
A decomposition approach for integrated locomotive scheduling and

driver assignment in rail freight transport

Andreas Bärmann, Alexander Martin*, and Jonasz Staszek*

*Analytics and Optimization Lab

Technische Universität Nürnberg

Ulmenstr. 52, 90544 Nürnberg, Germany

{alexander.martin,jonasz.staszek}@utn.de, andreas.baermann@fau.de

July 2, 2024

Abstract

In this work, we consider the integrated problem of locomotive scheduling and driver assignment in rail

freight companies. Our aim is to compute an optimal simultaneous assignment of locomotives and drivers to

the trains listed in a given order-book. Mathematically, this leads to the combination of a set-packing prob-

lem with compatibility constraints and a multi-commodity-flow problem. We develop a binary-programming

formulation to model the given task and improve it by performing a clique-based tightening of the original

set-packing inequalities. The objective function of this model makes sure that as many trains as possible

are running. To handle the computational complexity of the problem, we introduce a novel decomposition

approach which decomposes the problem into a master locomotive scheduling problem and a subproblem

for driver assignment. It exploits the fact that the master problem is empirically much easier to solve than

the subproblem. For any fixed solution of the master problem, we can use the subproblem to either confirm

feasibility of the master solution or to derive valid inequalities from various constraint classes to cut the

infeasible master solution off and reiterate. To further improve solution times, we also develop a presolve

heuristic. We demonstrate the potential of the presented method by solving a large-scale real-world problem

instance provided by our industry partner DB Cargo Polska S.A., as well as a set of derived realistic instances.

Keywords: Integrated Locomotive Scheduling and Driver Assignment, Railway Transport, Integer Pro-

gramming, Decomposition, Cutting Planes

Mathematics Subject Classification: 90C90 - 90C10 - 49M27 - 90C57

1

1 Introduction

Over the last few decades, the efficiency of optimization algorithms and the available computing power have

grown so much that many real-world industrial planning problems which were once considered computationally

intractable can now be solved very fast in practice. More and more often, this allows for the solution of large-

scale resource planning tasks which previously had to be dealt with sequentially due to their complexity in an

integrated fashion. Naturally, this leads to a much better exploitation of synergies between the different planning

steps, as was asserted early on in the field (cf. e.g. Raff (1983)). This applies in particular to the planning of

railway systems, where the intermediate planning phases are highly interdependent. For example, the mutual

compatibilities of vehicles and drivers play a significant role for finding feasible assignments of staff and rolling

stock to the trains in the schedule. The use of optimization techniques is critical to ensure the best possible

utilization of the scarce resources (such as locomotives or the working time of drivers). While integrated planning

of vehicle and crew has long been studied and successfully implemented in bus transportation and airways (see

e.g. Huisman (2004) or Weide et al. (2010)), these results cannot be easily transferred to railway transportation

due to its significantly more complicated nature – both legal and organizational. Hence, only a few first attempts

have been made so far in assigning locomotives and their drivers jointly (cf. Dauzère-Pérès et al. (2015) and

Aksoy and Altan (2013)).

In the present work, we develop a binary-programming formulation for the integrated locomotive scheduling

and driver assignment problem. The objective function in this formulation ensures that as many trains as

possible are running. We then derive a formulation strengthening technique which consists in performing a

clique-based tightening of the original set-packing inequalities. To deal with the computational complexity of

the problem, we decompose the problem into a master locomotive assignment problem and a subproblem for

driver assignment. This is achieved by relaxing the constraints which ensure the mutual compatibility of drivers

and locomotives. We exploit the fact that the master problem is empirically much easier to solve than the

subproblem. Further, we introduce various classes of valid inequalities which can be seen as projections from

the integrated problem onto the space of locomotive variables. For any fixed solution of the locomotive master

problem, the driver subproblem either confirms its feasibility or computes such a valid inequality to cut the

infeasible master solution off and reiterate. We also develop a presolve heuristic to reduce the solution times

of the subproblem. Finally, we show how to extend our algorithm to an exact, globally optimal method by

incorporating combinatorial Benders cuts.

This study is – to the best of our knowledge – the first one to consider locomotive scheduling and driver

assignment in an integrated fashion. Concerning staff planning, we directly focus on driver assignment – we skip

the intermediate step of driver scheduling considered by other authors. This means that instead of first coming

up with a set of feasible driver shifts, the computed solution directly delivers an individual plan for each driver.

2

We also discuss the characteristics of both the rail freight transport and the problem we study which justify

such an approach. We evaluate our method in a detailed real-world case study. As we will see, the efficiency

of the chosen modelling and solution approach allows to solve the problem on a country-wide scale, computing

a globally optimal monthly plan for a major player in Poland, whereas other studies typically consider shorter

time spans or smaller geographical regions. The assignments generated could then be used as a “core” plan,

which may be considered to be a starting point for the creation of a full plan in the company. Moreover, the

algorithm delivers a monthly plan for both locomotives and drivers – covering nearly all of the trains – in less

than two hours, which is more than sufficient for the use of our methods in practice. In addition, we also perform

a number of additional experiments to “stress-test” the method at the hand of more demanding settings with

scarce resources and show that it still delivers high-quality solution in comparatively short time.

This article consists of six sections. After this introduction, we discuss the relevant literature from the field of

integrated vehicle and crew scheduling in Section 2, paying special attention to the works in the field of railway

planning. Next, in Section 3 we introduce the underlying mathematical model (formulated as a combination

of multi-commodity flow and set covering with compatibility, conflict and multiple-choice constraints) as well

as the formulation-strengthening approach. Further, in Section 4 we present the decomposition-based solution

approach described above. In Section 5, we show its effectiveness on problem instances provided by our industrial

partner, DB Cargo Polska, including “stress-tests” in situations where resources are scarce. Finally, we conclude

in Section 6, and give some directions for further research.

2 Literature overview

The topic of joint vehicle and crew scheduling in general has been treated quite extensively in the literature.

However, the primary focus of the research works in this field lies on urban transportation and airlines. Only a

few works considering joint vehicle and crew scheduling in the railway context can be found, although there is a

long history of vehicle scheduling and crew scheduling approaches studied individually here. For an overview of

the literature on railway vehicle scheduling, we refer the reader to Cordeau et al. (1998) and Piu and Speranza

(2014). A very thorough study of the literature on railway crew scheduling has been written by Heil et al.

(2020). In the following, we begin by discussing some approaches to duty scheduling, both as a stand-alone

problem and in conjunction with driver scheduling. We also discuss the reasons which allow us to skip this

planning step. Then we outline the literature on integrated vehicle and crew scheduling (which sometimes also

includes crew assignment).

Duty scheduling approaches The duty scheduling is a complex step in the planning process in the railway

industry, especially for rail passenger traffic. Unlike passenger trains, rail freight transportation is – to a

3

significant extent – a last-minute business (see Jütte and Thonemann (2012)). The existing literature suggests

that constantly changing order-books are normal to all rail freight carriers. For example, Heil et al. (2020)

mentions a case of a large European freight railway carrier, for whom at most 80% of all trains in the order-

book are regular trains, with the remaining 20% being added, cancelled or changed at short notice. Similar

proportions are reported by our industrial partner. In some cases, the order-books are completely irregular –

see Kumar et al. (2009). As a result, the standard operational planning horizon for rail freight carriers ranges

between a day and a month. Overall, the discussed phenomenon of frequent changes in the order-book limits

the usability of pre-planned rosters in the planning practice of rail freight carriers.

Nonetheless, a considerable amount of work which is significant to this article has been done in the field

of duty scheduling. Some authors (Caprara et al. (2001); Goumopoulos and Housos (2004); Koniorczyk et al.

(2015)) treat the duty generation step as a standalone problem. Others integrate it with crew rostering – for

instance, see Borndörfer et al. (2017b). For approaches in freight transportation, we refer the reader to Dalal

and Jensen (2001); Ernst et al. (2001); Guttkuhn et al. (2003); Khmeleva et al. (2014, 2018); Vaidyanathan

et al. (2007); Vaidyanathan and Ahuja (2015).

Taking into account the highly unstable nature of order-books, the approach we introduce skips the step

of duty generation. This way, the steps of duty scheduling and crew scheduling are merged into the crew

assignment step we consider in this work. To incorporate the working time constraints, which are usually dealt

with in the stage of duty generation, we consider the most popular types of such constraints (i.e. “short” breaks

after each shift, “long” breaks once a week, non-working days on weekends etc.) in the step of driver assignment.

Hence, the omission of duty generation causes no harm to the quality of driver rosters – they are compliant

with the key working time regulations. We would also like to point out that there exist some complex rules

(i.e. intra-shift break) which we leave of out the scope of our analysis, but which could – at least partly – be

incorporated in our approach (a more detailed discussion will follow in Section 3).

Integrated vehicle and crew scheduling First, it can be noted that a vast majority of the works in this

field studies bus or urban transportation systems. An excellent overview in this context was published by Ibarra-

Rojas et al. (2015). Exemplarily, we mention the works of Haase et al. (2001), Freling et al. (2003), Huisman

et al. (2005) Huisman (2004), Huisman and Wagelmans (2006), Mesquita and Paias (2008), Steinzen et al.

(2007), Borndörfer et al. (2008), Laurent and Hao (2008), Amberg et al. (2011), Boyer et al. (2018), Amberg

et al. (2019), Perumal et al. (2021)). Some works consider planning in airlines, see for example Cordeau et al.

(2001b), Mercier et al. (2005), Mercier and Soumis (2007), Weide et al. (2010), Dı́az-Ramı́rez et al. (2014),

Dunbar et al. (2014). Other areas for which integrated vehicle and crew scheduling models were developed

include postal delivery (Hollis et al. (2006)) and road transportation (Drexl et al. (2013)).

Following Ibarra-Rojas et al. (2015), we can divide the existing approaches to integrated vehicle and crew

4

scheduling problem into exact and heuristic ones.

Exact approaches Most of the exact solution methods are based on column generation. It is frequently used

together with Lagrangian heuristics to solve set partitioning/covering formulations of the problem, see e.g. Haase

et al. (2001), Freling et al. (2003) or Huisman et al. (2005)). These approaches are able to supply good-quality

solutions to relatively small instances within a three-hour period on a personal computer. Column generation

is also used with a different, quasi-assignment model by Gaffi and Nonato (1999). A different approach was

suggested by Borndörfer et al. (2008), who developed a Lagrangian relaxation method to solve the problem.

Based on these works, Mesquita and Paias (2008) developed a solution incorporating column generation for a

partitioning/covering model and dedicated branching rules. This allows them to solve larger instances and to

reduce computation time compared to e.g. Huisman et al. (2005) or Borndörfer et al. (2008).

Heuristic approaches An important contribution to heuristic approaches to the integrated vehicle and driver

scheduling problem was made by Huisman (2004). He proposes a kind of moving-horizon modelling which is

solved via Lagrangian-relaxation-based heuristics, column generation as well branch and bound algorithms.

Other heuristic approaches in the literature include Greedy Randomized Adaptive Search Procedures (GRASP)

(Laurent and Hao (2008), De Leone et al. (2011)), evolutionary algorithms (Steinzen et al. (2007)) as well as

local search algorithms (Valouxis and Housos (2002)).

We note that a considerable number of studies considers crews to be uniform or capable to work with any

vehicle (e.g. Gaffi and Nonato (1999), Freling et al. (2003), Laurent and Hao (2008) or Perumal et al. (2021)),

whereas the studies considering a limited crew-vehicle comparability are not as numerous (see e.g. Huisman

(2004), Hollis et al. (2006) or Boyer et al. (2018)). Similarly, while some works focus on only one type of

vehicles (such as Haase et al. (2001) or Mesquita and Paias (2008)), others include multiple types (see Gaffi and

Nonato (1999), Cordeau et al. (2001a), Borndörfer et al. (2008) or Amberg et al. (2019)).

Robust approaches In the context of integrated vehicle and driver scheduling for airlines, robust optimization

approaches play a significant role. For example, the works of Weide et al. (2010), Dück et al. (2012), Petersen

et al. (2012) and Dunbar et al. (2014) present models which attain robustness against delay propagation in the

schedule. While the methods developed in Dück et al. (2012), Petersen et al. (2012) and Dunbar et al. (2014)

minimize the sum of propagated delays, Weide et al. (2010) focuses on cost minimization.

Approaches to integrated vehicle scheduling, crew scheduling and rostering There are also some

studies which combine vehicle scheduling, driver scheduling and driver rostering. In Mesquita et al. (2013), the

authors propose a formulation combining set covering, multi-commodity flow and covering-assignment, which

is then solved by Benders decomposition. There are also some heuristic approaches to the combined problem,

5

such as Shen and Xia (2009) based on local search or Mesquita et al. (2011) based on an iterative MIP (mixed-

integer programming) heuristic. For the sake of completeness, we also mention that some works consider vehicle

and crew routing as well as scheduling jointly – on top of assigning crews and vehicles, they also decide on

the departure and arrival times of individual connections (see e.g. Lam et al. (2020)). We also mention the

work of Borndörfer et al. (2017a), who show an example of planning mobile tours of toll inspectors on German

motorways, for which they present an integrated vehicle routing and crew rostering model as well as a real-world

case study.

Integrated vehicle and crew scheduling in railway planning In a thorough study of the available

literature, we only found two works which attempt to solve the integrated vehicle and crew scheduling problem

in the context of railway transport. To the best of our knowledge, the first work in this field is due to Aksoy

and Altan (2013). Using a multi-commodity flow formulation with node demands, they optimize the flows

of locomotives and crews between yards (to which trains are assigned). Their objective is then to ensure the

required number of locomotives and crews are available at a yard at the beginning of a given day of a week while

minimizing the costs of moving each without a train. However, their model is a very coarse representation of the

necessities of the real-world planning process. It mainly captures the flow balance for drivers and locomotives

between yards in order to perform a capacity planning matching the number of required drivers and locomotives

on each day of the week. Their model does not include an assignment of concrete drivers and locomotives to

the trains to be staffed. Further, it does not include many of the critical constraints for ensuring the feasibility

of such an assignment, like the working time constraints of the drivers. The computational results they show

only feature a trivial instance with 3 yards, with no mentioning where the data came from.

Compared to Aksoy and Altan (2013), the model we present includes a detailed representation of the standard

operational requirements, including various locomotive types and non-uniform skills of the drivers. Moreover,

we derive a novel, efficient algorithmic solution approach based on problem decomposition, cutting planes and

a dedicated preprocessing. The quality of the resulting model and the performance of the dedicated solution

algorithm are demonstrated at the hand of real-world, country-scale problem instances provided by DB Cargo

Polska.

Our work is further related to that of Dauzère-Pérès et al. (2015), who focus on vehicle scheduling and

crew scheduling in railway passenger traffic. Similar to us, they start from the relaxation of the coupling

constraints between driver and locomotive assignment. Then they use a Lagrangian relaxation heuristic to

obtain high-quality solutions. They also describe their computational and implementation experience gathered

in collaboration with their industrial partner, the French national railway carrier SNCF. In comparison to

Dauzère-Pérès et al. (2015), our case study is significantly more comprehensive in that it is based on country-

wide data for a whole month, whereas they focus on a single region and a time horizon of one week.

6

Our contribution Most notably, we consider the integrated vehicle scheduling and driver assignment problem

in the railway industry. This means, unlike the other two works discussed above, our model includes assigning

concrete drivers to concrete trains to be staffed, including detailed working time requirements – which are not

explicitly stated in Dauzère-Pérès et al. (2015). To achieve this goal, we propose an efficient decomposition-

based solution approach, which takes advantage of custom valid inequalities (implemented as cutting planes)

and a dedicated preprocessing. Further, our approach can solve instances which are about five times larger than

those presented in Dauzère-Pérès et al. (2015).

The performance of our solution algorithm is demonstrated at the hand of real-world, country-scale problem

instances provided by DB Cargo Polska.

3 Problem modelling

In the following, we will present our mathematical model for integrated locomotive scheduling and driver ros-

tering. We start by introducing the modelling requirements and restrictions we took into account to construct a

first, basic version of the model. Then a technique for improving the model formulation – clique tightening – will

be discussed. We emphasize that the presented model accurately represents the real-world planning challenge

as defined by our industrial partner, a major provider of rail freight traffic in Poland. At the same time, our

modelling allows for the application of the approach in many different countries, not only Poland, via parameter

choices or straightforward model extensions.

3.1 Overview of modelling requirements and assumptions

A key question for optimizing the use of locomotives and drivers is: how many of the planned trains in the

order-book can be carried by compatible locomotives and served by drivers with appropriate licenses given the

scarce resources at hand at a railway company? The model developed here is thus intended to find such an

assignment of drivers and locomotives to the pre-scheduled trains, with the aim that as many of them as possible

can run.

Our model considers three distinct blocks of requirements and restrictions; they are related to (i) drivers,

(ii) locomotives and (iii) mutual compatibilities between locomotives, drivers and the trains. All necessary

information about the trains to be performed is given in the so-called order-book – a data set containing

details about the origin and destination station of each train, its planned departure and arrival times as well as

locomotive and driver requirements. In our modelling, we include numerous classical working time constraints,

encountered across numerous geographies. This includes maximum shift length, minimum break between shifts,

a longer break once a week and a specified day off every few weeks. We also account for the fact that the drivers

are usually assigned to a planned region and that some shifts need to start or end in that region. Additionally,

7

to distinguish between individual weeks in longer time horizons, we will use the notion of calculation weeks –

which are subsequent, non-overlapping planning periods, spanning seven days each. In this work, we will consider

time frames spanning from one week to one month. More details about the individual instances considered are

included in Section 5. Given the above information, we can use an indirect modelling of time and space to keep

the size of the resulting model small. In particular, we will model time and space via mutual compatibilities

and conflicts of individual trains.

In the next subsections, we will introduce the modelling requirements and restrictions we took into account

when deriving the model presented later. They pertain to all the three constraint groups mentioned above. We

will also discuss the modelling requirements and restrictions taken into account when deriving the objective

function. The requirements stem from physical and legal conditions and hence must not be violated. The

restrictions reflect the planning practice of our industrial partner; therefore, we provide a short rationale for

each of them and also mention in which way they could be extended to consider other planning practices. Thus,

although our model strongly reflects the tasks that are faced by planners in Poland, it is still a general approach

which can be adapted to other regions via modifications of the assumptions stated below.

3.1.1 Driver restrictions and requirements

This subsection presents restrictions and requirements related to the planning of drivers. They comprise the

standard types of driver-related limitations (e.g. working time, assignment to regions etc.) as well as the planning

practice of the industrial partner.

Requirements One of the commonly encountered requirements which we include in our work prescribes that

drivers work for some maximal number of hours. We model this maximal length of a shift with a parameter

cshift. It is also a standard requirement that the driver has to rest for at least a stipulated minimal time after

each shift. Such a minimal rest time will be defined by a parameter cshort. We will call a break following each

shift a short break. Yet another standard operational limitation consists in ensuring that each driver has at

least one long break, defined as a longer period of uninterrupted rest, per calculation week. The duration of the

long break is modelled by the parameter clong. We also assume that the entire duration of the long break must

be incorporated in full within one week. Another constraint which is frequently seen in the literature requires

the driver to have a specific day of week off once every few weeks. In our approach, we assume that the day off

is Sunday, although it could well be any other day of week. Moreover, the frequency in which the day off shall

be granted will be modelled by the parameter csunday, which denotes the maximal number of working Sundays

per month. Another common planning practise is to assume that every driver has a set of “licensed” train

routes (e.g. origin-destination pairs). We may assign the driver only to trains traversing these routes. We also

need to consider the fact that each driver is licensed to a limited number of locomotive classes, and only these

8

locomotive classes can be assigned to the considered driver. We require that this be unconditionally respected.

Table 1 presents a summary of the parameters used for modelling the working time constraints.

Name Description

cshift Maximal duration of shift in hours
cshort Minimal duration of short break in hours
clong Minimal duration of long break in hours
csunday Maximal count of working Sundays per driver in a month

Table 1: Parameters for the working time constraints

Restrictions Our industrial partner assigns drivers to one of three planning regions, corresponding to a

geographic subdivision of Poland into three regions – roughly south, west and east. We assume that we are free

to schedule drivers to any train they are licensed to drive. However, per company directive a driver’s first job in

the planning period must start in the home region of the driver. Similarly, the drivers’ last job in the planning

period has to end in the respective home region to which they are assigned. As a consequence, we are free to

let drivers rest in hotels if they end their work away from their home region. Based on real-world practice, we

take it that sometimes drivers are brought to the first train in the shift by car. We also assume that drivers

rest in the location of the destination station of the last train of their shift. In our modelling, we grant the

drivers a short break plus transportation time if a transport is required. We could easily extend the model to

accommodate to other rules regarding work location by adapting the availability of drivers to drive trains far

away from their planning region.

As per the planning practise of our industrial partner, we do not consider intra-shift breaks in the following.

We would like to point out that such breaks are required, among others, in Germany, Denmark and Sweden (cf.

Bach et al. (2016)). Indeed, our approach can easily be generalized to account for at least some of such rules

– for example by enforcing a break of fixed length after each served train. This could be achieved by a slight

redefinition of one of the sets required for constraint construction (discussed later in this section).

It should also be mentioned that the constraints on the maximal working time per a given time unit are not

included in our modelling. Such constraints are frequently seen in many EU countries. Although this is the

case for Poland too, the maximal working time is calculated on a quarterly basis though rather than monthly

or weekly. Since the maximal size of our instances is one month, as per the industrial partner’s directive we

decided against the inclusion of these considerations in our model. We would also like to point out to the fact,

that such constraints could easily be integrated into our modelling.

We further do not consider the possibility to perform training rides (aiming at maintaining and extending

the set of routes to which a driver is licensed) as this would result in an overmodelling – since the validity of a

route in the set of “licensed” routes in Poland is 180 days, such decisions need to be made on a tactical or even

9

strategic level, depending on the planned order portfolio. They could easily be integrated, however, by excluding

the drivers from serving any trains during their training periods, and by directing appropriate locomotives to

the corresponding stations (by fixing the relevant variables). A similar argument holds for extending the drivers’

certification to a new locomotive type – given the price of new locomotives, such decisions are usually made on

a strategic level, whereas we focus on the operational activities.

We assume that at most one driver can be staffed to a train. Unlike public transport and airline industry,

this is standard operational practice at our industrial partner. Nevertheless, our model could be extended to

allow for multiple drivers in one train by changing one constraint group from set packing to set cover. While

we would gain another degree of freedom to transport crew via deadheading, this would result in a different

problem structure and would require a separate study of polyhedral properties.

3.1.2 Locomotive restrictions and requirements

Next, we will discuss the restrictions and requirements related to the planning of locomotives. We include many

of the constraints frequently encountered in this field as well as the particular planning practice of our industrial

partner.

Requirements Concerning the locomotives, the basic requirements we consider comprise their tractive power

and their source of energy (electricity or diesel). A locomotive needs to have sufficient horsepower to carry a

given train, and the availability of catenaries needs to be taken into account. Further, unlike drivers, locomotives

may only pick up trains in the location where their previous train has ended.

Restrictions For the sake of simplicity, we assume that we are free to select the starting location of each

locomotive. It is, however, straightforward to consider the actual starting locations of the locomotives by

restricting the respective set of initial trains they can cover. Additionally, we assume that locomotives only

move when carrying a train. Note here that we do not plan any so-called empty runs of locomotives in our

model (also known as deadheading), i.e. trips of locomotives without a train in order to place them where they

are needed next. We instead assume that empty runs are pre-planned and thus already part of the order-

book. We decided for such an approach to the inclusion of empty runs in our modelling in order to better

reflect the planning practise of the industrial partner, even if this sometimes results in a slight less-than-100%

coverage of the trains scheduled therein. While differentiating between “normal” trains and empty runs would

be interesting, for the ease of exposition, we chose not to incorporate this distinction, as this would have required

additional notation. On the other hand, it is straightforward to include it in the model. Additionally, as empty

run generation would require us to add new connections to the existing order-book, the problem studied would

fall into the realm of train scheduling problems. It would also considerably increase the scope of the planning

10

challenge considered in the work. Hence we decided to remove it from the scope of the integrated locomotive

scheduling and driver assignment problem studied here.

We further take it that only one locomotive is required to carry each train. This limitation is again drawn

from the operational practice of our industrial partner and could be at least partially lifted by a slight change in

the modelling approach. Further, since some trains in the instances supplied are carried by locomotives which

are not the property of our industrial partner, we require that for each of these trains a “virtual” locomotive

exists which is capable of carrying only that one train. For such trains, we only need to find a suitable driver.

Finally, it should be mentioned that the maintenance needs of locomotives are not included directly in our

model, since planning the time and location of maintenance periods is largely a different planning problem. We

should also note that maintenance constraints constitute a critical part of the planning chain, both for freight

and passenger transportation, where the vehicles frequently do not return to the their depots for several weeks.

However, we could easily accommodate for at least the basic, daily maintenance schedules by making sure that

the locomotive stays at the maintenance station for a sufficiently long time between carrying trains.

3.1.3 Compatibilities of locomotives, drivers and trains

Further, we summarize the requirements and the restrictions imposed by our industry partner which are related

to the mutual compatibilities between locomotives, drivers and trains.

Requirements We require that each train be served by a driver who is licensed to the route of the train

and to the employed locomotive type as described in Subsection 3.1.1. We also enforce that a locomotive have

enough horsepower and that it be operated via an appropriate source of energy, see Subsection 3.1.2.

Restrictions Normally, the planners make an indication of the locomotive type which shall serve each train

already at the stage of constructing the order-book. We relax this assumption and allow that a train is carried

by any locomotive having sufficient power and an appropriate energy source. Therefore, in many cases we can

benefit from the ability to choose between more locomotive types than just the stipulated one.

3.1.4 Restrictions and requirements pertainingpertainting to the objective function

Last, we summarize the requirements and the restrictions related to the formulation of the objective function.

Requirements The basic requirement in the objective function is that as many trains as possible are running.

A train is running if and only if both a driver and a locomotive was assigned to it.

Restrictions In this work, we measure the quality of solutions only by the number of trains running. Such a

decision is due to the unstable nature of rail freight, manifesting itself in the great variability of the order-book

11

in time (see Section 2 for a more detailed discussion). This innate instability in the order-book, together with

the shortage of both locomotives and train drivers in the entire European market, justifies the choice of the

largest number of trains running as the measure of quality of the solutions returned by our algorithm. An

interesting further research avenue would be to also include cost aspects, as well as driver satisfaction measures

in the objective function, as many of these could easily be integrated into our modelling.

3.2 The optimization model

We now model the optimization problem described above as a combination of a set-packing problem with

compatibility, conflict, and multiple-choice constraints and a multi-commodity-flow problem. Our objective is

to maximize the number of trains performed, i.e. the number of trains for which both a locomotive and a driver

can be found. The inputs to the model are a set T of trains to be performed, a set of locomotives L and

a set of drivers D. Moreover, let us define the set S of stations which contains the origins and destinations

of all trains. For each train t ∈ T , we consider its origin o(t) ∈ S, its arrival station a(t) ∈ S as well as its

departure time s(t) ∈ R and arrival time e(t) ∈ R. Additionally, for each driver d ∈ D let H(d) ⊂ S denote

the stations which belong to the home region of that driver. To denote the subsets of locomotives compatible

with a driver d ∈ D or a train t ∈ T , we use L d and L t respectively. Let Dl and Dt represent the sets of

drivers compatible with a locomotive l ∈ L or a train t ∈ T respectively. We also define T l and T d as the

subsets of trains compatible with a locomotive l ∈ L or a driver d ∈ D respectively. We notice that some of

the locomotives l ∈ L have exactly the same sets of compatible trains T l and compatible drivers Dl as other

locomotives in L . In order to make the locomotive part more compact, we partition L into subsets L in which

all locomotives l ∈ L have the same set of compatible trains T l. We call this partition L, and a subset L ∈ L

is called a locomotive class. Further, we define TL ⊆ T as the set of trains compatible with a locomotive class

L ∈ L and denote by Lt ⊆ L the set of locomotive classes compatible with a given train t ∈ T . Additionally,

Ld ⊆ L shall denote the subset of locomotive classes compatible with a given driver d ∈ D, and DL shall denote

the set of drivers compatible with a locomotive class L. Finally, we use W ⊂ N to denote the set of calculation

weeks.

Before building the model, we also perform an initial preprocessing of the drivers, locomotives and trains

sets. If, for a train t ∈ T and for a locomotive class L ∈ Lt no suitable driver can be found (or Dt ∩DL = ∅),

we remove the locomotive class L from Lt. We also remove the train t from the set TL. Similarly, if for a train

t ∈ T and for a driver d ∈ Dt, no suitable locomotive can be found (or Lt ∩ Ld = ∅), we remove the driver d

from Dt. We also remove the train t from the set T d.

We also make a number of modeling assumptions, required for the construction of the optimization model.

It is apparent that every driver shift is characterized by a distinct first and last train (job). Hence, as we assume

that we may plan at most one driver to drive each train, any train t ∈ T d can be a first job or a last job in a

12

shift for at most one driver d ∈ D. This assumption does not apply to the jobs which we later denote as the

ones, whose arrival time indicates the beginning of the long break. For these we allow that the arrival time of

one train determines the beginning time of the long break for an arbitrary number of drivers. Such a deviation

is due to a different nature of the long break – rather than at the end of each shift, it needs to be fully included

in the respective calculation week. Thanks to this assumption, we ensure that a long break can be planned for

all the drivers d ∈ D. This assumption is not equivalent to allowing multiple drivers to drive the same train

– in our model, trains (and in particular their arrival times) serve as a proxy for modeling time directly, and

nothing precludes multiple drivers from starting their long breaks at the same time. Technically, deciding when

to start a driver’s long break is modeled by a different set of variables than assigning a driver to drive a train.

Moreover, we do not allow the long break to take place between two calculation weeks. We also do not admit

moving the long break to another calculation week – in other words, the long break must be fully included in

the calculation week it pertains to. Hence, only a subset of trains within the calculation week may serve as an

indicator of the beginning of the long break. For extreme cases (e.g. few trains over a long time period), this

might result in infeasible assignments – namely because there are not enough “long-break beginnings” for all

drivers. However, this usually does not occur in practice. We also allow the long break to actually be longer

than clong hours to the benefit of the drivers.

To facilitate the understanding of this long-break requirement, let us consider an example. Assume that

each calculation week starts on a Monday at 0:00 and ends on the subsequent Sunday at 23:59. We also

assume that the long break needs to be 48 hours long (or clong = 48). Then a train t1 departing on Monday

at 13:00 and arriving at 15:00 is a feasible beginning of the long break, as the break would last from Monday

15:00 to Wednesday 15:00 and so would be fully included in the calculation week. A different train, t2, which

departs on Friday at 23:30 and arrives on Saturday at 1:30, is not a feasible long break beginning, since the

corresponding long break would not be fully included in the same calculation week. In particular, it would end

on the subsequent Monday at 1:30 – a time-point which belongs to the subsequent calculation week.

Sets and parameters required for constraint construction We also introduce a number of sets required

to build the constraints of the model. They represent the relationships between trains to incorporate the assump-

tions and requirements discussed in Subsection 3.1. For example, they list the trains which run simultaneously

to another one, or trains which could be served successively. In Table 1, we had already introduced parameters

which allow for the modification of sets and constraints pertaining to the working time regulations. This way,

our approach is general and hence it may easily be applied for various companies in different countries.

Table 2 presents a summary of the sets required for constraint building. Their exact definitions can be found

in Appendix A. For ease of notation, we write t1 ≤ t2 for two trains t1, t2 ∈ T if t2 departs at the same point

in time or later than t1.

13

Name Description

TB+
t,d Trains unassignable to driver d if train t is the last job in a shift

TLB+
t,d Trains unassignable to driver d if t is their last job before a long break

TB-
t,d Trains unassignable to driver d if t is their first job in a shift

Tweek assignment
w,d Trains which belong to calculation week w for a driver d

Tweek
w,d Trains which belong to calculation week w and are suitable as the last ones

before a long break for a driver d

T sunday
w,d Trains which belong to the Sunday in calculation week w for a driver d

T shift beginning
t,d Preceding trains assignable to driver d if he is assigned to train t

T shift end
t,d Future trains assignable to driver d if he is assigned to train t

T time
t,d Trains which are feasible for driver d and in time conflict with train t

T time global
t Trains which are in time conflict with the train t ∈ T

T after break
t,d Trains which can be the first job of the next shift of driver d after his short

break if t is the last train in his previous shift

T before break
t,d Trains which can be the last job of the previous shift of driver d before the

short break if t is the first train in his next shift

T next
t,L Future trains assignable to locomotive class L if it is assigned to train t

Table 2: Descriptions of the sets required for constraint construction

Multi-commodity flow part of the model – the locomotive assignment We consider the set L of

locomotive classes as commodities which need to be “routed” through a directed graph G = (V ,A), defined

via

V := T ∪ {Σ,Θ}

and

A := {(t1, t2) | t1 ∈ TL ∧ t2 ∈ T next
t1,L ∀L ∈ L}.

with Σ,Θ ∈ V being the source and sink nodes of G respectively. They are artificial nodes and do not

represent any actual trains. In our model, we will represent each individual locomotive class as a separate

commodity. The choice of an arc a = (t1, t2) ∈ A by a locomotive class means that a locomotive of this class

first serves train t1 and directly afterwards train t2. As an abbreviation for the outgoing and the incoming arcs

of a node t ∈ V in the graph G , we use δ+(t) and δ−(t) respectively. Further, for each L ∈ L we denote with

A L ∈ A the subset of arcs which are compatible with the locomotive class L.

Per definition of the set A , a locomotive class may be chosen for a given arc if it is compatible with both

the first and the second corresponding train. Further, each arc shall have unit capacity, i.e. it can be chosen by

at most one locomotive class.

After solving the model, assigning a specific, individual locomotive to arcs and nodes in the flow network

14

G becomes a straightforward task. We obtain a solution in the form of directed paths through the network,

connecting the source node Σ to the sink node Θ for all the locomotive classes L ∈ L. To make the locomotive

assignment concrete, we only need to assign each of the paths to an actual locomotive in the class L ∈ L.

Decision variables In our model, we need to make sure that each train t ∈ T is staffed with exactly one

suitable driver d ∈ Dt and one locomotive of suitable class L ∈ Lt if it shall run. The decision to assign driver

d ∈ Dt to a train t ∈ T is modelled by the binary variables xt
d. The binary variable f t1,t2

L models the decision

to have locomotive class L ∈ Lt1 ∩ Lt2 carry the two trains t1, t2 ∈ T in direct succession.

To comply with the working time requirements, we need to consider the first and the last job in the shift of

a driver explicitly. The binary variable ytd asks if train t ∈ T d is the first job of a driver d ∈ D on the respective

shift. Similarly, the binary variable vtd models the choice of the last job in a shift before a short break. The

binary variable ztd asks if the arrival time of train t indicates the beginning of the long break for driver d. We

also need to know whether a driver d ∈ D works on the Sunday of week w. This is determined by the binary

variable hw
d .

Finally, for modelling purposes we also need to know which trains t ∈ T d are the first and the last job for

driver d ∈ D in the planning period. We do that with the help of the binary variables αt
d and ωt

d, respectively.

While several of the choices are similar in structure, we believe that this level of detail in the presentation is

important to precisely convey the information about the individual working time constraints. All in all, the

variables are summarized in Table 3.

Name Description Type

fu,v
L Trains u, v are served by locomotive class L in direct succession binary

xt
d Train t is served by driver d binary

ytd Train t is the first job of driver d in the respective shift binary

vtd Train t is the last job of driver d before a short break binary

ztd The arrival time of train t indicates the beginning of the long break for driver d binary

αt
d Train t is the first train of driver d in the planning period binary

ωt
d Train t is the last train of driver d in the planning period binary

hw
d Driver d works on the Sunday of calculation week w binary

Table 3: Summary of decision variables used in the model

Model formulation We can now state a full formulation of the joint locomotive scheduling and driver

assignment problem we consider in this work as a binary optimization problem:

max
∑
t∈T

∑
d∈Dt

xt
d (1.1)

15

s.t. xt1
d ≤

∑
L∈Lt1∩Ld,

t2:(t1,t2)∈A L

f t1,t2
L

(∀t1 ∈ T)

(∀d ∈ Dt1)
(1.2)

∑
t2:(t1,t2)∈A L

f t1,t2
L ≤

∑
d∈DL∩Dt1

xt1
d

(∀t1 ∈ T)

(∀L ∈ Lt1)
(1.3)

∑
d∈Dt

xt
d ≤ 1 (∀t ∈ T) (1.4)

∑
t∈Td

αt
d ≤ 1 (∀d ∈ D) (1.5)

∑
t∈Td

ωt
d ≤ 1 (∀d ∈ D) (1.6)

xt
d + xt1

d ≤ 1

(∀d ∈ D)

(∀t ∈ T d)

(∀t1 ∈ T time
t,d)

(1.7)

ytd + xt1
d ≤ 1

(∀d ∈ D)

(∀t ∈ T d)

(∀t1 ∈ TB-
t,d)

(1.8)

vtd + xt1
d ≤ 1

(∀d ∈ D)

(∀t ∈ T d)

(∀t1 ∈ TB+
t,d)

(1.9)

ztd + xt1
d ≤ 1

(∀d ∈ D)

(∀t ∈ T d)

(∀t1 ∈ TLB+
t,d)

(1.10)

vtd ≤ ωt
d +

∑
t1∈T after break

t,d

yt1d
(∀d ∈ D)

(∀t ∈ T d)
(1.11)

ytd ≤ αt
d +

∑
t1∈Tbefore break

t,d

vt1d
(∀d ∈ D)

(∀t ∈ T d)
(1.12)

xt
d ≤

∑
t1∈T shift beginning

t,d

yt1d
(∀d ∈ D)

(∀t ∈ T d)
(1.13)

xt
d ≤

∑
t1∈T shift end

t,d

vt1d
(∀d ∈ D)

(∀t ∈ T d)
(1.14)

16

xt
d ≤

∑
t1∈Tweek

w,d

zt1d

(∀w ∈ W)

(∀d ∈ D)

(∀t ∈ Tweek assignment
w,d)

(1.15)

αt1
d ≤

∑
t2∈Td:t2≥t1

ωt2
d

(∀d ∈ D)

(∀t1 ∈ T d)
(1.16)

xt
d ≤ hw

d

(∀d ∈ D)

(∀w ∈ W)

(∀t ∈ T sunday
w,d)

(1.17)

∑
w∈W

hw
d ≤ csunday (∀d ∈ D) (1.18)

ytd ≤ xt
d

(∀d ∈ D)

(∀t ∈ T d)
(1.19)

vtd ≤ xt
d

(∀d ∈ D)

(∀t ∈ T d)
(1.20)

αt
d ≤ xt

d

(∀d ∈ D)

(∀t ∈ T d)
(1.21)

ωt
d ≤ xt

d

(∀d ∈ D)

(∀t ∈ T d)
(1.22)

∑
t0:(t0,t1)∈A L

f t0,t1
L −

∑
t2:(t1,t2)∈A L

f t1,t2
L = 0

(∀L ∈ L)

(∀t1 ∈ TL)
(1.23)

∑
L∈Lt2

∑
t1:(t1,t2)∈A L

f t1,t2
L ≤ 1 (∀t2 ∈ T) (1.24)

∑
t∈TL

fΣ,t
L ≤ |L| (∀L ∈ L) (1.25)

∑
t∈TL

fΣ,t
L −

∑
t∈TL

f t,Θ
L = 0 (∀L ∈ L) (1.26)

xt
d ∈ {0, 1}

(∀t ∈ T)

(∀d ∈ Dt)
(1.27)

ytd ∈ {0, 1}
(∀t ∈ T)

(∀d ∈ Dt)
(1.28)

vtd ∈ {0, 1}
(∀t ∈ T)

(∀d ∈ Dt)
(1.29)

17

ztd ∈ {0, 1}
(∀t ∈ T)

(∀d ∈ Dt)
(1.30)

αt
d ∈ {0, 1}

(∀t ∈ T)

(∀d ∈ Dt)
(1.31)

ωt
d ∈ {0, 1}

(∀t ∈ T)

(∀d ∈ Dt)
(1.32)

hw
d ∈ {0, 1}

(∀d ∈ D)

(∀w ∈ W)
(1.33)

f t1,t2
L ∈ {0, 1}

∀L ∈ L

∀(t1, t2) ∈ A L.
(1.34)

With objective function (1.1), we maximize the number of trains running. Constraints (1.2) and (1.3) make

sure that either both a locomotive and a driver are assigned to a train or none of them; they also take care

that driver and locomotive are mutually compatible. With (1.4), we ensure that at most one driver is assigned

to a train. Constraints (1.5) and (1.6) enforce that each driver has a unique first and last job respectively.

Using constraint (1.7), we ensure that no two trains which run simultaneously are assigned to the same driver.

With (1.8) and (1.9), we model that the minimal length of a short break shall not be violated. Additionally,

with (1.10) we require the integrity of the long break. Using (1.11), we make sure that each last job t in a shift

is succeeded by a first job of the next shift, or that the job t is the last one assigned to driver d in the plan.

Similarly, with (1.12) we ensure that each first job t in a shift is predecessed by a last job of the previous shift,

or that the job t is the first one assigned to driver d in the plan. Constraints (1.13) and (1.14) enforce the

selection of variables denoting the beginning and the end of a shift. Via (1.15), we make sure that at least one

long break per week is assigned to each driver in each week in the planning period. With the help of (1.16),

we achieve that the last job of a driver in the plan is either the same or a later one as the first job in the plan.

Using constraints (1.17) and (1.18), we guarantee that a driver works on at most csunday-many Sundays in a

given planning period. Constraints (1.19), (1.20), (1.21) and (1.22) tie each shift variable to the corresponding

staffing variable.

For the locomotive part of the model, (1.23) ensures that a locomotive that serves a train t arrives at its

origin station and in the due time, and that similarly it later departs from the arrival station of train t. With

constraint (1.24), we make sure that at most one locomotive class L ∈ Lt2 is selected to serve a train t2 ∈ T .

Constraint (1.25) ensures that the number of locomotives of a given class used in the plan does not exceed

the cardinality of the locomotive class. Via (1.26), we assure the integrity of the locomotive schedule. Finally,

constraints (1.27) – (1.34) require all decision variables to be binary.

18

3.3 Model preprocessing – clique tightening

Model (1) is very complex, mostly due to its size. We will now consider a way to reduce the number of constraints

needed, which usually greatly benefits the computations times. Namely, we will use clique tightening to improve

the formulation of the conflict constraints.

Consider the conflict constraints (1.7), (1.8), (1.9) and (1.10). They all refer to a situation in which at most

one of the considered trains can be assigned to the same driver. With a growing number of trains, the number

of such constraints will grow cubically. For all drivers d ∈ D, we construct a graph Gd
time = (Vd

time, Ed
time), where

Vd
time := T d and Ed

time := {(t1, t2) : t1 ∈ T d ∧ t2 ∈ T time
t1,d

}. For the exemplary case depicted in Figure 1a, the

resulting conflict graph Gd
time is presented in Figure 1b.

00:00 02:00 04:00 06:00 08:00

time

t3

t4

t2

t1

t5

(a) Train schedule

t1

t5 t2

t4 t3

(b) Resulting conflict graph

Figure 1: Example of a time conflict graph

We notice that a grouping of the nodes in this graph to cliques can be employed to come up with stronger

constraints. Obviously, each edge of the graph itself induces a 2-clique in the graph. We are now interested in

finding fewer, but larger cliques in order to express an equivalent, smaller set of constraints. In order to do so,

we need to make sure that each edge is covered by at least one of the cliques. This can be achieved by searching

for a (minimal) clique edge cover of the graph Gd
time.

Proposition 3.1. Let Cd
time be a clique edge cover of the graph Gd

time. Then constraint (1.7) is equivalent to the

following constraint:

∑
t∈C

xt
d ≤ 1 (∀d ∈ D) (∀C ∈ Cd

time). (1.7b)

In the example from Figure 1b, we can use the two cliques C1 := {t1, t3, t4, t5} and C2 := {t1, t2, t3} to

construct two conflict constraints which are equivalent to the eight constraints induced by the individual edges.

This reformulation also results in a tighter description of the underlying convex hull of feasible solutions (see

e.g. Brito and Santos (2021)).

For the remaining constraints (1.8), (1.9) and (1.10), we can further extend this concept by a slight redefi-

nition of the conflict graph. We outline the derivation at the hand of the backward-break conflict constraints,

19

represented by constraint (1.8). For all drivers d ∈ D, we construct a graph Gd
back break = (Vd

back break, Ed
back break).

The vertex set is defined as

Vd
back break := Vd

X ∪ Vd
Y , with Vd

X := T d × {1}, Vd
Y := T d × {2},

i.e. Vd
back break contains two copies of each node in T d. For ease of notation, we will write tX ∈ VX and tY ∈ VY

instead of (t, 1) ∈ Vd
X and (t, 2) ∈ Vd

Y respectively, with the understanding that t ∈ T d holds in each case.

The vertices in VX correspond to the respective x-variables, while those in VY correspond to the respective

y-variables. The edge set is then defined as

Ed
back break := {{tX , tY } : tX ∈ Vd

X ∧ tY ∈ Vd
Y ∧ tX ∈ TB-

tY ,d} ∪ {{t1Y , t2Y } : t1Y , t
2
Y ∈ Vd

Y ∧ t2Y ∈ TB-
t1Y ,d}.

There are two kinds of edges in Ed
back break. The first of them corresponds to conflicts between x-variables and

y-variables, and the second represents conflicts only between y-variables, which are implied by other constraints,

as explained in the following.

Since for a given driver d ∈ D no nodes in Vd
X are connected to each other, each clique in Gd

back break contains

at most one node from the vertex set Vd
X . For the construction of constraints, we are interested in the cliques

which contain at least one node from Vd
X , i.e. one x-variable. Such cliques will be referred to as constraint-

generating cliques. Note that we can safely omit cliques containing only nodes from Vd
Y , since – thanks to

constraint (1.19) – the resulting conflict constraints will be dominated by the constraints generated from cliques

including nodes from both Vd
X and Vd

Y . One obvious extension of the approach would be to include all the edges

induced by time conflicts (from Gd
time) also between the nodes in Vd

X . To save computation time, we decided

to include only those conflicts which are not already represented in Gd
time – this reduces the number of edges,

which led to a smaller number of cliques to be considered in our experiments in Section 5.

We now define C d
back break to be the set of all maximal cliques in Gd

back break for all drivers d ∈ D. Based on

this set, we define a set of constraint-generating cliques for each train t ∈ T d as the subset of maximal cliques

containing the node tX ∈ Vd
X :

Ct,d
back break := {C ∈ C d

back break : (tX ∈ C ∨ tY ∈ C) ∧ tX ∈ Vd
X}.

For the illustrative case of a driver d ∈ D with T d := {t1, t2, t3, t4}, TB-
t4,d

:= {t2, t3}, TB-
t3,d

:= {t1, t2}, an

exemplary graph Gd
back break is presented in Figure 2. In particular, if train t4 is selected as the first one in

a shift of driver d, this driver may not serve trains t2 and t3 as well. Similarly, trains t1 and t2 may not be

assigned to driver d if train t3 was chosen as the first one in the shift.

A very similar derivation for constraints (1.9) and (1.10) leads to corresponding graphs Gd
forward break and

20

VX VY

t1

t2

t3

t4

Figure 2: Example of a break conflict graph Gd
back break

Gd
long break for all drivers d ∈ D and respective sets of constraint-generating cliques Ct,d

forward break and Ct,d
long break.

With a slight abuse of notation, we also introduce the respective node sets VV and VZ as well as the respective

node types tV and tZ for the trains t ∈ T d. They allow us to simplify model (1) further.

Proposition 3.2. The constraints (1.8)–(1.10) are equivalent to the following set of constraints:

∑
tY ∈C

ytYd +
∑
tX∈C

xtX
d ≤ 1 (∀d ∈ D) (∀t ∈ T d) (∀C ∈ Ct,d

back break) (1.8b)

∑
tV ∈C

vtVd +
∑
tX∈C

xtX
d ≤ 1 (∀d ∈ D) (∀t ∈ T d) (∀C ∈ Ct,d

forward break) (1.9b)

∑
tZ∈C

ztZd +
∑
tX∈C

xtX
d ≤ 1 (∀d ∈ D) (∀t ∈ T d) (∀C ∈ Ct,d

long break). (1.10b)

To save computation time, we will determine the required clique edge covers in a heuristic fashion; see

Section 5.1.

4 Solution methods

We will now derive a solution algorithm based on decomposition and cutting planes for the integrated locomotive

scheduling and driver assignment problem introduced in the previous section. Figure 3 gives an outline of the

approach as a flowchart; its ingredients are detailed in the following. First, in Subsection 4.1 the general

decomposition scheme will be presented. A number of preliminary computational experiments had shown that

the locomotive assignment part of the problem is far easier to solve than the driver part. This led to the idea to

design the solution method in such a way that it first computes a best possible feasible locomotive assignment,

relaxing all driver-related constraints. In Subsection 4.2, we will derive cutting planes in the locomotive-flow

variables which are valid for the integrated problem (1). These cutting planes encode common reasons for the

infeasibility of the driver part (as encountered for the real-world instances presented in Section 5), expressed

in terms of the locomotive assignment variables. In our solution algorithm, we first solve the locomotive part

as a master problem to obtain a candidate locomotive assignment. Then we search for violated cutting planes

21

to cut the current locomotive assignment off from the locomotive master problem and solve it again. This

procedure is iterated until no further cutting planes are found. The next step is to fix the resulting locomotive

assignment in the integrated problem. This gives rise to the driver subproblem, whose task it is to find a feasible

driver assignment which is compatible to the fixed locomotive assignment. If this is possible, we have solved

the problem to global optimality. Sometimes, the driver part is infeasible but we cannot generate one of our

problem-specific cutting planes to ensure feasibility of the driver subproblem. We then generate a combinatorial

Benders cut instead which precisely cuts off the current locomotive assignment from the locomotive master

problem and reiterate. This way, the algorithm will eventually converge to a global optimal solution to the joint

locomotive and driver problem. Finally, we will present some algorithmic enhancements to reduce computation

times. These are a preprocessing scheme (Subsection 4.3) as well as a heuristic (Subsection 4.4) whose aim it

is to facilitate the solution of the driver subproblem, which is still hard to solve, even though the locomotive

assignment is already fixed there.

4.1 Decomposition into locomotive and driver subproblem

As already discussed in Subsection 3.2, we can subdivide the constraints of the joint model (1) into three

groups: (i) compatibility constraints (1.2) and (1.3) between drivers and locomotives, (ii) the driver-related

constraints (1.4)–(1.22) and (1.27)–(1.33), and (iii) the locomotive-related constraints (1.23)–(1.26) and (1.34).

When relaxing the compatibility constraints, model (1) decomposes into two independent subproblems. We call

the model induced by the original objective function (1.1) and constraints (1.4)–(1.22) as well as (1.27)–(1.33)

the driver subproblem.

In order to define the corresponding locomotive master problem, we first note that although the locomotive-

related constraints are exactly those of a pure binary multi-commodity-flow problem, we need a slightly different

kind of objective function. Rather than maximizing the flow through the network (which would amount to

maximizing the number of used locomotives), we have to make sure that as many nodes/trains in the network

are “visited” by some commodity/locomotive. To this end, we introduce a new binary decision variable which

checks whether a given train was served by a compatible locomotive or not:

λt =

1, if train t ∈ T is served by a locomotive of compatible class L ∈ Lt

0, otherwise.

Using the λ-variables, we can state the objective function of the locomotive master problem maximizing the

number of served trains:

max
∑
t∈T

λt. (2.1)

22

Start

Generate loco-
motive master
problem and

driver subproblem

Solve locomotive
master problem

Search for cut-
ting planes

for locomotive
master problem

Cutting
planes
found?

Add the cutting
planes to the
locomotive

master problem

Fix the locomotive
assignment in the
driver subproblem

Solve the long-
break heuristic

Long-break
heuristic

successful?

Solve the full
driver subproblem

Fix the heuristic
break solution and
solve the restricted
driver subproblem

Feasible
solution

for driver
subproblem

found?

Generate combi-
natorial Benders
cut and add it
to locomotive

master problem

Stop

YesNo

No

Yes

No

Yes

(see Subsection 4.1)

(see Subsection 4.2)

(see Subsection 4.3)

(see Subsection 4.4)

Figure 3: Flowchart of the exact version of the solution algorithm introduced in this work

23

We also need an additional constraint which couples the newly introduced λ-variables with the existing f -

variables:

λt ≤
∑

w∈δ+(t)∩TL,

L∈Lt

f t,w
L (∀t ∈ T). (2.2)

Finally, we need to make sure that the λ-variables are binary:

λt ∈ {0, 1} (∀t ∈ T). (2.3)

Altogether, the locomotive master problem has the objective function (2.1) as well as the constraints (1.23)–

(1.26), (1.34), (2.2) and (2.3).

4.2 Valid inequalities for the locomotive subproblem

The driver subproblem contains ten constraint types which are potential sources of infeasibility in model (1)

when fixing the f -variables corresponding to a given solution to the locomotive master problem. These are all the

conflict constraints (1.5), (1.6), (1.7b), (1.8b), (1.9b) and (1.10b), the compatibility constraints (1.11), (1.12),

long-break enforcement constraint (1.15) as well as constraint (1.18), which pertains to ensuring the Sunday

breaks. Based on our computational experience, we determined that only a subset of these are violated for the

real-world instances supplied by our industrial partner. For these, we show explicitly here how an infeasibility

can arise. Further, we present corresponding valid inequalities classes for the locomotive master problem to

ensure that its solution will not result in an infeasibility of the driver subproblem. For the remaining, potentially

violated driver constraints, the valid locomotive inequalities can be derived in a similar fashion. Although the

valid inequalities introduced in this section are customized to model (1), a similar logic may be used to derive

further valid inequalities in other models, which could benefit from a decomposition by constraint relaxing.

We start by noticing that all constraints of the driver subproblem not mentioned above cannot be a cause

of infeasibility in model (1) when fixing a solution to the locomotive part of the problem

Observation 4.1. Let (f̄ , λ̄) be a feasible solution to the locomotive master problem given by constraints (2.1),

(1.23)–(1.26), (1.34), (2.2) and (2.3). Then we can find values x̄, ȳ, v̄, ᾱ, ω̄, h̄ such that (f̄ , x̄, ȳ, v̄, ᾱ, ω̄, h̄) is a

solution to the constraint system given by the driver-related constraints (1.2), (1.3), (1.13), (1.14), (1.16), (1.17),

(1.19), (1.20), (1.21) and (1.22).

Proof. Feasibility of the second driver-locomotive compatibility constraint (1.3) can be ensured for any feasible

locomotive assignment, because it is sufficient to set at most one x-variable on its right-hand side to one in

order to fulfil it. Recall that for each train-locomotive combination, at least one compatible driver can be found.

By setting at most one x-variable on the right-hand side of constraint (1.3) to one, we choose any compatible

driver for the locomotive-train assignment.

24

For constraints (1.13), (1.14), (1.16), (1.17) we can choose the y-, v-, α-, ω- and h-variable corresponding to

the chosen x-variables and set them to one. By doing so, we do not have to set any other x-variables occuring on

the right-hand sides of constraints (1.19), (1.20), (1.21) and (1.22) to one. Therefore, the first driver-locomotive

compatibility constraint (1.2) cannot be violated either.

Let us now focus on the ten potentially problematic constraints mentioned in the beginning of this subsection.

As they might well be violated by a given, fixed locomotive assignment, we need to consider them already

at the stage of solving the locomotive master problem. We will now explain how such an infeasibility can

arise and introduce additional, valid constraints for the locomotive master problem to ensure the feasibility

of the locomotive assignment when computing a compatible driver assignment. As we will see, many of the

infeasibilities targeted by these cuts are caused by an insufficient availability of drivers to certain train-locomotive

combinations. Such a situation may occur if the total number of drivers is very small, or if some train-locomotive

combinations can only be served by a small number of drivers. In particular, such cases could take place when

the railway carrier chooses to serve a new customer, whose location can only be reached by a few of the drivers

available, or when an unplanned closure of an important railway line occurs and a less-frequented detour route

has to be taken.

In the case study in Section 5, we will see that these cutting planes are sufficient to ensure the feasibility

of the driver assignment for the real-world instances provided by our industry partner, which means that we

obtain globally optimal solutions via our method. As mentioned above, it might occur for general instances

that a given locomotive solution cannot be cut off by the cutting planes we derive here. In this case, we can

ensure the feasibility and global optimality of the decomposition approach by cutting off the current locomotive

assignment from the locomotive master problem via a combinatorial Benders cut, as described in Codato and

Fischetti (2006). Altogether, this allows us to cut off any locomotive assignment which cannot be completed to

a full, feasible solution to model (1). Therefore, our algorithm will in the end converge to a feasible, globally

optimal solution to the joint locomotive scheduling and driver assignment problem.

4.2.1 Valid cutting planes derived from the time conflict constraints

Constraint (1.7b) ensures that no driver is staffed to drive two trains which run simultaneously. We need to

make sure that the computed optimum of the locomotive subproblem also respects these constraints. Recall

that in Subsection 3.3 we introduced the graph Gd
time to represent the time conflicts between trains for a given

driver d ∈ D. Let us now generalize this graph to cover time conflicts between all of the trains. For this purpose,

we introduce the graph Gtime = (T,Etime), where

Etime := {(t1, t2) : t1 ∈ T ∧ t2 ∈ T time global
t1 }

25

Now define C time as the set of all maximal cliques in Gtime. As the set of drivers available for a train depends

both on the train itself and on the locomotive assigned to carry it, we need to consider all possible assignments

of locomotives for all trains present in the cliques in C time. These assignments are represented by the set

C time
assignments := {{(t, L) : t ∈ C ∧ L ∈ Lt} : C ∈ C time},

which allows us to derive valid cutting planes.

Theorem 4.2. The following inequalities are valid for model (1):

∑
(t,L)∈C

∑
t1∈TL∩δ+(t)

f t,t1
L ≤

∣∣∣∣∣∣
⋃

(t,L)∈C

Dt ∩DL

∣∣∣∣∣∣ (∀C ∈ C time
assignments). (2.4)

Proof. For the purpose of this proof, we define a set Ctrains := {t1 : (t1, L) ∈ C} for each C ∈ C time
assignments. By

definition, for each of the sets C ∈ C time
assignments, all of the trains in the set Ctrains are in time conflict. Hence, we

need at least |Ctrains|-many drivers compatible with the trains in Ctrains. In other words,

|Ctrains| ≤

∣∣∣∣∣∣
⋃

(t,L)∈C

Dt ∩DL

∣∣∣∣∣∣
Moreover, from constraint (1.24), which stipulates that at most one locomotive can be assigned to a train, we

know that ∑
(t,L)∈C

∑
t1∈TL∩δ+(t)

f t,t1
L ≤ |Ctrains|.

Hence, inequalities (2.4) are valid for the model (1).

To better illustrate the context in which the cut is being used, we introduce the following example.

Example 4.3. Consider a subset S := {t1, t2, t3} of a larger set of trains. Assume that the trains in S are

mutually in time conflict. Then the set S constitutes a clique in C time
assignments. Let us assume that this clique

is maximal. Further, we assume the following locomotive compatibilities: Lt1 = {L1, L2}, Lt2 := {L1, L2, L3},

Lt3 := {L2, L3}. With regard to drivers, let Dt1 = Dt2 = Dt3 := {d1, d2, d3, d4}, and DL1 := {d1, d2, d3},

DL2 := {d1, d2}, DL3 := {d2, d3, d4}.

Now, consider the following assignment of locomotives to trains: {(t1, L2), (t2, L2), (t3, L2)}. Such a loco-

motive assignment will cause the need to assign two drivers d1 and d2 to three trains in time conflict, which is

obviously infeasible (and violates constraint (1.7b)).

Such an infeasibility may be cut off by a cut introduced in this section. For the example considered, it would

26

look as follows:

∑
ta∈TL2∩δ+(t1)

f t1,ta
L2

+
∑

tb∈TL2∩δ+(t2)

f t2,tb
L2

+
∑

tc∈TL2∩δ+(t3)

f t3,tc
L2

≤ |(Dt1 ∩DL2) ∪ (Dt2 ∩DL2) ∪ (Dt3 ∩DL2)| = 2.

This way, we ensure that at most two of the trains in S are assigned locomotives of class L2, thereby cutting off

the infeasible solution.

In general, the count of maximal cliques in a graph could reach 3n/3, with n corresponding to the number

of vertices in the graph (see Moon and Moser (1965)). Similarly, enumerating the set of all maximal cliques is

rather difficult – it can be achieved in O(3n/3) (see Tomita et al. (2006)). However, for families of graphs in

which the number of maximal cliques is bounded polynomially, we are able to list all of the maximal cliques in

polynomial time (based on the results of Johnson et al. (1988)). Moreover, Fulkerson and Gross (1965) show

that the number of maximal cliques for chordal graphs amounts to n.

Despite the seeming similarity, we cannot state with certainty that Gtime is an interval graph. This is because

the set Etime of edges of Gtime is based on the set T time global
t . By definition, T time global

t includes trains in time

conflict with t ∈ T , as well as trains t1 ∈ T that cannot be served together with the train t due to an excessive

transit time required to reach the departure station of t1 after serving t. Hence, Gtime is at most a supergraph

of an interval graph. This is due to the additional elements in the sets T time global
t , which make Gtime at most

a supergraph of an interval graph.

Nonetheless, the results we obtained in our experiments (discussed in Part 5) suggest a linear relationship

between the number of vertices in the graph Gtime and both the number of maximal cliques (|C time|) and their

enumeration time for our instances. Therefore, although our solution algorithm (discussed in more detail in

Section 5.1) will require us to enumerate all the maximal cliques C time, the theoretical results suggest that

neither will the count of the cliques be too large, nor will the enumeration time be too long.

4.2.2 Valid cutting planes derived from the break conflict constraints

Consider constraints (1.8b), (1.9b) and (1.10b). As they are relatively similar in structure, we will only treat

constraint (1.9b) exemplarily. Here we deal with situations in which only one driver d ∈ D is available to serve

a certain set of train-locomotive combinations, whereas – due to working time regulations – the driver may

be assigned to at most one of them. If the solution to the locomotive subproblem enforced an assignment of

driver d to more than one of these trains, some of the working time constraints would be violated, and thus

the locomotive assignment would be infeasible. Thanks to the cutting planes developed in this section, such

locomotive assignments can be cut off.

Recall from Proposition 3.3 that for each driver d ∈ D and for each train t ∈ T d, all the constraint-defining

cliques Ct,d
forward break ∈ C d

forward break contain exactly one node from the node set Vd
X and at least one node from

27

node set Vd
V . For each driver d ∈ D, for each train t ∈ T d and for each conflict set Ct,d

forward break ∈ C d
forward break,

we now define a set St,d of train-locomotive assignments with St,d := St,d
X ∪ St,d

V , where

St,d
X := {(t, L) : L ∈ Lt ∧ Dt ∩DL = {d}}

and

St,d
V := {(tv, L) : tv ∈ Ct,d

forward break ∧ tv ∈ Vd
V ∧ L ∈ Ltv

∧ Dtv ∩DL = {d} ∧ T shift end
tv,d = {tv}}.

Again, we derive a set of valid cutting planes from this construction.

Theorem 4.4. The following inequalities are valid for model (1):

∑
(t,L)∈St,d

∑
t1∈TL∩δ+(t)

f t,t1
L ≤ 1 (∀d ∈ D) (∀t ∈ T d). (2.6)

Proof. By definition of St,d, at most one of the f -variables pertaining to the pairs (t, L) ∈ St,d may be selected,

as otherwise constraint (1.9b) would be violated. Hence, inequalities (2.6) are valid for model (1).

To better illustrate the context in which the cut is being used, we introduce the following example.

Example 4.5. Consider a subset {t1, t2} of a larger set of trains. Moreover, let t2 ∈ Ct1,d
forward break for all

d ∈ D. Additionally, assume T shift end
t2,d

:= {t2} for all d ∈ D. Further, we assume the following locomotive

compatibilities: Lt1 := {L1, L2}, Lt2 := {L1, L2, L3}. With regard to drivers, let Dt1 = Dt2 := {d1, d2, d3, d4},

and DL1 := {d1, d2, d3}, DL2 := {d1}, DL3 := {d2, d3, d4}.

Now, consider the following assignment of locomotives to trains: {(t1, L2), (t2, L2)}. Such a locomotive

assignment will cause the need to assign the same driver d1 to the two trains t1 and t2. Since t2 ∈ Ct1,d
forward break

for all d ∈ D and T shift end
t2,d

= {t2} for all d ∈ D, we will see an infeasibility with regard to constraint (1.9b) –

we may not assign the same driver to t1 and t2.

To get rid of such an infeasibility, we use the cut introduced in this section. For the example considered, it

would look as follows: ∑
ta∈TL2∩δ+(t1)

f t1,ta
L2

+
∑

tb∈TL2∩δ+(t2)

f t2,tb
L2

≤ 1.

For constraints (1.8b) and (1.10b), a respective sets of valid constraints each can be constructed in a similar

fashion.

Similar to the case of the graph graph Gtime discussed in Subection 4.2.1, the results we obtained in our

experiments (discussed in Part 5) suggest a linear relationship between the number of vertices in the graph

28

Gd
forward break and both the number of maximal cliques and their enumeration time for our instances. This could

be due to the fact that while Gd
forward break is not an interval graph itself, one could intuitively expect that at

least many of its subgraphs are, and hence the performance of clique enumeration will not approach the worst-

case scenario. An exploration of the properties of graphs Gd
forward break would be an interesting future research

avenue.

4.2.3 Valid cutting planes derived from the compatibility constraints

Let us now turn to constraints (1.11) and (1.12). These two are again similar in structure, so that we only treat

constraint (1.11) explicitly here. As it was discussed in Section 3.1, the ω-variables only exist for trains which

end in the home region of the driver.

This means that for a driver d ∈ D and for a train t ∈ T d which does not end in the driver’s home region,

we need to ensure that at least one train t1 ∈ T after break
t,d may be performed by driver d. This requires us

to assign locomotives to trains t1 ∈ T after break
t,d in such a way that the driver is compatible with at least one

train-locomotive assignment (t1, L) with t1 ∈ T after break
t,d and L ∈ Lt1 . More formally, for each driver d ∈ D, we

define a subset Od ⊆ T d of trains which do not end in the driver’s home region (and hence no corresponding

ω-variable exists):

Od := {t ∈ T d : a(t) ∈ S \H(d)}.

For the trains t ∈ Od, we consider all train-locomotive assignments which may be served only by driver d. These

will be stored in a set S d, defined as

S d := {(t, L) : t ∈ Od ∧ L ∈ Lt ∩ Ld ∧ Dt ∩DL = {d}}.

Now, for each (t, L) ∈ S d we introduce the set F d
t,L, which contains all train-locomotive assignments for which

driver d ∈ D is able to drive a train after a break:

F d
t,L := {(t1, L1) : t1 ∈ T after break

t,d ∧ L1 ∈ Lt1 ∩ Ld}.

We use it to construct valid inequalities cutting off solutions which meet two conditions jointly for a driver

d ∈ D and a train t ∈ Od:

1. for the train t they assign such a locomotive class L ∈ Lt that driver d is the only available one, i.e.

DL ∩Dt = {d}.

2. for each of the trains t1 ∈ T after break
t,d , they assign such a locomotive class L1 ∈ Lt1 that driver d may not

be assigned to them (i.e. d ̸∈ Dt1 ∩DL1 for all t1 ∈ T after break
t,d and L1 ∈ Lt1).

29

Such solutions result in the violation of constraint (1.11) and hence are infeasible.

Theorem 4.6. The following inequalities are valid for model (1):

∑
t1∈TL∩δ+(t)

f t,t1
L ≤

∑
(t2,L2)∈Fd

t,L

∑
t3∈TL2∩δ+(t2)

f t2,t3
L2

(∀d ∈ D) (∀(t, L) ∈ S d). (2.7)

Proof. By definition, for all drivers d ∈ D and for any solution (t, L) ∈ S d we need to select at least one of the

assignments (t1, L1) ∈ F d
t,L, as otherwise constraint (1.11) would be violated. Hence, (2.7) are valid inequalities

with regard to the model (1)

The following example will now be used to illustrate an infeasibility cut off by the inequality we introduced

in this section.

Example 4.7. Let us consider a set of three trains {t1, t2, t3}, being a subset of a larger set of trains T , as well

as a set of three drivers {d1, d2, d3} which is a subset of a bigger set of drivers D. Moreover, assume that t1 ∈ Od

for all d ∈ {d1, d2, d3}. Additionally, let {t2, t3} ⊆ T after break
t1,d

for all d ∈ {d1, d2, d3}. Further, we assume the

following locomotive compatibilities: Lt1 := {L1, L2}, Lt2 := {L1, L2, L3}, Lt3 := {L2, L3}. With regard to

drivers, let Dt1 = Dt2 = Dt3 := {d1, d2, d3, d4}, and DL1 := {d2, d3}, DL2 := {d1}, DL3 := {d2, d3, d4}.

For an assignment {(t1, L2), (t2, L1), (t3, L3)}, we notice that the only driver who is able to drive t1 is d1.

Since t1 ∈ Od1 , we need to assign locomotives to trains t ∈ T after break
t1,d1

in such a way that the driver d1 is

compatible with at least one such assignment.

In the presented context, this is not the case, as for train t2 the set of feasible drivers is Dt2 ∩DL1 = {d2, d3},

and for train t3 it is Dt3 ∩ DL3 = {d2, d3, d4}. Hence, we get a solution which is infeasible with regard to

constraint (1.11).

To prevent this, we can use the cut introduced in this section. It will then make sure that the locomotives

are assigned in such a way that for at least one of the trains t ∈ T after break
t1,d1

driver d1 may be chosen as well.

In the context of our example, the cut would look the following way:

∑
ta∈TL2∩δ+(t1)

f t1,ta
L2

≤
∑

tb∈TL2∩δ+(t2)

f t2,tb
L2

+
∑

tc∈TL2∩δ+(t3)

f t3,tc
L2

.

In our solution algorithm, these valid inequalities are enumerated upfront. Their count is, in the worst case,

|T | · |L|. Hence, since the count of locomotive classes among the railway carriers is usually limited (or |L| is

usually constant among instances), one may hope for a relatively fast enumeration, dependent on the number

of trains in the instance. This is confirmed by our numerical experiments, discussed in more detail in Section 5.

30

4.2.4 Valid cutting planes derived from the constraints related to Sunday breaks

The purpose of constraint (1.18) is to enforce that no driver works on more than csunday-many consecutive

Sundays. We consider the set T sunday
w,d for each driver d ∈ D and for each week w ∈ W . Now let us construct

the graphs Gsunday
d = (V sunday

d , Esunday
d) for all d ∈ D, where

V sunday
d := {(t, L) : Dt ∩DL = {d} ∧ ∃w ∈ W : t ∈ T sunday

w,d },

Esunday
d := {{(t1, L1), (t2, L2)}} : t1, t2 ∈ V sunday

d ∧ t1 ∈ T sunday
w1,d

∧ t2 ∈ T sunday
w2,d

∧ w1, w2 ∈ W ∧ 0 < |w2 − w1| ≤ csunday.

Further, for each d ∈ D let Csunday
d be the set of all (csunday + 1)−cliques in Gsunday

d . Each such clique corre-

sponds to a combination of train-locomotive assignments that would lead to a driver d working on (csunday + 1)

consecutive Sundays. This idea leads to a set of inequalities whose validity is easy to see.

Theorem 4.8. The following inequalities are valid for model (1):

∑
(t,L)∈C

∑
t1∈δ+(t)∩TL

f t,t1
L ≤ csunday (∀d ∈ D) (∀C ∈ Csunday

d). (2.9)

To better illustrate the situations in which the cut introduced above is applied, we present the following

example.

Example 4.9. Consider a subset {t1, t2, t3, t4} of a larger set of trains T . We assume that the set of trains T

spans over one month with four Sundays and that t1 is scheduled to run on the first Sunday of the month, t2 is

planned to run on the second Sunday, t3 will run on the third Sunday, and finally t4 is expected on the fourth

Sunday.

Moreover, assume that the parameter csunday takes the value of 3. Now, assume that locomotives of four

types L1, L2, L3, L4 are assigned to the trains t1, . . . , t4, respectively, and that – as a result – there is only one

driver d capable of serving the chosen assignments, i.e. DL1 ∩Dt1 = {d}, DL2 ∩Dt2 = {d}, DL3 ∩Dt3 = {d},

DL4 ∩Dt4 = {d}.

Such a locomotive assignment will result in an infeasibility in constraint (1.18) – we set the maximal number

of working Sundays (represented by parameter csunday) to three. To prevent such infeasibilities from occurring,

we add the cut of the form (2.9). In the presented context, the inequality would look as follows:

∑
ta∈δ+(t1)∩TL1

f t1,ta
L1

+
∑

tb∈δ+(t2)∩TL2

f t2,tb
L2

+
∑

tc∈δ+(t3)∩TL3

f t3,tc
L3

+
∑

td∈δ+(t4)∩TL4

f t4,td
L4

≤ csunday = 3.

As in all other cases, these valid inequalities are enumerated upfront as well. In the worst case, their number

31

will be |D| · |Csunday
d |. While the former depends directly on the instance size, the latter requires maximal clique

enumeration, which could be expensive (see Section 4.2.1 for a more extensive discussion). However, in our

computational experiments the enumeration of the valid inequalities turned out to take only little time.

In the presence of further working time constraints or objectives which are not considered in this article, (e.g.

shift fairness, avoidance of night shifts etc.), the decomposition scheme will still work, since its core principle

consists in excluding locomotive assignments which cause infeasibilities in the driver schedules. Our approach

allows for a “translation” of driver-specific constraints into constraints which are valid for the locomotive master

problem. Moreover, we would like to note that the new inequalities introduced in this section do not affect the

validity of Observation 4.1, since they are valid with regard to the integrated model (1). Note that some more

complex working time requirements may require an introduction of additional variables and constraints in the

driver subproblem, for which one then has to find a way to transform them into new cutting planes for the

locomotive master problem.

4.3 Preprocessing the driver subproblem

In this section, we will describe two preprocessing mechanisms we use to reduce the size of the driver subprob-

lem after the locomotive master problem has been solved and to simplify the solution process of the driver

subproblem.

Removing unnecessary driver-related variables As the assignment of locomotive-classes to the trains

has already been performed by the locomotive master problem, part of the variables relevant to the train-driver

assignment can be eliminated – in particular the variables which pertain to drivers who are unable to drive both

a given train and its assigned locomotive.

Let (f̄ , λ̄) be a solution to the locomotive master problem. Using that solution, for all trains t ∈ T we can

enumerate the subset of drivers who are compatible with both the train t and the locomotive class L ∈ Lt which

was assigned to it. More formally, for all t ∈ T let us denote the locomotive class selected to perform the train t

by

L̄t := L, where L is the unique L ∈ Lt with
∑

t1∈δ+(t)

f̄ t,t1
L = 1.

Now as we know the selected locomotive class for each train t ∈ T , we can introduce the corresponding set of

feasible drivers as

D̄t := Dt ∩DL̄t

.

With these sets, we can now precisely generate those variables x, y, z, v, α and ω for all trains t ∈ T and for all

drivers d ∈ D̄t compatible with both the train and the selected locomotive. This means we can use the solution

of the locomotive master problem to reduce the number of variables generated. Furthermore, those constraints

32

of the driver subproblem which only include variables for drivers Dt \ D̄t on the left-hand side become trivial

and can be eliminated as well.

Changing the sense of one of the constraints Recall the multiple-choice constraints (1.4) for the driver

assignment, which are part of the driver subproblem. As the locomotive master problem already determines

which trains shall be performed, we can change the optimization sense of the driver subproblem from maximiza-

tion (of objective function (1.1)) into a mere feasibility problem if we change constraint (1.4) into an equation

as follows: ∑
d∈D̄t

xt
d = 1 (∀t ∈ T). (1.4b)

This reformulation has proved to be computationally more efficient than the original, maximization version of

the driver subproblem.

4.4 A long-break heuristic

Despite of the preprocessing, the driver subproblem can be still be difficult to solve. Therefore, we now describe

a heuristic which is able to find feasible solutions more quickly in many cases. It is based on solving an auxiliary

MIP including constraints (1.10b), (1.15), (1.17) and (1.18), which make sure that the drivers’ requirements with

regard to longer breaks (i.e. Sundays off and the long breaks) are respected. In our computational experiments,

we saw that the driver subproblem was significantly easier to solve when these constraints had been relaxed.

Accordingly, if we decide upfront which of the Sundays shall be a free day for each driver and after which

train a long break shall begin, the solution to the remainder of the driver subproblem usually becomes much

easier. To be precise, the mentioned auxiliary MIP maximizes objective function (1.1) over the above-mentioned

constraints (1.10b), (1.15), (1.17) and (1.18), as well as the following two constraints:

∑
d∈D̄t

xt
d ≥

⌊
|D̄t|

2

⌋
+ 1 (∀t ∈ T) (3.1)

∑
t∈Tweek

w,d

ztd ≥ 1 (∀w ∈ W)(∀d ∈ D). (3.2)

The purpose of constraint (3.1) is to ensure that there is sufficient choice of drivers for each train after fixing

the breaks – we want to make sure that slightly more than half the drivers are available to the restricted driver

subproblem solved afterwards, which empirically proved to be an adequate value. Constraint (3.2) is required

to make sure that at least one long break for each week w ∈ W is selected for each driver d ∈ D (even if the

driver was not pre-assigned to any train via constraint (3.1)). An optimal solution (x̄, z̄, h̄) to this auxiliary

model contains three important pieces of information for the driver subproblem. Firstly, it determines which

33

Sunday shall be off for each driver in the given month. Secondly, it fixes the points in time when the weekly

35-hour breaks of the drivers start. But most importantly, it indicates for all drivers d ∈ D which trains t ∈ T d

cannot be served when respecting the selected Sunday or 35-hour breaks. Based on the latter, we restrict the

set of available drivers for a given train t ∈ T to

Dt
available := {d ∈ D̄t : x̄t

d = 1}.

If the above auxiliary MIP is feasible, we heuristically preprocess out further x-, y-, v-, α- and ω-variables

accordingly and fix the decisions concerning long breaks to obtain a restricted driver subproblem. Should the

heuristic preprocessing fail (i.e. either auxiliary MIP or restricted driver subproblem are infeasible), which it

seldom did in our experiments, we instead solve the full, unrestricted driver subproblem directly.

We would like to point out that in more general settings, the efficiency of the heuristic introduced in this

section – in its current shape – will probably decrease with more working time constraints. However, it is

straightforward to extend it to accommodate other constraint types and this way to adjust its performance.

5 A real-world case study for Polish rail freight traffic

In this section, we demonstrate the efficiency of our methods for solving the joint locomotive scheduling and

driver assignment problem in a real-world case study. We begin by describing how we will assess the enhance-

ments to the solution algorithm presented in Section 4 in terms of reducing the computation times and mention

some of the details which lead to a well-performing implementation. Then we describe the case study itself,

performed at the hand of a country-wide problem instance stemming from Polish rail freight traffic. We also

mention the values assigned to parameters critical to the generation of the working time constraints. After a

description of the input data provided by our industry partner DB Cargo Polska, we analyse both the solu-

tion times of our algorithmic approaches and the quality of the computed solutions in terms of covering the

order-book as far as possible.

To further show the efficiency of our approach, we also present how the number of trains running in the

optimal solution changes under less favorable resource availability conditions.

5.1 Implementation details

We have run all the experiments presented in Section 5 on a compute server with two Intel Xeon E5-2643 v4

processors using all 12 cores and 256 GB of memory. Further, we have used Gurobi 9.5 (Gurobi Optimization,

LLC (2022)) to solve the arising binary optimization problems. The models are built and solved via its Python

interface. Finally, we have used NetworkX (Hagberg et al. (2008)) to represent the underlying graph structures.

34

Recall that for generating constraints (1.7b)–(1.10b) in the improved version of model (1), we need to find

minimal clique edge covers in certain graphs. As this problem is NP-hard in general (see Kou et al. (1978)), we

use the maximal-clique enumeration algorithm developed by Bron and Kerbosch (1973) as adapted by Tomita

et al. (2006) and discussed in Cazals and Karande (2008) to solve it heuristically. This algorithm is implemented

in the Python NetworkX package (see Hagberg et al. (2008)). The choice of this method is justified by its good

running time behaviour (Tomita et al. (2006) showed that its worst-case time complexity amounts to O(3n/3)

for a graph with n nodes), its ease of use as part of our implementation as well as the good results we obtained

with it.

To further decrease model generation times, we also use a slightly simplified approach to the clique tightening

(as described in Subsection 3.3). Namely, each of the graphs Gd
time, Gd

back break, Gd
forward break and Gd

long break,

generated for each driver d ∈ D, contains only trains relevant to the driver d as its nodes. In our implementation,

we generate the graphs Gtime, Gback break, Gforward break and Glong break introduced in Subsection 4.2 instead,

which contain all trains t ∈ T . Then we use the maximum-clique algorithm mentioned in the previous paragraph

to enumerate all the maximal cliques of these larger graphs. For each of the four sets of maximal cliques, we

generate an adjusted version of the cliques for each driver d ∈ D by removing the trains which are not compatible

with the driver d. This simplification allows us to only perform the clique enumeration four times instead of

4 · |D| times. As a result, we obtain a significant decrease in model generation time, at the expense of a slightly

higher number of constraints generated.

In order to assess the impact of each of the improvements we developed on top of our basic solution approach,

we will perform numerical experiments subdivided into eight different computational scenariosgroups. A concise

summary of each of these computational scenarios is presented in Table 4. Its first column states the names of

the four main algorithmic improvements introduced in this work (with a reference to Subsection, in which the

improvement is introduced). Columns 2-9 represent the computational scenarios introduced. An “X” denotes

that an algorithmic improvement is included in a computational scenario, whereas a dash denotes the opposite.

For a detailed description of the scenarios, we refer the reader to Appendix B.In the following, we describe each

of these computational scenarios in detail.

Improvement NoClq Clq D D-NoClq D-NoCut D+H D+H-NoClq D+H-NoCut

Clique Tightening (3.3) - X X - X X - X
Decomposition (4.1) - - X X X X X X
Cutting Planes (4.2) - - X X - X X -
Presolve Heuristic (4.4) - - - - - X X X

Table 4: Summary of the algorithmic improvements included in the computational scenarios

35

5.2 A case study for February 2020 at DB Cargo Polska

In this section, we will present a case study based on the data supplied by our industrial partner. We will

begin by describing the instance we generated from the data. Then we will present the results of the numerical

experiments performed on these instances.

Our industry partner provided us with a high-quality real-world data set for the problem, covering a full

month of planning (for February 2020). Firstly, it comprises the complete order-book for this month, i.e. a list

of all the trains that need to be run, including their origin and destination stations, departure and arrival times

and the respective calculation weeks they are counted to. The data set covers four calculation weeks, which

always start on a Saturday and last until the next Friday. Further, we have obtained the full list of drivers,

together with their respective licenses to locomotives, knowledge of routes and home regions. We were also

provided with the list of available locomotives, stating their respective tractive power and energy source, as

well as a mapping of stations to regions in Poland. To estimate the travel times for the assumed “car rides”

of drivers between stations (as discussed in Subsection 3.1.1), we used the data available on 14 February 2020

from the Google Maps API.

To reflect the requirements of the Polish Labour Code and Polish Railway Transport Act, our industrial

partner gave us the following values for parameters used in the generation of sets required for constraints

construction. They are presented in Table 5.

Name Value

cshift 12
cshort 11
clong 35
csunday 3

Table 5: Values for parameters of the working time constraints used in the case study

Since the data about the route knowledge of the drivers was limited to only inner-Polish routes, we restrict

ourselves to trains departing and arriving in the territory of Poland. In cases where a given train was to

terminate at the first station past the Polish border, we artificially shortened the route to the passed border

station on the Polish side. The trains which only “commute” between two neighbouring border terminals of

Poland and a neighbouring country were not taken into account, since they are rather to be considered as

shunting connections, which are not in the focus of this work. In total, we needed to sort out 390 out of 2941

trains, which leaves us with a total of 2551 trains to be served.

Based on the data received from the industrial partner, we derived ten problem instances corresponding

to different planning horizons, ranging in length from one week to the full month. In each instance, we have

assumed all 217 drivers and 112 locomotives of DB Cargo Polska to be available. Table 6 below presents a

summary of the instances. Their names correspond to the time period they entail (e.g. 1M – the whole month,

36

1W 1 – the first week of the month, 2W 3 – the third two-week period of the month, i.e. weeks 3 and 4, and so

on). Note that for the instances spanning less than one month, we excluded the h-variables and the constraints

pertaining to Sunday breaks.

Instance #Days #Trains Avg. model generation time (in s)

1W 1 7 629 298
1W 2 7 610 278
1W 3 7 615 299
1W 4 7 613 288
2W 1 14 1239 737
2W 2 14 1242 744
2W 3 14 1228 744
3W 1 21 1854 1325
3W 2 21 1838 1313
1M 29 2551 2154

Table 6: Overview of instance characteristics and average model generation times

With a growing instance size, the computational complexity of model generation increases exponentially due

to the effort required to perform the clique tightening. Especially for the larger instances, the model generation

is a challenging task on its own. Here we report arithmetic averages of the model generation times over three

runs, since they proved to be similar regardless of the chosen version of the algorithm.

5.2.1 Analysis of solution times

For the computational experiments, we have used the instances from Table 6 and compare their solutions times

for the three different implementation scenarios described in Subsection 5.1. We have performed three runs of

each implementation on each instance and report the average solution times in Table 7.

Instance NoClq Clq D D-NoCut D-NoClq D+H D+H-NoCut D+H-NoClq

1W 1 1610 3042‡ 117 121 276 74 249 -
1W 2 878 6312† 199 106 262 60 188 -
1W 3 1950 3474‡ 316 237 254 73 144 -
1W 4 1086 2989† 178 213 230 77 196 -
2W 1 - - 1464 1651 654 522 1314 -
2W 2 - - 1253 1608 602 309 668 -
2W 3 - - 921 1133 638 166 604 -
3W 1 - - 3739 3771 1269 650 1693 -
3W 2 - - 804 1790 1263 668 1951 -
1M - - 2674† - 2680 2397 4085 -

Table 7: Solution times of the different implementations for each instance (in seconds).

The first column presents the name of the instance. Columns 2 to 9 display the performance of the respective

implementation against the listed instances. A dash denotes that no feasible solution has been found within the

time limit of 7200 seconds for all three runs of each scenario-instance combination. A dagger (†) means that

37

the presented result pertains to only two of the computations and that the remaining one timed out. Similarly,

a double dagger (‡) indicates that the presented result pertains to only one of the computations and that the

remaining two timed out. An integer number indicates that all three experiments for a given scenario-instance

pair have returned an optimal solution within the allotted time, and also represents the average time in seconds

required to find an optimal solution A number in bold denotes the best solution time for each instance.

Overall, it is obvious from the table that the use of the decomposition approach is necessary to obtain a

solution for the largest instances. The joint model is only able to solve the instances spanning one week to

optimality, but never in all three runs. For the longer planning horizons, it returned no integer-feasible solution

within the allotted time. We can also observe that employing the long-break heuristic has produced significant

speed-ups in the solution times.

Furthermore, it can be deduced from Table 6 that the exclusion of valid inequalities introduced in Section 4.2

leads to a deterioration of the solution times. When comparing D+H with D+H-NoCut, this phenomenon

can be observed for all instances. We can also observe a similar pattern for D and D-NoCut – the latter is

unable to solve the largest instance, it also performs worse for instances spanning two and three weeks. Looking

at the weekly instances, D is better than D-NoCut for two instances, and the opposite is true for the other

two instances.

Moreover, the results presented in Table 6 underline the usefulness of clique tightening for our solution

algorithm. Our algorithm performs the best when both the custom cuts and our clique tightening are activated.

Although scenario D-NoClq performs worse than D for four out of ten scenarios only, it is vital to ensure that

the presolve heuristic introduced in Subsection 4.4 can succeed. This is visible in the results for the scenario

D+H-NoClq, for which none of the instances could be solved – it is due to the excessively long solution times

of the presolve heuristic, caused by the lack of the tightened clique constraints.

When the model is solved directly (scenarios NoClq and Clq), Gurobi’s built-in clique tightening performs

better for the instances spanning one week. For longertime horizons, none of these two methods is able to come

up with a solution within the allotted time.

The results presented in Table 6 clearly show that the complete version of the algorithm introduced in this

work solves the instances provided by DB Cargo Polska in the shortest time.

These solution times even exceeded the expectations of our industrial partner, for whom it would already

have been sufficient to obtain a monthly schedule in less than 12 hours. For shorter planning horizons, they are

even short enough to allow for an interactive use, e.g. for performing what-if analyses.

Finally, it should be mentioned that for all the experiments presented in this subsection, already one iteration

of the algorithm was sufficient. Moreover, since the instances span over realistic resource availabilities, there

was no need to generate the valid inequalities discussed in Section 4.2.

38

5.2.2 Assessment of solution quality

In Table 8, we compare the number of trains in each instance to the number of trains served in the optimal

solution. The first column states the name of the instance, with the second column repeating the corresponding

Instance #Trains Optimum Coverage

1W 1 629 629 100.0%
1W 2 610 610 100.0%
1W 3 615 615 100.0%
1W 4 613 613 100.0%
2W 1 1239 1238 99.9%
2W 2 1242 1224 98.6%
2W 3 1228 1228 100.0%
3W 1 1854 1845 99.5%
3W 2 1838 1829 99.5%
1M 2551 2529 99.1%

Table 8: Comparison of the number of trains in each instance and the coverage in its optimal solution

number of trains in that instance. The third column presents the globally optimal solution obtained via the

decomposition approach developed in this work. Finally, the fourth column gives the coverage obtained with

this solution, computed as the number of the trains performed in the optimal solution, divided by the total

number of trains in the instance. Overall, we can conclude that the solutions our approach produces enable

the railway company to perform all or nearly all trains in the order-book, regardless of the time horizon of the

instance.

5.3 Performance of the method under less favourable conditions

To better evaluate the method introduced here, we will now test its performance against a set of instances derived

from the 1M instance with limited availability of drivers and locomotives for the trains. We will consider two

scenarios. In the first one, we will explore how the optima returned by our algorithm change when the least

used resources are being removed. The second scenario will consider an upfront removal of random locomotives

and drivers. For the numerical experiments discussed in this section, we have used the scenario D+H. This

choice is justified by the best performance of this scenario, as shown in Table 6.

5.3.1 Exploring the optimal values with a decreasing number of locomotives and drivers

In the first scenario, we will explore how the optima change when only the assets which have performed the

most work are kept in the asset base.

Description of the scenario In this scenario, we run our algorithm against the 1M instance in an iterative

fashion. We begin with all the resources available. For each consecutive run, we remove approx. 10% of the

39

least used resources (i.e. 11 locomotives and 21 drivers), resolving draws randomly. For locomotives, we ensure

that at least one locomotive of each type remains present throughout the experiment. Since the setting involved

an iterative approach, we let the solution process run for 24 hours, a maximum allowed by the compute cluster

we used for our experiments.

Discussion of the results Table 9 presents the impact of iteratively removing the least used assets on the

value of the optimal solution in the 1M instance. The first column denotes the sequence number of the iteration

of the experiment. In this context, an iteration corresponds to one run of our algorithm on the (modified) 1M

instance. Iteration 0 means that the algorithm runs with all the resources available. The second and third

columns represent the number of locomotives resp. drivers in the consecutive iterations. Similarly, the fourth

and fifth column represent the share of locomotives and drivers available in each instance to their respective

total numbers. The sixth column represents the value of the objective function after each iteration, while the

seventh presents it as a percentage of all trains in the order-book. In the seventh column, the solution times for

each iteration are shown. Since the model generation times are similar to the ones reported in Subsection 5.2,

we do not display them here.

Iteration # Locos # Drivers % Locos % Drivers Value % Served trains Time (s)

0 112 217 100 100 2529 99.1 395
1 101 196 90 90 2527 99.1 1176
2 90 175 80 81 2519 98.7 6437
3 79 154 71 71 2504 98.2 936
4 68 133 61 61 2488 97.5 1296
5 57 112 51 52 2460 96.4 48214
6 46 91 42 42 2431 95.3 7222

Table 9: Changes in optimal value with decreasing availability of drivers and locomotives

Table 9 clearly shows that, despite decreasing resource availability by up to approx. 60%, solutions which

cover some 95% of the order-book may still be achieved. Such an assignment is much more efficient due to the

much higher utilization of the employed locomotives and drivers as well as the more economic choice of trains

to serve. Therefore, the presented procedure may well serve as a generator of a core plan which may be used

as a starting point for the creation of a full plan in the company. The planner could use the solution from

Iteration 6 (as presented in Table 9) and use the remaining assets to power as many of the unserved trains as

desirable. Further, the freed-up assets could be assigned to tasks which are not included in the instance. This

may help determine the maintenance plan – unused locos may now be scheduled for (long-term) maintenance.

With regard to the algorithmic performance, we also remark that for the presented results no combinatorial

Benders cuts had to be added for all iterations. Moreover, since the considered resource availabilities are not

extremely tight, there was no need to add the valid inequalities discussed in Section 4.2. When reducing the

availability of locomotives and drivers below 40%, the instances could not be solved within the limit.

40

5.3.2 Limiting the availability of drivers and locomotives upfront

In the second scenario, we will consider the impact of decreasing the asset base by removing a certain percentage

of randomly selected assets before proceeding with the optimization.

Description of the scenario In this scenario, we again run our algorithm against the order-book of the 1M

instance. We test the performance of the method when the availability of the resources is limited. To this end,

we limit the availability of assets in steps of 10%. The reduction of the locomotive availability is performed by

randomly removing locomotives from the original data. With regard to drivers, we simulate holiday patterns

which could be requested by the drivers affected. These include requesting one or two periods off in a month.

If one period is selected, it may last 1, 2, 3, 7, 14, 21 or 28 days. If two periods off are requested, each one

may last 1, 2, 3, 7 or 14 days. We randomly select the subset of drivers whose availability becomes limited.

For these, we randomly select the number of periods of time off and then their respective duration and starting

date(s).

Discussion of the solution Table 10 presents the optimal solutions to the 1M order-book with limited

resource availability. Rows correspond to different availabilities of locomotives, while columns represent various

degrees to which drivers are available. The numbers reported correspond to an average of the discussed result

from three runs. If a dagger (†) is shown next to a number, it means that the number is an average of two

results, since one experiment failed. If there is no number in a cell, then no experiment for such a configuration

was conducted. Such a table structure follows throughout this paragraph.

Table 10 itself proves the versatility of the method we introduce in this article – even the instances with

the smallest resource availabilities were solved to optimality. As the number of locomotives available decreases,

so does the optimum. Even with only 20% of the locomotives and all drivers, the algorithm can still cover

the order-book to a level of 77% (1962 out of 2551 trains). Conversely, with all the locomotives present and

a decreasing availability of the drivers, the optimum does not change. Instances with smaller percentages of

drivers did not solve to optimality within the allotted three hours time. For the much more realistic case

of “proportional” decreases (equal shares of the original locomotive and driver sets), the optima returned for

successful experiments do not differ from the scenario in which only locomotive set was reduced for all but one

case.

Table 11 presents the average solution times across the instances. We may conclude that removing drivers

complicates the model much more than removing locomotives and generally contributes to longer solution times.

We may also conclude that solution times vary greatly for similar settings – for example, while the instance

comprising 60% of drivers and 60% of locomotives solves to optimality in 1113 seconds on average, a more

“relaxed” instance consisting of 60% of drivers and 100% of locomotives requires 1377 seconds on average.

41

With regard to cuts of type (2.7), as well as to the combinatorial Benders cuts, none of the instances

considered required their addition. Additionally, for all of the successful experiments, the long-break heuristic

turned out to be successful as well. Hence, we do not present these results in a tabular form.

Overall, our computational results clearly show that our method is capable of solving joint locomotive

scheduling and driver roster problems on a real-world scale.

% of drivers remaining

10 20 30 40 50 60 70 80 90 100

%
o
f

lo
co

m
o
ti

v
es

re
m

a
in

in
g 10 1359 1359

20 1962 1962
30 2272 2272
40 2417 2438
50 2459 2459
60 2484 2484
70 250 2505
80 2519 2519
90 2522† 2522
100 2529 2529 2529 2529 2529 2529 2529 2529 2529 2529

Table 10: Upfront resource availability reduction – optimal values

% of drivers remaining

10 20 30 40 50 60 70 80 90 100

%
of

lo
co

m
ot

iv
es

re
m

ai
n

in
g 10 322 449

20 841 958
30 932 916
40 1428 1288
50 989 1088
60 1113 976
70 1314 1314
80 983 847
90 1306† 2430
100 1791 3195 1542 2017 2624 1377 1470 1348 1494 1377

Table 11: Upfront resource availability reduction – average model solution times (in seconds)

To conclude, we would like to add that the results presented in this section were satisfying to the industrial

partner. This is due to the fact that our algorithm is capable of finding both a locomotive and a driver for all

(or almost all) trains in any given orderbook. In case not all trains are running, the few remaining trains can

likely be served by repositioning locomotives in a similar fashion as we did with the drivers. Together with the

relatively short solution times we achieve, our approach can prove very favourable if integrated in a decision

support tool, where planners can manually add such repositionings (“deadheading”) or modify the input data

by e.g. slightly modifying the departure times of trains to make sure that all of them can be run.

An example illustration of a schedule assigned to a locomotive and a shift assigned to a driver can be found

in Appendix C.

42

6 Conclusions

We presented mathematical methods for the integrated optimization of locomotive scheduling and driver roster-

ing in rail freight transport. Our aim was to serve as many of the scheduled trains as possible without making

use of additional empty runs. To the best of our knowledge, we introduce the first comprehensive model for

this integrated planning task, representing in particular the working time requirements of the drivers in a very

complete fashion. We are able to solve the problem for large, countrywide instances supplied by a major player

in the Polish market, DB Cargo Polska. This was possible by strengthening the initial formulation of the model,

together with developing an exact decomposition approach which allows for a sequential solution of the prob-

lem. Problem-specific as well as general purpose valid inequality classes ensure the feasibility of solutions to the

decomposed subproblems. To further decrease computation times, we devised an additional presolve heuristic.

Our results show that the optimal solutions we obtained in many cases allow to run all of the scheduled trains.

Further, these solutions can be obtained for planning horizons spanning up to one month in comparably short

time (overnight). Altogether, the obtained results point to a very beneficial use of our methods in practice, in

particular to significantly simplify the current planning process at rail freight carriers.

Acknowledgements

We would like to express our gratitude to Micha l Batko, Jacek Babiuch, Piotr Cieśliński, Mariusz Jankiewicz,

Tomasz Kleszcz, Grzegorz Studnik, Mi losz Warda and their teams at DB Cargo Polska for all their support.

We also thank our Master’s student Linda Schneider for her support with the literature overview. This work

has received funding from the European Union’s Horizon 2020 research and innovation programme under the

Marie Sk lodowska-Curie Grant Agreement No. 765374 (ROMSOC). This research was further supported by the

Bavarian Ministry of Economic Affairs, Regional Development and Energy through the Center for Analytics –

Data – Applications (ADA-Center) within the framework of “BAYERN DIGITAL II” (20-3410-2-9-8).

43

A Set definitions

In order to define all the index sets required for the construction of the constraints of model (1) in Section 3,

we first need several real-valued parameters which are train-, week- or driver-specific. They are summarized in

Table 12. In the definitions below, we use the constant h ∈ R to denote a real number equivalent to one hour.

Parameter Definition
s(t) Starting time of a train t ∈ T
e(t) Ending time of a train t ∈ T

sweek(w) Starting time of a calculation week w ∈ W
eweek(w) Ending time of a calculation week w ∈ W
ssunday(w) Starting time of a Sunday falling in week w ∈ W
esunday(w) Ending time of a Sunday falling in week w ∈ W

o(t) Origin station of a train t ∈ T
a(t) Destination station of a train t ∈ T
τs1,s2 Transit time between stations s1, s2 ∈ S
cshift Maximal duration of shift in hours
cshort Minimal duration of short break in hours
clong Minimal duration of long break in hours
csunday Maximal count of working Sundays in a month

Table 12: Summary of parameters required for set construction

Many of the parameters included in Table 12 were introduced earlier. We will now briefly comment on the

five parameters, which were not introduced earlier:

• Parameters sweek(w) and eweek(w) denote the starting time and the ending time of a calculation week

w ∈ W respectively. They are necessary to build sets required for the construction of constraints (1.15).

• Parameters ssunday(w) and esunday(w) denote the starting time and the ending time of a Sunday falling in

the calculation week w ∈ W respectively. They are necessary to build sets required for the construction

of constraints (1.17).

• Parameter τs1,s2 denotes the ransit time between stations s1, s2 ∈ S. The role of transit times is to reflect

the possibility to transport a train driver to the station, from which the first train in their shift departs,

by car. This is described in greater detail in Subsection 3.1.1.

In the paragraphs below, a definition of each index set used in model (1) is given.

Forward-looking daily break set TB+
t,d The set TB+

t,d is used to represent, for each driver d ∈ D and for all

t ∈ T d, the trains t1 ∈ T d which cannot be assigned to driver d if t is the last train in the shift before a short

break. We can formally state the set d ∈ D and t ∈ T d as

TB+
t,d := {t1 ∈ T d : s(t1) ≥ s(t) ∧ s(t1) ≤ e(t) + cshort}

∪ {t1 ∈ T d : s(t1) > s(t) ∧ e(t) + cshort + τa(t),o(t1) > s(t1)}.

44

The capital letter B used in the name of this set (as well as in the name of the set TB−
t,d introduced below) point

towards the fact that its contains the trains which would violate a break constraint if they were assigned to

driver d along with train t. This entails both trains departing before or after train t.

Weekly break set TLB+
t,d For each driver d ∈ D and train t ∈ T d we require the set TLB+

t,d to denote those

trains t1 ∈ T d which cannot be assigned to driver d if train t is the last job before a long break. Formally, we

define this set as:

TLB+
t,d := {t1 ∈ T d : s(t1) ≥ s(t) ∧ s(t1) ≤ e(t) + clong}

∪ {t1 ∈ T d : s(t1) > s(t) ∧ e(t) + clong + τa(t),o(t1) > s(t1)}

for all d ∈ D and t ∈ T d. For our computational experiments, we used a heuristic version of this set as it

allowed for a simpler implementation. It is different from the above definition by the fact that instead of using

exact transportation times between stations, we use maximal transportation time between stations which are

the origin and destination stations of trains t ∈ T . Since the heuristic version of the set includes more trains

than necessary, it is actually to the benefit of the drivers – their breaks could potentially be longer than the

assumed clong hours plus the transportation time. This restriction still allowed us to obtain optimal solutions

for all the instances in our real-world case study, as we could deduce from a comparison of the number of trains

covered by the locomotive master solution and the driver subproblem solution respectively.

Backward-looking trains blocked set TB−
t,d In the set TB−

t,d , d ∈ D and t ∈ T d, we group together all trains

t1 ∈ T d which cannot be served by the driver d if train t is selected to be the first in one of the shifts of driver

d. More formally, we have

TB−
t,d := {t1 ∈ T d : e(t1) ≥ s(t) − cshort ∧ e(t1) ≤ s(t)}

∪ {t1 ∈ T d : s(t1) < s(t) ∧ s(t) − cshort − τa(t1),o(t) < e(t1)}

for all d ∈ D and t ∈ T d.

Long break beginning set Tweek
w,d For every driver d ∈ D and each week w ∈ W , we construct a set Tweek

w,d

to collect those trains t ∈ T d which belong to calculation week w and which could serve as the last one before a

long break of driver d. We need to make sure that at least one long break is scheduled in each calculation week.

Hence, Tweek
w,d shall contain all the jobs t ∈ T d which end more than clong hours before the end of the calculation

week.

Tweek
w,d := {t ∈ T d : e(t) ≥ sweek(w) ∧ e(t) + clong ≤ eweek(w)}

45

for all w ∈ W and d ∈ D.

Calculation week set Tweek assignment
w,d For each calculation week w ∈ W and for each driver d ∈ D, we need

the set Tweek assignment
w,d to indicate the trains t ∈ T d which belong to calculation week w. It can be defined as

follows:

Tweek assignment
w,d := {t ∈ T d : s(t) ≥ sweek(w) ∧ e(t) ≤ eweek(w)}

for all w ∈ W and d ∈ D.

Feasible shift beginnings and ends T shift end
t,d and T shift beginning

t,d The two sets T shift beginning
t,d and T shift end

t,d

are required for all drivers d ∈ D and all trains t ∈ T d in order to accumulate those trains t1 ∈ T d which could

have been assigned to the driver d along with train t as the first and last train in a shift respectively. For a

formal definition, for each d ∈ D and each train t ∈ T d let us first introduce the following set of potential next

jobs:

T next driver
t,d := {t1 ∈ T d : s(t1) > e(t) ∧ e(t1) < s(t) + cshift ∧ o(t1) = a(t))}

∪ {t1 ∈ T d : s(t1) > e(t) + τot1 ,a(t) ∧ e(t1) < s(t) + cshift}.

Based on this set, we define the directed graph Gshift
d = (T d, Ashift

d) with

Ashift
d := {(t1, t2) : t1, t2 ∈ T d ∧ t2 ∈ T next driver

t1,d }.

Based on this graph, we formally define the two required index sets:

T shift beginning
t,d := {t1 : t1 ∈ δ−(t) ∧ s(t1) ≥ e(t) − cshift} ∪ {t}

and

T shift end
t,d := {t1 : t1 ∈ δ+(t) ∧ e(t1) ≤ s(t) + cshift} ∪ {t}

for all d ∈ D and t ∈ T d. Here, δ+(t) and δ−(t) denote the set of outgoing and incoming arcs of a node t ∈ T d

respectively.

Trains in time conflict set T time
t,d Using the set T time

t,d , we gather, for all drivers d ∈ D and for each train

t ∈ T d, the trains t1 ∈ T d which are in time conflict with the train t ∈ T d. It also contains trains t1 ∈ T d which

may not be served by the driver d who served the train t because of an excessively long transit time required to

46

arrive at the departure station of t1. This will allows us to prohibit situations which would require a driver to

serve two trains at the same time. Formally, we introduce this set as

T time
t,d := ({t1 ∈ T d : s(t1) ≤ s(t) ∧ e(t1) ≥ e(t)}

∪ {t1 ∈ T d : s(t1) ≥ s(t) ∧ s(t1) ≤ e(t) ∧ e(t1) ≥ e(t)}

∪ {t1 ∈ T d : s(t1) ≥ s(t) ∧ e(t1) ≤ e(t)}

∪ {t1 ∈ T d : s(t1) ≤ s(t) ∧ e(t1) ≤ e(t) ∧ e(t1) ≥ s(t)}

∪ {t1 ∈ T d : e(t) + τa(t),o(t1) > s(t1) ∧ e(t1) ≤ s(t) + cshift ∧ s(t1) > s(t)}) \ {t}

for all d ∈ D and t ∈ T d.

Trains in time conflict set T time global
t Using the set T time global

t , we gather, for each train t ∈ T , the trains

t1 ∈ T which are in time conflict with the train t ∈ T . This will allows us to enumerate all of the trains which

run in parallel to the considered train t. This set also contains trains t1 ∈ T which may not be served by a driver

d ∈ D who served the train t because of an excessively long transit time required to arrive at the departure

station of t1. Formally, we introduce this set as

T time global
t := ({t1 ∈ T : s(t1) ≤ s(t) ∧ e(t1) ≥ e(t)}

∪ {t1 ∈ T : s(t1) ≥ s(t) ∧ s(t1) ≤ e(t) ∧ e(t1) ≥ e(t)}

∪ {t1 ∈ T : s(t1) ≥ s(t) ∧ e(t1) ≤ e(t)}

∪ {t1 ∈ T : s(t1) ≤ s(t) ∧ e(t1) ≤ e(t) ∧ e(t1) ≥ s(t)}

∪ {t1 ∈ T : e(t) + τa(t),o(t1) > s(t1) ∧ e(t1) ≤ s(t) + cshift ∧ s(t1) > s(t)}) \ {t}

for all t ∈ T .

Feasible next shift beginnings and ends T after break
t,d and T before break

t,d For all drivers d ∈ D and trains

t ∈ T d, these two sets T after break
t,d and T before break

t,d are used to group together the trains t1 ∈ T d which can be

the first jobs of the next shift after the short break following the train t and, respectively, the trains t1 ∈ T d

which can be the last job of the previous shift before the short break preceding train t. For a formal definition,

for each d ∈ D let us first introduce a graph Gb
d = (T d, Ab

d) with

Ab
d := {(t1, t2) : t1, t2 ∈ T d ∧ o(t2) = a(t1) ∧ s(t2) > e(t1) + cshort}

∪ {(t1, t2) : t1, t2 ∈ T d ∧ s(t2) > e(t1) + τo(t2),a(t1) + cshort}.

47

Based on this graph, we formally define

T after break
t,d := δ+(t)

and

T before break
t,d := δ−(t).

for all d ∈ D and t ∈ T d. The two sets δ+(t) and δ−(t) denote the outgoing and incoming arcs of a node t ∈ T d

respectively.

Locomotive potential next trains T next
t,L For all locomotive classes L ∈ L and for all trains t ∈ TL, the set

T next
t,L is used to gather all trains t1 ∈ TL which can be selected as the successors to locomotive of locomotive

class L if it serves train t. It can be formally stated as

T next
t,L := {t1 ∈ TL : s(t1) > e(t) ∧ o(t1) = a(t)}

for all t ∈ T and L ∈ Lt.

Sunday set T sunday
w,d The set T sunday

w,d is used to determine which trains t1 ∈ T are scheduled for the period

falling between Sunday, 6:00 a.m., and Monday, 6:00 a.m. (referred to as ‘Sunday’) in a calculation week w for

a given driver d ∈ D in order to make sure that at least every fourth Sunday is off. We define this set as

T sunday
w,d := {t1 ∈ T d : s(t1) ≥ ssunday(w) ∧ e(t1) ≤ esunday(w)}

∪ {t1 ∈ T d : s(t1) ≥ ssunday(w) ∧ s(t1) ≤ esunday(w) ∧ e(t1) ≥ esunday(w)}

∪ {t1 ∈ T d : s(t1) ≤ ssunday(w) ∧ e(t1) ≥ ssunday(w) ∧ e(t1) ≤ esunday(w)}

for all d ∈ D and w ∈ W .

48

B Detailed description of the computational scenarios

B.1 Baseline scenarios

The following two scenarios attempt at solving the model (1) directly, without the use of the decomposition

scheme described in Subsection 4.1 or presolve heuristic introduced in Subsection 4.4.

Original model As a first step, we will attempt at solving the initial formulation of model (1). We refer to

this scenario as NoClq.

Clique tightening Here will attempt at solving the initial formulation of model (1), with the modifications

described in Subsection 3.3. This means we replace constraints (1.7), (1.8), (1.9) and (1.10) with (1.7b), (1.8b),

(1.9b) and (1.10b) respectively We refer to this scenario as Clq.

B.2 Scenarios based on decomposition only

The following three scenarios attempt at solving the model (1), using the decomposition scheme introduced in

Subsection 4.1. They vary in the inclusion of clique tightening in Subsection 3.3 or valid inequalities introduced

in Subsection 4.2. None of the scenarios introduced here uses the presolve heuristic introduced in Subsection 4.4.

Decomposition Here we consider the decomposition approach as described in Subsection 4.1. To recall, it

comprises the following three steps between which the algorithm iterates until convergence:

1. Solve the locomotive master problem given by objective function (2.1) and constraints (1.23)–(1.26), (1.34),

(2.2) and (2.3) extended by the additional valid inequalities developed in Subsection 4.2. To be precise,

inequalities (2.7) are all added from the beginning, while inequalities (2.4), (2.6) and (2.9) are added as

cutting planes until no further cutting planes are found.

2. Preprocess the driver subproblem, as discussed in Subsection 4.3.

3. Solve the driver subproblem, i.e. the feasibility problem given by constraints (1.2), (1.3), (1.4b), (1.5)–

(1.6), (1.7b)–(1.10b), (1.11)–(1.22) and (1.27)–(1.33), with the f -variables fixed according to the solution

of the locomotive master problem. If the problem is infeasible, we generate a combinatorial Benders cut for

the locomotive master problem and iterate. Otherwise, the algorithm terminates with a globally optimal

solution.

We refer to this implementation as D.

49

Decomposition without clique tightening Here we consider the decomposition approach as described in

paragraph “Decomposition”, but with the use of constraints (1.7), (1.8), (1.9) and (1.10) instead of (1.7b),

(1.8b), (1.9b) and (1.10b) respectively.

We refer to this implementation as D-NoClq.

Decomposition without valid inequalities In this scenario, we consider the decomposition approach as

described in paragraph “Decomposition”, but excluding the valid inequalities introduced in Subsection 4.2.

We call this implementation D-NoCut.

B.3 Scenarios based on decomposition and presolve heuristic

The following three scenarios attempt at solving the model (1), using the decomposition scheme introduced in

Subsection 4.1 and the presolve heuristic introduced in Subsection 4.4. They vary in the inclusion of clique

tightening in Subsection 3.3 or valid inequalities introduced in Subsection 4.2.

Decomposition + Heuristic In this complete implementation of our algorithm we use the complete al-

gorithmic scheme shown in Figure 3 on page 23. Mainly, this is implementation Decomp enhanced by the

long-break heuristic described in Subsection 4.4. In particular, the procedure loops over the following four steps

until convergence:

1. Solve the locomotive master problem as in implementation D.

2. Preprocess the driver subproblem, as discussed in Subsection 4.3.

3. Solve the long-break presolve heuristic for the driver subproblem described in Subsection 4.4.

4. Solve the driver subproblem as in implementation Decomp with the following modification: we do

not only fix the f -variables according to the solution of the locomotive master problem, but also the

(x, y, v, z, α, ω, h)-variables as per the solution of the long-break presolve heuristic (if it is successful, oth-

erwise solve the full driver subproblem with only the f -variables fixed).

This implementation is called D+H.

Decomposition + Heuristic without clique tightening In this implementation, we use the complete

algorithmic scheme as presented in paragraph “Decomposition + Heuristic”, but with the use of constraints (1.7),

(1.8), (1.9) and (1.10) instead of (1.7b), (1.8b), (1.9b) and (1.10b) respectively.

We call this implementation D+H-NoClq.

50

Decomposition + Heuristic without valid inequalities Here we use the complete algorithmic scheme

shown in Figure 3 on page 23. It differs from implementation Decomp+Heur by the exclusion of the valid

inequalities introduced in Subsection 4.2.

This implementation is called D+H-NoCut.

51

C Example shift reports

In this section, we present two exemplary monthly train assignments – one for a locomotive and another one

for a driver. For both, we present a tabular summary as well as a chart which visualize an individual monthly

assignment of trains. Each of the tables includes the individual number of each train assigned, its origin and

destination stations as well as the departure and arrival times. In the chart, one can see a number of bars.

Each of them corresponds to one train listed in the corresponding table. The trains are plotted against a grid

resembling a monthly calendar. On the top of the grid, the names of the weekdays are mentioned.

52

Locomotive monthly plan

Loco type and item: Heavy Diesel Locomotive

Number of shifts: 61

Train no. From To Departure time Arrival time

29 PL035 PL020 2020-02-01 06:54:59 2020-02-01 13:18:59

149 PL020 PL035 2020-02-02 19:12:00 2020-02-02 21:54:59

206 PL035 PL085 2020-02-03 13:45:00 2020-02-03 14:39:59

226 PL085 PL035 2020-02-03 19:59:59 2020-02-03 20:46:00

290 PL035 PL020 2020-02-04 11:55:00 2020-02-04 14:15:00

352 PL020 PL035 2020-02-05 03:40:59 2020-02-05 07:14:59

459 PL035 PL020 2020-02-06 06:54:59 2020-02-06 13:18:59

521 PL020 PL035 2020-02-06 19:59:59 2020-02-06 23:06:00

587 PL035 PL046 2020-02-07 10:59:59 2020-02-07 12:00:00

600 PL046 PL035 2020-02-07 15:00:00 2020-02-07 16:00:00

667 PL035 PL020 2020-02-08 09:22:00 2020-02-08 12:45:00

777 PL020 PL015 2020-02-09 19:12:00 2020-02-10 03:54:59

850 PL015 PL101 2020-02-10 18:45:59 2020-02-10 23:35:59

873 PL101 PL045 2020-02-11 00:00:59 2020-02-11 06:11:00

917 PL045 PL003 2020-02-11 12:00:00 2020-02-11 12:29:00

1002 PL003 PL022 2020-02-12 10:50:00 2020-02-12 14:17:00

1027 PL022 PL003 2020-02-12 17:30:00 2020-02-12 21:22:00

1098 PL003 PL022 2020-02-13 10:50:00 2020-02-13 14:17:00

1122 PL022 PL003 2020-02-13 17:30:00 2020-02-13 21:22:00

1144 PL003 PL033 2020-02-13 22:30:59 2020-02-13 23:10:00

1165 PL033 PL003 2020-02-14 05:10:00 2020-02-14 05:46:00

1178 PL003 PL066 2020-02-14 09:20:59 2020-02-14 10:20:00

1198 PL066 PL003 2020-02-14 13:20:00 2020-02-14 14:23:00

1206 PL003 PL070 2020-02-14 15:35:00 2020-02-14 15:51:59

1221 PL070 PL003 2020-02-14 19:36:59 2020-02-14 19:54:00

1235 PL003 PL033 2020-02-14 22:30:59 2020-02-14 23:10:00

1257 PL033 PL003 2020-02-15 05:10:00 2020-02-15 05:46:00

Continued on next page

53

Table 13 – continued from previous page

Train no. From To Departure time Arrival time

1264 PL003 PL026 2020-02-15 06:27:59 2020-02-15 08:01:00

1327 PL026 PL003 2020-02-16 01:36:00 2020-02-16 03:13:59

1334 PL003 PL047 2020-02-16 04:54:00 2020-02-16 11:35:00

1361 PL047 PL012 2020-02-16 12:18:59 2020-02-16 12:35:00

1371 PL012 PL020 2020-02-16 17:35:00 2020-02-16 17:48:00

1375 PL020 PL026 2020-02-16 19:00:00 2020-02-17 04:50:00

1499 PL026 PL003 2020-02-18 08:12:00 2020-02-18 10:12:00

1517 PL003 PL033 2020-02-18 11:17:00 2020-02-18 11:48:00

1535 PL033 PL003 2020-02-18 16:11:00 2020-02-18 16:41:59

1539 PL003 PL026 2020-02-18 17:21:59 2020-02-18 19:18:59

1586 PL026 PL003 2020-02-19 04:43:59 2020-02-19 06:33:00

1605 PL003 PL026 2020-02-19 09:45:00 2020-02-19 11:44:59

1629 PL026 PL003 2020-02-19 16:00:00 2020-02-19 19:59:59

1696 PL003 PL080 2020-02-20 09:13:00 2020-02-20 11:41:00

1723 PL080 PL003 2020-02-20 13:59:59 2020-02-20 17:21:59

1806 PL003 PL022 2020-02-21 10:50:00 2020-02-21 14:17:00

1829 PL022 PL003 2020-02-21 17:30:00 2020-02-21 21:22:00

1850 PL003 PL033 2020-02-21 22:30:59 2020-02-21 23:10:00

1873 PL033 PL003 2020-02-22 05:10:00 2020-02-22 05:46:00

1880 PL003 PL026 2020-02-22 06:27:59 2020-02-22 08:01:00

1885 PL026 PL003 2020-02-22 08:12:00 2020-02-22 10:12:00

1901 PL003 PL033 2020-02-22 11:17:00 2020-02-22 11:48:00

1916 PL033 PL003 2020-02-22 16:11:00 2020-02-22 16:41:59

1921 PL003 PL026 2020-02-22 17:21:59 2020-02-22 19:18:59

2107 PL026 PL003 2020-02-25 04:43:59 2020-02-25 06:33:00

2123 PL003 PL026 2020-02-25 09:45:00 2020-02-25 11:44:59

2164 PL026 PL003 2020-02-25 18:53:00 2020-02-25 20:35:00

2221 PL003 PL026 2020-02-26 09:45:00 2020-02-26 11:44:59

2296 PL026 PL003 2020-02-27 04:43:59 2020-02-27 06:33:00

2316 PL003 PL026 2020-02-27 09:45:00 2020-02-27 11:44:59

Continued on next page

54

Table 13 – continued from previous page

Train no. From To Departure time Arrival time

2388 PL026 PL003 2020-02-28 04:43:59 2020-02-28 06:33:00

2405 PL003 PL026 2020-02-28 09:09:59 2020-02-28 11:10:59

2484 PL026 PL003 2020-02-29 04:43:59 2020-02-29 06:33:00

2501 PL003 PL026 2020-02-29 09:09:59 2020-02-29 11:10:59

55

Driver weekly plan

Name and surname: Driver045

Number of shifts: 24

Number of Sundays off: 1

Number of 35-hour breaks: 4

Train no. From To Departure time Arrival Time
11 PL032 PL050 2020-02-01 02:30:00 2020-02-01 08:23:00
113 PL032 PL050 2020-02-02 08:06:00 2020-02-02 14:19:00
305 PL050 PL032 2020-02-04 15:29:59 2020-02-04 22:16:00
437 PL032 PL094 2020-02-06 01:11:00 2020-02-06 04:41:59
507 PL011 PL094 2020-02-06 17:10:59 2020-02-06 17:19:00
568 PL032 PL050 2020-02-07 08:06:00 2020-02-07 14:19:00
606 PL011 PL094 2020-02-07 17:10:59 2020-02-07 17:19:00
659 PL050 PL032 2020-02-08 06:56:00 2020-02-08 13:34:00
743 PL032 PL050 2020-02-09 08:06:00 2020-02-09 14:19:00
803 PL033 PL003 2020-02-10 05:10:00 2020-02-10 05:46:00
868 PL003 PL033 2020-02-10 22:30:59 2020-02-10 23:10:00
932 PL011 PL094 2020-02-11 17:19:59 2020-02-11 17:28:00
958 PL003 PL033 2020-02-11 22:30:59 2020-02-11 23:10:00
1024 PL011 PL094 2020-02-12 16:25:00 2020-02-12 16:34:00
1052 PL032 PL050 2020-02-12 22:03:59 2020-02-13 03:11:00
1223 PL094 PL011 2020-02-14 20:10:00 2020-02-14 20:21:00
1243 PL032 PL094 2020-02-15 01:11:00 2020-02-15 04:41:59
1320 PL003 PL033 2020-02-15 22:30:59 2020-02-15 23:10:00
1324 PL050 PL032 2020-02-16 00:15:00 2020-02-16 06:51:00
1485 PL094 PL005 2020-02-18 04:14:00 2020-02-18 06:42:59
1659 PL032 PL050 2020-02-19 22:03:59 2020-02-20 03:11:00
1726 PL033 PL003 2020-02-20 16:11:00 2020-02-20 16:41:59
1786 PL050 PL032 2020-02-21 06:56:00 2020-02-21 13:34:00
1883 PL050 PL032 2020-02-22 06:56:00 2020-02-22 13:34:00
2058 PL094 PL032 2020-02-24 15:24:59 2020-02-24 18:51:59
2085 PL032 PL050 2020-02-24 22:03:59 2020-02-25 03:13:00
2206 PL094 PL032 2020-02-26 05:39:00 2020-02-26 08:26:59
2277 PL032 PL050 2020-02-26 22:03:59 2020-02-27 04:12:00
2380 PL032 PL050 2020-02-28 02:30:00 2020-02-28 08:23:00
2531 PL011 PL094 2020-02-29 17:19:59 2020-02-29 17:28:00

56

57

References

Aksoy, A. and Altan, A. (2013). The Integrated Locomotive Assignment and Crew Scheduling Problem. Inter-

national Journal of Computational Engineering Research, 3(8):18–24.

Amberg, B., Amberg, B., and Kliewer, N. (2011). Increasing Delay-Tolerance of Vehicle and Crew Schedules

in Public Transport by Sequential, Partial-Integrated and Integrated Approaches. Procedia - Social and

Behavioral Sciences, 20:292–301.

Amberg, B., Amberg, B., and Kliewer, N. (2019). Robust Efficiency in Urban Public Transportation: Minimizing

Delay Propagation in Cost-Efficient Bus and Driver Schedules. Transportation Science, 53(1):89–112.

Bach, L., Dollevoet, T., and Huisman, D. (2016). Integrating Timetabling and Crew Scheduling at a Freight

Railway Operator. Transportation Science, 50(3):878–891.

Borndörfer, R., Löbel, A., and Weider, S. (2008). A Bundle Method for Integrated Multi-Depot Vehicle and

Duty Scheduling in Public Transit. In Hickman, M., Mirchandani, P., and Voß, S., editors, Computer-aided

Systems in Public Transport, volume 600, pages 3–24. Springer Berlin Heidelberg, Berlin, Heidelberg. Series

Title: Lecture Notes in Economics and Mathematical Systems.

Borndörfer, R., Sagnol, G., Schlechte, T., and Swarat, E. (2017a). Optimal duty rostering for toll enforcement

inspectors. Annals of Operations Research, 252(2):383–406.

Borndörfer, R., Schulz, C., Seidl, S., and Weider, S. (2017b). Integration of duty scheduling and rostering to

increase driver satisfaction. Public Transport, 9(1-2):177–191.

Boyer, V., Ibarra-Rojas, O. J., and Rios-Solis, Y. A. (2018). Vehicle and Crew Scheduling for Flexible Bus

Transportation Systems. Transportation Research Part B: Methodological, 112:216–229.

Brito, S. S. and Santos, H. G. (2021). Preprocessing and cutting planes with conflict graphs. Computers &

Operations Research, 128:105176.

Bron, C. and Kerbosch, J. (1973). Algorithm 457: finding all cliques of an undirected graph. Communications

of the ACM, 16(9):575–577. Publisher: Association for Computing Machinery (ACM).

Caprara, A., Monaci, M., and Toth, P. (2001). A Global Method for Crew Planning in Railway Applications.

In Fandel, G., Trockel, W., Aliprantis, C. D., Kovenock, D., Voß, S., and Daduna, J. R., editors, Computer-

Aided Scheduling of Public Transport, volume 505, pages 17–36. Springer Berlin Heidelberg, Berlin, Heidelberg.

Series Title: Lecture Notes in Economics and Mathematical Systems.

Cazals, F. and Karande, C. (2008). A note on the problem of reporting maximal cliques. Theoretical Computer

Science, 407(1-3):564–568. Publisher: Elsevier BV.

58

Codato, G. and Fischetti, M. (2006). Combinatorial Benders’ Cuts for Mixed-Integer Linear Programming.

Operations Research, 54(4):756–766.

Cordeau, J.-F., Desaulniers, G., Lingaya, N., Soumis, F., and Desrosiers, J. (2001a). Simultaneous locomotive

and car assignment at VIA Rail Canada. Transportation Research Part B: Methodological, 35(8):767–787.

Cordeau, J.-F., Stojković, G., Soumis, F., and Desrosiers, J. (2001b). Benders Decomposition for Simultaneous

Aircraft Routing and Crew Scheduling. Transportation Science, 35(4):375–388.

Cordeau, J.-F., Toth, P., and Vigo, D. (1998). A Survey of Optimization Models for Train Routing and

Scheduling. Transportation Science, 32(4):380–404.

Dalal, M. and Jensen, L. (2001). Simulation modeling at Union Pacific Railroad. In Proceeding of the 2001

Winter Simulation Conference (Cat. No.01CH37304), volume 2, pages 1048–1055, Arlington, VA, USA. IEEE.

Dauzère-Pérès, S., De Almeida, D., Guyon, O., and Benhizia, F. (2015). A Lagrangian heuristic framework for

a real-life integrated planning problem of railway transportation resources. Transportation Research Part B:

Methodological, 74:138–150.

De Leone, R., Festa, P., and Marchitto, E. (2011). A Bus Driver Scheduling Problem: a new mathematical

model and a GRASP approximate solution. Journal of Heuristics, 17(4):441–466. Publisher: Springer.

Drexl, M., Rieck, J., Sigl, T., and Press, B. (2013). Simultaneous Vehicle and Crew Routing and Scheduling for

Partial- and Full-Load Long-Distance Road Transport. Business Research, 6(2):242–264.

Dunbar, M., Froyland, G., and Wu, C.-L. (2014). An integrated scenario-based approach for robust aircraft

routing, crew pairing and re-timing. Computers & Operations Research, 45:68–86.

Dı́az-Ramı́rez, J., Huertas, J. I., and Trigos, F. (2014). Aircraft maintenance, routing, and crew scheduling

planning for airlines with a single fleet and a single maintenance and crew base. Computers & Industrial

Engineering, 75:68–78.

Dück, V., Ionescu, L., Kliewer, N., and Suhl, L. (2012). Increasing stability of crew and aircraft schedules.

Transportation Research Part C: Emerging Technologies, 20(1):47–61.

Ernst, A., Jiang, H., Krishnamoorthy, M., Nott, H., and Sier, D. (2001). An Integrated Optimization Model

for Train Crew Management. Annals of Operations Research, 108:211–224.

Freling, R., Huisman, D., and Wagelmans, A. P. M. (2003). Models and Algorithms for Integration of Vehicle

and Crew Scheduling. Journal of Scheduling, 6(1):63–85.

59

Fulkerson, D. and Gross, O. (1965). Incidence matrices and interval graphs. Pacific Journal of Mathematics,

15(3):835–855.

Gaffi, A. and Nonato, M. (1999). An Integrated Approach to Ex-Urban Crew and Vehicle Scheduling. In

Fandel, G., Trockel, W., and Wilson, N. H. M., editors, Computer-Aided Transit Scheduling, volume 471,

pages 103–128. Springer Berlin Heidelberg, Berlin, Heidelberg. Series Title: Lecture Notes in Economics and

Mathematical Systems.

Goumopoulos, C. and Housos, E. (2004). Efficient trip generation with a rule modeling system for crew schedul-

ing problems. Journal of Systems and Software, 69(1):43–56.

Gurobi Optimization, LLC (2022). Gurobi Optimizer Reference Manual.

Guttkuhn, R., Dawson, T., and Trutschel, U. (2003). A discrete event simulation for the crew assignment

process in North American freight railroads. In Proceedings of the 2003 International Conference on Machine

Learning and Cybernetics (IEEE Cat. No.03EX693), pages 1686–1692, New Orleans, LA, USA. IEEE.

Haase, K., Desaulniers, G., and Desrosiers, J. (2001). Simultaneous Vehicle and Crew Scheduling in Urban

Mass Transit Systems. Transportation Science, 35(3):286–303.

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring Network Structure, Dynamics, and Function

using NetworkX. In Varoquaux, G., Vaught, T., and Millman, J., editors, Proceedings of the 7th Python in

Science Conference, pages 11–15, Pasadena, CA USA.

Heil, J., Hoffmann, K., and Buscher, U. (2020). Railway crew scheduling: Models, methods and applications.

European Journal of Operational Research, 283(2):405–425.

Hollis, B., Forbes, M., and Douglas, B. (2006). Vehicle routing and crew scheduling for metropolitan mail

distribution at Australia Post. European Journal of Operational Research, 173(1):133–150.

Huisman, D. (2004). Integrated and dynamic vehicle and crew scheduling. Number 325 in Tinbergen Institute

research series. Thela Thesis, Amsterdam. OCLC: 249616330.

Huisman, D., Freling, R., and Wagelmans, A. P. M. (2005). Multiple-Depot Integrated Vehicle and Crew

Scheduling. Transportation Science, 39(4):491–502.

Huisman, D. and Wagelmans, A. P. (2006). A solution approach for dynamic vehicle and crew scheduling.

European Journal of Operational Research, 172(2):453–471.

Ibarra-Rojas, O., Delgado, F., Giesen, R., and Muñoz, J. (2015). Planning, operation, and control of bus

transport systems: A literature review. Transportation Research Part B: Methodological, 77:38–75.

60

Johnson, D. S., Yannakakis, M., and Papadimitriou, C. H. (1988). On generating all maximal independent sets.

Information Processing Letters, 27(3):119–123.

Jütte, S. and Thonemann, U. W. (2012). Divide-and-price: A decomposition algorithm for solving large railway

crew scheduling problems. European Journal of Operational Research, 219(2):214–223.

Khmeleva, E., Hopgood, A. A., Tipi, L., and Shahidan, M. (2014). Rail-Freight Crew Scheduling with a Genetic

Algorithm. In Bramer, M. and Petridis, M., editors, Research and Development in Intelligent Systems XXXI,

pages 211–223. Springer International Publishing, Cham.

Khmeleva, E., Hopgood, A. A., Tipi, L., and Shahidan, M. (2018). Fuzzy-Logic Controlled Genetic Algorithm

for the Rail-Freight Crew-Scheduling Problem. KI - Künstliche Intelligenz, 32(1):61–75.

Koniorczyk, M., Talas, B., and Gedeon, F. (2015). Preconditioning in the Backtracking Duty Generation of

Passenger Rail Crew Scheduling: A Case Study. Communications - Scientific letters of the University of

Zilina, 17(2):23–29.

Kou, L. T., Stockmeyer, L. J., and Wong, C. K. (1978). Covering edges by cliques with regard to keyword

conflicts and intersection graphs. Communications of the ACM, 21(2):135–139.

Kumar, A., Vaidyanathan, B., and Ahuja, R. K. (2009). Railroad Locomotive Scheduling. In Floudas, C. A.

and Pardalos, P. M., editors, Encyclopedia of Optimization, pages 3236–3245. Springer US, Boston, MA.

Lam, E., Van Hentenryck, P., and Kilby, P. (2020). Joint vehicle and crew routing and scheduling. Transportation

Science, 54(2):488–511. Publisher: INFORMS.

Laurent, B. and Hao, J.-K. (2008). Simultaneous Vehicle and Crew Scheduling for Extra Urban Transports. In

Nguyen, N. T., Borzemski, L., Grzech, A., and Ali, M., editors, New Frontiers in Applied Artificial Intelligence,

volume 5027, pages 466–475. Springer Berlin Heidelberg, Berlin, Heidelberg. Series Title: Lecture Notes in

Computer Science.

Mercier, A., Cordeau, J.-F., and Soumis, F. (2005). A computational study of Benders decomposition for the

integrated aircraft routing and crew scheduling problem. Computers & Operations Research, 32(6):1451–1476.

Mercier, A. and Soumis, F. (2007). An integrated aircraft routing, crew scheduling and flight retiming model.

Computers & Operations Research, 34(8):2251–2265.

Mesquita, M., Moz, M., Paias, A., Paixão, J., Pato, M., and Resṕıcio, A. (2011). A new model for the integrated

vehicle-crew-rostering problem and a computational study on rosters. Journal of Scheduling, 14(4):319–334.

Mesquita, M., Moz, M., Paias, A., and Pato, M. (2013). A decomposition approach for the integrated vehicle-

crew-roster problem with days-off pattern. European Journal of Operational Research, 229(2):318–331.

61

Mesquita, M. and Paias, A. (2008). Set partitioning/covering-based approaches for the integrated vehicle and

crew scheduling problem. Computers & Operations Research, 35(5):1562–1575.

Moon, J. W. and Moser, L. (1965). On cliques in graphs. Israel Journal of Mathematics, 3(1):23–28.

Perumal, S. S., Dollevoet, T., Huisman, D., Lusby, R. M., Larsen, J., and Riis, M. (2021). Solution approaches

for integrated vehicle and crew scheduling with electric buses. Computers & Operations Research, 132:105268.

Petersen, J. D., Sölveling, G., Clarke, J.-P., Johnson, E. L., and Shebalov, S. (2012). An Optimization Approach

to Airline Integrated Recovery. Transportation Science, 46(4):482–500.

Piu, F. and Speranza, M. G. (2014). The locomotive assignment problem: a survey on optimization models: The

locomotive assignment problem: a survey on optimization models. International Transactions in Operational

Research, 21(3):327–352.

Raff, S. (1983). Routing and scheduling of vehicles and crews. The state of the art. Computers & Operations

Research, 10(2):63–211.

Shen, Y. and Xia, J. (2009). Integrated bus transit scheduling for the Beijing bus group based on a unified

mode of operation. International Transactions in Operational Research, 16(2):227–242.

Steinzen, I., Becker, M., and Suhl, L. (2007). A hybrid evolutionary algorithm for the vehicle and crew scheduling

problem in public transit. In 2007 IEEE Congress on Evolutionary Computation, pages 3784–3789, Singapore.

IEEE.

Tomita, E., Tanaka, A., and Takahashi, H. (2006). The worst-case time complexity for generating all maximal

cliques and computational experiments. Theoretical Computer Science, 363(1):28–42. Publisher: Elsevier BV.

Vaidyanathan, B. and Ahuja, R. K. (2015). Crew Scheduling Problem. In Patty, B. W., editor, Handbook of

Operations Research Applications at Railroads, volume 222, pages 163–175. Springer US, Boston, MA. Series

Title: International Series in Operations Research & Management Science.

Vaidyanathan, B., Jha, K. C., and Ahuja, R. K. (2007). Multicommodity network flow approach to the railroad

crew-scheduling problem. IBM Journal of Research and Development, 51(3.4):325–344.

Valouxis, C. and Housos, E. (2002). Combined bus and driver scheduling. Computers & Operations Research,

29(3):243–259.

Weide, O., Ryan, D., and Ehrgott, M. (2010). An iterative approach to robust and integrated aircraft routing

and crew scheduling. Computers & Operations Research, 37(5):833–844.

62

