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Abstract

Since stochastic approximation (SA) based algorithms are easy to implement and need less memory, they are very popular
in distributed stochastic optimization problems. Many works have focused on the consistency of the objective values and
the iterates returned by the SA based algorithms. It is of fundamental interest to know how to quantify the uncertainty
associated with SA solutions via the confidence regions of a prescribed level of significance for the true solution. In this paper,
we discuss the framework of constructing the asymptotic confidence regions of the optimal solution to distributed stochastic
optimization problem with a focus on the distributed stochastic gradient tracking method. To attain this goal, we first present
the asymptotic normality of Polyak-Ruppert averaged distributed stochastic gradient tracking method. We then estimate the
corresponding covariance matrix through online estimators. Finally, we provide a practical procedure to build the asymptotic
confidence regions for the optimal solution. Numerical tests are also conducted to show the efficiency of the proposed methods.

Key words: confidence regions, distributed stochastic optimization, plug-in method, batch-means method, stochastic
gradient tracking method

1 Introduction

This paper studies the following distributed stochastic
optimization (DSO) problem

min
x∈Rd

f(x) =

n∑
j=1

fj(x), (1)

over the undirected networks composed of n agents,
where fj(x) := E[gj(x; ζj)] is the local objective func-
tion of agent j, ζj is a random variable defined on a
probability space (Ω,F ,P), gj(x; ζj) is a measurable
function and E[·] denotes the expectation with respect
to probability P. In problem (1), each agent privately
holds the local objective function and can exchange in-
formation only with its immediate neighbors. The DSO
problem (1) has a wide range of applications, such as
large-scale machine learning [6,23,42] and sensor net-
works [36,3,11], which have been well studied in the
past decades [4,40,47].

Algorithms for the distributed optimization prob-
lem have been studied extensively in the literature,
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such as stochastic (sub)gradient descent method
[32,5,24,27,43,18,14], dual averaging method [44,15],
primal dual method [21,48], stochastic gradient push
method [25,2,35]. Recently, many distributed algo-
rithms based on the gradient tracking method have
been proposed: [26] introduces a distributed gradient
tracking (DGT) method for strong convex optimization
and obtains the linear convergence rate of iterates; [31]
extends DGT to the distributed stochastic gradient
tracking (DSGT) method and shows that the iterates
generated by each agent converge to a neighborhood
of the optimal solution in a linear rate; [46,33] propose
the AB/push-pull method which applies the gradient
tracking method to solve a strongly convex optimiza-
tion problem over a directed graph; [45] discusses the
convergence rate of several fundamental algorithmic
frameworks, where the stochastic gradient tracking has
been combined with variance reduction techniques.

While existing distributed optimization algorithms fo-
cus on estimating the optimal solution, less attention
has been paid to the statistical inference for the dis-
tributed optimization algorithms that update based on
random samples. In real-world applications, we are often
not just interested in obtaining the optimal solution esti-
mation, but also a measure of the statistical uncertainty
associated with the estimation. The statistical inference

Preprint submitted to Automatica 7 September 2023



can provide credibility and validity for the estimation in
some critical applications, such as recommender system
[1] and autonomous driving [37]. Recently, there are a se-
ries of works [10,51,20,8] that study the inferential prop-
erties of the stochastic optimization problem equipped
with SA based algorithms. Although these works have
achieved much progress in this field, all of them focus
on the single-machine scenario. In fact, data are usually
distributed on different devices in many real-world ap-
plications. It is necessary to equip distributed stochastic
optimization with inferential capabilities.

The aim of the paper is to investigate the problem of
statistical inference of the optimal solution of the DSO
problem (1) when SA based algorithm is implemented.
We provide computationally efficient methods to build
the asymptotic confidence regions of the optimal solu-
tions to the DSO problem (1) when DSGT [31] is em-
ployed. Indeed, the confidence regions of the DSO prob-
lem have been studied in [10,49]. [10] considers the case
that all the agents have the same objective function. As
the agents do not need to solve the problem collabora-
tively, a center may do the statistical inference by collect-
ing all information of agents. [49] uses Sign-Perturbed
Sums method to build the non-asymptotic confidence re-
gion for the optimal solution to the DSO problem. How-
ever, [49] is a region estimation method which is not
suitable for the case where the estimation of the optimal
solution is needed.

The statistical inference on the optimal solution of DSO
problem (1) includes two steps: (I) establish the asymp-
totic normality for the Polyak-Ruppert averaged [38,29]
DSGT and (II) estimate the corresponding covariance
matrix in the normal distribution through online esti-
mators. Research on asymptotic normality results for
the SA based algorithm can be traced to the works in
the 1950s [13,17]. In particular, [29] shows that the av-
eraged SA iterates is asymptotically normal with op-
timal covariance matrix and optimal convergence rate
for strongly convex stochastic optimization problem. For
DSO problem without constrains, [5] shows the asymp-
totic normality of the distributed stochastic gradient de-
scent (DSGD) algorithm under the condition that the
weight matrix is doubly stochastic; [24] relaxes the con-
dition on the weight matrix to doubly stochastic in mean
sense and establishes the asymptotic normality of the
DSGD; [21] focuses on the distributed primal-dual algo-
rithm and presents the asymptotic normality of the solu-
tions. For a DSO with constrains, [39] studies a nonlinear
least squares parameter estimation problem and demon-
strates the asymptotic normality of solutions when the
true parameter x∗ is the interior point of the constraint
set; [50] studies the stochastic distributed dual average
algorithm and shows the asymptotic normality of the it-
erates when the optimal solution is on the boundary of
the constraint set.

To construct an asymptotic confidence region, we need

further to construct consistent estimators of covariance
matrix in the limit normal distribution. An early work
[19] develops a covariance matrix estimator for SA based
algorithm by simulating multiple independent replica-
tions of iterations. Note that this method needs the his-
torical data, it may lose the advantage of stochastic ap-
proximation scheme in terms of data storage. More re-
cently, the seminal work [9] provides two online methods
’plug-in’ and ’batch-means’ to estimate the covariance
matrix when vanilla SGD is implemented on stochas-
tic optimization problems, and shows that the conver-
gence rates of these two methods are close to O( 1

k1/2
)

and O
(

1
k1/8

)
respectively. [20] extends the batch-means

method to the zeroth order stochastic gradient algorithm
on stochastic convex optimization problem and obtains
the similar convergence rate. [8] employs the plug-in
method to do the statistical inference of online decision
making and the convergence in probability of the plug-in
estimator has been established. To the best of our knowl-
edge, no one has discussed either the plug-in method or
the batch-means method for distributed stochastic op-
timization problems.

As far as we are concerned, the contribution of the paper
can be summarized as follows.

1. We establish the asymptotic normality of DSGT. We
show that the Polyak-Ruppert averaged DSGT con-
verges to a normality distribution for each agent. The
key issue for showing the asymptotic normality of
Polyak-Ruppert averaged DSGT is the convergence
rate of the iterates of DSGT. By analyzing the intrin-
sic structure of the accumulated stochastic gradient
noise during the step of gradient tracking, we show
the stability and agreement of iterates through an ex-
tended version of technical result [5, Lemma 3] and
then the convergence rate of DSGT. Compared with
the convergence rate of DSGT in [31], the new result
does not need the boundedness of the variance of lo-
cal stochastic gradient. Then we present the asymp-
totic normality of Polyak-Ruppert averaged DSGT by
employing the technical tool in [16, Proposition 2],
where the asymptotic normality of stochastic dual av-
eraging method has been studied. Different from the
asymptotic normality results on DSO problem men-
tioned above [5,24,21,39,50], the asymptotic normal-
ity of Polyak-Ruppert averaged DSGT is based on
global stochastic gradient tracker rather than the lo-
cal stochastic gradient.

2. We present two estimators for the covariance matrix
in the limit normal distribution. We extend the plug-
in and batch-means methods in [9] to DSGT. For the
plug-in method, each agent updates their local esti-
mator by aggregating neighbors’ estimator and then
plugs the local stochastic gradient product and the
second-order derivative in the aggregator at each iter-
ation. The distributed plug-in method does not rely on
the gradient tracker, which means it is also suitable for
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the distributed stochastic algorithms based on local
stochastic gradient. For the batch-means method, al-
though the generalization of the batch means method
from SGD to DSGT is straightforward, the proof of
its consistency is not straightforward at all, where the
tough job is to study the convergence rate of the fourth
moment of the iterations and the agreement errors.
As far as we know, the extended methods are the first
online methods for estimating the covariance matrix
for DSO problem.

3. We construct the asymptotic confidence region of the
optimal solution of the DSO problem based on the
asymptotic normality of DSGT and the two estima-
tors of covariance matrix. Through numerical experi-
ments on ridge regression problem, we conclude that
plug-in method needs more information and returns
a better estimator of the covariance matrix, batch-
means method does not need to communicate with
neighbor and returns a relatively rough estimator of
covariance matrix.

The rest of this paper is organized as follows. Section
2 presents notation and preliminary conditions on DSO
problem. Section 3 studies the convergence rate of it-
erates and then establishes the asymptotic normality
of Polyak-Ruppert averaged DSGT. Section 4 extends
plug-in and batch-means methods for vanilla SGD to dis-
tributed stochastic gradient tracking method. Numeri-
cal results are presented in Section 5 to illustrate the
performance of the proposed methods.

2 Notation and preliminary conditions

In this section, we introduce notation and preliminary
conditions on stochastic distributed optimizations. Rd

denotes the d-dimension Euclidean space endowed with
norm ‖x‖ =

√
〈x, x〉. Denote 1 := (1 1 . . . 1)ᵀ ∈ Rn,

0 = (0 0 . . . 0)ᵀ ∈ Rd. Id ∈ Rd×d denotes the identity
matrix. A⊗B denotes the Kronecker product of matrix
A and B. For a sequence of random vectors {µk} and

a random vector µ, µk
d→ µ denotes the convergence

in distribution, Cov(µ) denotes the covariance matrix
of random vector µ. N (z,Σ) is the normal distribution
with mean z and covariance matrix Σ. For any sequences
{ak} and {bk} of positive numbers, ak = O(bk) if there
exists c > 0 such that ak ≤ cbk and ak � bk if ak = O(bk)
and bk = O(ak). For any sequences {wk} and {zk} of
random variables, wk = Op(zk) if for any ε > 0 there
exists c > 0 such that P(|wk/zk| > c) < ε for all k ≥ 0.

For the distributed optimization problem, the communi-
cation relationship between agents is characterized by a
graph, G = (V, E), where V = {1, 2, ..., n} is the node set
with node i ∈ V representing agent i and E ⊆ V ×V de-
notes the edge set connecting nodes. G is an undirected
graph if (i, j) ∈ E implies that (j, i) ∈ E . GA = (V, EA)
denotes the graph induced by the nonnegative matrix

A = [aij ] ∈ Rn×n, where V = {1, 2, ..., n} and (j, i) ∈ EA
if and only if aij > 0. Each agent i is able to call a
stochastic first-order oracle, which can return a noisy
gradient sample of the form ∇gi(x, ζi) for the input x.

Next, we recall the distributed stochastic gradient track-
ing method [31] in Algorithm 1.

Algorithm 1 distributed stochastic gradient tracking
method: At each node i ∈ V = {1, 2, ..., n}
Require: initial value xi,0 ∈ Rd, yi,0 = ∇gi(xi,0; ζi,0),
weight matrices A = [aij ], stepsize αk > 0.
1: For k = 1, 2, · · · do
2: State update:

xi,k+1 =

n∑
j=1

aijxj,k − αkyi,k. (2)

3: Gradient tracking update:

yi,k+1 =

n∑
j=1

aijyj,k +∇gi(xi,k+1; ζi,k+1)−∇gi(xi,k; ζi,k),

where ζi, ζi,0, ζi,1, · · · are independently and identi-
cally distributed.

4: end for

DSGT is a stochastic gradient variant of distributed
gradient tracking method [26]. Different from the dis-
tributed stochastic gradient descent method, Step
2 updates the iterates by tracker yi,k rather than
∇gi(xi,k; ζi,k).

Throughout our analysis in the paper, we make the
following assumptions. For ease of the explanation of
the assumptions, we define the stochastic gradient noise
εi,k := ∇gi(xi,k; ζi,k) − ∇fi(xi,k), and the filtration
F0 = σ{xi,0, i ∈ V},

Fk = σ{xi,0, εi,t : i ∈ V, 0 ≤ t ≤ k − 1}, k > 0.

Obviously, xi,k and yi,k−1 are adapted to Fk.

Assumption 1 (Objective function)(i) f(x) is µ-
strongly convex (µ > 0) in x, that is,

f(y) ≥ f(x)+〈∇f(x), y−x〉+µ

2
‖x−y‖2, ∀x, y ∈ Rd.

(ii) ∇2f(x∗) is positive definite and there exists c > 0
such that

‖∇f(x)−∇2f(x∗) (x− x∗) ‖ ≤ c‖x−x∗‖2, ∀x ∈ Rd,
(3)

where x∗ is the optimal solution to problem (1).

Assumption 2 (Stochastic gradient) For ∀i ∈ V,
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(i) there exists a positive random variable Li(ζi) such
that

‖∇gi(x; ζi)−∇gi(y; ζi)‖ ≤ Li(ζi)‖x−y‖, ∀x, y ∈ Rd;

(ii) there exist constants p ≥ 2 and cf > 0 such that
E [Lpi (ζi)] <∞ and

E [‖∇gi(x∗; ζi)‖p] ≤ cp/2f . (4)

Assumption 3 (Weight matrices and networks)(i)
Nonnegative weight matrix A is doubly stochastic,
i.e., A1 = 1 and 1ᵀA = 1ᵀ. In addition, aii > 0 for
some i ∈ V.

(ii) The graph GA corresponding to the network of agents
is undirected and connected.

Remark 1. Assumption 1 (i) guarantees the uniqueness
of the optimal solution of DSO problem (1). Assumption
1 (ii) is the standard condition for studying the asymp-
totic normality of stochastic approximation based algo-
rithms [9,29]. A sufficient condition for the positive defi-
niteness of the second-order derivative is the strong con-
vexity of the objective function, which has been well used
to study the convergence rate of DSGT [31,45]. More-
over, (3) holds if ∇f(x) is globally Lipschitz continuous
in x.

Assumption 2 implies the Lipschitz continuity of∇fi(·),
i.e.,

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖,

where L = max1≤i≤n
p
√

E[Lpi (ζi)]. From the perspective
of the variance of the stochastic gradient, Assumption 2
implies that

E
[
‖∇gi(x; ζi)−∇fi(x)‖2

]
≤ cε

(
1 + ‖x− x∗‖2

)
,
(5)

where cε is some constant. Obviously, the variance of the
stochastic gradient may be unbounded as it is related to
x. We need the case p > 2 in Assumption 2 (ii) for estab-
lishing the asymptotic normality of Polyak-Ruppert av-
eraged DSGT and p = 4 for estimating the convergence
rate of estimator of covariance matrix.

Assumption 3 implies that
(
1
n11ᵀ

)
A = A

(
1
n11ᵀ

)
=

1
n11ᵀ and the spectral norm ρ of the matrix A− 1

n11ᵀ

satisfies ρ < 1 [22, Lemma 4].

For ease of catching up with the proof of the main results
of paper, we introduce the notations used in the following

sections. Denote

xk :=
[
xᵀ1,k, x

ᵀ
2,k, · · · , x

ᵀ
n,k

]ᵀ
,

yk :=
[
yᵀ1,k, y

ᵀ
2,k, · · · , y

ᵀ
n,k

]ᵀ
,

εk :=
[
εᵀ1,k, ε

ᵀ
2,k, · · · , ε

ᵀ
n,k

]ᵀ
,

εi,k := ∇gi(xi,k; ζi,k)−∇fi(xi,k),

∇Fk := [∇f1 (x1,k)
ᵀ
,∇f2 (x2,k)

ᵀ
, · · · ,∇fn (xn,k)

ᵀ
]
ᵀ
,

∇Gk := [∇g1(x1,k; ζ1,k)ᵀ,∇g2(x2,k; ζ2,k)ᵀ, · · · ,
∇gn(xn,k; ζn,k)ᵀ]

ᵀ
,

x̄k :=

(
1ᵀ

n
⊗ Id

)
xk, ȳk :=

(
1ᵀ

n
⊗ Id

)
yk,

(6)
where xk, yk, ∇Fk, ∇Gk and εk are formed by stacking
all agents’ iterate, gradient tracker, accurate gradient,
stochastic gradient and its noise, x̄k, ȳk are the average
of all agents’ iterates and gradient tracker.

Following the notations in (6), Algorithm 1 can be com-
pactly rewritten as

xk+1 = Ãxk − αkyk, yk+1 = Ãyk +∇Gk+1 −∇Gk,
(7)

where Ã := A⊗ Id. Throughout this paper, we set step-
size αk = a/(k + b)α with α ∈ (1/2, 1), a, b > 0 and
a
bα ≤

2
(µ/n)+L0

, where L0 = max1≤i≤n E[Li(ζi)]. More-

over, by (7) and the double stochasticity of A,

x̄k+1 = x̄k − αkȳk, (8)

ȳk+1 =
1

n

n∑
j=1

∇gj(xj,k+1; ζj,k+1). (9)

3 The asymptotic normality of DSGT

The asymptotic normality of stochastic approximation
based algorithms can be traced to the works of [13,17].
Recently, the asymptotic normality of the distributed
stochastic algorithms based on local stochastic gradient
have been studied in [5,24,21,39,50]. In this section, we
focus on the asymptotic normality of Polyak-Ruppert
averaged DSGT. We need to study the agreement and
convergence rate of DSGT first. Indeed, the agreement
and the convergence rate of DSGT have been discussed
in [31]. By setting stepsize αk = a/(k + b) (a and b are
some positive constants) and that the variance of the
stochastic gradient is bounded, [31] shows that the de-
cay rates of agreement error and optimality gap in the
second-order moment sense are O(1/k2) and O(1/k) re-
spectively. Here, we focus on the case where the variance
of the stochastic gradient may be unbounded.

The following lemma is a generalization of [5, Lemma 3]
which serves as a technical tool for studying the stabil-
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ity and agreement of the distributed stochastic gradient
descent algorithm.

Lemma 1 Suppose that positive sequences {γk}, {ρk},
{φk} satisfy

(i) {γk}, {ρk} are [0, 1]-valued sequences such that∑∞
k=0 γ

2
k <∞, lim supk→∞

γk
γk+1

= 1.

(ii)

lim sup
k→∞

(
γk
√
φk +

φk−1

φk

)
<∞,

∞∑
k=0

φ−1
k <∞,

lim inf
k→∞

(
γk
√
φk

)−1
(
φk−1

φk
− ρk

)
> 0.

(10)

If sequences {uk}, {vk} satisfy that

uk+1 ≤ ρkuk +Mγk
√
uk(1 + uk + vk)

+Mγ2k

(
1 +

k∑
t=k0

ρk−tut +

k∑
t=k0

ρk−tvt

)
, (11)

vk+1 ≤ vk +Muk +Mγk
√
uk(1 + uk + vk)

+Mγ2k

(
1 +

k∑
t=k0

ρk−tut +

k∑
t=k0

ρk−tvt

)
, (12)

for k ≥ k0, where scalars M > 0, 1 > ρ > 0 and integer
k0 ≥ 1, then

sup
k
vk <∞, lim sup

k→∞
φkuk <∞.

Different from the distributed stochastic gradient de-
scent algorithm in [5], DSGT updates the k-th state
xi,k based on the tracker yi,k. Since yi,k is related to
all the past stochastic gradients, the last terms on

the right hand side of (11)-(12) are
∑k
t=k0

ρk−tut and∑k
t=k0

ρk−tvt rather than uk and vk in [5, Lemma 3].

The following lemma presents the stability and agree-
ment of DSGT.

Lemma 2 Suppose that Assumptions 1, 2 (with p =
2, 4) and 3 hold. Then there exists positive constant c̄
such that

sup
k

E [‖x̄k − x∗‖p] ≤ c̄, E [‖xk − 1⊗ x̄k‖p] ≤ c̄α2
k.

(13)

Proof. See Supplementary Materials Section B for the
detailed proof. 2

Next, we study the convergence rate of the optimal gap
‖x̄k − x∗‖.

Theorem 3 (Convergence rate of DSGT) Suppose
that Assumptions 1, 2 (with p=2, 4) and 3 hold. Then
there exists constant c such that

E [‖x̄k − x∗‖p] ≤ cαp/2k .

Proof. Recall inequality (B.3)

4E
[
‖x̄k − x∗ − αk/n∇f(x̄k)‖2×
〈x̄k − x∗ − αk/n∇f(x̄k), αk (ȳk − 1/n∇f(x̄k))〉

]
≤ 4E

[ ∥∥∥x̄k − x∗ − αk
n
∇f(x̄k)

∥∥∥3×∥∥∥∥∥∥αk
 1

n

n∑
j=1

∇fj(xj,k)− 1

n
∇f(x̄k)

∥∥∥∥∥∥
]

(14)
in Supplementary Materials Section B. By (14) and
Young’s inequality,

4E
[
‖x̄k − x∗ − αk/n∇f(x̄k)‖2×

〈x̄k − x∗ − αk/n∇f(x̄k), αk (ȳk − 1/n∇f(x̄k))〉]

≤ 3τE

[∥∥∥x̄k − x∗ − αk
n
∇f(x̄k)

∥∥∥4]

+ τ−3E


∥∥∥∥∥∥αk

 1

n

n∑
j=1

∇fj(xj,k)− 1

n
∇f(x̄k)

∥∥∥∥∥∥
4
 .
(15)

Substitute (15) into inequality (B.2) in Supplementary
Materials Section B,

E
[
‖x̄k+1 − x∗‖4

]
≤ (1 + 7τ)

(
1− µ

n
αk

)4
E
[
‖x̄k − x∗‖4

]
+

(
3 +

4

τ

)
E
[
‖αk (ȳk − 1/n∇f(x̄k))‖4

]

+ τ−3E


∥∥∥∥∥∥αk

 1

n

n∑
j=1

∇fj(xj,k)− 1

n
∇f(x̄k)

∥∥∥∥∥∥
4


≤ (1 + 7τ)
(

1− µ

n
αk

)4
E
[
‖x̄k − x∗‖4

]
+ 27

(
3 +

4

τ

)
α4
k

(
L4

n
E
[
‖xk − 1⊗ x̄k‖4

]
+2L4E

[
‖x̄k − x∗‖4

]
+ c2f

)
+
τ−3α4

kL
4

n
E
[
‖xk − 1⊗ x̄k)‖4

]
≤ (1 + 7τ)

(
1− µ

n
αk

)4
E
[
‖x̄k − x∗‖4

]
+
τ−3α4

kL
4

n
c̄α2

k

+ 27

(
3 +

4

τ

)
α4
k

(
L4

n
c̄α2

k + 2L4c̄+ c2f

)
,
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where cf and c̄ are defined in Assumption 2 and Lemma
2 respectively, the first inequality follows from the fact∥∥x− x∗ − 1

nαk∇f(x)
∥∥ ≤ (

1− µ
nαk

)
‖x − x∗‖ by [34,

Lemma 10], the second inequality follows from inequal-
ity (B.5) in Supplementary Materials Section B and the
Lipschitz continuity of ∇fi(·), the third inequality fol-
lows from Lemma 2. Let τ = µ

7nαk, we have

E
[
‖x̄k+1 − x∗‖4

]
≤
(

1− µ

n
αk

)
E
[
‖x̄k − x∗‖4

]
+O(α3

k).

By [28, Lemma 5, page 46], there exists constant c such

that E
[
‖x̄k − x∗‖4

]
≤ cα2

k. The proof is complete. 2

Theorem 3 establishes the convergence rate of DSGT
with p = 2, 4 where the variance of the stochastic gradi-
ent may be unbounded, which plays a key role in show-
ing the asymptotic normality of DSGT and estimating
the asymptotic covariance matrix [9,51]. When the vari-
ance of the stochastic gradient is bounded, the conver-
gence rate of DSGT with p = 2 has been established in
[33, Theorem 2]. As shown in (5), the variance of the
stochastic gradient is related to iterates of DSGT, which
induces difficulty in showing the stability and agreement
of DSGT. We have to provide a tighter upper bound
for the stochastic noise accumulated during the gradient
tracking step. Then, we may employ Lemma 1 to show
the stability and agreement of DSGT, which plays a key
role in establishing the convergence rate of DSGT.

With the convergence rate of iterates of DSGT in Theo-
rem 3, we are ready to present the asymptotic normality
of DSGT.

Theorem 4 (Asymptotic normality of DSGT)
Suppose that Assumptions 1, 2 (with p>2) and 3 hold.
Then, for any i ∈ V,

1√
k

k−1∑
t=0

(xi,t − x∗)
d−→ N

(
0,H−1SH−1

)
, (16)

whereH := ∇2f(x∗) and S := Cov
(∑n

j=1∇gj(x∗; ζj)
)
.

Proof. By Lemma 2,

E

[∥∥∥∥∥ 1√
k

k−1∑
t=0

(x̄t − x∗)−
1√
k

k−1∑
t=0

(xi,t − x∗)

∥∥∥∥∥
]

≤ 1√
k

k−1∑
t=0

√
E [‖xt − 1⊗ x̄t‖2] ≤

√
c̄√
k

k−1∑
t=0

αt → 0.

Then Slutsky’s theorem [12, Theorem 1 in Chapter 8.1]
implies (16) if

1√
k

k−1∑
t=0

(x̄t − x∗)
d→ N

(
0,H−1SH−1

)
(17)

holds. In what follows, we show (17) by Lemma C.2 in
Supplementary Materials Section C.

Firstly, we rewrite the recursion x̄k − x∗ in the form of
(C.2) in Lemma C.2. By (8) and (9),

x̄k+1 − x∗

=

(
Id − αk

1

n
∇2f(x∗)

)
(x̄k − x∗)

− αk

(
1

n
∇f(x̄k)− 1

n
∇2f(x∗) (x̄k − x∗)

)
− αk

(
1

n

n∑
j=1

∇gj(x̄k; ζj,k)− 1

n
∇f(x̄k)

)

− αk

(
1

n

n∑
j=1

∇gj(xj,k; ζj,k)− 1

n

n∑
j=1

∇gj(x̄k; ζj,k)

)
.

(18)
Denote

∆k = x̄k − x∗, G =
1

n
∇2f(x∗), γk = αk,

µk = − 1

n

n∑
j=1

∇gj(x̄k; ζj,k) +
1

n
∇f(x̄k)

(19)

and

ηk = −
(

1

n
∇f(x̄k)− 1

n
∇2f(x∗) (x̄k − x∗)

)
−

(
1

n

n∑
j=1

∇gj(xj,k; ζj,k)− 1

n

n∑
j=1

∇gj(x̄k; ζj,k)

)
.

(20)

The linear recursion (18) can be rewritten as

∆k+1 = (Id − γkG) ∆k + γk (ηk + µk) , (21)

which is in the form of (C.2) in Lemma C.2.

Next, we verify the conditions (i)-(v) of Lemma C.2.
According to the definition αk and the strong convexity
of f(·), conditions (i), (ii) of Lemma C.2 hold obviously.
Denote

µ
(0)
k := − 1

n

n∑
j=1

∇gj(x∗; ζj,k),

µ
(1)
k := − 1

n

n∑
j=1

∇gj(x̄k; ζj,k) +
1

n
∇f(x̄k) +

1

n

n∑
j=1

∇gj(x∗; ζj,k).

Then the martingale difference sequence µk can be

decomposed into µk = µ
(0)
k + µ

(1)
k , where

{
µ
(0)
k

}
and
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{
µ
(1)
k

}
are all martingale difference sequences. More-

over, by Assumption 2, there exists constant c such that

E

[∥∥∥µ(0)
k

∥∥∥2 |Fk] ≤ c, E

[∥∥∥µ(1)
k

∥∥∥2 |Fk] ≤ c‖∆k‖2.

Recall Lemma C.3 in Supplementary Materials Section
C,

1√
k

k−1∑
t=0

µ
(0)
t

d→ N

(
0,

1

n2
S

)
.

Then condition (iii) of Lemma C.2 holds.

By Assumption 1 (ii) and the Lipscitz continuity of
∇gj(·, ζj),

E [‖ηk‖] ≤
1

n
E
[
‖x̄k − x∗‖2

]
+
L√
n

E [‖xk − 1⊗ x̄k‖] = O(αk).

Then
∑∞
t=0

E[‖ηk‖]√
t+1

< ∞. Monotone convergence theo-

rem implies
∑∞
t=0

‖ηk‖√
t+1

< ∞. Subsequently, Kronecker

lemma [7, Chapter 2.7] implies condition (iv) of Lemma
C.2.

By Lemma C.4 in Supplementary Materials Section C,
∆k → 0 almost surely. Theorem 3 and monotone con-
vergence theorem imply

∞∑
t=0

‖x̄t − x∗‖2√
t+ 1

<∞

almost surely. Then, Kronecker lemma induces the con-
dition (v) of Lemma C.2.

Summarize above, all the conditions of Lemma C.2 hold.
Then

1√
k

k−1∑
t=0

(x̄t − x∗)
d−→ N

(
0,H−1SH−1

)
.

The proof is complete. 2

Theorem 4 shows that the error between the Polyak-

Ruppert average 1
k

∑k−1
t=0 xi,t and the optimal solution

x∗, normalized by the square root of the iteration
counter, converges to a normal random vector in distri-
bution. Indeed, the asymptotic normality of SA based
algorithms can be traced back to the 1950s [13,17].
More recently, the asymptotic normality of distributed
stochastic optimization algorithms has been well stud-
ied, such as stochastic gradient descent [5], dual av-
eraging [50], and primal-dual [21]. As far as we know,
Theorem 4 is the first asymptotic normality theorem for

the gradient-tracking based algorithm, which paves the
way to construct the confidence regions of the optimal
solution of the problem (1). Moreover, the asymptotic
normality of the constant stepsize DSGT and other
(stochastic) gradient tracking algorithms is an interest-
ing topic. We leave it for future research.

4 Online estimation of asymptotic covariance
matrix

Statistical inference is a core topic in statistics, and
confidence regions have been widely used to quantify
the uncertainty in the estimation of model parameters.
The asymptotic normality of Polyak-Ruppert averaged
DSGT is the first step in building the confidence regions
of the optimal solution to the DSO problem. Next, we
present estimators of the asymptotic covariance matrix
for building the asymptotic confidence regions. Recently,
Chen et al. [9] propose two consistent estimators of the
asymptotic covariance matrix of Polyak-Ruppert aver-
aged SGD, namely, the plug-in estimator and the batch-
means estimator. As for distributed optimization, each
agent can access to local information only, we need to
extend the plug-in and batch-means methods in [9] to
the DSO problem.

4.1 Plug-in method

The idea of the plug-in estimator is to separately esti-
mate S and H in (16) by some Ŝ and Ĥ and then use

Ĥ−1ŜĤ−1 as an estimator of H−1SH−1. For the DSO
problem, since each agent is unable to collect global
information

∑n
j=1∇gj(xj,k; ζj,k), the plug-in method

cannot be used directly. An intuitive way is to replace
the global information

∑n
j=1∇gj(xj,k; ζj,k) with its

tracker yi,k. Unfortunately, yi,k does not converge to
1
n

∑n
j=1∇gj(xj,k; ζj,k) [31, Corollary 2]. This motivates

us to focus on the case that the covariance matrix

Cov
(∑n

j=1∇gj(x∗; ζj)
)

has the separable structure,

that is,

Cov

 n∑
j=1

∇gj(x∗; ζj)

 =

n∑
j=1

Cov (∇gj(x∗; ζj)) . (22)

Condition (22) ensures that agent i may provide an es-
timation of Cov (∇gi(x∗; ζi)) by local information and
then shares the estimation among neighbors through
communication, which means we may track the covari-
ance matrix. The sufficient condition for (22) is that
the ζi and ζj are uncorrelated for any different agents
i and j. Indeed, uncorrelation of random variables
of different agents is the standard assumption in dis-
tributed stochastic optimization problems, for example,
distributed robust estimation problem [36], distributed
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maximum likelihood estimation problem [41] and dis-
tributed machine learning problem [10], where the sam-
ples or observations of different agents are independent.
In this subsection, we assume that (22) holds. Then we
may provide a distributed variant of plug-in method for
DSO problem, which reads as follows.

For i ∈ V, set Hi,0 and Si,0 as zero matrices and update

Si,k

=
k − 1

k

n∑
j=1

aijSj,k−1

+
n

k

∇gi,k (∇gi,k −∇‘gi,k−1)ᵀ + (∇gi,k −∇gi,k−1)∇gᵀi,k
2

,

(23)

Hi,k =
k − 1

k

n∑
j=1

aijHj,k−1 +
n

k
∇2gi,k, (24)

where∇gi,k := ∇gi(xi,k; ζi,k),∇2gi,k := ∇2gi(xi,k; ζi,k),
Si,k and Hi,k are the estimators of S and H respectively.

Note that the estimator Hi,k relies on the Hessian matrix
of the loss function, we need the stability of the second
order derivative of the objective function.

Assumption 4 [9] For any i ∈ V, there exists positive
scalars L1 and L2 such that

E
[∥∥∇2gi(x; ζi)−∇2gi(x

∗; ζi)
∥∥] ≤ L1‖x− x∗‖,

E[
∥∥∇2gi(x

∗; ζi)
∥∥2] ≤ L2.

Theorem 5 Suppose that Assumptions 1, 2 (with p =
4), 3 and 4 hold. Then, for any i ∈ V,

E [‖Si,k − S‖] = O
(

1

kα/2

)
(25)

and

E [‖Hi,k −H‖] = O
(

1

kα/2

)
, (26)

where α ∈ (1/2, 1).

Proof. We just study (25) as the proof of (26) is similar.

For any i ∈ V, let Ci,0 be the zero matrix and

Ci,k =
k − 1

k

n∑
j=1

aijCj,k−1+
1

k
n∇gi,k (∇gi,k −∇gi,k−1)

ᵀ
.

(27)

By the definition of Si,k in (23), Si,k =
Ci,k+Cᵀ

i,k

2 . Then
by the triangle inequality,

‖Si,k − S‖ ≤ ‖Ci,k − C̄k‖+ ‖C̄k −Λk‖+ ‖Λk − S‖,

where

C̄k :=

n∑
j=1

1

n
Cj,k, ∇g∗j,t := ∇gj(x∗, ζj,t),

Λk :=
1

k

k∑
t=1

n∑
j=1

∇g∗j,t
(
∇g∗j,t −∇g∗j,t−1

)ᵀ
.

(28)

We may finish the proof by studying the conver-
gence rate of E

[∥∥Ci,k − C̄k

∥∥], E
[∥∥C̄k −Λk

∥∥] and
E [‖Λk − S‖] respectively.

Step 1: The convergence rate of E
[∥∥Ci,k − C̄k

∥∥]. De-
note

Ck :=
[
Cᵀ

1,k,C
ᵀ
2,k, · · · ,C

ᵀ
n,k

]ᵀ
,

(27) can be rewritten compactly as

Ck =
k − 1

k
ÃCk−1 +

n

k + 1
Wk, (29)

where

Wk = n
[
(∇g1,k −∇g1,k−1)∇gᵀ1,k, (∇g2,k −∇g2,k−1)∇gᵀ2,k,

· · · , (∇gn,k −∇gn,k−1)∇gᵀn,k
]ᵀ
.

Note that ‖D‖ ≤ ‖D‖F ≤
√
d‖D‖ for ∀D ∈ Rnd×d,

it is sufficient to study the convergence rate of
E
[∥∥Ck − 1⊗ C̄k

∥∥
F

]
.

By the recursion (29) of Ck and the definition of C̄k,

E
[∥∥Ck − 1⊗ C̄k

∥∥
F

]
= E

[∥∥∥∥k − 1

k
ÃCk−1 +

1

k
Wk

−
(

11ᵀ

n
⊗ Id

)(
k − 1

k
ÃCk−1 +

1

k
Wk

)∥∥∥∥
F

]
= E

[∥∥∥∥k − 1

k

(
Ã− 11ᵀ

n
⊗ Id

)(
Ck−1 − 1⊗ C̄k−1

)
+

1

k

(
In×d −

11ᵀ

n
⊗ Id

)
Wk

∥∥∥∥
F

]
≤ k − 1

k

∥∥∥∥Ã− 11ᵀ

n
⊗ Id

∥∥∥∥E
[∥∥Ck−1 − 1⊗ C̄k−1

∥∥
F

]
+

1

k

∥∥∥∥In×d − 11ᵀ

n
⊗ Id

∥∥∥∥E [‖Wk‖F ]

≤ k − 1

k
ρE
[∥∥Ck−1 − 1⊗ C̄k−1

∥∥
F

]
+

1

k

∥∥∥∥In×d − 11ᵀ

n
⊗ Id

∥∥∥∥E [‖Wk‖F ] ,

(30)
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where ρ is the spectral norm of matrix A− 11ᵀ

n and the
first inequality follows from ‖CD‖F ≤ ‖C‖‖D‖F . By
the definition of Wk right after (29),

E [‖Wk‖F ] = E

√√√√ n∑
j=1

‖n∇gj,k(∇gj,k −∇gj,k−1)ᵀ‖2F


≤ 2n2

√
d sup
j∈V,k≥0

E
[
‖∇gj,k‖2

]
.

(31)
Denote

cg := sup
j∈V,k≥0

E
[
‖∇gj,k‖2

]
. (32)

By the Lipschitz continuity of ∇gj(·; ζj),

cg ≤ 2 sup
j∈V,k≥0

(
E
[
L2 ‖xj,k − x∗‖2 + ‖∇gj(x∗, ζj,k)‖2

])
<∞,

where the last inequality follows from Lemma 2 and The-
orem 3. Substitute cg into (31), E [‖Wk‖F ] ≤ 2n2

√
dcg.

Therefore, (30) implies the following inequality recur-
sively,

E
[∥∥Ck − 1⊗ C̄k

∥∥
F

]
≤ 1

k

(
ρkE

[∥∥C0 − 1⊗ C̄0

∥∥
F

]
+2

k∑
t=1

ρk−t
∥∥∥∥In×d − 11ᵀ

n
⊗ Id

∥∥∥∥n2√dcg
)

=
2

k

k∑
t=1

ρk−t
∥∥∥∥In×d − 11ᵀ

n
⊗ Id

∥∥∥∥n2√dcg
≤ 2

k

∥∥In×d − 11ᵀ

n ⊗ Id
∥∥n2√dcg

1− ρ
.

Note the boundedness of
2‖In×d− 11ᵀ

n ⊗Id‖n2
√
dcg

1−ρ ,

E
[∥∥Ck − 1⊗ C̄k

∥∥
F

]
= O

(
1
k

)
.

Step 2: The convergence rate of E
[∥∥C̄k −Λk

∥∥]. By the

definition of C̄k and recursion of (29),

C̄k =

(
1ᵀ

n
⊗ Id

)(
k − 1

k
ÃCk−1 +

1

k
Wk

)
=
k − 1

k
C̄k−1 +

1

k

n∑
j=1

∇gj,k (∇gj,k −∇gj,k−1)
ᵀ

=
1

k

k∑
t=1

n∑
j=1

∇gj,t (∇gj,t −∇gj,t−1)
ᵀ
,

where the second equality follows from the fact(
1ᵀ

n ⊗ Id
)
Ã =

(
1ᵀ

n A
)
⊗ Id = 1ᵀ

n ⊗ Id. Then

E
[∥∥C̄k −Λk

∥∥]
≤ 1

k

k∑
t=1

n∑
j=1

E
[∥∥(∇gj,t −∇g∗j,t) (∇gj,t −∇gj,t−1)ᵀ

−∇g∗j,t
(
∇g∗j,t −∇gj,t +∇gj,t−1 −∇g∗j,t−1

)ᵀ∥∥]
≤ 1

k

k∑
t=1

n∑
j=1

√
E
[∥∥∇gj,t −∇g∗j,t∥∥2]E

[
‖∇gj,t −∇gj,t−1‖2

]
+

1

k

k∑
t=1

n∑
j=1

(
2E
[∥∥∇g∗j,t∥∥2] (E

[∥∥∇gj,t −∇g∗j,t∥∥2]
+E
[∥∥∇gj,t−1 −∇g∗j,t−1

∥∥2]))1/2
≤ 1

k

k∑
t=1

n∑
j=1

√
2cgL2E

[
‖xj,t − x∗‖2

]
+

1

k

k∑
t=1

n∑
j=1

(
2c2fL

2E
[
‖xj,t − x∗‖2

]
+2c2fL

2E
[
‖xj,t−1 − x∗‖2

])1/2
,

(33)
where cg and cf are defined in (32) and (4) respectively,
the second inequality follows from Hölder inequality and
the third inequality follows from the Lipschitz continuity
of ∇gj(·; ζj). Then by Lemma 2 and Theorem 3,

E
[∥∥C̄k −Λk

∥∥] =
n

k

k∑
t=1

O(
√
αt) = O

(
1

kα/2

)
.

Step 3: The convergence rate of E [‖Λk − S‖]. By the
definitions of Λk and S,

E [‖Λk − S‖]

= E

∥∥∥∥∥∥1

k

k∑
t=1

n∑
j=1

∇g∗j,t
(
∇g∗j,t −∇g∗j,t−1

)ᵀ − n∑
j=1

Sj

∥∥∥∥∥∥


≤
n∑
j=1

E

[∥∥∥∥∥1

k

k∑
t=1

∇g∗j,t
(
∇g∗j,t

)ᵀ − E
[
∇g∗j

(
∇g∗j

)ᵀ]∥∥∥∥∥
]

+

n∑
j=1

E

[∥∥∥∥∥1

k

k∑
t=1

∇g∗j,t
(
∇g∗j,t−1

)ᵀ −∇f∗j (∇f∗j )ᵀ
∥∥∥∥∥
]
,

where Sj = Cov(∇gj(x∗, ζj)),∇g∗j = ∇gj(x∗, ζj),∇f∗j =
∇fj(x∗). It is sufficient to study the convergence rate of

E

[∥∥∥∥∥1

k

k∑
t=1

∇g∗j,t
(
∇g∗j,t

)ᵀ − E
[
∇g∗j

(
∇g∗j

)ᵀ]∥∥∥∥∥
]
,

E

[∥∥∥∥∥1

k

k∑
t=1

∇g∗j,t
(
∇g∗j,t−1

)ᵀ −∇f∗j (∇f∗j )ᵀ
∥∥∥∥∥
]
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respectively. In fact,

E

∥∥∥∥∥1

k

k∑
t=1

∇g∗j,t
(
∇g∗j,t

)ᵀ − E
[
∇g∗j

(
∇g∗j

)ᵀ]∥∥∥∥∥
2


≤ E

(
tr

(
1

k

k∑
t=1

∇g∗j,t
(
∇g∗j,t

)ᵀ − E
[
∇g∗j

(
∇g∗j

)ᵀ])2)

= tr

(
E

(
1

k

k∑
t=1

(
∇g∗j,t

(
∇g∗j,t

)ᵀ − E
[
∇g∗j

(
∇g∗j

)ᵀ]))2)
=

1

k
Etr

((
∇g∗j,0

(
∇g∗j,0

)ᵀ)2 − (E [∇g∗j (∇g∗j )ᵀ])2)
= O

(
1

k

)
,

where the first inequality follows from the fact that
‖B‖2 ≤ tr(B2) for any symmetric matrix B, the second
equality follows from that for t1 6= t2,

E
[
∇g∗j,t1∇g

∗ᵀ
j,t1
∇g∗j,t2∇g

∗ᵀ
j,t2

]
=
(
E
[
∇g∗j

(
∇g∗j

)ᵀ])2
.

In addition,

E

(
1

k

k∑
t=1

∇g∗j,t
(
∇g∗j,t−1

)ᵀ −∇f∗j (∇f∗j )ᵀ
)2

=
1

k2

k∑
t1=1

k∑
t2=1

E
[
∇g∗j,t1

(
∇g∗j,t1−1

)ᵀ∇g∗j,t2 (g∗j,t2−1)ᵀ]
−
(
∇f∗j

(
∇f∗j

)ᵀ)2
=

1

k2

k∑
|t1−t2|>1

E
[
∇g∗j,t1

(
∇g∗j,t1−1

)ᵀ∇g∗j,t2 (g∗j,t2−1)ᵀ]
+

1

k2

k∑
|t1−t2|=1

E
[
∇g∗j,t1

(
∇g∗j,t1−1

)ᵀ∇g∗j,t2 (g∗j,t2−1)ᵀ]
+ E

1

k2

k∑
t=1

∇g∗j,t
(
∇g∗j,t−1

)ᵀ∇g∗j,t (∇g∗j,t−1)ᵀ
−
(
∇f∗j

(
∇f∗j

)ᵀ)2
=

2k − 2

k2
(
E
[
∇g∗j,1

(
∇g∗j,0

)ᵀ∇g∗j,2 (∇g∗j,1)ᵀ]
−
(
∇f∗j

(
∇f∗j

)ᵀ)2)
+

1

k

(
E
[
∇g∗j,0

(
∇g∗j,0

)ᵀ∇g∗j,0 (g∗j,0)ᵀ]
−
(
∇f∗j

(
∇f∗j

)ᵀ)2)
,

where the first equality follows from the fact

E
[
∇g∗j,t1

(
∇g∗j,t1−1

)ᵀ]
= ∇f∗j

(
∇f∗j

)ᵀ
,

the third equality follows from the fact

E
[
∇g∗j,t1

(
∇g∗j,t1−1

)ᵀ∇g∗j,t2 (∇g∗j,t2−1)ᵀ]
= E

[
∇g∗j,t1

(
∇g∗j,t1−1

)ᵀ]
E
[
∇g∗j,t2

(
∇g∗j,t2−1

)ᵀ]
=
(
∇f∗j

(
∇f∗j

)ᵀ)2
for |t1 − t2| > 1. Then,

E

∥∥∥∥∥1

k

k∑
t=1

∇g∗j,t
(
∇g∗j,t−1

)ᵀ −∇f∗j (∇f∗j )ᵀ
∥∥∥∥∥
2


≤ tr

E

(
1

k

k∑
t=1

∇g∗j,t
(
∇g∗j,t−1

)ᵀ −∇f∗j (∇f∗j )ᵀ
)2


=
2k − 2

k2
Etr

(
∇g∗j,1

(
∇g∗j,0

)ᵀ∇g∗j,2 (∇g∗j,1)ᵀ
−
(
∇f∗j

(
∇f∗j

)ᵀ)2)2
+

1

k
Etr

(
∇g∗j,0

(
∇g∗j,0

)ᵀ∇g∗j,0 (g∗j,0)ᵀ
−
(
∇f∗j

(
∇f∗j

)ᵀ)2)
= O

(
1

k

)
,

where the last equality follows from the boundedness of

E
[
‖∇gj(x∗; ζj)‖4

]
for ∀j ∈ V.

Summarizing the three steps above, (25) holds. The
proof is complete. 2

Theorem 5 shows that the estimations Hi,k and Si,k
of all agents converge to the same limit H and S re-
spectively. Following from Theorem 5, we could obtain
the consistency result of the proposed plug-in estimator
H−1i,kSi,kH

−1
i,k .

Theorem 6 (Convergence rate of plug-in method)
Suppose that Assumptions 1, 2 (with p=4), 3-4 hold.
Then for any i ∈ V,∥∥∥H−1i,kSi,kH

−1
i,k −H−1SH−1

∥∥∥ = Op
(

1

kα/2

)
,

where α ∈ (1/2, 1).

Theorem 6 illustrates that the distributed plug-in esti-
mator is consistent, that is, H−1i,kSi,kH

−1
i,k converges to

H−1SH−1 in probability. Similar to the plug-in estima-
tor for SGD [9, Corollary 4.3], distributed plug-in es-
timator achieves convergence rate Op

(
1

kα/2

)
. In order

to avoid the possible singularity of Hi,k from statisti-
cal randomness, we can replace Hi,k with a nonsingular
estimator by using a thresholding scheme introduced in
[9], and obtain the convergence rate O

(
1

kα/2

)
in expec-

tation. Note that the distributed plug-in method does
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not rely on the gradient tracker, it is also suitable for
the distributed stochastic algorithms which are based on
local stochastic gradient.

4.2 Batch-means method

Different from the plug-in method, the batch-means
method only uses the iterates from DSGT. Note that
Lemma 2 has shown the agreement of the iterates of
agents, that is,

E
[
‖xi,k − x̄k‖4

]
−→ 0,∀i ∈ V.

Therefore, each agent should be able to estimate the
covariance matrix by using individual iterates.

For the fixed agent i ∈ V, let {xi,0, xi,1, · · · , xi,k−1} be
the sequence of iterates generated by DSGT. We split
them into M +1 batches with the size m0,m1, · · · ,mM :

{xi,s0 , · · · , xi,e0}︸ ︷︷ ︸
0−th batch

, {xi,s1 , · · · , xi,e1}︸ ︷︷ ︸
1−th batch

, · · · , {xi,sM , · · · , xi,eM }︸ ︷︷ ︸
M−th batch

,

where sl and el are the starting and ending index of l−th
batch with s0 = 0, sl = el−1 + 1, and eM = k− 1, the l-

th batch satisfies
∑el
t=sl

αt � N and N = k1−α

M+1 . 1 Then

the batch-mean estimator [9] of H−1SH−1 is given by

1

M

M∑
l=1

ml

(
X̂i,ml − X̂i,M

)(
X̂i,ml − X̂i,M

)ᵀ
, (34)

where

X̂i,ml :=
1

ml

el∑
t=sl

xi,t, X̂i,M :=
1

eM − e0

eM∑
t=s1

xi,t,

(35)
and ml = el − sl + 1.

The generalization of the batch means method from SGD
to DSGT is straightforward, but the proof of its consis-
tency is not straightforward at all, which requires the
convergence rate of the fourth moment of the iterations
and the agreement errors.

Theorem 7 (Convergence rate of batch-means
method) Suppose that Assumptions 1, 2 (with p=4)
and 3 hold. Then for any i ∈ V,

E

[∥∥∥∥∥ 1

M

M∑
l=1

ml

(
X̂i,ml − X̂i,M

)(
X̂i,ml − X̂i,M

)ᵀ
−H−1SH−1

∥∥]
= O

(
N−

1
2 +M−

1
2 + (NM)

−α
4−4α

)
,

(36)

1 In this paper, we set N �M � k
1−α
2 .

where α ∈ (1/2, 1).

Proof. Define two auxiliary sequences {δi,t} and {Ut} as

δi,t := (xi,t − x∗)− Ut,

Ut+1 = Ut − αt
1

n
HUt − αt

1

n

n∑
j=1

εj,t, U0 = x̄0 − x∗.

By the similar analysis as the proof of [9, Theorem 4.3],

E

[∥∥∥∥∥ 1

M

M∑
l=1

ml

(
X̂i,ml − X̂i,M

)(
X̂i,ml − X̂i,M

)ᵀ
−H−1SH−1

∥∥∥∥∥
]

≤ E

[∥∥∥∥∥ 1

M

M∑
l=1

ml

(
Ûml − ÛM

)(
Ûml − ÛM

)ᵀ
−H−1SH−1

∥∥∥∥∥
]

+
1

M

M∑
l=1

mlEtr
[(
δ̂i,ml − δ̂i,M

)(
δ̂i,ml − δ̂i,M

)ᵀ]

+
2

M

√√√√ M∑
l=1

mlEtr
[(
Ûml − ÛM

)(
Ûml − ÛM

)ᵀ]
×√√√√ M∑

l=1

mlEtr
[(
δ̂i,ml − δ̂i,M

)(
δ̂i,ml − δ̂i,M

)ᵀ]
,

(37)

where Ûml and ÛM are defined as in (35) with xi,t being

replaced by Ut, δ̂i,ml and δ̂i,M are defined as in (35)
with xi,t being replaced by δi,t. Then, we could finish
the proof by studying the convergence rate of the three
terms on the right hand side of (37) respectively.

Through mimicking the proof of [9, Lemma 4.7] by re-
placing martingale difference ξk in SGD iterates with the
new martingale difference sequence ε̄k := 1

n

∑n
j=1 εj,k,

the first term on the right hand side of (37)

E

[∥∥∥∥∥ 1

M

M∑
l=1

ml

(
Ûml − ÛM

)(
Ûml − ÛM

)ᵀ
−H−1SH−1

∥∥∥∥∥
]

= O
(
N−

1
2 +M−

1
2 + (NM)

−α
4−4α

)
. 2 (38)

Note that (38) implies the boundedness of

1

M

M∑
l=1

mlEtr
[(
Ûml − ÛM

)(
Ûml − ÛM

)ᵀ]
.

By the definitions of δ̂i,ml and δ̂i,M ,

11



M∑
l=1

mltr
(
δ̂i,ml − δ̂i,M

)(
δ̂i,ml − δ̂i,M

)ᵀ
=

M∑
l=1

ml

(
tr
(
δ̂i,ml δ̂

ᵀ
i,ml

)
− tr

(
δ̂i,M δ̂

ᵀ
i,M

))
≤

M∑
l=1

mltr
(
δ̂i,ml δ̂

ᵀ
i,ml

)
. (39)

Then, a proper bound for 1
M

∑M
l=1mlE

[∥∥∥δ̂i,ml∥∥∥2] will

provide the convergence rate of the last two terms on
the right hand side of (37).

Denote δt := (x̄t − x∗)−Ut and δ̂ml := 1
ml

∑el
t=sl

δt, we
have

mlE
[
‖δ̂i,ml‖2

]
= mlE

∥∥∥∥∥δ̂ml +
1

ml

el∑
t=sl

(xi,t − x̄t)

∥∥∥∥∥
2


≤ 2mlE

[∥∥∥δ̂ml∥∥∥2]+ 2mlE

∥∥∥∥∥ 1

ml

el∑
t=sl

(xi,t − x̄t)

∥∥∥∥∥
2
 .

On the one hand, by the similar analysis in studying the

bound of mlE

[∥∥∥δ̂ml∥∥∥2] in [9, page 31-32 in Supplement

Materal],

mlE
[
‖δ̂ml‖2

]
= O

(
m−1l sαl +mls

−2α
l

)
.

On the other hand, by Lemma 2,

mlE

∥∥∥∥∥ 1

ml

el∑
t=sl

(xi,t − x̄t)

∥∥∥∥∥
2
 ≤ el∑

t=sl

E
[
‖xi,t − x̄t‖2

]
≤

el∑
t=sl

E
[
‖xt − 1⊗ x̄t‖2

]
≤ c̄

el∑
t=sl

α2
t = O

(
mls

−2α
l

)
.

Then

1

M

M∑
l=1

mlE
[
‖δ̂i,ml‖2

]
= O

(
1

M

M∑
l=1

(
m−1l sαl +mls

−2α
l

))

= O

(
1

M

M∑
l=1

(
N−1 + l−

α
1−αN

1−2α
1−α

))
= O

(
N−1 +M−1

)
, (40)

where the second equality follows from the facts sl �
(lN)

1
1−α and ml � l

α
1−αN

1
1−α by [9, Lemma D1 in Sup-

plement Materal], the third equality follows from the

facts α > 1/2 and 1
M

∑M
l=1 l

− α
1−α = O

(
M−1

)
.

Summarizing (37)-(40), (36) holds. The proof is com-
plete. 2

Recall that N � M � k
1−α
2 , the batch-means method

achieves the convergence rate of O
(
k−

1−α
4

)
, which is

slower than that of the plug-in method. On the other
hand, the batch-means method has less computation and
storage cost as it does not need to calculate the stochastic
Hessian matrix. The plug-in estimator is online, which
returns immediate estimations of H and S at each iter-
ation after receiving the noise observations of the gradi-
ent and Hessian matrix. The batch-means method is not
a fully online method as the construction of the covari-
ance matrix estimator requires the information on the
total number of iterations. It is hard to establish a sim-
ple algebraic relation between the successive estimators.
More recently, [51] proposes a fully online batch-means
method to estimate the asymptotic covariance matrix
of the average SGD solution. Extending the fully online
batch-means method [51] to the distributed stochastic
optimization problem will be the subject of our future
works.

5 Experimental results

In this section, we report some preliminary numerical re-
sults on the confidence regions of the optimal solution to
distributed stochastic optimization problem. According
to the asymptotic distribution as given in Theorem 4,{

y : (y − x̂)
ᵀ

Σ−1 (y − x̂) ≤ 1

k
χ2
β(d)

}
defines an approximate 1 − β confidence region for
the optimal solution to DSO problem (1), where

Σ = H−1SH−1, x̂ := 1
k

∑k−1
t=0 xi,t, χ

2
β(d) is defined as

the number that satisfies P
(
U > χ2

β(d)
)

= β for a χ2

random variable U with d degrees of freedom.

12



-15 -5 5 15

d
1

0

0.04

0.08

0.12

D
e

n
s

it
y

Agent 1

Agent-ave

True

-25 -10 5 20

d
2

0

0.03

0.06

0.09

D
e

n
s

it
y

Agent 1

Agent-ave

True

-20 -10 0 10 20

d
3

0

0.025

0.05

0.075

D
e

n
s

it
y

Agent 1

Agent-ave

True

Fig. 1. Density of components.
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Fig. 2. Cross section of approximate confidence region (PI).
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Fig. 3. Cross section of approximate confidence region (BM).

We report the empirical performance of the proposed
methods through the ridge regression problem [31]:

min
x∈Rd

f(x) =

n∑
j=1

(
E
[(
wᵀ
j x− vj

)2]
+ γ‖x‖2

)
, (41)

where fi(x) := E
[
(wᵀ

i x− vi)
2
]

+ γ‖x‖2 is the objective

function of agent i. In problem (41), each agent ∈ V has
access to sample (wi, vi) given by the following linear
model

vi = wᵀ
i x̃i + νi,

where wi is the regression vector accessible to agent
i, νi is the observation noise of agent i and x̃i is un-

known parameter. Assume that random variables wi
and νi are independent and then the unique solution is

x∗ =
(∑n

j=1 E[wjw
ᵀ
j ] + nγI

)−1∑n
j=1 E[wjw

ᵀ
j ]x̃j .

In this experiment, d = 3, n = 20, for all i ∈ V, ran-
dom variables wi ∈ [0, 20]3 are uniformly distributed, νi
are drawn from the Gaussian distribution N(0, 1), pa-
rameters x̃i = [1, 50, 100]ᵀ and γ = 1. For the weight
matrices, we use the similar setting of network topol-
ogy in [30]. An undirected graph G = (V, E) is gener-
ated by adding random links to a ring network, where
a link exists between any two nonadjacent nodes with a
probability p > 0.7. The weights aji are defined by the
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Metropolis rule [40]:

aji =



1

max{ni, nj}+ 1
j ∈ Ni,

1−
∑
j∈Ni

Aji j = i,

0 otherwise,

(42)

where Ni := {j|(i, j) ∈ E , j 6= i} is agent i’s set of
neighbors, ni := |Ni| is the cardinality of Ni. Moreover,
the stepsize is αk = 0.1/(k + 1)0.505.

We first carry out tests on the asymptotic normality of
iterates (Theorem 4). We do 100 Monte-Carlo simula-
tions of running DSGT with 30000 iterations. In Figure
1, the black solid curve and red circle curve denote the
estimated density of agent 1 and average of all agents
respectively, the blue dash-dot curve denotes the true
density. Figure 1 seems to confirm Theorem 4 since we
can see that the estimated density of a component of
normalized estimation error is close to the density of the
limiting normal distribution, which is also confirmed by
a Kolmogorov–Smirnov test.

Next, we construct the asymptotic confidence regions of
the optimal solution. We record the confidence regions
with the nominal coverage probability 1−β to 95% and
the covariance matrix are constructed by plug-in (PI)
and batch-means (BM) methods after k = 2000, 5000
and 30000 iterations respectively. For the stability, we
perform 50 Monte-Carlo simulations and report the re-
sults with the average covariance matrix and the average
of iterates. Figure 2 depicts the confidence regions with
PI, where the red solid, blue solid and blue cross ellipses
denote the confidence regions for agent 1, average of all
agents and the true one respectively. As we can observe
from Figure 2, the ellipses for agent 1 and the average
of all agents are coincide for iteration k = 2000, which
indicates the agreement of PI. For iteration k = 30000,
the three confidence regions are almost coincide, which
confirms the convergence of PI in Theorem 6. Similar
to PI, the agreement of BM is observable for k = 2000
iteration in Figure 3. We can conclude that there is a
tendency for the convergence of the confidence regions
based on BM to true one, which confirms Theorem 7. Ob-
viously, the convergence of PI in Figure 2 is faster than
the convergence of BM in Figure 3, which verifies the
fact that PI and BM have convergence rates Op( 1

kα/2
)

and O
(

1
k(1−α)/4

)
(in expectation) respectively. Just as

we commented at the beginning of subsection 4.2, the
underlying reason is that BM estimates covariance ma-
trix based on individual iterates rather than communi-
cating additional quantities with their neighbors.

We report the coverage rate of the confidence regions.
We perform 500 Monte-Carlo simulations and record the
percentage of the 95% confidence regions containing the

Table 1. Coverage rate(%).

Iterations

Methods
PI PIave BM BMave

2000 89.4 89.6 63 63.4

5000 93.8 94 70 70

30000 94.6 94.8 82 82

true solution in Table 1, where the columns of PI, PIave,
BM and BMave record the results for agent 1 and the
average of all agents by PI and BM respectively. From
the Table 1, we can see that PI gives better coverage
rate than BM, where the coverage rates at iterations k =
5000 and k = 30000 are nearly 95%. On the other hand,
the coverage rate of BM has a tendency of converging
to 95%. Moreover, we can also observe the agreement of
PI and BM from the second and the third columns, the
fourth and the fifth columns respectively.

Acknowledgements

The research is supported by the NSFC #11971090 and
Fundamental Research Funds for the Central Universi-
ties DUT22LAB301.

References

[1] Gediminas Adomavicius and Jingjing Zhang. Stability
of recommendation algorithms. ACM Transactions on
Information Systems, 30(4):1–31, 2012.

[2] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike
Rabbat. Stochastic gradient push for distributed deep
learning. In Proceedings of the 36th International Conference
on Machine Learning, volume 97, pages 344–353. PMLR,
2019.

[3] Sergio Barbarossa, Stefania Sardellitti, and Paolo Di Lorenzo.
Distributed detection and estimation in wireless sensor
networks. arXiv preprint arXiv:1307.1448, 2013.

[4] Dimitri Bertsekas and John Tsitsiklis. Parallel and
distributed computation: numerical methods. Prentice-Hall,
Inc., Englewood Cliffs, 1989.

[5] Pascal Bianchi, Gersende Fort, and Walid Hachem.
Performance of a distributed stochastic approximation
algorithm. IEEE Transactions on Information Theory,
59(11):7405–7418, 2013.

[6] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and
Jonathan Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers.
Foundations and Trends R© in Machine learning, 3(1):1–122,
2011.

[7] Han. Fu Chen. Stochastic approximation and its applications,
volume 64. Kluwer Academic Publishers, New York, 2006.

[8] Haoyu Chen, Wenbin Lu, and Rui Song. Statistical
inference for online decision making via stochastic gradient
descent. Journal of the American Statistical Association,
116(534):708–719, 2021.

14



[9] Xi Chen, Jason D. Lee, Xin T. Tong, and Yichen Zhang.
Statistical inference for model parameters in stochastic
gradient descent. The Annals of Statistics, 48(1):251–273, 02
2020.

[10] Xi Chen, Weidong Liu, and Yichen Zhang. First-
order newton-type estimator for distributed estimation and
inference. arXiv preprint arXiv:1811.11368, 2021.

[11] Symeon Chouvardas, Konstantinos Slavakis, and Sergios
Theodoridis. Adaptive robust distributed learning in
diffusion sensor networks. IEEE Transactions on Signal
Processing, 59(10):4692–4707, 2011.

[12] Yuan Shih Chow and Henry Teicher. Probability theory:
independence, interchangeability, martingales. Springer, New
York, 1978.

[13] Kai Lai Chung. On a stochastic approximation method. The
Annals of Mathematical Statistics, 25:463–483, 1954.

[14] Soham De, Gavin Taylor, and Tom Goldstein. Variance
reduction for distributed stochastic gradient descent. arXiv
preprint arXiv:1512.01708, 2017.

[15] John C. Duchi, Alekh Agarwal, and Martin J. Wainwright.
Dual averaging for distributed optimization: Convergence
analysis and network scaling. IEEE Transactions on
Automatic Control, 57(3):592–606, 2012.

[16] John C. Duchi and Feng Ruan. Asymptotic optimality in
stochastic optimization. The Annals of Statistics, 49(1):21 –
48, 2021.

[17] Vaclav Fabian. On asymptotic normality in stochastic
approximation. The Annals of Mathematical Statistics,
39(4):1327–1332, 1968.

[18] Alireza Fallah, Mert Gurbuzbalaban, Asuman Ozdaglar,
Umut Simsekli, and Lingjiong Zhu. Robust distributed
accelerated stochastic gradient methods for multi-agent
networks. arXiv preprint arXiv:1910.08701, 2019.

[19] Ming hua Hsieh and P.W. Glynn. Confidence regions for
stochastic approximation algorithms. In Proceedings of the
Winter Simulation Conference, volume 1, pages 370–376,
2002.

[20] Yanhao Jin, Tesi Xiao, and Krishnakumar Balasubramanian.
Statistical inference for polyak-ruppert averaged zeroth-
order stochastic gradient algorithm. arXiv preprint
arXiv:2102.05198, 2021.

[21] Jinlong Lei, Han Fu Chen, and Hai Tao Fang.
Asymptotic properties of primal-dual algorithm for
distributed stochastic optimization over random networks
with imperfect communications. SIAM Journal on Control
and Optimization, 56(3):2159–2188, 2018.

[22] Xiuxian Li, Lihua Xie, and Yiguang Hong. Distributed
aggregative optimization over multi-agent networks. arXiv
preprint arXiv:2005.13436, 2020.

[23] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu.
Asynchronous decentralized parallel stochastic gradient
descent. In International Conference on Machine Learning,
pages 3043–3052. PMLR, 2018.

[24] Gemma Morral, Pascal Bianchi, Gersende Fort, and Jérémie
Jakubowicz. Distributed stochastic approximation: The price
of non-double stochasticity. In 2012 Conference Record of the
Forty Sixth Asilomar Conference on Signals, Systems and
Computers, pages 1473–1477, 2012.
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A Some technical results of proof of Lemma 2

Lemma A.1. Suppose that Assumptions 1, 2 (with p=2, 4) and 3 hold. Then there exists a
constant ce such that

E[‖ξk‖p] ≤ cp/2e

(
1 +

k∑
t=0

ρk−tE [‖xt − 1⊗ x̄t‖p] +
k∑
t=0

ρk−tE [‖x̄t − x∗‖p]

)
. (A.1)

Proof. We just study the case p = 4 as the analysis for case p = 2 is similar.

Recall that

ξk = Ãξk−1 + εk − εk−1

=
k−1∑
t=0

Ãk−1−t(Ã− In×d)εt + εk

=

k∑
t=0

Ã(k, t)εt,

∗School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China, e-mail:
zhaoshengchao@mail.dlut.edu.cn (Shengchao Zhao), lyc@dlut.edu.cn (Yongchao Liu)
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where Ã(k, t) := Ãk−1−t(Ã− In×d) for t < k and Ã(k, k) = In×d. Then

E[‖ξk‖4] = E
[
(〈ξk, ξk〉)2

]
=

k∑
t1=0

k∑
t2=0

k∑
t3=0

k∑
t4=0

E [ν(k, t1)
ᵀν(k, t2)ν(k, t3)

ᵀν(k, t4)]

≤
k∑

t1=0

k∑
t2=0

k∑
t3=0

k∑
t4=0

E [‖ν(k, t1)‖‖ν(k, t2)‖‖ν(k, t3)‖‖ν(k, t4)‖]

≤
k∑

t1=0

k∑
t2=0

k∑
t3=0

k∑
t4=0

(∥∥∥Ã(k, t1)
∥∥∥∥∥∥Ã(k, t2)

∥∥∥∥∥∥Ã(k, t3)
∥∥∥×∥∥∥Ã(k, t4)

∥∥∥E [‖εt1‖‖εt2‖‖εt3‖‖εt4‖]
)
,

where ν(k, t) = Ã(k, t)εt. By Assumption 3,∥∥∥Ak (A− In)
∥∥∥ =

∥∥∥∥(A− 11ᵀ

n

)
Ak−1 (A− In)

∥∥∥∥
≤ ρ

∥∥∥Ak−1 (A− In)
∥∥∥ ≤ ρk ‖A− In‖ .

Denoting ca = max
{

1, ‖A−In‖ρ

}
, ∥∥∥Ã(k, t)

∥∥∥ ≤ caρk−t. (A.2)

Subsequently,

E[‖ξk‖4] ≤ c4a
k∑

t1=0

k∑
t2=0

k∑
t3=0

k∑
t4=0

ρ4k−t1−t2−t3−t4E [‖εt1‖‖εt2‖‖εt3‖‖εt4‖]

≤ c4a
k∑

t1=0

k∑
t2=0

k∑
t3=0

k∑
t4=0

(
ρ4k−t1−t2−t3−t4

E
[
‖εt1‖4 + ‖εt2‖4 + ‖εt3‖4 + ‖ε4t4‖

]
4

)

≤ c4a
(1− ρ)3

k∑
t=0

ρk−tE
[
‖εt‖4

]
. (A.3)

Recall the definition of εt :=
[
εᵀ1,t, ε

ᵀ
2,t, · · · , ε

ᵀ
n,t

]ᵀ
,

E
[
‖εt‖4

]
≤ n

n∑
j=1

E
[
‖εj,t‖4

]
= n

n∑
j=1

E [‖∇gj(xj,t; ζj,t)−∇gj(x∗; ζj,t) +∇fj(x∗)

−∇fj(xj,t) + (∇gj(x∗; ζj,t)−∇fj(x∗)) ‖4
]

≤ 54nL4E
[
‖xt − 1⊗ x∗‖4‖

]
+ 216n2c2f

≤ 432nL4E
[
‖xt − 1⊗ x̄t‖4‖

]
+ 432n2L4E

[
‖x̄t − x∗‖4‖

]
+ 216n2c2f , (A.4)
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where cf is defined in Assumption 2 (ii), the second inequality follows from Assumption 2.
Substitute (A.4) into (A.3),

E[‖ξk‖4]

≤ c4a
(1− ρ)4

k∑
t=0

ρk−t
(
432nL4E

[
‖xt − 1⊗ x̄t‖4‖

]
+432n2L4E

[
‖x̄t − x∗‖4‖

]
+ 216n2c2f

)
≤ c2e

(
1 +

k∑
t=0

ρk−tE
[
‖xt − 1⊗ x̄t‖4

]
+

k∑
t=0

ρk−tE
[
‖x̄t − x∗‖4

])
,

where ce = c4a
(1−ρ)4 max

{
232n2L4,

216n2c2f
1−ρ

}
. The proof is complete. �

B Proof of Lemma 2

Proof. We just study the case p = 4 as the case p = 2 is similar. We employ Lemma 1 to
prove

sup
k

E
[
‖x̄k − x∗‖4

]
≤ c̄, E

[
‖xk − 1⊗ x̄k‖4

]
≤ c̄α2

k. (B.1)

and the proof can be finished by the following two steps: find relationships of uk and vk in the
forms of (10) and (11) in Lemma 1 firstly, and then verify conditions (i)-(ii) of Lemma 1.

Step 1. Let θ1 and θ2 be any random vectors and τ be any positive scalar. Obviously,

E
[
‖θ1 + θ2‖4

]
= E

[(
‖θ1‖2 + ‖θ2‖2 + 2〈θ1, θ2〉

)2]
= E

[
‖θ1‖4 + ‖θ2‖4 + 2‖θ1‖2‖θ2‖2 + 4‖θ1‖2〈θ1, θ2〉

+4‖θ2‖2〈θ1, θ2〉+ 4 (〈θ1, θ2〉)2
]

≤ E
[
‖θ1‖4 + ‖θ2‖4 + 6‖θ1‖2‖θ2‖2 + 4‖θ1‖2〈θ1, θ2〉

+4‖θ2‖2(‖θ1‖‖θ2‖)
]

≤ E
[
‖θ1‖4 + 3‖θ2‖4 + 8‖θ1‖2‖θ2‖2 + 4‖θ1‖2〈θ1, θ2〉

]
≤ (1 + 4τ)E

[
‖θ1‖4

]
+

(
3 +

4

τ

)
E
[
‖θ2‖4

]
+ 4E

[
‖θ1‖2〈θ1, θ2〉

]
,

where the first inequality follows from Cauchy-Schwarz inequality 〈x, y〉 ≤ ‖x‖‖y‖, the second
inequality follows from Young’s inequality ab ≤ ap

p + bq

q ,
1
p + 1

q = 1 (p = 2), the last inequality

follows from the fact ‖θ1‖2‖θ2‖2 =
(
τ−0.5‖θ1‖

)2 (
τ0.5‖θ2‖

)2 and Young’s inequality (p = 2).
Choosing

θ1 = x̄k − x∗ − αk1/n∇f(x̄k), θ2 = −αk(ȳk − 1/n∇f(x̄k)),
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we have x̄k+1 − x∗ = θ1 + θ2 and

E
[
‖x̄k+1 − x∗‖4

]
≤ (1 + 4τ)E

[
‖x̄k − x∗ − αk/n∇f(x̄k)‖4

]
+

(
3 +

4

τ

)
E
[
‖αk (ȳk − 1/n∇f(x̄k))‖4

]
+ 4E

[
‖x̄k − x∗ − αk/n∇f(x̄k)‖2 〈x̄k − x∗ − αk/n∇f(x̄k), αk (ȳk − 1/n∇f(x̄k))〉

]
. (B.2)

For the third term on the right hand side of (B.2),

4E
[
‖x̄k − x∗ − αk/n∇f(x̄k)‖2×
〈x̄k − x∗ − αk/n∇f(x̄k), αk (ȳk − 1/n∇f(x̄k))〉

]
= 4E

[ ∥∥∥x̄k − x∗ − αk

n
∇f(x̄k)

∥∥∥2〈x̄k − x∗ − αk

n
∇f(x̄k), αk

 1

n

n∑
j=1

∇fj(xj,k)− 1

n
∇f(x̄k)

〉]

≤ 4E

∥∥∥x̄k − x∗ − αk

n
∇f(x̄k)

∥∥∥3
∥∥∥∥∥∥αk

 1

n

n∑
j=1

∇fj(xj,k)− 1

n
∇f(x̄k)

∥∥∥∥∥∥
 , (B.3)

where the equality follows from the fact

E
[
ȳk
∣∣Fk

]
= E

 1

n

n∑
j=1

∇g(xj,k; ζj,k)
∣∣Fk

 =
1

n

n∑
j=1

∇fj(xj,k).

Substitute (B.3) into (B.2),

E
[
‖x̄k+1 − x∗‖4

]
≤ (1 + 4τ)

(
1− αkµ

n

)4
E
[
‖x̄k − x∗‖4

]
+

(
3 +

4

τ

)
E

[∥∥∥∥αk

(
ȳk −

1

n
∇f(x̄k)

)∥∥∥∥4
]

+ 4
(

1− αkµ

n

)3
E

‖x̄k − x∗‖3
∥∥∥∥∥∥αk

 1

n

n∑
j=1

∇fj(xj,k)− 1

n
∇f(x̄k)

∥∥∥∥∥∥


≤
[
(1 + 4τ)

(
1− αkµ

n

)4
+ 4τ

(
1− αkµ

n

)3]
E
[
‖x̄k − x∗‖4

]
+

(
3 +

4

τ

)
E
[
‖αk (ȳk − 1/n∇f(x̄k))‖4

]
+ 4/τ

(
1− αkµ

n

)3 α2
kL

2

n
E
[
‖x̄k − x∗‖2 ‖xk − 1⊗ x̄k‖2

]
≤
[
(1 + 4τ)

(
1− αkµ

n

)4
+ 4τ

(
1− αkµ

n

)3]
E
[
‖x̄k − x∗‖4

]
+

(
3 +

4

τ

)
E

[∥∥∥∥αk

(
ȳk −

1

n
∇f(x̄k)

)∥∥∥∥4
]

+
α2
kL

2

n

4

τ

(
1− αkµ

n

)3√
E
[
‖x̄k − x∗‖4

]
E
[
‖xk − 1⊗ x̄k‖4

]
, (B.4)

where the first inequality follows from the fact
∥∥x− x∗ − 1

nαk∇f(x)
∥∥ ≤ (1− µ

nαk
)
‖x− x∗‖ by

[4, Lemma 10], the second inequality follows from the fact a3b ≤ τa4 + a2b2

τ and the Lipschitz
continuity of ∇fi(·), the third inequality follows from the Hölder inequality. For the second term

4



on the right hand side of (B.4),(
3 +

4

τ

)
E
[
‖αk (ȳk − 1/n∇f(x̄k))‖4

]
=

(
3 +

4

τ

)
α4
kE

∥∥∥∥∥∥ 1

n

n∑
j=1

(∇gj(xj,k; ζj,k)−∇gj(x∗; ζj,k))

− 1

n

n∑
j=1

(∇fj(x̄k)−∇fj(x∗)) +
1

n

n∑
j=1

∇gj(x∗; ζj,k)

∥∥∥∥∥∥
4


≤ 27

(
3 +

4

τ

)
α4
k

1

n

n∑
j=1

(
E
[
‖∇gj(xj,k; ζj,k)−∇gj(x∗; ζj,k)‖4

]
+E
[
‖∇fj(x̄k)−∇fj(x∗)‖4

]
+ E

[
‖∇gj(x∗; ζj,k)‖4

])
≤ 27

(
3 +

4

τ

)
α4
k

(
L4

n
E
[
‖xk − 1⊗ x̄k‖4

]
+ L4E

[
‖x̄k − x∗‖4

]
+ c2f

)
, (B.5)

where cf is defined in Assumption 2, the equality follows from the fact 1
n

∑n
j=1∇fj(x∗) = 0,

the second inequality follows from the Lipschitz continuity of ∇fi(·) and ∇gi(·; ζi). Substitute
(B.5) into (B.4),

E
[
‖x̄k+1 − x∗‖4

]
≤
[
(1 + 4τ)

(
1− αkµ

n

)4
+ 4τ

(
1− αkµ

n

)3]
E
[
‖x̄k − x∗‖4

]
+ 27

(
3 +

4

τ

)
α4
k

(
L4

n
E
[
‖xk − 1⊗ x̄k‖4

]
+L4E

[
‖x̄k − x∗‖4

]
+ c2f

)
+ 4/τ

(
1− αkµ

n

)3 α2
kL

2

n

√
E
[
‖x̄k − x∗‖4

]
E
[
‖xk − 1⊗ x̄k‖4

]
. (B.6)

Let τ = αkµ
8n , then for any k ≥ 0,[

(1 + 4τ)
(

1− αkµ

n

)4
+ 4τ

(
1− αkµ

n

)3]
=

(
1−

α2
kµ

2

2n2

)(
1− αkµ

n

)3
<
(

1− αkµ

n

)3
.

Subsequently,

E
[
‖x̄k+1 − x∗‖4

]
≤
(

1− αkµ

n

)3
E
[
‖x̄k − x∗‖4

]
+

32L2

µ
αk

√
E
[
‖x̄k − x∗‖4

]
E
[
‖xk − 1⊗ x̄k‖4

]
+ 27

(
3α0 +

32n

µ

)
α3
k

(
L4

n
E
[
‖xk − 1⊗ x̄k‖4

]
+ L4E

[
‖x̄k − x∗‖4

]
+ c2f

)
. (B.7)
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On the other hand, for any vectors θ1, θ2 and positive scalar τ ,

‖θ1 + θ2‖4 ≤
(
‖θ1‖2 + ‖θ2‖2 + 2‖θ1‖‖θ2‖

)2
= ‖θ1‖4 + ‖θ2‖4 + 4‖θ1‖3‖θ2‖+ 4‖θ2‖3‖θ1‖+ 6‖θ1‖2‖θ2‖2

= ‖θ1‖4 + ‖θ2‖4 + 4

((τ
3

) 1
4 ‖θ1‖

)3((τ
3

)− 3
4 ‖θ2‖

)
+ 4

(
τ

1
4 ‖θ1‖

)(
τ−

1
12 ‖θ2‖

)3
+ 6

((τ
3

) 1
4 ‖θ1‖

)2((τ
3

)− 1
4 ‖θ2‖

)2

(B.8)

≤ (1 + 3τ)‖θ1‖4 +

(
1 +

27

τ3
+

3

τ1/3
+

9

τ

)
‖θ2‖4, (B.9)

where the second inequality follows from Young’s inequality (p = 4/3, 4/3 and 2 for the last three
terms in (B.8) respectively). Choosing

θ1 =

(
Ã− 11ᵀ

n
⊗ Id

)
(xk − 1⊗ x̄k) ,

θ2 = −αk
(
In×d −

11ᵀ

n
⊗ Id

)
yk

in (B.9), by the equality xk+1 = Ãxk − αkyk and the double stochasticity of A, we have xk+1 −
1⊗ x̄k+1 = θ1 + θ2 and

‖xk+1 − 1⊗ x̄k+1‖4 ≤ (1 + 3τ)

∥∥∥∥(Ã− 11ᵀ

n
⊗ Id

)
(xk − 1⊗ x̄k)

∥∥∥∥4
+

(
1 +

27

τ3
+

3

τ1/3
+

9

τ

)
α4
k

∥∥∥∥In×d −
11ᵀ

n
⊗ Id

∥∥∥∥4 ‖yk‖4 . (B.10)

Denote auxiliary sequences {ξk} and {y
′
k} as

ξk = Ãξk−1 + εk − εk−1, ξ0 = ε0,

y
′
k+1 = Ãy

′
k +∇Fk+1 −∇Fk, y

′
0 = ∇F0.

By the definitions of yk and y′k, we have yk = y
′
k + ξk and that

E
[
‖yk‖4

]
= E

[∥∥∥y′k − 1⊗ ȳ′k − 1⊗
(

1/n∇f(x̄k)− ȳ
′
k

)
+ 1⊗ 1/n∇f(x̄k) + ξk

∥∥∥4]
≤ 64E

[∥∥∥y′k − 1⊗ ȳ′k
∥∥∥4 + L4 ‖xk − 1⊗ x̄k‖4 +

L4

n2
‖x̄k − x∗‖4 + ‖ξk‖4

]
≤ 64E

[∥∥∥y′k − 1⊗ ȳ′k
∥∥∥4 + L4 ‖xk − 1⊗ x̄k‖4 +

L4

n2
‖x̄k − x∗‖4

]
+ 64c2e

k∑
t=0

ρk−tE
[
‖xt − 1⊗ x̄t‖4

]
+ 64c2e + 64c2e

k∑
t=0

ρk−tE
[
‖x̄t − x∗‖4

]
, (B.11)

where ȳ′k :=
(
1ᵀ

n ⊗ Id
)
y
′
k, the first inequality follows from the Lipscitz continuity of ∇fj(·), the

fact ȳ′k = 1/n
∑n

j=1∇fj(xj,k) and the cr-inequality E
[∣∣∑n

j=1Xj

∣∣r] ≤ nr−1
∑n

j=1 E
[∣∣Xj

∣∣r] [3,
6



9.1.a in Chapter 9], the second inequality follows from Lemma A.1. Take expectation on both
sides of (B.10) and substitute (B.11) into it,

E
[
‖xk+1 − 1⊗ x̄k+1‖4

]
≤ 1 + ρ4

2
E
[
‖xk − 1⊗ x̄k‖4

]
+ c1α

4
k

(
E

[∥∥∥y′k − 1⊗ ȳ′k
∥∥∥4 + L4 ‖xk − 1⊗ x̄k‖4

]
+
L4

n2
E
[
‖x̄k − x∗‖4

]
+ c2e

k∑
t=0

ρk−tE
[
‖xt − 1⊗ x̄t‖4

]
+ c2e

+c2e

k∑
t=0

ρk−tE
[
‖x̄t − x∗‖4

])
, (B.12)

where ρ < 1 is the spectral norm of A− 1
n11

ᵀ, the inequality follows from settings τ = 1−ρ4
6ρ4

and

c1 = 64

(
1 +

27

τ3
+

3

τ1/3
+

9

τ

)∥∥∥∥In×d − 11ᵀ

n
⊗ Id

∥∥∥∥4 .
Choosing

θ1 =

(
Ã− 11ᵀ

n
⊗ Id

)(
y
′
k − 1⊗ ȳ′k

)
,

θ2 =

(
In×d −

11ᵀ

n
⊗ Id

)
(∇Fk+1 −∇Fk)

in (B.9), by the definitions of y′k+1 and ȳ′k+1, we have y′k+1 − 1⊗ ȳ′k+1 = θ1 + θ2 and∥∥∥y′

k+1 − 1⊗ ȳ
′

k+1

∥∥∥4 ≤ (1 + 3τ)ρ4
∥∥∥y′

k − 1⊗ ȳ
′

k

∥∥∥4 +

(
1 +

27

τ3
+

3

τ1/3
+

9

τ

)
×∥∥∥∥In×d −

11ᵀ

n
⊗ Id

∥∥∥∥4 ‖∇Fk+1 −∇Fk‖4 , (B.13)

where ρ is the spectral norm of A− 1
n11

ᵀ. By the Lipschitz continuity of ∇f(·),

‖∇Fk+1 −∇Fk‖4 ≤ L4 ‖xk+1 − xk‖4

= L4
∥∥∥Ãxk − αkyk − xk∥∥∥4

= L4
∥∥∥(Ã− In×d

)
(xk − 1⊗ x̄k)− αkyk

∥∥∥4
≤ 8L4

∥∥∥Ã− In×d

∥∥∥4 ‖xk − 1⊗ x̄k‖4 + 8L4α4
k ‖yk‖

4 . (B.14)

Substitute (B.14) into (B.13) and set τ = 1−ρ4
6ρ4

,∥∥∥y′k+1 − 1⊗ ȳ′k+1

∥∥∥4
≤ 1 + ρ4

2

∥∥∥y′k − 1⊗ ȳ′k
∥∥∥4 + c2

(∥∥∥Ã− In×d

∥∥∥4 ‖xk − 1⊗ x̄k‖4 + α4
k ‖yk‖

4

)
,

7



where c2 = 8L4
(

1 + 27
τ3

+ 3
τ1/3

+ 9
τ

)∥∥In×d − 11ᵀ

n ⊗ Id
∥∥4. Take expectation on both sides of above

inequality,

E

[∥∥∥y′

k+1 − 1⊗ ȳ
′

k+1

∥∥∥4] ≤ 1 + ρ4

2
E

[∥∥∥y′

k − 1⊗ ȳ
′

k

∥∥∥4]+ c2

∥∥∥Ã− In×d

∥∥∥4 E
[
‖xk − 1⊗ x̄k‖4

]
+ 64c2α

4
k

(
E

[∥∥∥y′

k − 1⊗ ȳ
′

k

∥∥∥4 + L4 ‖xk − 1⊗ x̄k‖4 +
L4

n2
‖x̄k − x∗‖4

]
+ c2e + c2e

k∑
t=0

ρk−tE
[
‖xt − 1⊗ x̄t‖4

]
+c2e

k∑
t=0

ρk−tE
[
‖x̄t − x∗‖4

])
, (B.15)

where the inequality follows from (B.11).

Multiplying c′ = 1−ρ4

4c2‖Ã−In×d‖4
on both sides of inequality (B.15), we have

c
′
E

[∥∥∥y′k+1 − 1⊗ ȳ′k+1

∥∥∥4] ≤ 1 + ρ4

2
c
′
E

[∥∥∥y′k − 1⊗ ȳ′k
∥∥∥4]+

1− ρ4

4
E
[
‖xk − 1⊗ x̄k‖4

]
+ 64c

′
c2α

4
k

(
E

[∥∥∥y′k − 1⊗ ȳ′k
∥∥∥4 + L4 ‖xk − 1⊗ x̄k‖4

+
L4

n2
‖x̄k − x∗‖2

]
+ c2e + c2e

k∑
t=0

ρk−tE
[
‖xt − 1⊗ x̄t‖4

]
+c2e

k∑
t=0

ρk−tE
[
‖x̄t − x∗‖4

])
.

Adding above inequality and (B.12), we have

E
[
‖xk+1 − 1⊗ x̄k+1‖4

]
+ c

′
E

[∥∥∥y′k+1 − 1⊗ ȳ′k+1

∥∥∥4]
≤ 3 + ρ4

4
E
[
‖xk − 1⊗ x̄k‖4

]
+

(
1 + ρ4

2
+ (c1/c

′
+ 64c2)α

4
k

)
c
′
E

[∥∥∥y′k − 1⊗ ȳ′k
∥∥∥4]

+ (c1 + 64c2c
′
)α4

k

(
E
[
L4 ‖xk − 1⊗ x̄k‖2

]
+
L4

n2
E
[
‖x̄k − x∗‖2

]
+ c2e

k∑
t=0

ρk−tE
[
‖xt − 1⊗ x̄t‖4

]
+c2e + c2e

k∑
t=0

ρk−tE
[
‖x̄t − x∗‖4

])
. (B.16)

Denote

uk = E
[
‖xk − 1⊗ x̄k‖4

]
+ c

′
E
[
‖y′k − 1⊗ ȳ′k‖4

]
,

vk = E
[
‖x̄k − x∗‖4

]
, γk = αk
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and ρk = max
{

3+ρ4

4 , 1+ρ4

2 + (c1/c
′
+ 64c2)α

4
k

}
. Then by inequalities (B.7) and (B.16),

uk+1 ≤ ρkuk +Mγk
√
uk(1 + uk + vk) +Mγ2k

(
1 +

k∑
t=0

ρk−tut +
k∑
t=0

ρk−tvt

)
, (B.17)

vk+1 ≤ vk +Mγk
√
uk(1 + uk + vk) +Mγ2k

(
1 +

k∑
t=0

ρk−tut +

k∑
t=0

ρk−tvt

)
, (B.18)

where

M = max

{
2(c1 + 64c2c

′
)
(
L4 + c2e

)
, 27

(
3α0 +

32n

µ

)
(c2f + L4)

}
.

(B.17) and (B.18) are in the forms of (10) and (11) in Lemma 1.

Step 2. By the definitions of γk and ρk, there exists positive integer k0 such that γk, ρk
are [0, 1]-valued when k ≥ k0 (without loss of generality, suppose k0 = 0). Then condition (i) of
Lemma 1 holds.

Let φk = 1/α2
k. Obviously,

lim sup
k→∞

(
γk
√
φk +

φk−1
φk

)
= 2,

∞∑
k=0

φ−1k <∞,

lim inf
k→∞

(
γk
√
φk

)−1(φk−1
φk
− ρk

)
=

1− ρ2

4
> 0,

which implies the condition (ii) of Lemma 1. Then by Lemma 1, supk E
[
‖x̄k+1 − x∗‖4

]
<∞ and

sup
k

1

α2
k

(
E
[
‖xk − 1⊗ x̄k‖4

]
+ c

′
E
[
‖y′k − 1⊗ ȳ′k‖4

])
<∞.

The proof is complete. �

C Some technical results of proof of Theorem 4

Lemma C.1. [5] Let (Ω,F ,P) be a probability space and {Fk} be a nondecreasing sequence of
σ-algebra. Let {vk}, {ak}, {bk} and {φk} be sequences of nonnegative random variables adapted
to Fk. If

∑∞
k=1 ak <∞,

∑∞
k=1 bk <∞ almost surely and that for all k,

E[vk+1|Fk] ≤ (1 + ak)vk + bk − φk. (C.1)

Then {vk} converges to a finite random variable v∞ and
∑∞

k=1 φk <∞ almost surely.

Lemma C.2. [2, Proposition 2] Let (Ω,F ,P) be a probability space and {Fk} be a nondecreasing
sequence of σ-algebra. Let {∆k}, {µk} and {ηk} be sequences of random vectors in Rd, {γk} be
the nonnegative scalars. Id ∈ Rd×d be the identity matrix. If recursion

∆k+1 = (Id − γkG) ∆k + γk (µk + ηk) (C.2)

satisfies following conditions:
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(i) γk = O
(

1
kα

)
, α ∈ (1/2, 1).

(ii) G is a positive definite matrix.

(iii) µk has the decomposable structure µk = µ
(0)
k +µ

(1)
k , where µ(0)k and µ(1)k are both martingale

sequences adapted to Fk+1. In addition,

1√
k

k∑
t=1

µ
(0)
k

d→ N(0,Σ),

where 0 = (0 0 . . . 0)ᵀ ∈ Rd, and there exists a constant c such that

E

[∥∥∥µ(0)k ∥∥∥2 ∣∣∣∣Fk] ≤ c, E

[∥∥∥µ(1)k ∥∥∥2 ∣∣∣∣Fk] ≤ c‖∆k‖2. (C.3)

(iv) ηk is adapted to Fk+1 and 1√
k

∑k
t=1 ‖ηt‖ −→ 0 almost surely.

(v) ∆k is adapted to Fk, ∆k −→ 0 and 1√
k

∑k
t=1 ‖∆t‖2 −→ 0 almost surely.

Then
√
k

k∑
t=1

∆t
d→ N(0,G−1ΣG−1).

Lemma C.3. Suppose that Assumptions 1, 2 (with p > 2) and 3 hold. Then

1√
k

k−1∑
t=0

µ
(0)
t

d→ N

(
0,

1

n2
S

)
, (C.4)

where

µ
(0)
t := − 1

n

n∑
j=1

∇gj(x∗; ζj,t), S = Cov

 n∑
j=1

∇gj(x∗; ζj)

 .

Proof. We show (C.4) by [1, Lemma 3.3.1].

Denote

ξk,t =
µ
(0)
t√
k
, Sk,t = E

[
ξk,tξ

ᵀ
k,t

]
, Sk =

k−1∑
t=0

Sk,t,

Rk,t = E

[
ξk,tξ

ᵀ
k,t

∣∣∣∣ξk,0, · · · , ξk,t−1] .
Then Lemma C.3 falls into the setting of [1, Lemma 3.3.1]. We just need to verify the conditions
of [1, Lemma 3.3.1].

Since {µ(0)t } is a martingale difference sequence,

E

[
ξk,t

∣∣∣∣ξk,0, · · · , ξk,t−1] = 0,
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which implies the condition (3.3.1) of [1, Lemma 3.3.1].

Next, we verify the conditions (3.3.2)-(3.3.3) of [1, Lemma 3.3.1]. By the definition of ξk,t,

E [‖ξk,t‖p] = E

[∥∥∥∥∥
1
n

∑n
j=1∇gj(x∗; ζj,t)√

k

∥∥∥∥∥
p]

≤
∑n

j=1 E [‖∇gj(x∗; ζj,t)‖p]
nkp/2

≤
c
p/2
f

kp/2
, (C.5)

where the last inequality follows from Assumption 2. Then,

sup
k≥1

k−1∑
t=0

E
[
‖ξk,t‖2

]
≤ sup

k≥1

k−1∑
t=0

(E [‖ξk,t‖p])2/p ≤ sup
k≥1

kcf
k

= cf . (C.6)

Note that Sk,t = 1
k

1
n2 Cov

(∑n
j=1∇gj(x∗; ζj)

)
= 1

k
1
n2S,

Sk =

k−1∑
t=0

Sk,t =
1

n2
S. (C.7)

(C.6) and (C.7) imply the condition (3.3.2) of [1, Lemma 3.3.1]. Moreover, the fact Rk,t = Sk,t
almost surely implies the condition (3.3.3) of [1, Lemma 3.3.1] directly.

It is left to verify the condition (3.3.4) of [1, Lemma 3.3.1]. For any δ > 0, by the Hölder
inequality,

E
[
‖ξk,t‖2 1{‖ξk,t‖≥δ}

]
≤
(

E
[
‖ξk,t‖2(p/2)

])2/p(
E

[
1q{‖ξk,t‖>δ}

])1/q

= (E [‖ξk,t‖p])2/p P1/q (‖ξk,t‖ > δ)

≤ (E [‖ξk,t‖p])2/p
(

E [‖ξk,t‖]
δ

)1/q

≤
c
1+1/(2q)
f

k1+1/(2q)δ1/q
,

where p is defined in Assumption 2, q is the constant satisfying 2/p + 1/q = 1, the second
inequality follows from Markov inequality, the third inequality follows from (C.5). Then

lim
k→∞

k∑
t=1

E
[
‖ξk,t‖2 1{‖ξk,t‖≥δ}

]
≤ lim

k→∞

kc
1+1/(2q)
f

k1+1/(2q)δ1/q
= 0,

which implies the condition (3.3.4) of [1, Lemma 3.3.1].

Summarizing above, all the conditions of [1, Lemma 3.3.1] hold, then

1√
k

k−1∑
t=0

µ
(0)
t

d→ N

(
0,

1

n2
S

)
.

The proof is complete. �
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Lemma C.4. Suppose that Assumptions 1, 2 (with p > 2) and 3 hold. Then x̄k converges to x∗

almost surely.

Proof. By the recursion x̄k+1 = x̄k − αkȳk,

‖x̄k+1 − x∗‖2 = ‖x̄k − x∗‖2 − 2αk 〈x̄k − x∗, 1/n∇f(x̄k)〉
+ 2αk 〈x̄k − x∗, 1/n∇f(x̄k)− ȳk〉+ ‖αkȳk‖2

≤
(

1− µ

n
αk

)
‖x̄k − x∗‖2 + 2αk 〈x̄k − x∗, 1/n∇f(x̄k)− ȳk〉+ ‖αkȳk‖2 , (C.8)

where the inequality follows from the strongly convexity of f(·). Taking conditional expectation
on both sides of (C.8),

E
[
‖x̄k+1 − x∗‖2

∣∣Fk] ≤ ‖x̄k − x∗‖2 + 2αk

〈
x̄k − x∗, 1/n∇f(x̄k)−

1

n

n∑
j=1

∇fj(xj,k)

〉

+ E
[
‖αkȳk‖2

∣∣Fk]
≤
(
1 + α2

k

)
‖x̄k − x∗‖2 +

∥∥∥∥∥∥1/n∇f(x̄k)−
1

n

n∑
j=1

∇fj(xj,k)

∥∥∥∥∥∥
2

+ E
[
‖αkȳk‖2

∣∣Fk] , (C.9)

where the first inequality follows from the fact

E
[
ȳk
∣∣Fk] = E

 1

n

n∑
j=1

∇g(xj,k; ζj,k)
∣∣Fk
 =

1

n

n∑
j=1

∇fj(xj,k)

and the second inequality follows from the fact 2〈a, b〉 ≤ 2‖a‖‖b‖ ≤ ‖a‖2 + ‖b‖2. Denote

vk = ‖x̄k − x∗‖2 , ak = α2
k,

bk =

∥∥∥∥∥∥1/n∇f(x̄k)−
1

n

n∑
j=1

∇fj(xj,k)

∥∥∥∥∥∥
2

+ E
[
‖αkȳk‖2

∣∣Fk] .
Then (C.9) can be rewritten as

E[vk+1|Fk] ≤ (1 + ak)vk + bk,

which is in the form of (C.1) in Lemma C.1.

By the Lipschitz continuity of ∇fj(·),

∞∑
t=0

E

∥∥∥∥∥∥1/n∇f(x̄t)−
1

n

n∑
j=1

∇fj(xj,t)

∥∥∥∥∥∥
2 ≤ L2

n

∞∑
t=0

E
[
‖xt − 1⊗ x̄t‖2

]
≤ L2c̄

n

∞∑
t=0

α2
t <∞,
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and by the Lipschitz continuity of ∇gj(·; ζj),

∞∑
t=0

E
[
‖αtȳt‖2

]

=
∞∑
t=0

α2
tE

∥∥∥∥∥∥1/n
n∑
j=1

(∇gj(xj,t; ζj,t)−∇gj(x∗; ζj,t)) + 1/n
n∑
j=1

∇gj(x∗; ζj,t)

∥∥∥∥∥∥
2

≤
∞∑
t=0

α2
t

(
2L2/nE

[
‖xt − 1⊗ x∗‖2

]
+ 2cf

)
=

∞∑
t=0

O(α2
t ) <∞,

where the second equality follows from Lemma 2.

Monotone convergence theorem implies

∞∑
t=0

∥∥∥∥∥∥1/n∇f(x̄t)−
1

n

n∑
j=1

∇fj(xj,t)

∥∥∥∥∥∥
2

<∞,
∞∑
t=0

E
[
‖αkȳk‖2

∣∣Fk] <∞. (C.10)

Then
∑∞

k=1 bk < ∞ almost surely. By Lemma C.1, ‖x̄k − x∗‖2 converges to some random
variable.

Combine Theorem 3 with Fatou lemma,

E

[
lim inf
k→∞

‖x̄k − x∗‖2
]
≤ lim inf

k→∞
E
[
‖x̄k − x∗‖2

]
= 0.

Then x̄k converges to x∗ almost surely. The proof is complete. �
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