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Real-world problems are often nonconvex and involve integer variables, representing vexing chal-

lenges to be tackled using state-of-the-art solvers. We introduce a mathematical identity-based refor-

mulation of a class of polynomial integer nonlinear optimization (PINLO) problems using a technique

that linearizes polynomial functions of separable and bounded integer variables of any degree. We

also introduce an alternative reformulation and conduct computational experiments to understand

their performance against leading commercial global optimization solvers. Computational experi-

ments reveal that our integer linear optimization (ILO) reformulations are computationally tractable

for solving large PINLO problems via Gurobi (up to 10,000 constraints and 20,000 variables). This

is much larger than current leading commercial global optimization solvers such as BARON, thereby

demonstrating its promise for use in real-world applications of integer linear optimization with a

polynomial objective function.
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1 Introduction

Integer optimization (IO) has seen widespread use in solving challenging decision problems due to its

expressivity and ability to characterize constrained decisions under an objective function to be optimized.

Advances in algorithmic development and computing over the past several decades have seen profound

increases in the potential of commercial optimization solvers [13]. Even so, many real world decision

problems with nonconvex functions represent vexing challenges to solve to global optimality, even with

state-of-the-art global optimization solvers.

We study a broad class of polynomial integer nonlinear optimization (PINLO) problems with contin-

uous variables in linear functional components:

maximize
∑p

k=1

∑nx

j=1 ckjx
k
j +

∑ny

ℓ=1 cℓyℓ

such that
∑nx

j=1 aijxj +
∑ny

ℓ=1 aiℓyℓ ≤ bi, i = 1, . . . ,m,

xj ∈ Xj = {xL
j ≤ xj ≤ xU

j , xj ∈ ZZ≥0}, j = 1, . . . , nx,

yℓ ∈ Yℓ = {yLℓ ≤ yℓ ≤ yUℓ , yℓ ∈ IR}, ℓ = 1, . . . , ny,

(PINLO)

where the objective function is a separable polynomial function, constraints are linear ∀ i = 1, . . . ,m, xL
j

and xU
j are lower and upper bounds of nonnegative integer xj ∀ j = 1, . . . , nx, and xk

j is the kth degree

polynomial of xj ∀ j = 1, . . . , nx, ∀ k = 1, . . . , p. When ny > 0, continuous variables appear in linear

expressions with lower and upper bounds of yLℓ and yUℓ ∀ ℓ = 1, . . . , ny, respectively. We will refer to

this specific class of (PINLO) formulation as PINLO throughout this study.
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Many real-world applications of nonlinear integer optimization feature a quadratic objective function

subject to a set of linear constraints, often called mixed-integer quadratic programming (MIQP), and

when there are no continuous variables, (pure) integer quadratic programming (IQP) [1, 41]. These

problems can be viewed as a generalization of (mixed-)integer linear optimization with a nonlinear

objective function [24]. Thus, (PINLO) formulation encompasses all integer linear optimization (ILO)

problems, including applications in scheduling, planning and network flows. PINLO appears (often in

quadratic form) in a variety of applications, such as quadratic knapsack problems [14–16, 46], two-

stage quadratic stochastic programs [51], multicommodity network flow problems [56], portfolio selection

[25, 30, 31, 64], heat transfer processes [52], and goal programming with quadratic deviation penalties

[47, 57].

Many exact methods for solving (PINLO) formulation have been proposed. Branching-based methods

include branch-and-bound (BB) [38, 39, 50, 58], branch-and-reduce [11, 53, 54, 59, 60], and αBB [3–6].

Methods that reformulate PINLO problems into ILO problems include the use of sets of binary variables

with a certain special structure, called special ordered sets of type 2 (SOS2) [9, 10], as well as piecewise

linear functions [8, 27, 34, 35, 40, 63].

Other exact algorithms include the use of concavity cutting planes [12, 17, 61], a hybrid method that

combines dynamic programming and branch-and-bound approaches to produce an algorithm for solving

separable discrete optimization [49], an algorithm to simplify nonseparable functions [36], a Lagrangian

decomposition technique [33], and expressing nonconvexity in the objective and constraint functions

as the sum of nonconvex univariate functions [21]. Moreover, [18, 22–24, 32] review multiple global

optimization approaches for the general nonconvex optimization problem.

This paper presents two reformulations of a class of PINLO problems with separable and bounded

integers and any degree of polynomial to ILO problems. We demonstrate how to exploit an algebraic

identity presented in Sect. 2.1 in our ILO reformulation that expresses values of polynomial integers as the

summation of cumulative weights. We also introduce an alternative reformulation that uses precomputed

weights to express polynomial values. We demonstrate the equivalence of (PINLO) formulation and the

proposed ILO reformulations. We subsequently conduct comparative computational experiments of

PINLO and ILO reformulations. The computational experiments reveal that the cumulative-weight ILO

outperforms precomputed-weight ILO in larger problem dimensions. Further, the cumulative-weight

ILO reformulation outperforms PINLO using the state-of-the-art commercial solvers BARON [55, 60]

and Gurobi [29].

The remainder of this paper is structured as follows. Sect. 2 presents theoretical concepts to linearize

the specific class of (PINLO) formulation. Sect. 3 presents computational experiments to compare our

approaches via leading commercial optimization solvers. Sect. 4 concludes our study.

2 Linearization of PINLO

We introduce a linearization of (PINLO) formulation using recurrence relations and the series identity of

positive integer powers of degree p. We first present the identity for our linearization in Sect. 2.1 which

can be derived from Faulhaber’s formula [37] as well as the binomial theorem. We next outline the steps

for PINLO-to-ILO linearization which expresses a polynomial of integer variables as the cumulative

summation of the derived formulations in Sect. 2.2. Lastly, for the comparative results, we present

another linearization of PINLO-to-ILO which expresses polynomial functions of integer variables as the

summation of products of precomputed weights and binary variables in Sect. 2.3.
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2.1 Derivation of The Finite Summation Identity

To find an expression of the pth power of any positive integer n, we explore the reformulation of polynomial

terms using the finite summation identity that equals np. One way to formulate np as a finite summation

of n summation terms is via the recursion of the finite summation of the pth power of the first n positive

integers. The finite summation identity of n2 is equal to the sum of the first n positive odd integers,

n2 =

n∑
i=1

(2i− 1),

which can be derived from this well-known identity,

n∑
i=1

i =
n(n+ 1)

2
.

In general, we can use Faulhaber’s formula [37] to express the sum of the pth power of the first n positive

integers in terms of the Bernoulli numbers, as follows:

n∑
i=1

ip =
1

p+ 1

p∑
k=0

(−1)k
(
p+ 1

k

)
Bkn

p−k+1, (1)

where Bk is the Bernoulli number1 with B1 = − 1
2 .

Another way, perhaps simpler, is to apply the binomial theorem to derive the finite summation of

np. For any integer i, the binomial theorem states that

(i+ 1)p+1 =

p+1∑
k=0

(
p+ 1

k

)
ik. (2)

By moving the last summand to the left hand side, this yields the following expression:

(i+ 1)p+1 − ip+1 =

p∑
k=0

(
p+ 1

k

)
ik. (3)

Substituting i = −1,−2, . . . ,−n to (3) and summing, the left-hand side telescopes to −(−n)p+1 and we

obtain

−(−n)p+1 =

p∑
k=0

(−1)k
(
p+ 1

k

)[
1k + · · ·+ nk

]
. (4)

Multiplying both sides of (4) by (−1)p, we obtain the following identity

np+1 =

p∑
k=0

(−1)p+k

(
p+ 1

k

) n∑
i=1

ik, (5)

which can be used to express the pth power of any positive integer n in term of the summation of n terms

as

np =

n∑
i=1

p−1∑
k=0

(−1)p+k−1

(
p

k

)
ik. (6)

1Bernoulli numbers [65] are a sequence of rational numbers of importance in number theory, with the first few Bernoulli
numbers being B0 = 1, B1 = − 1

2
, B2 = 1

6
, B4 = − 1

30
, . . .
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For example, n2 =
∑n

i=1(−1)i0+
∑n

i=1(2)i
1 =

∑n
i=1(2i− 1). We next apply (6) to linearize any positive

integer power of degree p.

2.2 PINLO-to-ILO Linearization via Cumulative Summation to Express Pow-

ers of Integer Variables

We introduce a linearization of polynomial nonlinear terms of bounded integers. We outline the refor-

mulation of the PINLO-to-ILO reformulation in three steps. The first step is to define binary variables

that collectively represent all integer variable values, and through constraints enforce the integer variable

values by summing over binary variables. The second step is to ensure that, depending on the value of

the integer variable, the appropriate binary variables are activated. The last step is the derivation of

appropriate weights that, when aggregated, are an equivalent representation of the variable values in the

respective polynomial expression.

First step of reformulation. We express the value of each nonnegative integer xj ∀ j = 1, . . . , nx

in (PINLO) formulation as the summation of binary variables xj,d where the index d ∈ [1, xU
j ] ⊂ ZZ≥0

represents the occurrence of the binary variables for xj . We define binary variables xj,d taking a value

of 1 if xj ≥ d for integer values d ≥ 1, respectively, and 0 otherwise. This means that if xj = k for some

positive integer k, then all k binary variables xj,1, . . . , xj,k are activated to 1 because xj ≥ k ≥ · · · ≥ 1.

Fig. 1 demonstrates the activation of xj,d when xj = 8. The activation is applied through constraint

sets (8) and (9) that we next define.

Figure 1: Illustrating activated xj,d in red when xj = 8.

Second step of reformulation. The integer decision variables xj are now represented as the sum of

xj,d, where

xj =

xU
j∑

d=1

xj,d. (7)

We use disjunctive constraints to ensure that the binary variables take appropriate values to represent

the integer variable values xj . That is, through the following two sets of inequalities, xj,d = 1 if and only

if xj ≥ d and 0 otherwise, for integer value 1 ≤ d ≤ xU
j :

xj − d ≤ Mj,dxj,d − 1 ∀ j = 1, . . . , nx, ∀ d = 1, . . . , xU
j , (8)

xj − d ≥ mj,d(1− xj,d) ∀ j = 1, . . . , nx, ∀ d = 1, . . . , xU
j . (9)

The value of each Mj,d is the upper bound of xj and the value of each mj,d is the lower bound of xj

minus the upper bound of xj . If xj ≥ d, xj,d must be one, otherwise constraint set (8) is violated. If

xj < d, xj,d must be zero, otherwise constraint set (9) is violated.
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Final step of reformulation. To enforce the polynomial value, we introduce special weights via the

identity (6) that states the equivalence of the pth power of a positive integer number np and the sum of

n positive integer numbers. Denote wj,d to be a weight value of xj,d ∀ d ∈ {1, . . . , xU
j } taking a value of

wj,d =

p−1∑
k=0

(−1)p+k−1

(
p

k

)
dk ∀ d ∈ {1, . . . , xU

j }, (10)

so that their cumulative sum of the product of wj,d and xj,d over d = 1, . . . , xU
j equals to xp

j . Equivalently,

we can view the weight wj,d as an increment of an additional unit increase of xp
j .

Through these three steps, our reformulation (ILO1) transfers the polynomial expression xp
j to an

equivalent linear expression:

xp
j =

xU
j∑

d=1

wj,dxj,d ∀ j = 1, . . . , nx. (ILO1)

Our (ILO1) reformulation offers a new way to represent nonlinear expressions, in particular polynomial

expressions, in a linear manner which can be implemented directly using any state-of-the-art ILO solver.

We demonstrate the equivalence of the PINLO and reformulated ILO objective functions in Proposition 1.

Proposition 1 For xj ∈ Xj, x
p
j =

∑xU
j

d=1 wj,dxj,d.

Proof. Without loss of generality, assume xj = v for an arbitrary v ∈ {1, . . . , xU
j } in the domain of

xj ∈ Xj :

xU
j∑

d=1

wj,dxj,d =

xU
j∑

d=1

(
p−1∑
k=0

(−1)p+k−1

(
p

k

)
dk

)
xj,d

=

p−1∑
k=0

(−1)p+k−1

(
p

k

)[
1k · xj,1 + · · ·+ (xU

j )
k · xj,xU

j

]
=

p−1∑
k=0

(−1)p+k−1

(
p

k

)[
xj,1 + · · ·+ vk · xj,v

]
, {by (8) and (9)}

=

p−1∑
k=0

(−1)p+k−1

(
p

k

)[
1 + · · ·+ vk

]
= vp, {by (6)}

as the choice of v was arbitrary, this completes the proof. ■

Proposition 1 implies the equivalence of the objective functions of (PINLO) formulation and (ILO1)

formulation, that is,

nx∑
j=1

ckjx
p
j =

nx∑
j=1

ckj

xU
j∑

d=1

wj,dxj,d.

2.3 PINLO-to-ILO Linearization via Precomputed Weights to Express Pow-

ers of Integer Variables

We compare (ILO1) with an alternative reformulation (ILO2) that linearizes polynomial terms using pre-

computed weights for the value of polynomial integers. The (ILO2) formulation is a conventional method

to convert integer polynomial optimization problems into 0–1 integer linear optimization problems [7].

We express the pth power of xj in (PINLO) formulation in terms of the summation of precomputed weights
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multiplied by binary variable xj,q ∀ q = 0, . . . , xU
j where xj,q = 1 if xj = q, and 0 otherwise. As a result,

we can express xp
j as

xp
j =

xU
j∑

q=0

qpxj,q, ∀ j = 1, . . . , nx. (ILO2)

To enforce (ILO2), we first ensure that exactly one binary variable is activated by adding the following

constraint

xU
j∑

q=0

xj,q = 1 ∀ j = 1, . . . , nx. (11)

Then, we impose the relationship between xj and the binary variables in which xj = q ∀ j = 1, . . . , nx

if xj,q = 1 by adding the following constraint

xj =

xU
j∑

q=0

qxj,q ∀ j = 1, . . . , nx. (12)

This reformulation is more succinct and potentially more straightforward than the (ILO1) refor-

mulation. We next present computational experiments that compare the performance of our (ILO1)

reformulation with (PINLO) formulation as well as the (ILO2) reformulation and its variants in Sect. 3.2.

3 Computational Experiments

We evaluate the performance of our (ILO1) reformulation by comparing with (PINLO) formulation and

(ILO2) reformulation using precomputed weights. All experiments were run on NEOS server [19, 20, 28]

using BARON 21.1.13 [55, 60] to solve PINLO and ILO. We also solve ILO via Gurobi Optimization 9.1

[29] and Python API with up to 64 GB memory, under Red Hat Enterprise Linux Server 7.3 with kernel

version 3.10.0-514.x86 64. Each instance (run) was run with time limit of 3 hours, MIP optimality gap

tolerance of 0, with absolute MIP optimality gap of 0, and thread count of 1.

3.1 Data Description

We perform a full factorial design to better understand model performance across solvers, by varying

the parameters listed in Table 1. The domain of the integer variables is [0, xU ], where the upper bound

xU ∈ {10, 100}. The degree of polynomial objective functions of integer variables in all instances is

chosen to be a reasonable degree in polynomial problems p ∈ {2, 3, 5}, though it is not prohibitive to

increase p to much larger values.

We select the values of model parameters in a similar manner as described in [26]. We set the density

of constraints to be 50%. Coefficients in the left-hand side of the constraints are drawn randomly from

a discrete uniform distribution [1, 30] and constants in the right-hand side of the constraints are drawn

randomly from a discrete uniform distribution [30, 30+
∑nx

j=1 aij ] for i = 1, . . . ,m. We set the number of

constraints m ∈ {25, 50, 75, 100, 150, 250, 500, 750, 1,000}. The total number of variables n is controlled

by the scale parameter for the problem size α ∈ {0.5, 2} in which n = αm.

We generate two classes of instances controlled by the ratio of the number of integer variables to

the total number of variables. Instances are pure integer when all variables are integers
(
nx

n = 1
)
and

are mixed integer when the number of integer variables (nx) is half of the total number of variables
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Table 1: Parameters used for generating problem instances.

Parameter Symbol Levels

Integer variable upper bound xU 10, 100
Polynomial degree p 2, 3, 5
Ratio of integer-to-total number of variables nx

n 0.5, 1
Density of objective coefficients ∆ 0.5, 1

Number of constraints m
25, 50, 75, 100, 150,
250, 500, 750, 1,000

Scale parameter for problem size α 0.5, 2

(
nx

n = 0.5
)
. More specifically, variables in mixed-integer instances consist of 50% integer variables, 25%

continuous variables with values between [0, 10], and 25% binary variables. We summarize the model size

of the three approaches in Table 2. When (PINLO) formulations contain n variables and m constraints,

the proposed (ILO1) formulations contain at most n(xU + 1) variables and m+ n(2xU + 1) constraints,

while the (ILO2) formulations contain at most n(xU + 2) variables and m+ 2n constraints.

Table 2: Comparison of model size generated by the three formulations PINLO, ILO1, and ILO2.

Model Size PINLO ILO1 ILO2

Continuous variables (yℓ) ny ny ny

Binary variables (xj) nb nb nb

Integer variables (xj) nx nx nx

Auxiliary 0-1 variables (xj,d) - nxx
U nx(x

U + 1)

Linear inequality constraints m m m
Total sum constraints - nx 2nx

Disjunctive constraints - 2nxx
U -

The objective function of every instance contains integer variables, each with degree up to p, as well

as continuous and binary variables if the instance is a mixed-integer problem. For example, an objective

function of pure integer instances contains up to n × p integer terms as each integer variable may have

degree up to p, whereas an objective function of mixed-integer instances contains n×p integer terms and
1
2n continuous and binary terms. The density of nonzero elements in the objective function is controlled

by a Bernoulli probability ∆ ∈ {0.5, 1}, where the values of the coefficients are drawn from a discrete

uniform distribution [0, 100]. The combination results in 432 runs in total, for which we create three

replicates and average over each run. We report the computational results in Sect. 3.2.

3.2 Computational Results and Discussion

We conduct four experiments to evaluate the performance of our reformulations. We first compare (ILO1)

versus (ILO2) via the Gurobi solver on large instances. As (ILO1) outperforms (ILO2) on larger instances,

we next compare (PINLO) solved via BARON versus (ILO1) solved via both BARON and Gurobi. We then

increase the size of the instances and evaluate (ILO1) via Gurobi on pure and mixed-integer problems,

to provide further insights into the computational performance of the (ILO1) reformulation. As (ILO2)

is an established method, we finally compare the performance of (ILO1) versus (ILO2) as well as two

recent extensions [43] via Gurobi, in particular reducing the number of binary variables logarithmically

[2, 42, 44, 45, 62], as well as adding incremental formulations to better balance the branch-and-bound

tree [66].

We first compare the computational performance of (ILO1) and (ILO2). We fix every parameter at
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their extreme values and vary the upper bound of integer variables xU ∈ {10, 100}, the problem types
nx

n ∈ {0.5, 1}, and the number of constraints m ∈ {1,000, 2,000, . . . , 10,000}, resulting in 40 instances.

The results of each instance is averaged over three replicates. Fig. 2 plots the results from smaller to

larger problem size. After a brief period where the computational performance of the two approaches

appear similar, it becomes clear that (ILO1) outperforms (ILO2) for larger problem instances. Moreover,

Fig. 2b shows that (ILO1) results in more optimal instances than (ILO2).

(a) Average runtimes. (b) Average MIP gaps.

Figure 2: Comparing the computational performance of (ILO1) and (ILO2) solved via Gurobi on problem
instances with up to 10,000 constraints and 20,000 variables.

As (ILO1) shows superior computational performance over (ILO2) on difficult instances, we now

compare the performance of solving (PINLO) formulation and (ILO1) formulation via BARON, as well

as (ILO1) formulation via Gurobi. First, we level the playing field of (PINLO) formulation and (ILO1)

formulation by comparing their results from BARON. Fig. 3 shows that (ILO1) outperforms (PINLO)

with respect to the average runtimes and MIP gaps over each run of (ILO1) (blue lines) as it results in

more runs with lower runtime and MIP gap than (PINLO) (red lines). When we solve ILO via Gurobi

(green lines), all runs find optimal solutions with 0% MIP gaps with a mean value of 14.6 seconds and

a maximum (mean) runtime of less than 900 seconds for all runs. Fig. 3c reveals that when comparing

(ILO1) solved via either BARON or Gurobi versus (PINLO) solved via BARON, that over 100 runs result

in notably faster computational performance (positive runtime difference) when comparing run-by-run

differences in runtime. Specifically, by considering only instances with average runtime difference of

(ILO1) and (PINLO) strictly greater or less than 1% of the 3-hour time limit (or 108 seconds), (ILO1)

solved via BARON outperforms PINLO in 130 runs, while (ILO1) solved via Gurobi outperforms (PINLO)

in 134 runs, and for no runs did (PINLO) outperform either (ILO1).

Our experiments show that the computational performance of solving (ILO1) via both BARON and

Gurobi is superior to solving (PINLO) via BARON and (ILO2) via Gurobi on hard instances. We now view

a broader picture of (ILO1) performance. We fix every parameter at their extreme values and increase

m up to 10,000, resulting in a maximum model size of 20,000 variables with α = 2. We first study the

computational performance across different densities of objective function coefficients by varying ∆ ∈
{0.05, 0.25, 0.5, 0.75, 1}. Fig. 4a shows that (ILO1) finds optimal solutions to all instances of both mixed-

integer (red line) and pure integer (blue line) types, with a maximum average runtime of 4,000 and 6,000

seconds, respectively, showing that (ILO1) reformulation is relatively insensitive to changes in objective

function coefficient densities. We also vary the number of constraints m in increments of 250, up to the

maximum size of 10,000 constraints, resulting in m ∈ {25, 50, 75, 100, 150, 250, 500, . . . , 9,750, 10,000}.
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(a) Average runtimes. (b) Average MIP gaps.

(c) Run-by-run comparison of the difference in runtime performance (in seconds) of (ILO1) over PINLO when
solving (ILO1) via BARON and Gurobi, where positive runtime difference indicates faster performance of (ILO1),
the run-by-run performance difference curves are plotted after sorting in ascending order, and the grey curve
depicts the baseline performance of (PINLO).

Figure 3: Comparative results of 432 runs each averaging over three replicates for PINLO solved via
BARON (red line) and (ILO1) solved via BARON (blue line) and via Gurobi (green line).
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Fig. 4b shows that (ILO1) finds optimal solutions to all instances of both mixed-integer (red line) and

pure integer (blue line) types, with a maximum average runtime of 6,000 and 7,400 seconds, respectively,

showing that (ILO1) is computationally tractable for solving large problems of size 10,000 constraints

and 20,000 variables.

(a) Varying ∆. (b) Varying m.

Figure 4: Computational performance of (ILO1) solved via Gurobi on problem instances with up to
10,000 constraints and 20,000 variables where red and blue curves represent mixed-integer and pure
integer instances, respectively.

In [43] the two improvements of (ILO2) are shown to generally outperform the conventional method,

thus we further compare the computational performance of (ILO1) and (ILO2) and its two variants includ-

ing reducing the number of binary variables logarithmically, as well as adding incremental formulations

to balance the branch-and-bound trees.

We conduct an experiment on small sized instances by varying parameters similar to Table 1, with

m ∈ {25, 100, 250, 500}. There are 192 combinations in total, each is replicated and run three times. We

average the runtime to compare the performance across the four methods. All instances are solved to

optimality. For each method, every run is ranked from smallest to largest problem size and the runtimes

plotted in Fig. 5a. Shown in Fig. 5a, the runtime of all methods are comparatively similar, and none of

the four methods appears to dominate another.

Finally, we conduct another experiment on large sized instances by setting xU to 100, nx

n to 0.5,

∆ to 0.25, and α to 2, then varying p ∈ {2, 3, 5} and m ∈ {1,000, 5,000, 10,000, 15,000}. There are 12

combinations of larger instances in total, each is replicated and run three times. We limit the runtime

to 3 hours. As a result, all instances are solved to optimality within the time limit, except the largest

instances with 15,000 constraints, where none of the four methods is able to solve to optimality. We report

average runtimes of optimal instances and average MIP gaps of suboptimal instances in the cumulative

distribution plot in Fig. 5b. The results of average runtimes and MIP gaps of each method are ranked

in ascending order. While the (ILO2) formulation with logarithmic approach (green line) appears to

performs well for some instances (e.g., runs 9 and 11), no method appears to dominate another overall,

as every method outperforms others for at least one instance. On larger sized instances (runs 7 through

12), outside of run 9 the (ILO1) formulation performs reasonably well and even outperforms the others

in terms of MIP gap for run 12, one of the largest instances with m = 15,000 and p = 5. These results

demonstrate that the (ILO1) formulation is both competitive and can sometimes outperform existing

methods in terms of competitive MIP gaps for the largest of instances.
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(a) m ∈ {25, 100, 250, 500}.

(b) m ∈ {1,000, 5,000, 10,000, 15,000}.

Figure 5: Comparison of (ILO1) and (ILO2) and its variants. (Top) Runtime performance of each method
on small sized instances. (Bottom) Cumulative distribution plot of each method on 12 larger instances.
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4 Concluding Remarks

We study polynomial integer nonlinear optimization (PINLO) problems featuring separable polynomial

integer objective functions and linear constraints, covering quadratic integer optimization problems and

related problem classes with separable polynomial expressions in the objective function. We theoretically

derive the finite summation identity motivated from [48] that is used to reformulate PINLO problems to

ILO problems via cumulative weighting. Our novel linearization advances linearization techniques for a

large class of separable integer nonlinear optimization problems, converting them to ILO problems that

we demonstrate are more computationally tractable.

Our computational experiments on synthetically generated test instances show that ILO outper-

forms PINLO when solved via BARON on the NEOS server. (ILO1) is even faster when solved via

Gurobi. Moreover, our reformulation is computationally tractable for solving large PINLO problems as

we demonstrate the use of (ILO1) to solve problems of size 10,000 constraints and 20,000 variables. Our

comparison of (ILO1) and (ILO2) and its enhanced variants [43] shows that (ILO1) is competitive with

state-of-the-art methods, and in particular at the largest levels of problem size tested.

We believe that the reformulation of a class of PINLO in this study will benefit other applications.

Future studies may investigate the performance of (ILO1) on instances with larger limits on runtime,

number of constraints, and polynomial degree. Also worthwhile to explore, is how to reformulate other

nonlinear functions in a similar manner exploiting additional algebraic identities, as well as applying our

reformulation to polynomial constraints of the same class.
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