− xk
∥∥2
rATA+Q

,

yk+1 = argmax
y∈Y

Φ(2xk+1 − xk,y)− 1
2r∥y − yk∥2,

Its global convergence and linear convergence rate can be also established by the above analysis.
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