
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Generation uncertainties, especially during the unit

startup and shutdown (SU/SD) processes, pose uncertainties for

the real-time market clearing process, and they are often

underestimated. This paper proposes two approaches to predict

generator SU/SD trajectories in the real-time operations of

independent system operators or regional transmission

organizations (ISO/RTOs). We first collect and pre-process raw

market data from state estimation. Then we investigate two

approaches to account for the uncertainty in MW of generation

SU/SD in the real-time market clearing. The first is an offline

approach that leverages a machine learning technique, gradient

boosting tree, to effectively capture the nonlinear relationship

between the SU/SD curves and selected feature maps. The offline

approach works for predicting generator trajectories in the real-

time Look Ahead Commitment (LAC) process, based on historical

data. We also investigate an online approach using a long-short-

term memory network that can learn from the last-interval error

information and enhance the current prediction, potentially

applicable for the real-time economic dispatch process. We

validate the benefit of the proposed approach with a full-day

rolling LAC framework on MISO-size test cases. The result shows

that using the predicted curves could help system operators

achieve better results in real-time commitment and dispatch

processes.

Index Terms—Generation startup and shutdown curves, real-

time market operation, unit commitment, gradient boosting tree,

long-short-memory network.

I. INTRODUCTION

In its efforts to efficiently commit and dispatch resources,

ISO/RTOs need to account for the startup and shutdown

(SU/SD) behavior of resources. In standard market operating

processes, operators send commit and decommit instructions to

the generators. Generation outputs during SU/SD are metered

but not projected in the market-clearing engine. In the market-

clearing process, units’ SU/SD MW is ignored most of the time

and treated as noises. For time periods with projected large MW

from SU/SD, real time operations may use manual offset to

account for the estimated MW value. In addition, the MISO

practice in the market clearing processes [1] only consider

SU/SD binary decision for units in unit commitment

S. Yin, Y. Chen, L. Zhao, M. Faqiry, and A. A. Thatte are with the

Midcontinent Independent System Operator (MISO), Carmel, IN, 46032 USA.

Emails: {syin, ychen, lzhao, mofaqiry, athatte}@misoenergy.org.
 (Corresponding Author: Yonghong Chen)

constrained by a predefined SU/SD ramp rate. However, this

practice does not capture the accurate MW values during

SU/SD. The MW quantities below the dispatchable minimum

limit are relatively small most time. But they may undermine

the accuracy of market clearing results when the system has a

large number of generator startups or shutdowns during net load

ramping periods. The need for accurate and systematic

measurements of SU/SD curves is even more important for the

real-time market since it has a finer time granularity.

Research on timeseries prediction for power system

applications is fruitful, but very few works investigate units’

SU/SD processes as a generation uncertainty. Albeit X. Lin et

al. [13] leverage random forest as a classification method to

predict the SU/SD hours to reduce the number of binary

variables in the unit commitment, how to let system operators

accurately account for the unit SU/SD MW in real-time

operations is still an open question.

Unit SU/SD curves are typical timeseries with inherent

relationships with multiple potential unit-specific and

environmental factors. Sample unit-specific factors include

capacity size, unit ramp rate, minimum power output, and fuel

type, etc. Environmental factors include ambient temperature,

dewpoint, and rainfall. However, there are also differences

between the features for startup curves and shutdown curves.

For the startup process, units’ startup behaviors could be

potentially impacted by how long the unit has been offline (cold

start or warm start) and the current boiler status for some units.

These features would not impact the shutdown process, where

the dispatch MW immediately before shutting down is a more

important factor for the shape of the shutdown curve. Unlike

wind and solar forecasts that have already had a mature and

well-validated feature set, to the best of the authors’ knowledge,

there is no existing work that comprehensively discusses units’

SU/SD impact factors during which their MW levels are nearly

uncontrollable. Thus, the feature selection and quantitative

analysis of feature importance for the SU/SD processes call for

in-depth investigation. State-of-the-art feature engineering

algorithms like Deep Feature Synthesis (DFS) [2] could help

with such a task.

Machine learning (ML) techniques have been researched and

in some cases applied for numerous power sector applications,

B. Knueven is with the National Renewable Energy Laboratory, Golden,

CO, 15013 USA. Email:

J. Wang is with the Department of Electrical and Computer Engineering,
Southern Methodist University, TX, 75206 USA. Email: jianhui@smu.edu.

Capturing Unit Startup and Shutdown Uncertainties

in the Real-time Commitment Process

Shengfei Yin, Student Member, IEEE, Yonghong Chen, Senior Member, IEEE, Ben Knueven, Long

Zhao, Mohammad Faqiry, Anupam A. Thatte, Member, IEEE and Jianhui Wang, Fellow, IEEE

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

including load forecast [3], renewable forecast [4], false data

detection [5], state estimation [6], and system operations [7]

etc.. However, there is little research on SU/SD prediction.

Nevertheless, there are common core ideas across applications.

ML for SU/SD behavior prediction represents a supervised

learning task for timeseries based on historical data, towards

which existing works have presented many efficient methods.

C. Wan et al. [8] improved the existing probabilistic wind

power forecast with a nonparametric prediction interval setup

using quantile regression and extreme learning machine. H.

Yang et al. [9] proposed a hybrid training tool for solar power

forecast considering temperature and solar irradiance, which

consisted of a classification stage using learning vector

quantization and a regression stage using support vector

regression. J. Andrade et al. [10] applied a gradient boosting

tree algorithm to conduct wind speed forecast based on an

enhanced spatiotemporal feature selection for timeseries data.

More specifically, as the generation uncertainty is mostly

timeseries, the autoregression model and long-short-term

memory network (LSTM) are two mainstream methods with

well-known effectiveness. J. Dowell et al. [11] employed a

sparse vector autoregression method to capture very short-term

spatial information for wind power forecast. M. Khodayar et al.

[12] combined the graph convolutional network with LSTM to

capture the spatiotemporal correlations between multiple wind

farms and thus enhance the future timeseries predictions for

wind speed forecast..

The ultimate goal of the SU/SD prediction is to help system

operators better manage generation uncertainties in real-time

operations. If we take MISO as an example, the real-time

clearing includes two main components, a real-time security-

constrained unit commitment (UC) routine called look-ahead

commitment (LAC) and a real-time security-constrained

economic dispatch (ED) routine called unit dispatch system

(UDS). LAC has a fifteen-minute resolution and a three-hour

horizon, while UDS in our study is a single-interval operation

with a five-minute resolution. The UDS scheduling obeys the

commitment decisions determined in the commitment

processes. The difference between time resolutions requires

different granularity and eligibility of the predicted SU/SD

curves. For example, a fast-responsive unit that can startup in

ten minutes will not have the startup curve in LAC, but it will

have the curve in UDS, which also applies to the shutdown

units. Capturing SU/SD behavior in LAC and UDS could help

the low-resolution, real-time clearing software more accurately

account for non-dispatchable MW. In this work, we use the

MISO test cases to illustrate the efficacy of the proposed

methodologies, which could be conveniently generalized to

other ISO/RTOs’ use cases or other research models.

We summarize the contributions of this paper as follows.

• We investigate the unique features in the unit’s SU/SD

behavior by employing automated feature engineering

techniques. We quantitatively evaluate the importance

of features for each unit and identify features with the

highest impact and therefore can be used in the

predictive approaches.

• We propose two predictive approaches to capture the

unit SU/SD uncertainties by using state-of-the-art ML

techniques. The first approach conducts a static

supervised prediction using historical data and selected

features. The second approach incorporates a real-time

error correction to enhance predictions in finer-

resolution operations.

• We validate the predicted SU/SD curves with a MISO

test case by incorporating curves in the LAC and UDS

co-simulation. These results could serve as references

for future studies on generation SU/SD uncertainties.

II. RAW DATA PREPROCESSING AND FEATURE SELECTION

This section introduces how we conduct the preprocessing

for raw data and how we select important features for later ML

tasks. It is widely recognized in the ML community that

regardless of the power of predictors, flawed inputs produce

flawed outputs, which is the motivation of this task. Note that

we only consider the SU/SD curves for conventional resources,

including diesel units, combined-cycle units, steam turbines,

and combustion turbines, etc. Non-dispatchable renewable

resources usually can startup and shutdown very quickly and

their outputs are predicted by renewable forecast.

The raw data in the ISO/RTO’s database comes from the

transmission state estimation and contains many noise and error

measurements. This noise and error poses a substantial

challenge for prediction tasks. Hence, we need first to apply

data analytics methods to clean the data for SU/SD prediction

purposes. It may require extra efforts to carry out individually

customized data cleaning for industry-level raw data because

different datasets from different measuring apparatuses may

contain different degrees of noise and errors. Another

preprocessing is that we filter out units that can startup and

shutdown within a market interval. As the SU/SD curve

predictions work for the LAC and UDS operation, if the unit

can startup or shutdown within fifteen/five minutes, it would not

generate a LAC/UDS curve, respectively. Preprocessing the

dataset could significantly increase the prediction accuracy and

reduce the computational time in the prediction task.

For data cleaning, one of the most essential steps is removing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

data outliers. In this work, we apply a widely used interquartile

range method as the SU/SD datasets do not follow the Gaussian

distribution. It computes the bounded quantiles by solving the

following integrals and generating a confidence box:

∫ 𝑓(𝑥)𝑑𝑥 = 𝑄1

𝑁1

−∞

, (1)

∫ 𝑓(𝑥)𝑑𝑥 = 𝑄2

𝑁2

−∞

, (2)

where tuple (𝑁1, 𝑁2) denotes the range of quantiles and

(𝑄1, 𝑄2) denotes the selected percentiles. This method is based

on the statistical assumption that the outliers occur with low

probability and normal points occur with high probability,

which applies to the SU/SD case.

We present the overall steps for the data preprocessing, as

shown below.

1) Query the raw timeseries data from the MISO database.

As LAC has a three-hour horizon, we consider SU/SD

curves within two hours. Based on the MISO practice,

for SU/SD predictions, we use the two hours before the

startup effective time for the startup prediction and two

hours after the shutdown signal is sent, respectively.

Hence, each raw timeseries instance has a maximum of

24 intervals with a five-minute resolution.

2) Check the gradient of the curve. For a startup

timeseries, if it has more than half consecutive negative

gradients, or its curve gradient is too small for all

intervals, it will be deemed a wrong measurement and

removed. For the shutdown timeseries similar logic is

applied.

3) Remove the outliers using the interquartile range

method. In our study, we generally set 𝑄1 = 0.25 and

𝑄2 = 0.75. We also remove all duplicate measurements

in this step.

4) For missing measurements in one timestamp, we

impute with the median of neighborhoods. For

instances with more than half missing measurements,

we remove these instances.

5) If 90% timeseries instances of one unit could reach the

minimum power output within five/fifteen minutes, the

unit is excluded from the startup curve prediction for

UDS/LAC, respectively. For the shutdown timeseries

we apply similar logic.

Note that the above data cleaning criteria are developed

intuitively and are customized for individual unit’s raw data.

We provide an illustrative example in Fig. 1 for startup data

cleaning to help better understand how steps 2) and 3) work.

The original data in Fig. 1. a) has some horizontal or decreasing

lines, which are not aligned with the startup behavior, while the

outliers in Fig. 1. b) are without indicative features and could

confuse ML models. The proposed data preprocessing could

effectively clean the dataset and keep the original data features.

After the data preprocessing is complete, we conduct feature

selection by applying the DFS algorithm. This algorithm

follows the inherent relationships between original input

features and then sequentially applies mathematical functions

along the relationships to create new features [2]. It is efficient

when we do not know the complete list of correlated features.

In the beginning, we have an original set of selected features.

Take the startup process as an example. The potential impacting

features include the current time, unit ramp rate, minimum

power output, fuel type, current offline time, and boiler states,

etc. These features could be generalized into three parts:

numeric, categorical, and time stamp. For the ML tasks

described in the next section to be carried out, many regressors

only work on numeric entries in the training stage, while others

are also recognized to have a better performance on numeric

data. Hence, for time stamp features, we apply the one-hot

encoding method [14] to convert all the time stamp features to

numeric features. This method works by transforming multiple

data levels into a diagonal matrix-like numeric table, which

gives all associated data entries a binary flag. All the

preprocessed features are normalized. For categorical features,

the one-hot encoding method could also be applied. However,

there are too many categorical features in the SU/SD datasets,

which means using one-hot encoding raises the curse of

dimensionality of the datasets. Hence, we use a modified one-

hot encoding for categorical features, to be discussed in Section

III.

After the preparation of initial features, we apply the DFS

algorithm to generate more features. The core idea of the DFS

algorithm is to first build forward and backward relationships

between original features, then new features could be generated

by combining or reweighting the derived relationships. This

process helps develop more potential impact factors from the

existing feature entries by mining their inherent correlations.

The generated new features will be further refined via a

truncated singular value decomposition (SVD) for

dimensionality reduction. More details about how to implement

Fig. 1. Illustrative example for startup data cleaning.

a). Gradient check

Original dataset Preprocessed dataset

b). Outlier removal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

this algorithm can be found in [2].

Then, we perform the feature selection according to the

feature importance. It is evaluated by two metrics as shown

below. We calculate the importance metrics based on a decision

tree setting because we employ a customized gradient boosting

tree as the main prediction tool for this study. However, the

feature importance calculation metrics could be generalized to

other ML models.

𝑃𝑟𝑒𝑑𝐶 = ∑ ∑(𝑣𝑡,ℓ,𝑎 − 𝑚𝑡,ℓ)
2

∙ 𝑤𝑡,ℓ,𝑎

ℓ∈𝐿𝑡∈𝑇

 +(𝑣𝑡,ℓ,𝑏 − 𝑚𝑡,ℓ)
2

∙ 𝑤𝑡,ℓ,𝑏 ,

(3)

𝑚𝑡,ℓ =
𝑣𝑡,ℓ,𝑎𝑤𝑡,ℓ,𝑎 + 𝑣𝑡,ℓ,𝑏𝑤𝑡,ℓ,𝑏

𝑤𝑡,ℓ,𝑎 + 𝑤𝑡,ℓ,𝑏

,

𝐿𝑜𝑠𝑠𝐶 = |ℒ(𝔼{𝒗}) − ℒ∗| − |ℒ(𝒗) − ℒ∗|, (4)

where 𝑃𝑟𝑒𝑑𝐶 and 𝐿𝑜𝑠𝑠𝐶 denote degrees of change of the

prediction value and loss function value based on the change of

feature values, respectively; T and 𝐿 denote tree and leaf sets,

respectively; 𝑎 and 𝑏 denote two leaf nodes of the equivalent

binary tree; 𝑣 and 𝑤 denote the data entries and data weights,

respectively; 𝑚 denotes mean of the weighted data; ℒ is the

defined loss function and ℒ∗ is the observed best loss value.

For these metrics, 𝑃𝑟𝑒𝑑𝐶 is calculated based on all leaves,

while 𝐿𝑜𝑠𝑠𝐶 is calculated based on the overall loss function

performance. The feature importance could then be ranked

based on the prediction change and loss function change when

the feature changes. By filtering the feature importance, we

could select important features for the later ML models to

accelerate the training process while improving the accuracy.

III. PREDICTION METHODOLOGIES

In this section, we introduce the proposed prediction

methodologies for the preprocessed SU/SD datasets.

A. Offline Approach: Categorical Boosting

For LAC and UDS operations, system operators prefer to

have the SU/SD curves as steady-state input data that can be

conveniently incorporated into the existing framework. In this

regard, we propose leveraging the timeseries-based supervised

learning to tackle this problem. Here, we use an enhanced

gradient boosting tree model to generate the SU/SD curves

effectively.

Gradient boosting decision tree is a boosting algorithm using

ensembled decision trees. By leveraging the greedy boosting

concept, stage-wise decision trees use the last-stage prediction

residuals as training data to enhance the initial prediction,

reducing both the bias and variance. It works the best when the

data has many uncorrelated features with weak prediction

potentials because the boosting tree is empowered by using

ensembled small prediction models, whose predictability has

been proved to beat random forests [15]. Gradient boosting tree

could be used for hybrid datasets with numeric feature entries,

but it is also reportedly not suitable for tasks with many

categorical features [16]. Categorical features could not be

directly trained with numeric features due to their mutual

incomparability. Many widely applied ML algorithms such as

autoregression, support vector machine, and neural networks

are not the best suits for considerable categorical features,

which may need additional preprocessing efforts. However, as

discussed in Section II, there are many categorical features for

the SU/SD curve predictions. Hence, we cannot just apply the

vanilla gradient boosting tree. Instead, we enhance the decision

tree by leveraging the state-of-the-art Categorical Boosting

[17].

We first introduce the gradient boosting tree algorithm as

follows. Consider a paired dataset 𝒫 = {(𝒙𝑖 , 𝑦𝑖)}𝑖=1,...,𝑛, where

𝒙𝑖 = (𝑥𝑖
1, . . . , 𝑥𝑖

𝑘) is a feature vector with 𝑘 features and 𝑦𝑖 is

the prediction target. In our startup/shutdown study, 𝑦𝑖 is the

numeric state estimation MW of one unit’s power output. We

assume that the pair (𝒙𝑖 , 𝑦𝑖) is sampled i.i.d. from any unknown

distribution. Our prediction goal is to find the best mapping

𝐹: ℝ𝑘 → ℝ that could attain the minimal expected loss ℰ(𝐹) ∶
= 𝔼{ℒ(𝑦, 𝐹(𝒙))} , where ℒ denotes the selected Lipschitz

continuous loss function and 𝒙 and 𝑦 are the test feature vector

and test target, respectively. The gradient boosting tree builds a

sequence of lower approximations over clusters of binary

decision trees. The functional approximation 𝐹𝑗: ℝ𝑘 → ℝ is

greedily updated using the last approximation loss as

𝐹𝑗 = 𝐹𝑗−1 + 𝜇 ∙ 𝑝𝑗 , (5)

where 𝜇 is the penalized step size, i.e., learning rate, and 𝑝

denotes the optimal prediction based on the binary decision tree

prediction function, which is shown below.

𝑏(𝒙) = ∑ 𝜔 ∙ 𝟙{𝒙𝜖𝑃ℓ}

ℓ∈𝐿

, (6)

where 𝟙{∙} denotes the conditional binary operator, 𝐿 denotes

the set of leaves and 𝜔 denotes the leaf weight. For each

iteration, this function tries to minimize the expected loss in a

boosting manner:

𝑝𝑗: = arg min
𝑏

𝔼{ℒ(𝑦, 𝐹𝑗−1(𝒙) + 𝑏(𝒙))}. (7)

This problem could be effectively solved by typical second-

order gradient methods based on the selected loss function. For

instance, in our startup/shutdown studies, we choose a simple

least-square loss, i.e., ℒ(𝑦, 𝑦𝑝𝑟𝑒𝑑) =
1

2
(𝑦 − 𝑦𝑝𝑟𝑒𝑑)2. Then, by

finding its gradient over the prediction 𝑔𝑗(𝒙, 𝑦) =
𝜕ℒ(𝑦,𝑦𝑝𝑟𝑒𝑑)

𝜕𝑦𝑝𝑟𝑒𝑑 ,

following the least-square approximation, we could find the

best prediction as

𝑝𝑗: = arg min
𝑏

𝔼{(𝑔𝑗(𝒙, 𝑦) − 𝑏(𝒙))2}. (8)

Specifically, for categorical features, we apply the target

statistics to use the whole dataset for categorical training [17].

The categorical feature could be replaced with the average label

value with feature indication. For example, if 𝑥𝑖
𝑘 is categorical,

in a random permutation of the dataset, it is replaced by

𝑥̂𝑖
𝑘 =

∑ 𝟙
{𝑥𝑐

𝑘=𝑥𝑖
𝑘}

∙ 𝑦𝑐 + 𝛼 ∙ 𝑃
𝑝
𝑐=1

∑ 𝟙{𝑥𝑐
𝑘=𝑥𝑖

𝑘} + 𝛼
𝑝
𝑐=1

, (9)

where 𝛼 > 0 denotes the step size, 𝑝 < 𝑛 is the batch size of

the permuted data, and 𝑃 is the prior value, commonly set as the

average value of 𝑦 [18]. This is an efficient way to reduce the

curse of dimensionality raised by the one-hot encoding,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

whereas it may lead to overfitting since the numeric value 𝑥̂𝑖
𝑘

for one batch only contains a part of the categorical information.

While the overfitting issue places a hurdle, during the

training of the boosting tree, we enforce an ordered boosting

with unbiased gradients [17]. First, the data is batched to two

parts {𝐴, 𝐵} via an order of random permutations. A set of trees

is trained for batch 𝐴, using the vanilla gradient boosting tree

model. As the vanilla gradient boosting tree states, the last

approximation loss information is used to update the gradient,

making the gradient biased to the previous observations. Hence,

another set of trees are trained for batch 𝐵. Different batch sizes

could be shuffled for the whole dataset. Hence, no direct

gradient information between the two batches will be

exchanged. Then, batch 𝐵 model evaluates batch 𝐴 model in

each iteration with scores weighted in the next iteration of

training 𝐴 . This process could make the gradient estimation

unbiased in each iteration, which significantly mitigates the

overfitting issue caused by the reshaped categorical features and

the well-known gradient shift in the boosting tree [19]. For a

higher dimension of categorical features, the batch number is

also increased.

We could generate high-quality SU/SD curves for LAC using

the preprocessed datasets with the Categorical Boosting

method. Note that this prediction is purely offline when we

apply supervised learning to train on historical data.

B. Online Approach: Long-short-term Memory Network

While the offline approach suits the need of the LAC curves,

for real-time UDS with finer granularity, the prediction quality

of the offline approach needs further improvement. However,

the UDS follows a rolling-horizon manner, which means for

every five minutes, we could leverage the previously predicted

error to enhance the current-interval prediction. This

asynchronous error correction could be best tackled by a long-

short-term memory (LSTM) network.

The LSTM network is enhanced from the recurrent neural

network to mitigate the gradient vanishing problem. Due to its

capability of capturing temporal information of data, it has been

widely applied for reducing the prediction errors of ML models

[20], [21]. We depict the proposed online prediction structure

for the UDS SU/SD curves in Fig. 2. It includes an LSTM part

and a prediction recovery part. First, we calculate the

normalized prediction errors 𝑒𝑢
𝑖 of each data entry 𝑖 for each/

unit 𝑢 using the gradient boosting tree model as discussed

above. The errors are also timeseries, while empty entries are

marked with zero flags in the dataset. Then, as shown in the

LSTM Error Prediction part of Fig. 2, a stacked LSTM model

with multiple hidden LSTM units works for mapping the

correlation between the errors using the realized data entries in

the history, i.e., {𝑒𝑢
𝑖−r, . . . , 𝑒𝑢

𝑖−1} . Each LSTM cell leverages

layer normalization (LN) to smooth the activations along the

feature direction with whitening. We formally write the training

of the LSTM as follows. For each entry 𝑖 in each layer 𝑛, we

first compute the forget gate 𝐹𝑖
𝑛, while the output gate 𝑂𝑖

𝑛 and

the input gate Pi
n are similarly retained with different weight

and bias vectors, i.e., 𝑊 and 𝑏.

𝐹𝑖
𝑛 = 𝜎(𝑊𝑓

𝑛−1,𝑛ℎ𝑖
𝑛−1 + 𝑊𝑓

𝑛,𝑛ℎ𝑖−1
𝑛 + 𝑏𝑜

𝑛), (10)

where 𝜎 denotes the sigmoid activation function and ℎ denotes

the hidden cell state. Then, based on the activation between the

hidden state ℎ and the cell gate 𝐶, i.e., ℎ𝑖
𝑛 = 𝑂𝑖

𝑛 ⊗ 𝑡𝑎𝑛ℎ(𝐶𝑖
𝑛),

where ⊗ denotes the Hadamard product and 𝑡𝑎𝑛ℎ denotes the

hyperbolic tangent activation function, we partially forget the

previous cell gate 𝐶𝑖−1
𝑛 n and update the current 𝐶𝑖

𝑛 by a new

activated 𝐶̃𝑖
𝑛:

𝐶̃𝑖
𝑛 = 𝑡𝑎𝑛ℎ(𝑊𝑐

𝑛−1,𝑛ℎ𝑖
𝑛−1 + 𝑊𝑐

𝑛,𝑛ℎ𝑖−1
𝑛 + 𝑏𝑐

𝑛), (11)

𝐶𝑖
𝑛 = 𝐹𝑖

𝑛 ⊗ 𝐶𝑖−1
𝑛 + 𝑃𝑖

𝑛 ⊗ 𝐶̃𝑖
𝑛. (12)

Then the training proceeds by backpropagating the gradients

along each gate path. After the output activation, the predicted

timeseries error at the current interval could be used for

recovering the actual prediction of the SU/SD value, which will

Fig. 2. Online approach for predicting the UDS curves.

Fig. 3. MISO’s LAC and UDS coordination.

9:45 9:50 9:55 10:30 10:35

LAC 1

.

.

.

LAC 2

LAC -1

LAC -2

0

10:40

F ixed Commi tment

F ixed Commi tment

F ixed Commi tment

.
First commit -able interval

First commit -able interval

First commit -able interval

UC inst ruct ion UC inst ruct ion UC inst ruct ion

10:00 10:05 10:10 10:15 10:20 10:25

UDS

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

also reveal another error information and add to the next

interval’s LSTM prediction.

This online prediction process could use the historical data to

predict the first few entries, while it recovers higher quality of

curve as the time rolls forward because more real-time error

data is realized and fed into the model. Hence, it has a great

potential to be applied to the UDS rolling-horizon operation.

C. Economic Assessment: Real-time LAC and UDS

After we obtain the SU/SD prediction curves for LAC and

UDS as discussed above, we conduct economic assessments on

how the predicted curves may benefit ISO/RTO's real time

market clearing process. LAC and UDS are the two main real

time market clearing processes at MISO. LAC serves as a real-

time rolling-horizon UC that commits available fast-responsive

units every fifteen minutes, looking ahead three hours, whereas

UDS serves as a real-time rolling-horizon ED that follows the

commitment decisions from previous commitment processes.

Fig. 3 depicts the coordination between LAC and UDS under

the MISO practice.

To incorporate the curves, we append the curve information

to the generators’ active power output variable. Technically, in

the LAC model, we add the following constraint to incorporate

the predicted SU/SD curves. Note that for LAC, these curves

are static and serve as fixed timeseries in the optimization stage.

𝑝𝑔,𝑡 = 𝑝𝑔,𝑡
𝑚𝑖𝑛+ + 𝑝𝑔

𝑚𝑖𝑛 ∙ 𝑖𝑔,𝑡

 + ∑ 𝑆𝑈𝐶𝑖 ∙ 𝑢𝑔,𝑡+𝑖

𝑚𝑖𝑛{𝑆𝑈𝑇𝑔,𝑇−𝑡}

𝑖

 + ∑ 𝑆𝐷𝐶𝑖 ∙ 𝑣𝑔,𝑡−𝑖

𝑚𝑖𝑛{𝑆𝐷𝑇𝑔,𝑇−𝑡}

𝑖

,

(13)

where 𝑝𝑔,𝑡 denotes the generator’s active power output and

𝑝𝑔,𝑡
𝑚𝑖𝑛+ denotes the scheduled power above the minimum power

limit 𝑝𝑔
𝑚𝑖𝑛; 𝑖𝑔,𝑡, 𝑢𝑔,𝑡, 𝑣𝑔,𝑡 denote the variables for commitment,

startup, and shutdown, respectively; 𝑆𝑈𝑇𝑔, 𝑆𝐷𝑇𝑔, 𝑆𝑈𝐶𝑔, 𝑆𝐷𝐶𝑔

denote the startup time, shutdown time, startup curve value, and

shutdown curve value, respectively; 𝑇 denotes the operation

horizon. For a complete detailed description of the MISO’s

real-time market optimization model including both LAC and

UDS, please refer to [1].

Using this revised model, for each LAC instance with a three-

hour horizon, it will include the SU/SD curves once the

corresponding variables change during the optimization. For

cross-instance SU/SDs, we also record the future and past

SU/SD periods in the implementation to make the curves

consistent in the rolling-horizon operation.

IV. EXPERIMENT RESULTS

This section conducts several experiments on the real-world

MISO datasets and assesses the predicted curves via

benchmarked MISO LAC and UDS cases. We implement the

enhanced gradient boosting tree and the LSTM in

Python/TensorFlow and carry out the simulated MISO real-

time commitment process with plugged-in SU/SD curves using

a modified version of EGRET [22]. EGRET is an open-source

Python package for electric grid optimization. We customized

and benchmarked EGRET functions with the MISO market

model for our economic assessments. The MISO test case

considers standard UC attributes, including generation capacity

limits for 1,200 generators, minimum up/down requirements,

ramping limits, power balance, binary startup/shutdown logic,

and modeling for transmission power flow and multi-timescale

zonal reserves, etc.

A. Data Extraction and Feature Selection

We obtained a dataset spanning generator profiles over a

period of 4 years for the entire MISO area. Around 800

generators monitored by MISO are included in this study. Note

that not all generators in the MISO test case have associated

SU/SD data in the 4-year MISO dataset. The data comprises

five-minute distributed data with (de-)commitment effective

time, state estimation time, state estimation MW values (the

prediction target), and other unit characteristics. First, we

intuitively select potential feature data for the SU/SD

predication model. We perform the feature engineering process

for the whole dataset and each unit as discussed in Section II.

We take the startup data and test features /for individual unit

predictions. We quantitatively evaluate the feature importance

by metrics introduced in Section II for each type of unit and

then choose features with importance larger than 0.5 in the later

machine learning tasks.

Several features for the model were considered, including

unit commitment status, unit startup notification time, “off

duration” or how many minutes a unit has been offline, and

three hourly minimum and maximum power limits, “Pmin” and

“Pmax”, for emergency, economic, and regulation operation

respectively. We observed that all generator types have

reasonable dominant features that relate to the state estimation

MW. For example, the steam turbines’ startup curves are

decided mainly by economic Pmin because most steam turbines

are operated for economic purposes with large capacities. But

the combined-cycle units’ curves are more related to the ramp

limits as they are most likely to be fast responsive, and the

ramping capabilities influence the startup processes.

We could also see that the environmental factors, e.g.,

temperature, and temporal factors, e.g., year, had less impact

the startup curves. This may be because non-renewable

Fig. 4. Prediction performance for each individual unit.

0.0 0.2 0.4 0.6 0.8 1.0

MAPE

0

2

4

6

8

10

C
o
u
n
ts

Startup Prediction w/ o Preprocess

° 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

MAPE

0

2

4

6

8

10

12

C
o
u
n
ts

Startup Prediction w/ Preprocess

0.0 0.2 0.4 0.6 0.8

MAPE

0

2

4

6

8

10

C
o
u
n
ts

Shutdown Prediction w/ Preprocess

° 0.2 0.0 0.2 0.4 0.6 0.8 1.0

MAPE

0

1

2

3

4

5

6

7

8

C
o
u
n
ts

Shutdown Prediction w/ o Preprocess(a). (b).

(c). (d).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

generators are often placed in power plants, and their working

environment is mostly static. We excluded these features in the

later individual units’ training stage. Filtering the features with

high feature importance contributes to a higher quality of

training, especially for noisy and polluted datasets.

B. Offline Prediction

For the offline training, we first conduct the customized data

preprocessing for each individual unit. Then, independent

categorical gradient boosting trees, introduced in Section III,

are built for predicting each unit’s SU/SD curves. We present a

comparative study for both SU/SD curves before and after the

data preprocessing in Fig. 4. We use the mean absolute

percentage error (MAPE) as the evaluation metric for the

gradient boosting tree, which is shown below.

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖
pred

𝑦𝑖

|

𝑛

𝑖=1

.

Fig. 4 depicts the distribution of units according to its

prediction MAPE on the testing set. The preprocessing

mentioned here includes the customized individual data

cleaning and feature selection discussed in Section II. We also

use the same training model for all four cases. We could observe

that the preprocessing helps with improving the prediction

performance for both the start and shutdown curves, as shown

in the estimated probability distribution function of blue lines.

Also, note that, within the data cleaning stage, the

preprocessing also filters out units with SU/SD time shorter

than fifteen minutes, which are not needed for LAC with

fifteen-minute resolution. Hence, only a part of the units shown

in Fig. 4 (a) and (b) are plotted in Fig. 4. (c) and (d), while the

others are excluded from the datasets. This further shows the

data cleaning and feature selection processes enhance the

overall performance of the SU/SD curves’ generation.

C. Online Prediction

We further test the performance of the proposed LSTM

network for the online training task. We first perform the offline

training and collect all the error information of the training and

testing data, which constructs the dataset for the online training

task. Then we build the LSTM network as discussed in Section

III. B. to update the next-interval prediction. As the probability

distribution of the training data is static, we adopt the mean

squared error (MSE) as the loss function and the mean absolute

error (MAE) as the evaluation metric, which are detailed below.

MSE =
1

𝑛
∑(𝑦𝑖

pred
− 𝑦𝑖)

2
𝑛

𝑖=1

,

MAE =
1

𝑛
∑|𝑦𝑖

pred
− 𝑦𝑖|

𝑛

𝑖=1

.

Fig. 5 depicts the epoch loss and epoch evaluation metric for

the startup curve prediction. The bold orange line shows the

time-smoothed values, and the faint orange line shows the

actual values. The LSTM network has four hidden layers with

same structural dimensions. We also implement an intelligent

learning rate adjustment scheme based on the training loss,

which can automatically reduce the learning rate during the

training if it observes weakened loss reduction. The training

ends when there is no further loss reduction. As shown in the

figure, the evaluation metric MAE could reduce to 2.5% at the

end. According to the MAE definition, we could retain the

actual prediction errors of the next interval offline prediction

within 2.5% in real-time, which will then be used to recover the

actual prediction value by substituting the errors with the

original offline prediction results. Due to the operation

limitation, we skip the online rolling training of the LSTM in

UDS but use the existing historical data for the prediction. The

overall training time of the LSTM is around 1 hour on an

ordinary laptop CPU, but when it comes online after training, it

is almost instant to compute the next-interval error.

D. Economic Assessment

After we obtain the SU/SD curves discussed above, we plug

in these curves using equation (13) for the LAC and UDS

coordinated operation. generators. We studied all units recorded

in the MISO state estimation for the SU/SD curve prediction,

but not all generators within the operation have associated

curves. Some units might have SU/SD times shorter than fifteen

minutes, while some units are not frequently committed or de-

committed. We choose units with a high prediction

performance of SU/SD curves, i.e., MAPE < 10%, in the test

case. Whole-day operations with the rolling LAC instances and

associated UDS instances are executed for a sample week in

this study. The coordination between the LAC and UDS is

shown in Fig. 3, while we only incorporate LAC curves for

convenience. Apart from the original deterministic LAC, we

further test the stochastic LAC (SLAC), which leverages

Fig. 5. Prediction performance for each individual unit.

TABLE I

RESULT COMPARISON OF LAC & UDS OPERATIONS FOR ONE TYPICAL WEEK

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

scenario-based stochastic programming to model the LAC with

multiple uncertainty scenarios. Then, we pick two days, i.e.,

Day 1 and Day 5, to see whether the predicted startup/shutdown

curves could synergize with SLAC.

Table I tabulates the original LAC, SLAC optimization

results, and their versions using the prototype SU/SD prediction

curves, which report their overall production cost and system-

wide penalty cost in the whole-day period. The production cost

includes the units’ SU/SD costs and fuel costs, etc., while the

penalty cost consists of the penalty assigned to unserved load,

reserve shortfall, and transmission capacity violation, etc. We

set the original LAC as the base case and report the percentage

change of other cases’ results from the base case. It is clear from

the row of LAC + Curves that using the curves in LAC

contributes to overall cost reduction. Only Day 2 has an

increase of production cost using the curves, but it achieves the

highest penalty reduction among all days. Note that, though the

percentage reduction seems tiny, the base value is with the

magnitude of tens of millions of dollars. Hence, capturing the

SU/SD prediction in the current real-time market clearing

process holds the potential to help the operator achieve better

market-clearing results and reduce unnecessary penalties of

violations.

It is also interesting to find that using the SU/SD prediction

curves helps SLAC further reduce the production cost and

penalty cost compared with the deterministic LAC. Using

SU/SD prediction curves makes committing/de-committing

units yield more accurate economic schedules, strengthening

SLAC’s capability of handling different system scenarios.

V. CONCLUDING REMARKS

This paper conducts detailed analyses on predicting units’

startup/shutdown curves and investigates their potential

contributions to future real-time electricity market operations.

Two approaches, i.e., offline prediction and online prediction,

are proposed to capture the startup/shutdown uncertainties. The

offline approach leverages the historical data to predict static

but accurate startup/shutdown curves for the UC module, while

the online approach better fits the ED module by updating each

interval’s prediction based on previous prediction errors. The

test results corroborate the efficacy of the proposed approaches

and reveal the economic values of adopting the

startup/shutdown curves in real-time market clearing processes.

VI. ACKNOWLEDGEMENTS

 The authors would like to thank Jessica Harrison for the

support and review of the manuscript.

REFERENCES

[1] “Business Practices Manual: Energy and Operating Reserve Markets,”

Tech. Rep. BPM-002-r21, MISO, 2020.
[2] J. M. Kanter and K. Veeramachaneni, “Deep Feature Synthesis: Towards

Automating Data Science Endeavors,” in 2015 IEEE International

Conference on Data Science and Advanced Analytics, DSAA 2015,
Paris, France, October 19-21, 2015, pp. 1–10, IEEE, 2015.

[3] C. Cecati, J. Kolbusz, P. R´o˙zycki, P. Siano, and B. M. Wilamowski, “A

Novel RBF Training Algorithm for Short-Term Electric Load

Forecasting and Comparative Studies,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 10, pp. 6519–6529, 2015.

[4] N. Tang, S. Mao, Y. Wang, and R. M. Nelms, “Solar Power Generation

Forecasting With a LASSO-Based Approach,” IEEE Internet of Things
Journal, vol. 5, no. 2, pp. 1090–1099, 2018.

[5] Y. Zhang, J. Wang, and B. Chen, “Detecting False Data Injection Attacks

in Smart Grids: A Semi-Supervised Deep Learning Approach,” IEEE
Transactions on Smart Grid, vol. 12, no. 1, pp. 623–634, 2021.

[6] L. Wang, Q. Zhou, and S. Jin, “Physics-guided Deep Learning for Power

System State Estimation,” Journal of Modern Power Systems and Clean
Energy, vol. 8, no. 4, pp. 607–615, 2020.

[7] F. Mohammadi, M. Sahraei-Ardakani, D. Trakas, and N. D.

Hatziargyriou, “Machine Learning Assisted Stochastic Unit
Commitment during Hurricanes with Predictable Line Outages,” IEEE

Transactions on Power Systems, pp. 1–1, 2021.

[8] C. Wan, J. Wang, J. Lin, Y. Song, and Z. Y. Dong, “Nonparametric
Prediction Intervals of Wind Power via Linear Programming,” IEEE

Transactions on Power Systems, vol. 33, no. 1, pp. 1074–1076, 2018.

[9] H.-T. Yang, C.-M. Huang, Y.-C. Huang, and Y.-S. Pai, “A
WeatherBased Hybrid Method for 1-Day Ahead Hourly Forecasting of

PV Power Output,” IEEE Transactions on Sustainable Energy, vol. 5, no.

3, pp. 917–926, 2014.
[10] J. R. Andrade and R. J. Bessa, “Improving Renewable Energy

Forecasting with a Grid of Numerical Weather Predictions,” IEEE

Transactions on Sustainable Energy, vol. 8, no. 4, pp. 1571–1580, 2017.
[11] J. Dowell and P. Pinson, “Very-Short-Term Probabilistic Wind Power

Forecasts by Sparse Vector Autoregression,” IEEE Transactions on
Smart Grid, vol. 7, no. 2, pp. 763–770, 2016.

[12] M. Khodayar and J. Wang, “Spatio-Temporal Graph Deep Neural

Network for Short-Term Wind Speed Forecasting,” IEEE Transactions
on Sustainable Energy, vol. 10, no. 2, pp. 670–681, 2019.

[13] X. Lin, Z. J. Hou, Y. Chen, S. Rose, Y. Ma, and F. Pan, “Probabilistic

Forecasting of Generators Startups and Shutdowns in the MISO System
Based on Random Forest,” in 2020 IEEE Power Energy Society General

Meeting (PESGM), pp. 1–5, 2020.

[14] P. Cerda, G. Varoquaux, and B. K´egl, “Similarity Encoding for
Learning with Dirty Categorical Variables,” 2018.

[15] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Reading,
Massachusetts: Addison-Wesley, 2009.

[16] O. Chapelle, E. Manavoglu, and R. Rosales, “Simple and Scalable

Response Prediction for Display Advertising,” ACM Trans. Intell. Syst.
Technol., vol. 5, Dec. 2015.

[17] A. V. Dorogush, V. Ershov, and A. Gulin, “CatBoost: Gradient Boosting

with Categorical Features Support,” CoRR, vol. abs/1810.11363, 2018.
[18] D. Micci-Barreca, “A Preprocessing Scheme for High-Cardinality

Categorical Attributes in Classification and Prediction Problems,”

Association for Computing Machinery, vol. 3, p. 27–32, July 2001.
[19] J. H. Friedman, “Stochastic Gradient Boosting,” Comput. Stat. Data

Anal., vol. 38, p. 367–378, Feb. 2002.

[20] Y. Liu, J. Duan, and J. Meng, “Difference Attention Based Error
Correction LSTM Model for Time Series Prediction,” Journal of

Physics: Conference Series, vol. 1550, p. 032121, May 2020.

[21] C. Yu, H. Ahn, and J. Seok, “Coordinate-RNN for Error Correction on
Numerical Weather Prediction,” in 2018 International Conference on

Electronics, Information, and Communication (ICEIC), pp. 1–3, 2018.

[22] B. Knueven, J. Ostrowski, and J.-P. Watson, “On Mixed-Integer
Programming Formulations for the Unit Commitment Problem,”

INFORMS Journal on Computing, vol. 32, no. 4, pp. 857–876, 2020.

