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Abstract—Generation uncertainties, especially during the unit 

startup and shutdown (SU/SD) processes, pose uncertainties for 

the real-time market clearing process, and they are often 

underestimated. This paper proposes two approaches to predict 

generator SU/SD trajectories in the real-time operations of 

independent system operators or regional transmission 

organizations (ISO/RTOs). We first collect and pre-process raw 

market data from state estimation. Then we investigate two 

approaches to account for the uncertainty in MW of generation 

SU/SD in the real-time market clearing. The first is an offline 

approach that leverages a machine learning technique, gradient 

boosting tree, to effectively capture the nonlinear relationship 

between the SU/SD curves and selected feature maps. The offline 

approach works for predicting generator trajectories in the real-

time Look Ahead Commitment (LAC) process, based on historical 

data. We also investigate an online approach using a long-short-

term memory network that can learn from the last-interval error 

information and enhance the current prediction, potentially 

applicable for the real-time economic dispatch process. We 

validate the benefit of the proposed approach with a full-day 

rolling LAC framework on MISO-size test cases. The result shows 

that using the predicted curves could help system operators 

achieve better results in real-time commitment and dispatch 

processes. 

 
Index Terms—Generation startup and shutdown curves, real-

time market operation, unit commitment, gradient boosting tree, 

long-short-memory network. 

 

I. INTRODUCTION 

In its efforts to efficiently commit and dispatch resources, 

ISO/RTOs need to account for the startup and shutdown 

(SU/SD) behavior of resources. In standard market operating 

processes, operators send commit and decommit instructions to 

the generators. Generation outputs during SU/SD are metered 

but not projected in the market-clearing engine. In the market-

clearing process, units’ SU/SD MW is ignored most of the time 

and treated as noises. For time periods with projected large MW 

from SU/SD, real time operations may use manual offset to 

account for the estimated MW value. In addition, the MISO 

practice in the market clearing processes [1] only consider 

SU/SD binary decision for units in unit commitment  
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constrained by a predefined SU/SD ramp rate. However, this 

practice does not capture the accurate MW values during 

SU/SD. The MW quantities below the dispatchable minimum 

limit are  relatively small most time. But they may undermine 

the accuracy of market clearing results when the system has a 

large number of generator startups or shutdowns during net load 

ramping periods. The need for accurate and systematic 

measurements of SU/SD curves is even more important for the 

real-time market since it has a finer time granularity.  

Research on timeseries prediction for power system 

applications is fruitful, but very few works investigate units’ 

SU/SD processes as a generation uncertainty. Albeit X. Lin et 

al. [13] leverage random forest as a classification method to 

predict the SU/SD hours to reduce the number of binary 

variables in the unit commitment, how to let system operators 

accurately account for the unit SU/SD MW in real-time 

operations is still an open question.  

Unit SU/SD curves are typical timeseries with inherent 

relationships with multiple potential unit-specific and 

environmental factors. Sample unit-specific factors include 

capacity size, unit ramp rate, minimum power output, and fuel 

type, etc. Environmental factors include ambient temperature, 

dewpoint, and rainfall. However, there are also differences 

between the features for startup curves and shutdown curves. 

For the startup process, units’ startup behaviors could be 

potentially impacted by how long the unit has been offline (cold 

start or warm start) and the current boiler status for some units. 

These features would not impact the shutdown process, where 

the dispatch MW immediately before shutting down is a more 

important factor for the shape of the shutdown curve. Unlike 

wind and solar forecasts that have already had a mature and 

well-validated feature set, to the best of the authors’ knowledge, 

there is no existing work that comprehensively discusses units’ 

SU/SD impact factors during which their MW levels are nearly 

uncontrollable. Thus, the feature selection and quantitative 

analysis of feature importance for the SU/SD processes call for 

in-depth investigation. State-of-the-art feature engineering 

algorithms like Deep Feature Synthesis (DFS) [2] could help 

with such a task.  

Machine learning (ML) techniques have been researched and 

in some cases applied for numerous power sector applications, 
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including  load forecast [3], renewable forecast [4], false data 

detection [5], state estimation [6], and system operations [7] 

etc.. However, there is little research on SU/SD prediction. 

Nevertheless, there are common core ideas  across applications. 

ML for SU/SD behavior prediction represents a supervised 

learning task for timeseries based on historical data, towards 

which existing works have presented many efficient methods. 

C. Wan et al. [8] improved the existing probabilistic wind 

power forecast with a nonparametric prediction interval setup 

using quantile regression and extreme learning machine. H. 

Yang et al. [9] proposed a hybrid training tool for solar power 

forecast considering temperature and solar irradiance, which 

consisted of a classification stage using learning vector 

quantization and a regression stage using support vector 

regression. J. Andrade et al. [10] applied a gradient boosting 

tree algorithm to conduct wind speed forecast based on an 

enhanced spatiotemporal feature selection for timeseries data. 

More specifically, as the generation uncertainty is mostly 

timeseries, the autoregression model and long-short-term 

memory network (LSTM) are two mainstream methods with 

well-known effectiveness. J. Dowell et al. [11] employed a 

sparse vector autoregression method to capture very short-term 

spatial information for wind power forecast. M. Khodayar et al. 

[12] combined the graph convolutional network with LSTM to 

capture the spatiotemporal correlations between multiple wind 

farms and thus enhance the future timeseries predictions for 

wind speed forecast.. 

The ultimate goal of the SU/SD prediction is to help system 

operators better manage generation uncertainties in real-time 

operations. If we take MISO as an example, the real-time 

clearing includes two main components, a real-time security-

constrained unit commitment (UC) routine called look-ahead 

commitment (LAC) and a real-time security-constrained 

economic dispatch (ED) routine called unit dispatch system 

(UDS). LAC has a fifteen-minute resolution and a three-hour 

horizon, while UDS in our study is a single-interval operation 

with a five-minute resolution. The UDS scheduling obeys the 

commitment decisions determined in the commitment 

processes. The difference between time resolutions requires 

different granularity and eligibility of the predicted SU/SD 

curves. For example, a fast-responsive unit that can startup in 

ten minutes will not have the startup curve in LAC, but it will 

have the curve in UDS, which also applies to the shutdown 

units. Capturing SU/SD behavior in LAC and UDS could help 

the low-resolution, real-time clearing software  more accurately 

account for non-dispatchable MW. In this work, we use the 

MISO test cases to illustrate the efficacy of the proposed 

methodologies, which could be conveniently generalized to 

other ISO/RTOs’ use cases or other research models. 

We summarize the contributions of this paper as follows. 

• We investigate the unique features in the unit’s SU/SD 

behavior by employing automated feature engineering 

techniques. We quantitatively evaluate the importance 

of features for each unit and identify features with the 

highest impact and therefore can be used in the 

predictive approaches. 

• We propose two predictive approaches to capture the 

unit SU/SD uncertainties by using state-of-the-art ML 

techniques. The first approach conducts a static 

supervised prediction using historical data and selected 

features. The second approach incorporates a real-time 

error correction to enhance predictions in finer-

resolution operations. 

• We validate the predicted SU/SD curves with a MISO 

test case by incorporating curves in the LAC and UDS 

co-simulation. These results could serve as references 

for future studies on generation SU/SD uncertainties. 

II. RAW DATA PREPROCESSING AND FEATURE SELECTION 

This section introduces how we conduct the preprocessing 

for raw data and how we select important features for later ML 

tasks. It is widely recognized in the ML community that 

regardless of the power of predictors, flawed inputs produce 

flawed outputs, which is the motivation of this task. Note that 

we only consider the SU/SD curves for conventional resources, 

including diesel units, combined-cycle units, steam turbines, 

and combustion turbines, etc. Non-dispatchable renewable 

resources usually can startup and shutdown very quickly and 

their outputs are predicted by renewable forecast. 

The raw data in the ISO/RTO’s database comes from the 

transmission state estimation and contains many noise and error 

measurements. This noise and error poses a substantial 

challenge for prediction tasks. Hence, we need first to apply 

data analytics methods to clean the data for SU/SD prediction 

purposes. It may require extra efforts to carry out individually 

customized data cleaning for industry-level raw data because 

different datasets from different measuring apparatuses may 

contain different degrees of noise and errors. Another 

preprocessing is that we filter out units that can startup and 

shutdown within a market interval. As the SU/SD curve 

predictions work for the LAC and UDS operation, if the unit 

can startup or shutdown within fifteen/five minutes, it would not 

generate a LAC/UDS curve, respectively. Preprocessing the 

dataset could significantly increase the prediction accuracy and 

reduce the computational time in the prediction task. 

For data cleaning, one of the most essential steps is removing 
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data outliers. In this work, we apply a widely used interquartile 

range method as the SU/SD datasets do not follow the Gaussian 

distribution. It computes the bounded quantiles by solving the 

following integrals and generating a confidence box:  

∫ 𝑓(𝑥)𝑑𝑥 = 𝑄1

𝑁1

−∞

, (1) 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑄2

𝑁2

−∞

, (2) 

where tuple (𝑁1, 𝑁2)  denotes the range of quantiles and 

(𝑄1, 𝑄2) denotes the selected percentiles. This method is based 

on the statistical assumption that the outliers occur with low 

probability and normal points occur with high probability, 

which applies to the SU/SD case. 

We present the overall steps for the data preprocessing, as 

shown below. 

1) Query the raw timeseries data from the MISO database. 

As LAC has a three-hour horizon, we consider SU/SD 

curves within two hours. Based on the MISO practice, 

for SU/SD predictions, we use the two hours before the 

startup effective time for the startup prediction and two 

hours after the shutdown signal is sent, respectively. 

Hence, each raw timeseries instance has a maximum of 

24 intervals with a five-minute resolution. 

2) Check the gradient of the curve. For a startup 

timeseries, if it has more than half consecutive negative 

gradients, or its curve gradient is too small for all 

intervals, it will be deemed a wrong measurement and 

removed. For the shutdown timeseries similar logic is 

applied. 

3) Remove the outliers using the interquartile range 

method. In our study, we generally set 𝑄1 = 0.25 and 

𝑄2 = 0.75. We also remove all duplicate measurements 

in this step. 

4) For missing measurements in one timestamp, we 

impute with the median of neighborhoods. For 

instances with more than half missing measurements, 

we remove these instances. 

5) If 90% timeseries instances of one unit could reach the 

minimum power output within five/fifteen minutes, the 

unit is excluded from the startup curve prediction for 

UDS/LAC, respectively. For the shutdown timeseries 

we apply similar logic. 

Note that the above data cleaning criteria are developed 

intuitively and are customized for individual unit’s raw data. 

We provide an illustrative example in Fig. 1 for startup data 

cleaning to help better understand how steps 2) and 3) work. 

The original data in Fig. 1. a) has some horizontal or decreasing 

lines, which are not aligned with the startup behavior, while the 

outliers in Fig. 1. b) are without indicative features and could 

confuse ML models. The proposed data preprocessing could 

effectively clean the dataset and keep the original data features. 

After the data preprocessing is complete, we conduct feature 

selection by applying the DFS algorithm. This algorithm 

follows the inherent relationships between original input 

features and then sequentially applies mathematical functions 

along the relationships to create new features [2]. It is efficient 

when we do not know the complete list of correlated features. 

In the beginning, we have an original set of selected features. 

Take the startup process as an example. The potential impacting 

features include the current time, unit ramp rate, minimum 

power output, fuel type, current offline time, and boiler states, 

etc. These features could be generalized into three parts: 

numeric, categorical, and time stamp. For the ML tasks 

described in the next section to be carried out, many regressors 

only work on numeric entries in the training stage, while others 

are also recognized to have a better performance on numeric 

data. Hence, for time stamp features, we apply the one-hot 

encoding method [14] to convert all the time stamp features to 

numeric features. This method works by transforming multiple 

data levels into a diagonal matrix-like numeric table, which 

gives all associated data entries a binary flag. All the 

preprocessed features are normalized. For categorical features, 

the one-hot encoding method could also be applied. However, 

there are too many categorical features in the SU/SD datasets, 

which means using one-hot encoding raises the curse of 

dimensionality of the datasets. Hence, we use a modified one-

hot encoding for categorical features, to be discussed in Section 

III. 

After the preparation of initial features, we apply the DFS 

algorithm to generate more features. The core idea of the DFS 

algorithm is to first build forward and backward relationships 

between original features, then new features could be generated 

by combining or reweighting the derived relationships. This 

process helps develop more potential impact factors from the 

existing feature entries by mining their inherent correlations. 

The generated new features will be further refined via a 

truncated singular value decomposition (SVD) for 

dimensionality reduction. More details about how to implement 

 
Fig. 1.  Illustrative example for startup data cleaning. 

 

a). Gradient check 
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this algorithm can be found in [2]. 

Then, we perform the feature selection according to the 

feature importance. It is evaluated by two metrics as shown 

below. We calculate the importance metrics based on a decision 

tree setting because we employ a customized gradient boosting 

tree as the main prediction tool for this study. However, the 

feature importance calculation metrics could be generalized to 

other ML models. 

𝑃𝑟𝑒𝑑𝐶 = ∑ ∑(𝑣𝑡,ℓ,𝑎 − 𝑚𝑡,ℓ)
2

∙ 𝑤𝑡,ℓ,𝑎

ℓ∈𝐿𝑡∈𝑇

 

                             +(𝑣𝑡,ℓ,𝑏 − 𝑚𝑡,ℓ)
2

∙ 𝑤𝑡,ℓ,𝑏 , 

(3) 

𝑚𝑡,ℓ =
𝑣𝑡,ℓ,𝑎𝑤𝑡,ℓ,𝑎 + 𝑣𝑡,ℓ,𝑏𝑤𝑡,ℓ,𝑏

𝑤𝑡,ℓ,𝑎 + 𝑤𝑡,ℓ,𝑏

,  

𝐿𝑜𝑠𝑠𝐶 = |ℒ(𝔼{𝒗}) − ℒ∗| − |ℒ(𝒗) − ℒ∗|, (4) 

 

where 𝑃𝑟𝑒𝑑𝐶  and 𝐿𝑜𝑠𝑠𝐶  denote degrees of change of the 

prediction value and loss function value based on the change of 

feature values, respectively; T and 𝐿 denote tree and leaf sets, 

respectively; 𝑎 and 𝑏 denote two leaf nodes of the equivalent 

binary tree; 𝑣 and 𝑤 denote the data entries and data weights, 

respectively; 𝑚  denotes mean of the weighted data; ℒ  is the 

defined loss function and ℒ∗ is the observed best loss value. 

For these metrics, 𝑃𝑟𝑒𝑑𝐶 is calculated based on all leaves, 

while 𝐿𝑜𝑠𝑠𝐶  is calculated based on the overall loss function 

performance. The feature importance could then be ranked 

based on the prediction change and loss function change when 

the feature changes. By filtering the feature importance, we 

could select important features for the later ML models to 

accelerate the training process while improving the accuracy. 

III. PREDICTION METHODOLOGIES 

In this section, we introduce the proposed prediction 

methodologies for the preprocessed SU/SD datasets.  

A. Offline Approach: Categorical Boosting 

For LAC and UDS operations, system operators prefer to 

have the SU/SD curves as steady-state input data that can be 

conveniently incorporated into the existing framework. In this 

regard, we propose leveraging the timeseries-based supervised 

learning to tackle this problem. Here, we use an enhanced 

gradient boosting tree model to generate the SU/SD curves 

effectively. 

Gradient boosting decision tree is a boosting algorithm using 

ensembled decision trees. By leveraging the greedy boosting 

concept, stage-wise decision trees use the last-stage prediction 

residuals as training data to enhance the initial prediction, 

reducing both the bias and variance. It works the best when the 

data has many uncorrelated features with weak prediction 

potentials because the boosting tree is empowered by using 

ensembled small prediction models, whose predictability has 

been proved to beat random forests [15]. Gradient boosting tree 

could be used for hybrid datasets with numeric feature entries, 

but it is also reportedly not suitable for tasks with many 

categorical features [16]. Categorical features could not be 

directly trained with numeric features due to their mutual 

incomparability. Many widely applied ML algorithms such as 

autoregression, support vector machine, and neural networks 

are not the best suits for considerable categorical features, 

which may need additional preprocessing efforts. However, as 

discussed in Section II, there are many categorical features for 

the SU/SD curve predictions. Hence, we cannot just apply the 

vanilla gradient boosting tree. Instead, we enhance the decision 

tree by leveraging the state-of-the-art Categorical Boosting 

[17]. 

We first introduce the gradient boosting tree algorithm as 

follows. Consider a paired dataset 𝒫 = {(𝒙𝑖 , 𝑦𝑖)}𝑖=1,...,𝑛, where 

𝒙𝑖 = (𝑥𝑖
1, . . . , 𝑥𝑖

𝑘) is a feature vector with 𝑘 features and 𝑦𝑖  is 

the prediction target. In our startup/shutdown study, 𝑦𝑖  is the 

numeric state estimation MW of one unit’s power output. We 

assume that the pair (𝒙𝑖 , 𝑦𝑖) is sampled i.i.d. from any unknown 

distribution. Our prediction goal is to find the best mapping 

𝐹: ℝ𝑘 → ℝ that could attain the minimal expected loss ℰ(𝐹) ∶
=  𝔼{ℒ(𝑦, 𝐹(𝒙))} , where ℒ  denotes the selected Lipschitz 

continuous loss function and 𝒙 and 𝑦 are the test feature vector 

and test target, respectively. The gradient boosting tree builds a 

sequence of lower approximations over clusters of binary 

decision trees. The functional approximation 𝐹𝑗: ℝ𝑘 → ℝ  is 

greedily updated using the last approximation loss as 

𝐹𝑗 = 𝐹𝑗−1 + 𝜇 ∙ 𝑝𝑗 , (5) 

where 𝜇  is the penalized step size, i.e., learning rate, and 𝑝 

denotes the optimal prediction based on the binary decision tree 

prediction function, which is shown below.  

𝑏(𝒙) = ∑ 𝜔 ∙ 𝟙{𝒙𝜖𝑃ℓ}

ℓ∈𝐿

, (6) 

where 𝟙{∙}  denotes the conditional binary operator, 𝐿 denotes 

the set of leaves and 𝜔  denotes the leaf weight. For each 

iteration, this function tries to minimize the expected loss in a 

boosting manner: 

𝑝𝑗: = arg min
𝑏

𝔼{ℒ(𝑦, 𝐹𝑗−1(𝒙) + 𝑏(𝒙))}. (7) 

This problem could be effectively solved by typical second-

order gradient methods based on the selected loss function. For 

instance, in our startup/shutdown studies, we choose a simple 

least-square loss, i.e., ℒ(𝑦, 𝑦𝑝𝑟𝑒𝑑) =
1

2
(𝑦 − 𝑦𝑝𝑟𝑒𝑑)2. Then, by 

finding its gradient over the prediction 𝑔𝑗(𝒙, 𝑦) =
𝜕ℒ(𝑦,𝑦𝑝𝑟𝑒𝑑)

𝜕𝑦𝑝𝑟𝑒𝑑 , 

following the least-square approximation, we could find the 

best prediction as 

𝑝𝑗: = arg min
𝑏

𝔼{(𝑔𝑗(𝒙, 𝑦) − 𝑏(𝒙))2}. (8) 

Specifically, for categorical features, we apply the target 

statistics to use the whole dataset for categorical training [17]. 

The categorical feature could be replaced with the average label 

value with feature indication. For example, if 𝑥𝑖
𝑘 is categorical, 

in a random permutation of the dataset, it is replaced by 

𝑥̂𝑖
𝑘 =

∑ 𝟙
{𝑥𝑐

𝑘=𝑥𝑖
𝑘}

∙ 𝑦𝑐 + 𝛼 ∙ 𝑃
𝑝
𝑐=1

∑ 𝟙{𝑥𝑐
𝑘=𝑥𝑖

𝑘} + 𝛼
𝑝
𝑐=1

, (9) 

where 𝛼 > 0 denotes the step size, 𝑝 < 𝑛 is the batch size of 

the permuted data, and 𝑃 is the prior value, commonly set as the 

average value of 𝑦 [18]. This is an efficient way to reduce the 

curse of dimensionality raised by the one-hot encoding, 
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whereas it may lead to overfitting since the numeric value 𝑥̂𝑖
𝑘 

for one batch only contains a part of the categorical information. 

While the overfitting issue places a hurdle, during the 

training of the boosting tree, we enforce an ordered boosting 

with unbiased gradients [17]. First, the data is batched to two 

parts {𝐴, 𝐵} via an order of random permutations. A set of trees 

is trained for batch 𝐴, using the vanilla gradient boosting tree 

model. As the vanilla gradient boosting tree states, the last 

approximation loss information is used to update the gradient, 

making the gradient biased to the previous observations. Hence, 

another set of trees are trained for batch 𝐵. Different batch sizes 

could be shuffled for the whole dataset. Hence, no direct 

gradient information between the two batches will be 

exchanged. Then, batch 𝐵  model evaluates batch 𝐴 model in 

each iteration with scores weighted in the next iteration of 

training 𝐴 . This process could make the gradient estimation 

unbiased in each iteration, which significantly mitigates the 

overfitting issue caused by the reshaped categorical features and 

the well-known gradient shift in the boosting tree [19]. For a 

higher dimension of categorical features, the batch number is 

also increased. 

We could generate high-quality SU/SD curves for LAC using 

the preprocessed datasets with the Categorical Boosting 

method. Note that this prediction is purely offline when we 

apply supervised learning to train on historical data. 

B. Online Approach: Long-short-term Memory Network 

While the offline approach suits the need of the LAC curves, 

for real-time UDS with finer granularity, the prediction quality 

of the offline approach needs further improvement. However, 

the UDS follows a rolling-horizon manner, which means for 

every five minutes, we could leverage the previously predicted 

error to enhance the current-interval prediction. This 

asynchronous error correction could be best tackled by a long-

short-term memory (LSTM) network. 

The LSTM network is enhanced from the recurrent neural 

network to mitigate the gradient vanishing problem. Due to its 

capability of capturing temporal information of data, it has been 

widely applied for reducing the prediction errors of ML models 

[20], [21]. We depict the proposed online prediction structure 

for the UDS SU/SD curves in Fig. 2. It includes an LSTM part 

and a prediction recovery part. First, we calculate the 

normalized prediction errors 𝑒𝑢
𝑖  of each data entry 𝑖 for each/ 

unit 𝑢  using the gradient boosting tree model as discussed 

above. The errors are also timeseries, while empty entries are 

marked with zero flags in the dataset. Then, as shown in the 

LSTM Error Prediction part of Fig. 2, a stacked LSTM model 

with multiple hidden LSTM units works for mapping the 

correlation between the errors using the realized data entries in 

the history, i.e., {𝑒𝑢
𝑖−r, . . . , 𝑒𝑢

𝑖−1} . Each LSTM cell leverages 

layer normalization (LN) to smooth the activations along the 

feature direction with whitening. We formally write the training 

of the LSTM as follows. For each entry 𝑖 in each layer 𝑛, we 

first compute the forget gate 𝐹𝑖
𝑛, while the output gate 𝑂𝑖

𝑛 and 

the input gate Pi
n are similarly retained with different weight 

and bias vectors, i.e., 𝑊 and 𝑏. 

𝐹𝑖
𝑛 = 𝜎(𝑊𝑓

𝑛−1,𝑛ℎ𝑖
𝑛−1 + 𝑊𝑓

𝑛,𝑛ℎ𝑖−1
𝑛 + 𝑏𝑜

𝑛), (10) 

where 𝜎 denotes the sigmoid activation function and ℎ denotes 

the hidden cell state. Then, based on the activation between the 

hidden state ℎ and the cell gate 𝐶, i.e., ℎ𝑖
𝑛 = 𝑂𝑖

𝑛 ⊗ 𝑡𝑎𝑛ℎ(𝐶𝑖
𝑛), 

where ⊗ denotes the Hadamard product and 𝑡𝑎𝑛ℎ denotes the 

hyperbolic tangent activation function, we partially forget the 

previous cell gate 𝐶𝑖−1
𝑛  n and update the current 𝐶𝑖

𝑛 by a new 

activated 𝐶̃𝑖
𝑛: 

𝐶̃𝑖
𝑛 = 𝑡𝑎𝑛ℎ(𝑊𝑐

𝑛−1,𝑛ℎ𝑖
𝑛−1 + 𝑊𝑐

𝑛,𝑛ℎ𝑖−1
𝑛 + 𝑏𝑐

𝑛), (11) 

𝐶𝑖
𝑛 = 𝐹𝑖

𝑛 ⊗ 𝐶𝑖−1
𝑛 + 𝑃𝑖

𝑛 ⊗ 𝐶̃𝑖
𝑛. (12) 

Then the training proceeds by backpropagating the gradients 

along each gate path. After the output activation, the predicted 

timeseries error at the current interval could be used for 

recovering the actual prediction of the SU/SD value, which will 

 
Fig. 2.  Online approach for predicting the UDS curves. 

 
Fig. 3.  MISO’s LAC and UDS coordination. 

9:45 9:50 9:55 10:30 10:35

LAC 1

. . . . . .

. . . . . .

. . . . . .

LAC 2

LAC -1

LAC -2

0

10:40

F ixed Commi tment

F ixed Commi tment

F ixed Commi tment

. . . . . .
First commit -able interval

First commit -able interval

First commit -able interval

UC inst ruct ion UC inst ruct ion UC inst ruct ion

10:00 10:05 10:10 10:15 10:20 10:25

UDS



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

6 

also reveal another error information and add to the next 

interval’s LSTM prediction. 

This online prediction process could use the historical data to 

predict the first few entries, while it recovers higher quality of 

curve as the time rolls forward because more real-time error 

data is realized and fed into the model. Hence, it has a great 

potential to be applied to the UDS rolling-horizon operation. 

C. Economic Assessment: Real-time LAC and UDS 

After we obtain the SU/SD prediction curves for LAC and 

UDS as discussed above, we conduct economic assessments on 

how the predicted curves may benefit ISO/RTO's real time 

market clearing process. LAC and UDS are the two main real 

time market clearing processes at MISO. LAC serves as a real-

time rolling-horizon UC that commits available fast-responsive 

units every fifteen minutes, looking ahead three hours, whereas 

UDS serves as a real-time rolling-horizon ED that follows the 

commitment decisions from previous commitment processes. 

Fig. 3 depicts the coordination between LAC and UDS under 

the MISO practice. 

To incorporate the curves, we append the curve information 

to the generators’ active power output variable. Technically, in 

the LAC model, we add the following constraint to incorporate 

the predicted SU/SD curves. Note that for LAC, these curves 

are static and serve as fixed timeseries in the optimization stage. 

𝑝𝑔,𝑡 = 𝑝𝑔,𝑡
𝑚𝑖𝑛+ + 𝑝𝑔

𝑚𝑖𝑛 ∙ 𝑖𝑔,𝑡 

                   + ∑ 𝑆𝑈𝐶𝑖 ∙ 𝑢𝑔,𝑡+𝑖

𝑚𝑖𝑛{𝑆𝑈𝑇𝑔,𝑇−𝑡}

𝑖

 

                    + ∑ 𝑆𝐷𝐶𝑖 ∙ 𝑣𝑔,𝑡−𝑖

𝑚𝑖𝑛{𝑆𝐷𝑇𝑔,𝑇−𝑡}

𝑖

, 

(13) 

where 𝑝𝑔,𝑡  denotes the generator’s active power output and 

𝑝𝑔,𝑡
𝑚𝑖𝑛+ denotes the scheduled power above the minimum power 

limit 𝑝𝑔
𝑚𝑖𝑛; 𝑖𝑔,𝑡, 𝑢𝑔,𝑡, 𝑣𝑔,𝑡 denote the variables for commitment, 

startup, and shutdown, respectively; 𝑆𝑈𝑇𝑔, 𝑆𝐷𝑇𝑔, 𝑆𝑈𝐶𝑔, 𝑆𝐷𝐶𝑔 

denote the startup time, shutdown time, startup curve value, and 

shutdown curve value, respectively; 𝑇  denotes the operation 

horizon. For a complete detailed description of the MISO’s 

real-time market optimization model including both LAC and 

UDS, please refer to [1]. 

Using this revised model, for each LAC instance with a three-

hour horizon, it will include the SU/SD curves once the 

corresponding variables change during the optimization. For 

cross-instance SU/SDs, we also record the future and past 

SU/SD periods in the implementation to make the curves 

consistent in the rolling-horizon operation. 

IV. EXPERIMENT RESULTS 

This section conducts several experiments on the real-world 

MISO datasets and assesses the predicted curves via 

benchmarked MISO LAC and UDS cases. We implement the 

enhanced gradient boosting tree and the LSTM in 

Python/TensorFlow and carry out the simulated MISO real-

time commitment process with plugged-in SU/SD curves using 

a modified version of EGRET [22]. EGRET is an open-source 

Python package for electric grid optimization. We customized 

and benchmarked EGRET functions with the MISO market 

model for our economic assessments.  The MISO test case 

considers standard UC attributes, including generation capacity 

limits for 1,200 generators, minimum up/down requirements, 

ramping limits, power balance, binary startup/shutdown logic, 

and modeling for transmission power flow and multi-timescale 

zonal reserves, etc.   

A. Data Extraction and Feature Selection 

We obtained a dataset spanning generator profiles over a 

period of 4 years for the entire MISO area. Around 800 

generators monitored by MISO are included in this study. Note 

that not all generators in the MISO test case have associated 

SU/SD data in the 4-year MISO dataset. The data comprises 

five-minute distributed data with (de-)commitment effective 

time, state estimation time, state estimation MW values (the 

prediction target), and other unit characteristics. First, we 

intuitively select potential feature data for the SU/SD 

predication model. We perform the feature engineering process 

for the whole dataset and each unit as discussed in Section II. 

We take the startup data and test features /for individual unit 

predictions. We quantitatively evaluate the feature importance 

by metrics introduced in Section II for each type of unit and 

then choose features with importance larger than 0.5 in the later 

machine learning tasks. 

Several features for the model were considered, including 

unit commitment status, unit startup notification time, “off 

duration” or how many minutes a unit has been offline, and 

three  hourly minimum and maximum power limits, “Pmin” and 

“Pmax”, for emergency, economic, and regulation operation 

respectively. We observed that all generator types have 

reasonable dominant features that relate to the state estimation 

MW. For example, the steam turbines’ startup curves are 

decided mainly by economic Pmin because most steam turbines 

are operated for economic purposes with large capacities. But 

the combined-cycle units’ curves are more related to the ramp 

limits as they are most likely to be fast responsive, and the 

ramping capabilities influence the startup processes. 

We could also see that the environmental factors, e.g., 

temperature, and temporal factors, e.g., year, had less impact 

the startup curves. This may be because non-renewable 

 
Fig. 4.  Prediction performance for each individual unit. 
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generators are often placed in power plants, and their working 

environment is mostly static. We excluded these features in the 

later individual units’ training stage. Filtering the features with 

high feature importance contributes to a higher quality of 

training, especially for noisy and polluted datasets. 

B. Offline Prediction 

For the offline training, we first conduct the customized data 

preprocessing for each individual unit. Then, independent 

categorical gradient boosting trees, introduced in Section III, 

are built for predicting each unit’s SU/SD curves. We present a 

comparative study for both SU/SD curves before and after the 

data preprocessing in Fig. 4. We use the mean absolute 

percentage error (MAPE) as the evaluation metric for the 

gradient boosting tree, which is shown below. 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖
pred

𝑦𝑖

|

𝑛

𝑖=1

. 

Fig. 4 depicts the distribution of units according to its 

prediction MAPE on the testing set. The preprocessing 

mentioned here includes the customized individual data 

cleaning and feature selection discussed in Section II. We also 

use the same training model for all four cases. We could observe 

that the preprocessing helps with improving the prediction 

performance for both the start and shutdown curves, as shown 

in the estimated probability distribution function of blue lines. 

Also, note that, within the data cleaning stage, the 

preprocessing also filters out units with SU/SD time shorter 

than fifteen minutes, which are not needed for LAC with 

fifteen-minute resolution. Hence, only a part of the units shown 

in Fig. 4 (a) and (b) are plotted in Fig. 4. (c) and (d), while the 

others are excluded from the datasets. This further shows the 

data cleaning and feature selection processes enhance the 

overall performance of the SU/SD curves’ generation. 

C. Online Prediction 

We further test the performance of the proposed LSTM 

network for the online training task. We first perform the offline 

training and collect all the error information of the training and 

testing data, which constructs the dataset for the online training 

task. Then we build the LSTM network as discussed in Section 

III. B. to update the next-interval prediction. As the probability 

distribution of the training data is static, we adopt the mean 

squared error (MSE) as the loss function and the mean absolute 

error (MAE) as the evaluation metric, which are detailed below. 

MSE =
1

𝑛
∑(𝑦𝑖

pred
− 𝑦𝑖)

2
𝑛

𝑖=1

, 

MAE =
1

𝑛
∑|𝑦𝑖

pred
− 𝑦𝑖|

𝑛

𝑖=1

. 

Fig. 5 depicts the epoch loss and epoch evaluation metric for 

the startup curve prediction. The bold orange line shows the 

time-smoothed values, and the faint orange line shows the 

actual values. The LSTM network has four hidden layers with 

same structural dimensions. We also implement an intelligent 

learning rate adjustment scheme based on the training loss, 

which can automatically reduce the learning rate during the 

training if it observes weakened loss reduction. The training 

ends when there is no further loss reduction. As shown in the 

figure, the evaluation metric MAE could reduce to 2.5% at the 

end. According to the MAE definition, we could retain the 

actual prediction errors of the next interval offline prediction 

within 2.5% in real-time, which will then be used to recover the 

actual prediction value by substituting the errors with the 

original offline prediction results. Due to the operation 

limitation, we skip the online rolling training of the LSTM in 

UDS but use the existing historical data for the prediction. The 

overall training time of the LSTM is around 1 hour on an 

ordinary laptop CPU, but when it comes online after training, it 

is almost instant to compute the next-interval error. 

D. Economic Assessment 

After we obtain the SU/SD curves discussed above, we plug 

in these curves using equation (13) for the LAC and UDS 

coordinated operation. generators. We studied all units recorded 

in the MISO state estimation for the SU/SD curve prediction, 

but not all generators within the operation have associated 

curves. Some units might have SU/SD times shorter than fifteen 

minutes, while some units are not frequently committed or de-

committed. We choose units with a high prediction 

performance of SU/SD curves, i.e., MAPE < 10%, in the test 

case. Whole-day operations with the rolling LAC instances and 

associated UDS instances are executed for a sample week in 

this study. The coordination between the LAC and UDS is 

shown in Fig. 3, while we only incorporate LAC curves for 

convenience. Apart from the original deterministic LAC, we 

further test the stochastic LAC (SLAC), which leverages 

 
Fig. 5.  Prediction performance for each individual unit. 
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scenario-based stochastic programming to model the LAC with 

multiple uncertainty scenarios. Then, we pick two days, i.e., 

Day 1 and Day 5, to see whether the predicted startup/shutdown 

curves could synergize with SLAC. 

Table I tabulates the original LAC, SLAC optimization 

results, and their versions using the prototype SU/SD prediction 

curves, which report their overall production cost and system-

wide penalty cost in the whole-day period. The production cost 

includes the units’ SU/SD costs and fuel costs, etc., while the 

penalty cost consists of the penalty assigned to unserved load, 

reserve shortfall, and transmission capacity violation, etc. We 

set the original LAC as the base case and report the percentage 

change of other cases’ results from the base case. It is clear from 

the row of LAC + Curves that using the curves in LAC 

contributes to overall cost reduction. Only Day 2 has an 

increase of production cost using the curves, but it achieves the 

highest penalty reduction among all days. Note that, though the 

percentage reduction seems tiny, the base value is with the 

magnitude of tens of millions of dollars. Hence, capturing the 

SU/SD prediction in the current real-time market clearing 

process holds the potential to help the operator achieve better 

market-clearing results and reduce unnecessary penalties of 

violations. 

It is also interesting to find that using the SU/SD prediction 

curves helps SLAC further reduce the production cost and 

penalty cost compared with the deterministic LAC. Using 

SU/SD prediction curves makes committing/de-committing 

units yield more accurate economic schedules, strengthening 

SLAC’s capability of handling different system scenarios. 

V. CONCLUDING REMARKS 

This paper conducts detailed analyses on predicting units’ 

startup/shutdown curves and investigates their potential 

contributions to future real-time electricity market operations. 

Two approaches, i.e., offline prediction and online prediction, 

are proposed to capture the startup/shutdown uncertainties. The 

offline approach leverages the historical data to predict static 

but accurate startup/shutdown curves for the UC module, while 

the online approach better fits the ED module by updating each 

interval’s prediction based on previous prediction errors. The 

test results corroborate the efficacy of the proposed approaches 

and reveal the economic values of adopting the 

startup/shutdown curves in real-time market clearing processes. 
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