
Adaptive Sampling Quasi-Newton Methods for

Zeroth-Order Stochastic Optimization

Raghu Bollapragada∗ Stefan M. Wild†

September 23, 2021

Abstract

We consider unconstrained stochastic optimization problems with no avail-
able gradient information. Such problems arise in settings from derivative-
free simulation optimization to reinforcement learning. We propose an adap-
tive sampling quasi-Newton method where we estimate the gradients of a
stochastic function using finite differences within a common random num-
ber framework. We develop modified versions of a norm test and an inner
product quasi-Newton test to control the sample sizes used in the stochastic
approximations and provide global convergence results to the neighborhood
of the optimal solution. We present numerical experiments on simulation op-
timization problems to illustrate the performance of the proposed algorithm.
When compared with classical zeroth-order stochastic gradient methods, we
observe that our strategies of adapting the sample sizes significantly improve
performance in terms of the number of stochastic function evaluations re-
quired.

1 Introduction

We consider unconstrained stochastic optimization problems of the form

min
x∈Rd

F (x) = Eζ [f(x, ζ)] , (1)

where one has access only to an oracle or a black-box procedure that outputs
realizations of the stochastic function values f(x, ζ) and cannot access explicit
estimates of the gradient ∇F (x). Such stochastic optimization problems arise
in myriad science and engineering applications, from simulation optimization
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[11, 26, 35, 47, 48] to reinforcement learning [9, 41, 52]. Several methods have
been proposed to solve such derivative-free stochastic optimization problems, and
we refer the reader to [3, 38] for surveys of these methods. A popular class of
these methods estimate the gradients using function values and employ standard
gradient-based optimization methods using these estimators.

Quasi-Newton methods are recognized as one of the most powerful methods
for solving deterministic optimization problems. These methods build quadratic
models of the objective information using only gradient information. Recently,
researchers have been adapting these methods for stochastic settings when the
gradient information is available. The empirical results in [15] indicate that a
careful implementation of these methods can be efficient compared with the pop-
ular stochastic gradient methods. We adapt these methods to make them suitable
for situations where the gradients are estimated using function values.

We propose finite-difference derivative-free stochastic quasi-Newton methods
for solving (1) by exploiting common random number (CRN) evaluations of f .
The CRN setting allows us to define subsampled gradient estimators

[
∇FDFζi(x)

]
j

:=
f(x+ νej , ζi)− f(x, ζi)

ν
, j = 1, . . . , d (2)

∇FDFSk(x) :=
1

|Sk|
∑
ζi∈Sk

∇FDFζi(x), (3)

which employ forward differences for the independent and identically distributed
(i.i.d.) samples of ζ in the set Sk along each canonical direction ej ∈ Rd. CRN-
based gradient estimates possess lower variance than do independent-sample-
based gradient estimates. Moreover, CRNs can be employed in many practical
settings, including policy optimization problems in reinforcement learning.

The performance of stochastic quasi-Newton methods is highly dependent on
the quality of the gradient approximations. The gradient estimation considered in
this work has two sources of error: error due to the finite-difference approximation
and error due to the stochastic approximation. The latter error depends on the
number of samples |Sk| used in the estimation. Using too few samples affects
the stability of a method using the estimates; using a large number of samples
results in computational inefficiency. For settings where gradient information is
available, researchers have developed practical tests to adaptively increase the
sample sizes used in the stochastic approximations and have supported these
tests with global convergence results [13, 15, 16] to the optimal solution. In this
paper we modify these tests to address the challenges associated with the finite-
difference approximation errors, and we demonstrate the resulting method on
simulation optimization problems.

The paper is organized into five sections. A brief literature review and nota-
tion are provided in the rest of this section. Section 2 describes the components of
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our algorithm, and Section 3 establishes theoretical convergence results. Section 4
describes the algorithmic components for handling nonsmooth subsampled func-
tions. Numerical experiments are provided in Section 5, and concluding remarks
are provided in Section 6.

1.1 Literature Review

Finite-difference-based versions of the standard stochastic gradient method (“stochas-
tic approximation”) of Robbins and Monro [50] soon followed that work, in both
univariate [34] and multivariate [12] settings. Stochastic approximation methods
based on CRNs were analyzed in [36, 39].

Kelley [33] proposed and analyzed quasi-Newton methods for solving noisy
problems with noise decaying as the iterates approach the solution. Berahas et
al. [6] proposed a quasi-Newton method for solving noisy problems using finite-
difference gradient estimators where the finite-difference parameter is carefully
chosen based on the mechanism proposed by Moré and Wild [43] to ensure stability
in the search directions. They considered the settings where the noise is assumed
to be bounded and cannot be controlled. In our settings, the noise is stochastic,
can be unbounded, and is controlled within the CRN framework.

Different forms of gradient estimators [4], in addition to the finite-difference-
based estimators, can be employed in solving derivative-free optimization prob-
lems. Recently, Berahas et al. [7] analyzed methods that employ various forms of
gradient estimators in solving noisy derivative-free optimization problems. They
established conditions on the gradient estimation errors that guarantee conver-
gence to a neighborhood of the optimal solution.

Another class of methods that exploit CRN settings is that of two-point (or
multipoint) bandit feedback. These methods include variants of mirror descent
and random search and were originally motivated by and analyzed for convex
objectives [1, 22, 25, 27, 29, 40, 45, 51, 53, 56].

Related classes of methods for nonconvex stochastic optimization include zeroth-
order extensions of both conditional gradient methods [4, 5, 28] and other proximal-
point approaches [31, 32].

Model-based trust-region methods [11, 19, 23, 24, 37, 54, 55] and direct search
methods [2, 18, 20, 21] are alternative approaches to gradient estimation-based
methods.

1.2 Notation and Subsampled Gradient Estimator Preliminaries

Although we focus here on subsampled gradient estimators of the form in (3), our
algorithmic framework and analysis extend to other settings, which we formalize
here.
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Given samples Sk = {ζ1, . . . , ζ|Sk|}, we define a subsampled function by

FSk(x) :=
1

|Sk|
∑
ζi∈Sk

f(x, ζi). (4)

Our primary algorithmic assumption concerns the form of the randomized sam-
pling performed to obtain {Sk}k and hence the subsampled functions FS0 , FS1 , . . ..

Assumption A. At every iteration k, the sample set Sk consists of i.i.d. samples
of ζ. That is, for all x ∈ Rd and k ∈ Z+,

Eζi [f(x, ζi)] = F (x), ∀ζi ∈ Sk.

From Assumption A, for any subsampled function FSk(x) of the form (4), we
have that ESk [FSk(x)] = F (x). Also from this assumption, we have that for the
gradient estimator in (3) and any xk ∈ Rd,

ESk
[
∇FDFSk(xk)

]
= ESk

[
1
|Sk|

∑
ζi∈Sk

[
f(xk+νej ,ζi)−f(xk,ζi)

ν

]d
j=1

]
= ∇FDF (xk),

(5)

where ∇FDF (x) is the zeroth-order quantity based on deterministic forward dif-
ferences:

∇FDF (x) :=

[
F (x+ νej)− F (x)

ν

]d
j=1

. (6)

We also make assumptions about the smoothness of the expected function F
and the stochastic function f . The first such assumption concerns the smoothness
of the objective function F . We note that this assumption is slightly weaker than
the next assumption requiring differentiability of the stochastic functions f(·, ζ).

Assumption B. The function F in (1) is continuously differentiable and has
Lipschitz continuous gradients with Lipschitz constant L∇F > 0.

When combined with Assumption A, Assumption B implies that ∇FDFSk(xk)
is a biased estimator of the gradient ∇F (xk) and that the bias can be determin-
istically quantified by

∥∥∇FDF (xk)−∇F (xk)
∥∥2

=

d∑
j=1

(
F (xk + νej)− F (xk)

ν
− [∇F (xk)]j

)2

≤
d∑
j=1

(
L∇F ν

2

)2

=

(
L∇F ν

√
d

2

)2

, (7)
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where the inequality follows from the following result, which holds for functions
F with L∇F -Lipschitz continuous gradients.

Lemma 1 (Descent Lemma [10]). If F : Rd 7→ R is continuously differentiable
with a L∇F -Lipschitz continuous gradient on Rd, then

F (y) ≤ F (x) + (y − x)T∇F (x) +
L∇F

2
‖y − x‖2 for all x, y ∈ Rd.

The bias term in (7) is a direct result of the absence of gradient information
(and thus the derivative-free estimation), and we design the components of our
proposed algorithm accordingly.

Our sample size selection techniques in Section 2.1 will rely on Assumption A
and thus do not require the subsampled gradients to exist. That is, the sampling
procedure works even when the individual or subsampled functions are nondiffer-
entiable as long as the expected function F is differentiable.

For deriving the remaining components of the algorithm, we will make use of
the additional assumption that the subsampled gradients exist and are Lipschitz
continuous.

Assumption C. For every ζ, the stochastic function f(·, ζ) in (1) is continu-
ously differentiable and has Lipschitz continuous gradients with Lipschitz constant
L∇f > 0.

Assumption C implies that any subsampled gradient

∇FSk(x) :=
1

|Sk|
∑
ζi∈Sk

∇xf(x, ζi)

is Lipschitz continuous with Lipschitz constant L∇f . Assumption C is strictly
stronger than Assumption B since the former ensures that L∇F = L∇f is a Lip-
schitz constant for ∇F . In Section 4, we employ the weaker Assumption B and
modify the algorithmic components accordingly.

Our final general-purpose assumption concerns the variance in the stochastic
functions f . We note that this assumption is weaker than requiring that the
variance be bounded uniformly.

Assumption D. The variance in the stochastic functions is bounded by the norm
of the gradient of the expected function. That is, there exist scalars ω1, ω2 ≥ 0
such that

Eζ
[(
f(x, ζ)− F (x)

)2] ≤ ω2
1 + ω2

2‖∇F (x)‖2 ∀x ∈ Rd.

Before proceeding, we note that the generated xk+1 is a random variable for
k ∈ Z+; however, when conditioned on xk, the only remaining source of random-
ness is from the sample set Sk. For ease of exposition, we drop this conditional
dependence on xk and hence expectations are shown with respect to only the
sampling until the analysis of Section 3.3.
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2 A Zeroth-Order Stochastic Quasi-Newton Algorithm

The update form of a finite-difference, zeroth-order stochastic quasi-Newton method
is given by

xk+1 = xk − αkHk∇FDFSk(xk), (8)

where αk > 0 is the step length, Hk is a positive-definite quasi-Newton matrix,
and ∇FDFSk(xk) is a finite-difference, subsampled (or batch) gradient estimate
defined by (3). While we consider here forward finite differences to estimate the
subsampled gradient, we note that other derivative-free techniques (e.g., central
finite differences, polynomial interpolation; see [38]) can be employed to estimate
the gradient.

We now discuss the algorithmic components consisting of sample size se-
lection (Section 2.1), finite-difference parameter and step-length selection (Sec-
tions 2.2 and 2.3, respectively), and quasi-Newton updates (Section 2.4). The
complete algorithm is formally stated as Algorithm 1.

2.1 Sample Size Selection

We propose to control the sample sizes |Sk| used in the gradient estimation in
order to achieve fast convergence. We explore two different strategies to control
the sample sizes in settings where no gradient information is available (i.e., based
only on zeroth-order information). We note that the resulting strategies are useful
in settings beyond derivative-free ones; they can be applied in any setting where
biased gradient estimators are found.

2.1.1 Norm Test

A popular deterministic condition (see, e.g., Equation (3.2) in [16], Equation (15)
in [17]) for gradient estimators gk to satisfy is the norm condition given by

‖gk −∇F (xk)‖2 ≤ θ2‖∇F (xk)‖2, θ > 0. (9)

Satisfying (9) in expectation is the basis for controlling the sample sizes used in
subsampled gradient methods; that is,

ESk
[
‖gk −∇F (xk)‖2

]
≤ θ2‖∇F (xk)‖2, θ > 0.

One can employ this condition on a finite-difference subsampled gradient estimator
such as (3); that is,

ESk
[∥∥∇FDFSk(xk)−∇F (xk)

∥∥2
]
≤ θ2 ‖∇F (xk)‖2 , θ > 0. (10)
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However, it is not always possible to satisfy this condition because of the inherent
bias in the finite-difference subsampled gradient estimator:

∇FDFSk(xk)−∇F (xk) = ∇FDFSk(xk)−∇FDF (xk)︸ ︷︷ ︸
sampling error

+∇FDF (xk)−∇F (xk)︸ ︷︷ ︸
bias

,

(11)

where ∇FDF is the deterministic finite-difference estimator in (6).
For any finite-difference parameter ν > 0, the second term in (11) can be

nonzero, and thus condition (10) may not be satisfied (e.g., at points where
∇F (xk) is close to zero). Moreover, sample selection will affect only the first
term in (11). Therefore, we propose to look at the norm condition on the finite-
difference subsampled gradient estimation error. In particular, we use the condi-
tion

ESk
[∥∥∇FDFSk(xk)−∇FDF (xk)

∥∥2
]
≤ θ2

∥∥∇FDF (xk)
∥∥2
, θ > 0. (12)

This condition relaxes the right-hand side of (10). That is,

ESk
[∥∥∇FDFSk(xk)−∇F (xk)

∥∥2
]

≤ ESk
[∥∥∇FDFSk(xk)−∇FDF (xk)

∥∥2
]

+
∥∥∇FDF (xk)−∇F (xk)

∥∥2

≤ θ2
∥∥∇FDF (xk)

∥∥2
+
∥∥∇FDF (xk)−∇F (xk)

∥∥2

≤ 2θ2 ‖∇F (xk)‖2 + (1 + 2θ2)
∥∥∇FDF (xk)−∇F (xk)

∥∥2

≤ 2θ2 ‖∇F (xk)‖2 +
(1 + 2θ2)L2

∇F ν
2d

4
,

where the first inequality is due to expansion of the square term and (5), the second
inequality is due to (12), the third inequality is due to the fact that (a + b)2 ≤
2(a2 + b2), and the last inequality is due to (7). Therefore, our condition (12) is
less restrictive than (10) and can be satisfied at all xk.

The left-hand side of (12) is difficult to compute but can be bounded by the
true variance of individual finite-difference gradient estimators (∇FDFζi ; recall
(2)). That is,

ESk
[∥∥∇FDFSk(xk)−∇FDF (xk)

∥∥2
]
≤

Eζi
[∥∥∇FDFζi(xk)−∇FDF (xk)

∥∥2
]

|Sk|
. (13)

To be meaningful, such a bound requires that the true variance be bounded, which
is guaranteed by Assumption D; the proof is given in Appendix A.1. Consequently,
the condition

Eζi
[∥∥∇FDFζi(xk)−∇FDF (xk)

∥∥2
]

|Sk|
≤ θ2‖∇FDF (xk)‖2 (14)
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is sufficient for ensuring that (12) holds. The condition (14) involves the true ex-
pected gradient and variance, but these can be approximated with sample gradient
and sample variance estimates, respectively, yielding the practical finite-difference
norm test

Varζi∈Svk
[
∇FDFζi(xk)

]
|Sk|

≤ θ2‖∇FDFSk(xk)‖2, (Norm)

where Svk ⊆ Sk is a subset of the current sample and the variance term is defined
as

Varζi∈Svk
[
∇FDFζi(xk)

]
:=

1

|Svk | − 1

∑
ζi∈Svk

∥∥∇FDFζi(xk)−∇
FDFSk(xk)

∥∥2
.

In our algorithm, we test condition (Norm); and whenever it is not satisfied, we
increase |Sk| until (Norm) is satisfied.

2.1.2 Inner Product Quasi-Newton Test

The norm condition (Norm) controls the variance in the gradient estimation but
does not utilize observed quasi-Newton information to control the sample sizes.
Bollapragada et al. [15] proposed to control the sample sizes used in the gradient
estimation by ensuring that the stochastic quasi-Newton directions make an acute
angle with the true quasi-Newton direction with high probability. That is,(

Hk∇FDFSk(xk)
)T
Hk∇F (xk) > 0 (15)

holds with high probability. However, one cannot always satisfy this condition,
even in expectation, because of the inherent bias in the gradient estimator. We
observe that the left-hand side of (15) is

(Hk∇FDFSk(xk))
THk∇FDF (xk)+(Hk∇FDFSk(xk))

T (Hk∇F (xk)−Hk∇FDF (xk)),
(16)

and, taking an expectation, we obtain

ESk
[
(Hk∇FDFSk(xk))

THk∇F (xk)
]

=
∥∥Hk∇FDF (xk)

∥∥2
+ (Hk∇FDF (xk))

T
(
Hk∇F (xk)−Hk∇FDF (xk)

)
≥
∥∥Hk∇FDF (xk)

∥∥2 −
∥∥Hk∇FDF (xk)

∥∥∥∥Hk∇F (xk)−Hk∇FDF (xk)
∥∥

≥
∥∥Hk∇FDF (xk)

∥∥ (‖Hk∇F (xk)‖ − 2
∥∥Hk∇F (xk)−Hk∇FDF (xk)

∥∥)
≥
∥∥Hk∇FDF (xk)

∥∥ (‖Hk∇F (xk)‖ − 2 ‖Hk‖
∥∥∇F (xk)−∇FDF (xk)

∥∥)
≥
∥∥Hk∇FDF (xk)

∥∥(‖Hk∇F (xk)‖ − ‖Hk‖L∇F ν
√
d
)
,

where the second inequality is due to the fact that ‖a‖ ≥ ‖b‖ − ‖a − b‖ and the
last inequality is due to (7).
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When xk is nearly stationary in the sense that ‖∇F (xk)‖ < λmax(Hk)L∇F ν
√
d

λmin(Hk) ,

where λmax(Hk) and λmin(Hk) > 0 are the largest and smallest eigenvalues of
Hk, respectively, it is not guaranteed that the inequality in (15) can be satisfied
in expectation. Moreover, in the derivative-free setting we do not have access to
direct estimates of ∇F (xk) to control the quantity (15). Therefore, we propose
to consider only the first term in (16)—the inner product between the finite-
difference stochastic quasi-Newton direction and the true finite-difference quasi-
Newton direction—to control the sample sizes. We ensure that this quantity is
close to its expected value by controlling the variance in this quantity. That is,
the condition is given by

ESk

[((
Hk∇FDFSk(xk)

)T
Hk∇FDF (xk)−

∥∥Hk∇FDF (xk)
∥∥2
)2
]

≤ θ2‖Hk∇FDF (xk)‖4, (17)

where ESk
[
Hk∇FDFSk(xk)

]
= Hk∇FDF (xk) by Assumption A. The left-hand

side of (17) can be bounded by the true variance as done above; the proof that
the true variance is bounded is given in Appendix A.1. Therefore, for ensuring
(17), it is sufficient for

1

|Sk|
Eζi

[((
Hk∇FDFζi(xk)

)T
Hk∇FDF (xk)−

∥∥Hk∇FDF (xk)
∥∥2
)2
]

to be bounded by the right-hand side of (17). Approximating the true expected
gradient and variance with sample gradient and variance estimates results in the
practical finite-difference inner product quasi-Newton test

Varζi∈Svk

[(
Hk∇FDFζi(xk)

)T
Hk∇FDFSk(xk)

]
|Sk|

≤ θ2
∥∥Hk∇FDFSk(xk)

∥∥4
, (IPQN)

where Svk ⊆ Sk is a subset of the current sample and the variance term is defined
as

Varζi∈Svk

[(
Hk∇FDFζi(xk)

)T
Hk∇FDFSk(xk)

]
:=

1

|Svk | − 1

∑
ζi∈Svk

((
Hk∇FDFSk(xk)

)T
Hk∇FDFζi(xk)−

∥∥Hk∇FDFSk
∥∥2
)2
.

This variance computation requires only one additional Hessian-vector product
(i.e., the product of Hk with Hk∇FDFSk(xk)). In our algorithm we test the
condition (IPQN); whenever it is not satisfied, we increase |Sk| until the condition
is satisfied.
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2.2 Finite-Difference Parameter Selection

The finite-difference parameter ν > 0 plays a significant role in the performance
of optimization methods. Here we select the parameter by minimizing an upper
bound on the gradient estimation error

∇FDFSk(xk)−∇F (xk) = ∇FDFSk(xk)−∇FSk(xk)︸ ︷︷ ︸
Term 1

+∇FSk(xk)−∇F (xk)︸ ︷︷ ︸
Term 2

.

(18)

We observe that Term 2 in (18) is independent of the parameter ν. Using As-
sumption C on the sample path functions, we can bound Term 1 by∥∥∇FDFSk(xk)−∇FSk(xk)

∥∥2

=
d∑
j=1

 1

|Sk|
∑
ζi∈Sk

(
f(xk + νej , ζi)− f(xk, ζi)

ν
− [∇xf(xk, ζi)]j

)2

≤

(
L∇fν

√
d

2

)2

, (19)

which decreases as ν decreases. In any practical implementation, however, one
has to account for the numerical errors associated with the numerical evaluation
of the function values. We employ the following assumption on a uniform bound
for these errors.

Assumption E. The function values f(x, ζ) in (1) are corrupted by numerical
noise ε(x, ζ) uniformly bounded by εm > 0; that is,

|ε(x, ζ)| ≤ εm for all x, ζ.

Applying Assumption E, we get the corrupted gradient estimator

∇FDF̂Sk(xk) :=
1

|Sk|
∑
ζi∈Sk

[
f(x+ νej , ζi) + ε(x+ νej , ζi)− f(x, ζi)− ε(x, ζi)

ν

]d
j=1

(20)

=∇FDFSk(xk) +
1

|Sk|
∑
ζi∈Sk

[
ε(x+ νej , ζi)− ε(x, ζi)

ν

]d
j=1

,

and hence

‖∇FDF̂Sk(xk)−∇FDFSk(xk)‖ ≤
2εm
√
d

ν
. (21)
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Combining this with (18) and minimizing the resulting upper bound, we get the
parameter value

ν∗ := 2

√
εm
L∇f

.

This optimal finite-difference parameter is analogous to the one derived in [44],
which depends on the variance in stochastic models of the numerical noise. We
note that because we assume that one can employ CRNs in the stochastic function
estimations, this leads to lower variance in the gradient estimators and makes the
parameter selection independent of the variance from the random variable ζ.

2.3 Step-Length Selection

We employ a stochastic line search to choose the step length αk in (8) by using a
sufficient decrease condition on the subsampled function. In particular, we would
like αk to satisfy

FSk
(
xk − αkHk∇FDFSk(xk)

)
≤ FSk(xk)−c1αk(∇FDFSk(xk))

THk∇FDFSk(xk)+c2,
(22)

where c1 ∈ (0, 0.5) and c2 > 0 are user-specified parameters. We employ a back-
tracking procedure wherein a trial step length αk that does not satisfy (22) is
reduced by a fixed fraction τ < 1 (i.e., αk ← ταk). In Theorem 2, we establish
that there exists a nontrivial interval for αk such that the condition (22) is always
satisfied.

Theorem 2. If Assumption C is satisfied, c1 ∈ (0, 0.5), c2 > 0, and λmin(Hk) > 0,
then (22) holds for any

αk ∈

(
0, min

{
1− 2c1

L∇fλmax(Hk)
,

8c2

λmax(Hk)L
2
∇fν

2d

})
. (23)

Proof. We first note from (23) that

αk ≤
1− 2c1

L∇fλmax(Hk)
≤ 1

L∇fλmin(Hk)
,

since c1 > 0 and λmax(Hk) ≥ λmin(Hk) > 0. By using this inequality and Lemma 1
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applied to FSk (a consequence of Assumption C), we have that

FSk
(
xk − αkHk∇FDFSk(xk)

)
≤ FSk(xk)− αk∇FSk(xk)

THk∇FDFSk(xk) +
L∇fα

2
k

2
‖Hk∇FDFSk(xk)‖2

= FSk(xk)− αk∇FDFSk(xk)
THk∇FDFSk(xk)

+ αk(∇FDFSk(xk)−∇FSk(xk))
THk∇FDFSk(xk) +

L∇fα
2
k

2
‖Hk∇FDFSk(xk)‖2

≤ FSk(xk)− αk∇FDFSk(xk)
THk∇FDFSk(xk) +

αk
2
∇FDFSk(xk)

THk∇FDFSk(xk)

+
αk
2

(∇FDFSk(xk)−∇FSk(xk))
THk(∇FDFSk(xk)−∇FSk(xk))

+
L∇fα

2
k

2
‖Hk∇FDFSk(xk)‖2

= FSk(xk)−
αk
2
∇FDFSk(xk)

TH
1/2
k (I − L∇fαkHk)H

1/2
k ∇

FDFSk(xk)

+
αk
2

(∇FDFSk(xk)−∇FSk(xk))
THk(∇FDFSk(xk)−∇FSk(xk))

≤ FSk(xk)−
αk (1− αkL∇fλmax(Hk))

2
∇FDFSk(xk)

THk∇FDFSk(xk)

+
αkλmax(Hk)

2
‖∇FDFSk(xk)−∇FSk(xk)‖2

≤ FSk(xk)−
αk (1− αkL∇fλmax(Hk))

2
∇FDFSk(xk)

THk∇FDFSk(xk)

+
αkλmax(Hk)L

2
∇fν

2d

8

≤ FSk(xk)− c1αk(∇FDFSk(xk))
THk∇FDFSk(xk) + c2,

where the second inequality is because Hk is positive definite and because, for

any positive-definite matrix A, xTAy ≤ xTAx+yTAy
2 ; the fourth inequality is due

to (19) (Assumption C); and the last inequality is due to (23).

We also note that because of the stochasticity in the function values, it is
not guaranteed that a decrease in stochastic function realizations f can ensure
decrease in the expected function F . A conservative strategy to address this issue
is to choose the initial trial step length to be small enough to control the potential
increase in F values when the stochastic estimations are not good. Bollapragada
et al. [15] proposed a heuristic to choose the initial trial estimate for αk such that
there is a decrease in the expected function value. Following a similar strategy,
we derive a heuristic to choose the initial trial step length as

α̂k =

(
1 +

Varζi∈Svk
[
∇FDFζi(xk)

]
|Sk|‖∇FDFSk(xk)‖2

)−1

. (24)
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The formal reasoning for this choice is provided in Appendix A.3.

2.4 Stable Quasi-Newton Update

In the BFGS and L-BFGS methods, the inverse Hessian approximation is updated
by using the formulae

Hk+1 = V T
k HkVk + ρksks

T
k , ρk = (yTk sk)

−1, Vk = I − ρkyksTk ,

where sk = xk+1− xk and yk is the difference in the gradients at xk+1 and xk. In
stochastic settings, yk is typically defined as the difference in gradients measured
on the same sample Sk to ensure stability in the quasi-Newton approximation
[15]. We follow the same approach and define

yk := ∇FDFSk(xk+1)−∇FDFSk(xk). (25)

However, even though computing gradient differences on common sample sets can
improve stability, the curvature pair (yk, sk) still may not satisfy the condition
yTk sk > 0 required to ensure positive definiteness of the quasi-Newton matrix Hk.
In particular, for any µ-strongly convex function FSk , we have that

yTk sk =
(
∇FDFSk(xk+1)−∇FDFSk(xk)

)T
sk

= (∇FSk(xk+1)−∇FSk(xk))
T sk

+
(
∇FDFSk(xk+1)−∇FSk(xk+1) +∇FSk(xk)−∇FDFSk(xk)

)T
sk

≥ µ‖sk‖2

−
(
‖∇FDFSk(xk+1)−∇FSk(xk+1)‖+ ‖∇FSk(xk)−∇FDFSk(xk)‖

)
‖sk‖

≥ µ‖sk‖2 − L∇fν
√
d‖sk‖ = ‖sk‖

(
µ‖sk‖ − L∇fν

√
d
)
,

where the first inequality is due to strong convexity and the last inequality is due
to (19) (by Assumption C). Therefore, the condition yTk sk > 0 is guaranteed to be

satisfied when ‖sk‖ >
L∇fν

√
d

µ . Recently, Xie et al. [57] proposed modifying the

curvature pair update whenever the step sk is too small so that yTk sk > 0. How-
ever, this modification requires knowledge of some unknown problem parameters
and may not provide guarantees in the case when FSk is nonconvex. Therefore, we
skip the quasi-Newton update if the following curvature condition is not satisfied:

yTk sk > β1‖sk‖2, (26)

where β1 > 0 is a predetermined constant.
Moreover, to ensure that the eigenvalues of the quasi-Newton matrix are

bounded, we require the ratio
yTk yk
yTk sk

to be bounded. We note, however, that this

13



requirement may not always be possible to satisfy because of the presence of the
bias term. That is,

yTk yk

yTk sk
=
‖∇FDFSk(xk+1)−∇FDFSk(xk)‖2

yTk sk

≤ 3
‖∇FSk(xk+1)−∇FSk(xk)‖2

β1‖sk‖2
+ 3
‖∇FDFSk(xk+1)−∇FSk(xk+1)‖2

β1‖sk‖2

+ 3
‖∇FDFSk(xk)−∇FSk(xk)‖2

β1‖sk‖2

≤
3L2
∇f
β1

+
3L2
∇fν

2d

2β1‖sk‖2
, (27)

where the first inequality is due to the fact that (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and
(26) and the last inequality is due to Assumption C and (19). Therefore, for ‖sk‖
arbitrarily close to zero, this fraction may not be bounded. Thus, to ensure the
eigenvalues are bounded, we skip the update whenever ‖sk‖ is too small. That is,
we skip the update whenever the following lengthening condition is not satisfied:

‖sk‖ > β2 > 0, (28)

where β2 > 0 is a small predetermined constant.

2.5 The Complete Algorithm

We use L-BFGS as the method for incorporating quasi-Newton information. The
pseudocode of the resulting finite-difference stochastic L-BFGS method is given
in Algorithm 1. We summarize the assumptions on the algorithmic parameters in
Assumption F. The initial Hessian matrix Hk

0 in the L-BFGS recursion at each

iteration is chosen as κkI, where κk =
yTk sk
yTk yk

.

Assumption F. The algorithmic parameters satisfy τ ∈ (0, 1), c1 ∈ (0, 0.5),
c2 > 0, θ0 > 0. γ < 1, m ∈ Z++, |S0| ∈ Z++, β1 > 0, and β2 > 0.

In the sampling tests, we employ sample approximations to compute the sam-
ple size. These sample estimates are sufficiently accurate except if the sample size
is too small. To avoid the scenario of not increasing the sample sizes at all, we
employ the following strategy. Instead of choosing the parameter θ to be a fixed
parameter, we make it iteration dependent and control it adaptively.

The parameter θ controls the probability of satisfying the underlying determin-
istic condition. For example, in the inner product quasi-Newton test, θ controls
the probability of generating a quasi-Newton direction that makes an acute angle
with the true quasi-Newton direction. Smaller θ values increase the probability of

14



Algorithm 1 Finite-Difference Stochastic L-BFGS Method

Input: Initial iterate x0, initial sample size |S0|, L-BFGS memory m, finite-
difference parameter ν
line search parameters (c1, c2, τ), sample test parameters θ0, γ.
Initialization: Set k ← 0; θ = θ0

Repeat until convergence:

1: Choose a set Sk consisting of |Sk| i.i.d. realizations of ζ
2: switch (Sample Selection:)
3: case Finite-Difference Norm Test:
4: if (Norm) is not satisfied then
5: Choose least |Sk| such that the inequality in (Norm) is satisfied
6: end if
7: case Finite-Difference Inner Product Quasi-Newton Test:
8: if (IPQN) is not satisfied then
9: Choose least |Sk| such that the inequality in (IPQN) is satisfied

10: end if
11: end switch
12: if |Sk| = |Sk−1| then
13: Set θ ← θγ
14: else
15: Set θ ← θ0

16: end if
17: Compute ∇FDFSk(xk)
18: Compute pk = −Hk∇FDFSk(xk) using L-BFGS two-loop recursion in [46]
19: Compute αk using (24)
20: while Armijo condition (22) is not satisfied do
21: Set αk ← αkτ
22: end while
23: Compute xk+1 = xk + αkpk
24: Compute yk using (25) and set sk = xk+1 − xk
25: if yTk sk > β1‖sk‖2 and ‖sk‖ > β2 then
26: if number of stored (yj , sj) exceeds m then
27: Discard oldest curvature pair (yj , sj)
28: end if
29: Store new curvature pair (yk, sk)
30: end if
31: Set k ← k + 1
32: Set |Sk| = |Sk−1|

satisfying the underlying conditions and promote large sample sizes. Motivated

15



by this property, we propose to increase the probability of satisfying the deter-
ministic conditions when the approximations are not reliable. Although it is hard
to identify whether the approximations are accurate or not solely based on sam-
ple sizes, we can monitor the potential ill effects of such scenarios. In particular,
whenever the sample sizes remain constant, it is either because the current sample
size is large enough to satisfy the true condition or because the approximations
are not accurate. Therefore, in this scenario we decrease the θ value in the next
iteration. If the sample size has increased in the next iteration, we reset the value
to its default value θ0. Otherwise, we continue to decrease its value until the
sample sizes are increased. More precisely, at each iteration k we set θk = θk−1γ
if |Sk| = |Sk−1|, where γ < 1; otherwise we reset its value to a default value θ0.

3 Analysis of Algorithm 1

We now establish convergence results for the finite-difference quasi-Newton meth-
ods with the norm test and inner product quasi-Newton test. We make use of the
following additional assumption for the analysis.

Assumption G. For all k, the eigenvalues of Hk are contained in an interval in
R++; that is, there exist constants Λ2 ≥ Λ1 > 0 such that

Λ1I � Hk � Λ2I, ∀k.

Assumption G can be shown to hold for both convex and nonconvex twice-
differentiable functions by updating Hk only when yTk sk ≥ β1‖sk‖22, where β1 > 0
is a predetermined constant [8]. We provide the proof for the sake of completeness
in Appendix A.4. We note that as a consequence of this assumption, the analysis
provided here is more general and can be used for a method with any positive-
definite matrix Hk.

We now establish technical lemmas for both the norm and the inner product
quasi-Newton tests.

3.1 Norm Test

We begin in Lemma 3 by establishing a descent result for cases where the sample
size |Sk| satisfies the norm test.

Lemma 3. For any x0, let {xk : k ∈ Z++} be generated by iteration (8) with
|Sk| chosen by the (exact variance) finite-difference norm test (13) for a given
constant θ > 0, and suppose that Assumptions A, B, and G hold. Then, for any
k where αk satisfies

0 < αk ≤
Λ1

4(1 + θ2)L∇FΛ2
2

, (29)
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we have that

ESk [F (xk+1)] ≤ F (xk)−
αkΛ1

4
‖∇F (xk)‖2

+
αk(Λ1 + 2Λ2)

4
‖∇FDF (xk)−∇F (xk)‖2.

(30)

Proof. By Assumption B and Lemma 1, we have that

ESk [F (xk+1)] ≤ F (xk)− ESk
[
αk
(
Hk∇FDFSk(xk)

)T ∇F (xk)
]

+ ESk

[
L∇Fα

2
k

2
‖Hk∇FDFSk(xk)‖2

]
= F (xk)− αk∇FDF (xk)

THk∇F (xk)

+
L∇Fα

2
k

2
ESk

[
‖Hk∇FDFSk(xk)‖2

]
,

where the equality follows from Assumption A. Defining

δk := ∇FDF (xk)−∇F (xk) (31)

Tk :=
L∇Fα

2
k

2
ESk

[
‖Hk∇FDFSk(xk)‖2

]
,

we have that

ESk [F (xk+1)] ≤ F (xk)− αk (∇F (xk) + δk)
T Hk∇F (xk) + Tk

= F (xk)− αk∇F (xk)
THk∇F (xk)− αkδTkHk∇F (xk) + Tk

≤ F (xk)− αk∇F (xk)
THk∇F (xk)

+
αk
2

(
∇F (xk)

THk∇F (xk) + δTkHkδk
)

+ Tk

= F (xk)−
αk
2
∇F (xk)

THk∇F (xk) +
αk
2
δTkHkδk + Tk, (32)

where the second inequality is obtained by using the fact that 2|xTAy| ≤ xTAx+
yTAy for any positive-definite matrix A.

Now, using (12) and Assumption G, we have that

ESk
[∥∥Hk∇FDFSk(xk)

∥∥2
]

= ESk
[∥∥Hk

(
∇FDFSk(xk)−∇FDF (xk)

)∥∥2
]

+
∥∥Hk∇FDF (xk)

∥∥2

≤ Λ2
2 ESk

[∥∥∇FDFSk(xk)−∇FDF (xk)
∥∥2
]

+ Λ2
2

∥∥∇FDF (xk)
∥∥2

≤ Λ2
2(1 + θ2)

∥∥∇FDF (xk)
∥∥2

≤ 2Λ2
2(1 + θ2)

(∥∥∇FDF (xk)−∇F (xk)
∥∥2

+ ‖∇F (xk)‖2
)

= 2Λ2
2(1 + θ2)‖δk‖2 + 2Λ2

2(1 + θ2)‖∇F (xk)‖2.
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Substituting this into (32) and using (29) and Assumption G, we obtain

ESk [F (xk+1)] ≤ F (xk)−
αk
2
∇F (xk)

THk∇F (xk) +
αk
2
δTkHkδk

+ L∇Fα
2
kΛ

2
2(1 + θ2)‖δk‖2 + L∇Fα

2
kΛ

2
2(1 + θ2)‖∇F (xk)‖2

≤ F (xk)−
αkΛ1

2
‖∇F (xk)‖2 +

αkΛ2

2
‖δk‖2

+ L∇Fα
2
kΛ

2
2(1 + θ2)‖δk‖2 + L∇Fα

2
kΛ

2
2(1 + θ2)‖∇F (xk)‖2

≤ F (xk)−
αkΛ1

2
‖∇F (xk)‖2 +

αkΛ2

2
‖δk‖2

+
αkΛ1

4
‖δk‖2 +

αkΛ1

4
‖∇F (xk)‖2

= F (xk)−
αkΛ1

4
‖∇F (xk)‖2 +

αk(Λ1 + 2Λ2)

4
‖δk‖2,

which establishes (30).

3.2 Inner Product Quasi-Newton Test

We now consider the case where the sample size |Sk| satisfies the inner product
quasi-Newton test. Following the strategy provided in [15], we assume that the
orthogonality condition is satisfied by the stochastic finite-difference quasi-Newton
directions.

Assumption H. For

Ui,k :=

∥∥∥∥∥Hk∇FDFζi(xk)−
(Hk∇FDFζi)

T
(
Hk∇FDF (xk)

)
‖Hk∇FDF (xk)‖2

Hk∇FDF (xk)

∥∥∥∥∥
2

,

there exists ψ > 0 such that

Eζi [Ui,k]

|Sk|
≤ ψ2

∥∥Hk∇FDF (xk)
∥∥2 ∀k.

Using the proof techniques in [15, Lemma 1], we thus have the following bound
on the length of the search direction:

ESk
[
‖Hk∇FDFSk(xk)‖2

]
≤ (1 + θ2 + ψ2)‖Hk∇FDF (xk)‖2. (33)

Using this bound, we first establish a technical lemma.

Lemma 4. For any x0, let {xk : k ∈ Z++} be generated by iteration (8) with |Sk|
chosen by the (exact variance) finite-difference inner product quasi-Newton test

18



(17), and suppose that Assumptions A, B, G, and H hold. Then, for any k where
αk satisfies

0 < αk <
1

(1 + θ2 + ψ2)L∇FΛ2
, (34)

we have that

ESk [F (xk+1)] ≤ F (xk)−
αkΛ1

2
‖∇F (xk)‖2 +

αkΛ2

2

∥∥∇FDF (xk)−∇F (xk)
∥∥2
.

(35)

Proof. By Assumptions A and B and Lemma 1, we have that

ESk [F (xk+1)]

≤ F (xk)− ESk
[
αk
(
Hk∇FDFSk(xk)

)T ∇F (xk)
]

+ ESk

[
L∇Fα

2
k

2

∥∥Hk∇FDFSk(xk)
∥∥2
]

= F (xk)− αk∇FDF (xk)
THk∇F (xk) +

L∇Fα
2
k

2
ESk

[∥∥Hk∇FDFSk(xk)
∥∥2
]

≤ F (xk)− αk∇FDF (xk)
THk∇F (xk)

+
L∇Fα

2
k

2

(
1 + θ2 + ψ2

) ∥∥Hk∇FDF (xk)
∥∥2
,

where the last inequality is due to Assumption H and (33).
By using δk from (31), L̃∇F := L∇F (1 + θ2 +ψ2), and Assumption G, we have

that

ESk [F (xk+1)]

≤ F (xk)− αk(∇F (xk) + δk)
THk∇F (xk) +

L̃∇Fα
2
k

2
‖Hk(∇F (xk) + δk)‖2

= F (xk)− αk∇F (xk)
THk∇F (xk) +

L̃∇Fα
2
k

2
(‖Hk∇F (xk)‖2 + ‖Hkδk‖2)

− αk(H
1/2
k δk)

T (I − L̃∇FαkHk)(H
1/2
k ∇F (xk))

≤ F (xk)− αk∇F (xk)
THk∇F (xk) +

L̃∇Fα
2
k

2
(‖Hk∇F (xk)‖2 + ‖Hkδk‖2)

+
αk
2

(
(H

1/2
k ∇F (xk))

T (I − L̃∇FαkHk)(H
1/2
k ∇F (xk))

)
+
αk
2

(
(H

1/2
k δk)

T (I − L̃∇FαkHk)(H
1/2
k δk)

)
= F (xk)−

αk
2
∇F (xk)

THk∇F (xk) +
αk
2
δTkHkδk

≤ F (xk)−
αkΛ1

2
‖∇F (xk)‖2 +

αkΛ2

2
‖δk‖2,
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where the second inequality is obtained by using the fact that I − L̃∇FαkHk

is a positive-definite matrix due to (34) and Assumption G, and 2|xTAy| ≤
xTAx+ yTAy for any positive-definite matrix A, and the last inequality is due to
Assumption G. Substituting δk with its definition in (31) completes the proof.

3.3 Convergence Results

We now show that the finite-difference stochastic quasi-Newton iteration (8) with
a fixed step length αk = α is convergent to a neighborhood of a stationary point
x∗ when the sample sizes |Sk| satisfy either the norm test or the inner product
quasi-Newton test.

Throughout this section we let E [·] denote the total expectation, which can
be obtained by integrating all random variables xk, . . . , x1 obtained through k
iterations of the form (8).

3.3.1 Strongly Convex Functions

We first consider strongly convex functions F with x∗ denoting the unique mini-
mizer of F . This is formalized in the following assumption, which supposes that
∇F exists (as is the case under either Assumption B or Assumption C).

Assumption I. There exists a parameter µ > 0 such that

‖∇F (x)‖2 ≥ 2µ (F (x)− F (x∗)) ∀x ∈ Rd.

We first establish a general lemma whose result can be used in proving con-
vergence results for both the tests.

Lemma 5. Suppose Assumption I is satisfied. For any x0, let {xk : k ∈ Z++} be
generated by iteration (8), with |Sk| chosen such that

ESk [F (xk+1)] ≤ F (xk)−
a1

2
‖∇F (xk)‖2 + a2 (36)

for some constants a1 > 0 and a2 > 0. Then,

E [F (xk)− F (x∗)] ≤ (1− µa1)k
(
F (x0)− F (x∗)− a2

µa1

)
+

a2

µa1
∀k ∈ Z+.

Proof. Employing Assumption I at iteration k, substituting into (36), and sub-
tracting F (x∗) from both sides, we obtain

ESk [F (xk+1)− F (x∗)] ≤ F (xk)− F (x∗)− µa1(F (xk)− F (x∗)) + a2.
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Subtracting the constant a2
µa1

from both sides and taking total expectation, we
obtain

E [F (xk+1)− F (x∗)]− a2

µa1
≤ (1− µa1)E [F (xk)− F (x∗)] + a2 −

a2

µa1

= (1− µa1)

(
E [F (xk)− F (x∗)]− a2

µa1

)
. (37)

The lemma follows by applying (37) repeatedly through iteration k ∈ Z+.

We can now apply this general lemma to show results for sample sizes |Sk|
satisfying either the norm test (Theorem 6) or the inner product quasi-Newton test
(Theorem 7). We note that in the remainder of this section we assume a constant
step length, but this can readily be generalized as established in Appendix A.2.

Theorem 6 (Norm Test). For any x0, let {xk : k ∈ Z++} be generated by iteration
(8) with |Sk| chosen by the (exact variance) finite-difference norm test (12), and
suppose that Assumptions A, B, G, and I hold. Then, if αk = α satisfies (29),
we have that

E [F (xk)− F (x∗)] ≤
(

1− µΛ1α

2

)k
(F (x0)−F (x∗)) +

(Λ1 + 2Λ2)L2
∇F ν

2d

8µΛ1
. (38)

Proof. Applying Lemma 3 and substituting (7) into (30), we obtain

ESk [F (xk+1)] ≤ F (xk)−
αΛ1

4
‖∇F (xk)‖2 +

α(Λ1 + 2Λ2)L2
∇F ν

2d

16
. (39)

Applying Lemma 5 with constants a1 = αΛ1
2 and a2 =

α(Λ1+2Λ2)L2
∇F ν

2d
16 yields

(38).

Theorem 7 (Inner Product Quasi-Newton Test). For any x0, let {xk : k ∈
Z++} be generated by iteration (8) with |Sk| chosen by the (exact variance) finite-
difference inner product quasi-Newton test (17), and suppose that the Assumptions
A, B, G, H, and I hold. Then, if αk = α satisfies (34) we have that

E [F (xk)− F (x∗)] ≤ (1− µΛ1α)k(F (x0)− F (x∗)) +
Λ2L

2
∇F ν

2d

8µΛ1
.

Proof. Applying Lemma 4 and substituting (7) into (35), we obtain

ESk [F (xk+1)] ≤ F (xk)−
αΛ1

2
‖∇F (xk)‖2 +

αΛ2L
2
∇F ν

2d

8
. (40)

Applying Lemma 5 with a1 = αΛ1 and a2 =
αΛ2L2

∇F ν
2d

8 completes the proof.
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3.3.2 Nonconvex Functions

We now consider the case when F is bounded below but not necessarily convex.
In this setting, we replace Assumption I and Lemma 5 as follows.

Assumption J. There exists a constant Fmin with −∞ < Fmin ≤ F (x) ∀x ∈ Rd.

Lemma 8. Suppose Assumption J is satisfied. For any x0, let {xk : k ∈ Z++}
be generated by iteration (8) with |Sk| chosen such that inequality (36) is satisfied
with some constants a1, a2 > 0. Then, for any T ∈ Z++, we have that

min
0≤k≤T−1

E
[
‖∇F (xk)‖2

]
≤ 2

Ta1
(F (x0)− Fmin) +

2a2

a1
.

Proof. Taking total expectation in (36), we obtain

E [F (xk+1)] ≤ E [F (xk)]−
a1

2
E
[
‖∇F (xk)‖2

]
+ a2,

and hence

E
[
‖∇F (xk)‖2

]
≤ 2

a1
E [F (xk)− F (xk+1)] +

2a2

a1
.

Summing both sides of this inequality from k = 0 to T−1, and since F is bounded
below by Fmin, we get

T−1∑
k=0

E
[
‖∇F (xk)‖2

]
≤ 2

a1
E [F (x0)− F (xt)] + T

2a2

a1
≤ 2

a1
(F (x0)− Fmin + Ta2) .

Therefore, we can conclude that

min
0≤k≤T−1

E
[
‖∇F (xk)‖2

]
≤ 1

T

T∑
k=0

E
[
‖∇F (xk)‖2

]
≤ 2

Ta1
(F (x0)− Fmin) +

2a2

a1
.

We can now apply this general lemma to show results for sample sizes |Sk|
satisfying either the norm test (Theorem 9) or the inner product quasi-Newton
test (Theorem 10).

Theorem 9 (Norm Test). For any x0, let {xk : k ∈ Z++} be generated by iteration
(8) with |Sk| chosen by the (exact variance) finite-difference norm test (12), and
suppose that Assumptions A, B, G, and J hold. Then, if αk = α satisfies (29),
for any T ∈ Z++ we have that

min
0≤k≤T−1

E
[
‖∇F (xk)‖2

]
≤ 4

αTΛ1
(F (x0)− Fmin) +

(Λ1 + 2Λ2)L2
∇F ν

2d

4Λ1
.
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Proof. Applying Lemma 3, from inequality (39) we have that

ESk [F (xk+1)] ≤ F (xk)−
αΛ1

4
‖∇F (xk)‖2 +

α(Λ1 + 2Λ2)L2
∇F ν

2d

16
.

Applying Lemma 8 with constants a1 = αΛ1
2 and a2 =

α(Λ1+2Λ2)L2
∇F ν

2d
16 completes

the proof.

Theorem 10 (Inner Product Quasi-Newton Test). For any x0, let {xk : k ∈
Z++} be generated by iteration (8) with |Sk| chosen by the (exact variance) finite-
difference inner product quasi-Newton test (17), and suppose that Assumptions
A, B, G, H, and J hold. Then, if αk = α satisfies (34), for any T ∈ Z++, we
have that

min
0≤k≤T−1

E
[
‖∇F (xk)‖2

]
≤ 2

αTΛ1
(F (x0)− Fmin) +

Λ2L
2
∇F ν

2d

4Λ1
.

Proof. Applying Lemma 4, from inequality (40) we have that

ESk [F (xk+1)] ≤ F (xk)−
αΛ1

2
‖∇F (xk)‖2 +

αΛ2L
2
∇F ν

2d

8
.

Applying Lemma 8 with a1 = αΛ1 and a2 =
αΛ2L2

∇F ν
2d

8 completes the proof.

We conclude this section by noting that the conditions in Theorems 6, 7, 9, and 10
can be met and are well defined. In particular, we recall that Assumption D on
the variance of the stochastic functions additionally ensures that a sample Sk can
be selected to satisfy (12) and (17).

4 Nonsmooth Subsampled Functions

In this section we consider the scenario where the subsampled functions are non-
smooth; that is, Assumption C is not satisfied. We note that the sample selection
procedure and the convergence analysis are still valid in this case. Algorithm 1
still works but requires some modifications tailored to this setting.

4.1 Finite-Difference Parameter Selection

We choose the finite-difference parameter by minimizing an upper bound on the
error in the gradient approximation. The subsampled gradients do not exist,
however, and we need to consider a different gradient approximation error. Here,
we consider the scaled gradient approximation error in terms of the true finite-
difference gradient. That is,

rk :=Hk

(
∇FDFSk(xk)−∇F (xk)

)
=Hk

(
∇FDFSk(xk)−∇FDF (xk)

)
+Hk

(
∇FDF (xk)−∇F (xk)

)
,
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where we assume that Hk satisfies Assumption G.
If samples satisfy the norm test, we have

ESk
[∥∥Hk

(
∇FDFSk(xk)−∇FDF (xk)

)∥∥] ≤ Λ2θ
∥∥∇FDF (xk)

∥∥ .
If samples satisfy the inner product quasi-Newton test along with Assumption H,
then from (33) we have

ESk
[∥∥Hk

(
∇FDFSk(xk)−∇FDF (xk)

)∥∥] ≤ Λ2

√
θ2 + ψ2

∥∥∇FDF (xk)
∥∥ .

Therefore, in both these cases we have

ESk
[∥∥Hk

(
∇FDFSk(xk)−∇FDF (xk)

)∥∥] ≤ κΛ2‖∇FDF (xk)‖,

where κ = θ for the norm test and κ =
√
θ2 + ψ2 for the inner product quasi-

Newton test. Now, consider

ESk [‖rk‖] ≤ κΛ2

∥∥∇FDF (xk)
∥∥+

∥∥Hk(∇FDF (xk)−∇F (xk))
∥∥

≤ κΛ2

∥∥∇FDF (xk)
∥∥+ Λ2

∥∥∇FDF (xk)−∇F (xk)
∥∥

≤ κΛ2 ‖∇F (xk)‖+ Λ2(1 + κ)
∥∥∇FDF (xk)−∇F (xk)

∥∥
≤ κΛ2 ‖∇F (xk)‖+

Λ2(1 + κ)L∇F ν
√
d

2
, (41)

where the third inequality is due to the fact that ‖a‖ ≤ ‖a − b‖ + ‖b‖ and the
last inequality is due to (7). We observe that the first term in the right-hand side
of (41) is independent of the parameter ν. As discussed in Section 2.2, in any
practical implementation one has to account for the numerical errors associated
with numerical evaluations of the function values. Therefore, from (20) and (21),
we have ∥∥∥Hk

(
∇FDF̂Sk(xk)−∇FDFSk(xk)

)∥∥∥ ≤ 2Λ2εm
√
d

ν
.

Combining this with (41) and minimizing the resulting upper bound yields the
optimal parameter as

ν∗ := 2

√
εm

L∇F (1 + κ)
,

where κ = θ for the norm test and κ =
√
θ2 + ψ2 for the inner product quasi-

Newton test. We note that the only difference between the optimal parameters
in the smooth and nonsmooth cases is the presence of κ in the denominator and
the use of the Lipschitz constant of the gradient of the expected function (L∇F )
instead of the Lipschitz constant of the subsampled gradient (L∇f ).
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4.2 Step-Length Selection

In the smooth case we employed a stochastic line search to choose the step length
αk by using a sufficient decrease condition (22) based on the subsampled function.
In the nonsmooth case, it is not guaranteed that such a step length always exists.
Intuitively, however, if the sample approximations are reasonably good, such a step
length may exist since the expected function’s gradient is Lipschitz continuous.
Therefore, in the algorithm we can still employ the sufficient decrease condition
with a safeguarding mechanism. That is, if the step length αk falls below some
threshold αmin > 0, then we ignore the sufficient decrease condition and choose
αk = αmin. The initial trial step length (24) is still valid here, and the reasoning
behind this choice remains the same.

As a result, we modify line 21 of Algorithm 1 to break from the line search
with αk = αmin if αk is attempted to be reduced below αmin.

4.3 Quasi-Newton Update

In the smooth case we skip the update of quasi-Newton matrix whenever (28)

is not satisfied, to ensure that
yTk yk
yTk sk

is bounded; doing so results in bounded

eigenvalues. In the nonsmooth case condition (28) does not guarantee that the
yTk yk
yTk sk

is bounded. Instead, we impose the condition

‖yk‖ ≤M‖sk‖. (42)

The condition (42), along with (26), implies that

yTk yk

yTk sk
≤ ‖yk‖2

β1‖sk‖2
≤ M

β1
,

in which case Assumption G still holds.
As a result, we modify line 25 of Algorithm 1 to replace the condition ‖sk‖ > β2

with the condition (42).

5 Numerical Experiments

We now examine empirical characteristics of our proposed algorithm in both
smooth (Section 5.1) and nonsmooth (Section 5.2) settings.

We implemented two variants, “FD-Norm” and “FD-IPQN,” of the proposed
algorithm with the sample size |Sk| update chosen based on the finite-difference
norm test in (Norm) and the inner product quasi-Newton test in (IPQN), respec-
tively. We used θ0 = 0.9, |S0| = 2, finite-difference parameter ν = 10−8, L-BFGS
memory parameter m = 10, and line search parameters c1 = 10−4, c2 = 10−14,
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and τ = 0.5. We used β1 = 10−3 and did not use the condition with β2 (effec-
tively setting it to a smaller value than would ever been encountered). For the
nonsmooth problems we used αmin = 10−8. None of these parameters have been
tuned to the problems being considered. We chose γ = 0.99 for smaller variance
problems and γ = 0.9 for larger variance problems.

We also implemented two stochastic methods of the form

xk+1 = xk − α0gk,

where gk is an estimation of the gradient. The first method is based on a classical
stochastic gradient algorithm where the gradients are estimated by using finite
differences. This method is also referred as the Kiefer–Wolfowitz algorithm [34].
We call the method here the finite-difference stochastic gradient method, “FD-
SG,” and gk is chosen as ∇FDFSk(xk) defined in (3). The second method also
estimates the stochastic gradient; however, instead of employing finite differences
in all the coordinate directions, it estimates the gradients using a small number
of random directions chosen within a unit sphere. We call this method the sphere
smoothing stochastic gradient method, “SS-SG,” and refer the reader to [7] for
further details. The gradient estimate at each iteration is given by

gk =
1

|Sk|
∑
ζi∈Sk

d

T

T∑
j=1

f (x+ νuj , ζi)− f(x, ζi)

ν
uj ,

where {uj ∈ Rd}Tj=1 are i.i.d. random vectors following a uniform distribution
on the unit sphere centered at 0 of radius 1 and ν is the standard difference
parameter. We chose T = 5 for all the problems.

We report results for the best versions of FD-SG and SS-SG based on tuning
the constant step length for each problem (i.e., by considering α0 = 2j , for j ∈
{−20,−9, . . . , 9, 10}). We chose |Sk| = |S0| = 2 for both these methods and again
use the finite-difference parameter ν = 10−8. For all the experiments we report
the minimum, maximum, and mean results across 5 different random runs.

We implemented all the algorithms and ran the experiments in MATLAB
R2019a on a 64-bit machine (machine precision εm = 10−16) with Intel Core
i5@2.4 GHz and 8 GB of RAM.

5.1 Smooth Problems

We conducted numerical experiments on stochastic nonlinear least squares prob-
lems based on a mapping φ : Rd → Rp affected by two forms of stochastic noise.
Our functions affected by relative noise are of the form

frel(x, ζ) :=
1

1 + σ2

p∑
j=1

φ2
j (x) (1 + ζj)

2 ,
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and our functions affected by absolute noise are of the form

fabs(x, ζ) :=

p∑
j=1

(
(φj(x) + ζj)

2 − σ2
)
,

where σ2 > 0 is a variance parameter and ζ ∼ N (0, σ2Ip). We note that this form
of noise results in both random functions satisfying Eζ [f(x, ζ)] =

∑p
j=1 φ

2
j (x).

Furthermore, both functions are of unbounded support except when f = frel and∑p
j=1 φ

2
j (x) = 0. In both cases, the function f(·, ζ) and the expected function

Eζ [f(·, ζ)] are twice continuously differentiable.
We considered five different problems for φ from the CUTEr [30] collection of

optimization problems and used two different σ values {10−3, 10−5}. The details
of these problems are given in Table 1.

Table 1: Characteristics of the nonlinear least squares problems used in our ex-
periments.

Function p d

Chebyquad 45 30
Osborne 65 11
Bdqrtic 92 50
Cube 30 20

Heart8ls 8 8

In all the experiments, we chose the initial starting point as x0 = 10xs, where
xs is the standard starting point for these problems given in [42]. We computed
the minimum function values F ∗ by running the L-BFGS method on the noise-free
(i.e., σ = 0) problems until ‖∇F (x)‖∞ ≤ 10−10 or the maximum number of 2, 000
function evaluations is reached.

Figure 1 reports results on the chebyquad function with abs-normal noise and
rel-normal noise for σ values of 10−3 and 10−5. The vertical axis measures the
error in the function F (x) − F ∗, and the horizontal axis measures in terms of
the total (i.e., including those in the gradient estimates, curvature pair updates,
and line search) number of evaluations of f(x, ζ). The results show that both
variants of our finite-difference quasi-Newton method are more efficient than the
tuned finite-difference stochastic gradient method and the tuned sphere-smoothing
stochastic gradient method. Furthermore, on three of the four problems, the
stochastic gradient methods converged to a significantly larger neighborhood of
the solution as compared with the quasi-Newton variants in the high-variance
problems (σ = 10−3).

Of the two stochastic gradient methods, we observe that FD-SG is more ef-
ficient than SS-SG. We suspect that this performance might be attributed to

27



Figure 1: Chebyquad function results based on the total number of f evaluations:
Using fabs (left column) and frel (right column) with σ = 10−3 (top row) and
σ = 10−5 (bottom row). For each solver, the mean across five random trials is
shown; the shaded region indicates the range of performance across these five
trials.

the fact that these are low-dimensional problems and the computational savings
obtained by sampling only few random directions (recall from Table 1 that d

T
ranges from 8/5 to 10) for estimating the stochastic gradient do not overweigh
the benefits associated with estimating the stochastic gradient accurately.

We also observe that both the variants of our algorithm have similar perfor-
mance in terms of total function evaluations. This behavior is explained by the
fact that both these variants increase the sample sizes in a similar manner for this
problem, as seen in Figure 2.

We also report the step lengths chosen at each iteration by the two variants
of our algorithm in Figure 3 to illustrate the performance of the line search mech-
anism. We note that initially the step lengths are chosen to be small but they
quickly go to a larger step length and stay around 1 until they converge to the
neighborhood of the solution.
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Figure 2: Chebyquad function results showing how the batch size grows over the
iterations for which all five trials were running: Using fabs (left column) and frel

(right column) with σ = 10−3 (top row) and σ = 10−5 (bottom row).

Results for the other problems listed in Table 1 are given in Appendix B.

5.2 Nonsmooth Problems

We also conducted an experiment on a synthetic nonsmooth problem to illustrate
the robustness of the proposed algorithm with respect to nonsmoothness of the
stochastic functions. We considered the stochastic nonsmooth function

f(x, ζ) = ‖Ax− b− ζ‖1 =

p∑
i=1

∣∣aTi x− bi − ζi∣∣ (43)

where ζ ∈ Rp is a uniform random vector [−1, 1]p. We note that the expected
function Eζ [f(·, ζ)] is continuously differentiable and strongly convex; see Ap-
pendix C for details. We set A ∈ R50×50 as a symmetric normal random matrix
and b = Ax∗, where x∗ ∈ R50 is a normal random vector. For this problem, the
optimal function value is F ∗ = 25.
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Figure 3: Chebyquad function results showing the accepted step length over the
iterations for which all five trials were running: Using fabs (left column) and frel

(right column) with σ = 10−3 (top row) and σ = 10−5 (bottom row).

Figure 4 reports results for a random instance of this problem. We observe
that both variants of our finite-difference quasi-Newton method are more efficient
than the tuned finite-difference stochastic gradient method and the tuned sphere-
smoothing stochastic gradient method. We further note that because of the high
variance arising due to the nonsmoothness, the methods converge at a slower rate.

6 Final Remarks

We presented finite-difference quasi-Newton methods for solving derivative-free
stochastic optimization problems where the sample sizes used in finite-difference
gradient estimators are controlled by a modified norm test or an inner product
quasi-Newton test. The numerical results show that the modified tests have po-
tential for stochastic problems where the CRN approach is feasible. Early results
on a challenging class of simulation-based finite-sum problems illustrate that such
methods can be competitive even in settings where the batch size adaptivity is
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Figure 4: Results for a random instance of the nonsmooth function (43) with
d = p = 50.

severely limited [14].
In this work, we considered forward finite differences in all the coordinate

directions to estimate the gradients. It is interesting to consider other derivative-
free techniques that estimate the gradients in smaller subspaces (< d) that might
result in lower computational effort. However, these approaches are challenging
and require special attention to the curvature information used in quasi-Newton
updates.
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A Supplementary Proofs

Here we collect proofs of several intermediate results.

A.1 Bounded Variances in (12)

The left-hand side of (12) is difficult to compute but can be bounded by the true
variance of individual finite-difference gradient estimators; that is,

ESk
[∥∥∇FDFSk(xk)−∇FDF (xk)

∥∥2
]
≤

Eζi
[∥∥∇FDFζi(xk)−∇FDF (xk)

∥∥2
]

|Sk|
.

This bound requires that the true variance is bounded, which is Assumption D.
The proof follows from

Eζi
[∥∥∇FDFζi(xk)−∇

FDF (xk)
∥∥2
]

=

d∑
j=1

Eζi

[(
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ν
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)2
]

≤
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2
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]
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ν
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]
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])
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2d‖∇F (xk)‖2
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+ 2ω2

2L
2
∇F , (44)

where the first and third inequalities are due to the fact (a + b)2 ≤ 2(a2 + b2),
the second inequality is due to Assumption D, and the last inequality is due to
Assumption B. Therefore, for all iterations k where ‖∇F (xk)‖ <∞, we have

Eζi
[∥∥∇FDFζi(xk)−∇

FDF (xk)
∥∥2
]
<∞.
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In a similar manner, we can show that the true variance of the inner product
quasi-Newton condition is also bounded. That is,

Eζi
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Hk∇FDFζi(xk)

)T
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∥∥2
)2
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max(Hk)Eζi
[∥∥∇FDFζi(xk)−∇

FDF (xk)
∥∥2
]((L∇F ν

2

)2

d+ ‖∇F (xk)‖2
)
,

where the third inequality is due to (a + b)2 ≤ 2(a2 + b2), the fifth inequality is
due to (7), and λmax(Hk) is the largest eigenvalue of Hk. Therefore, from (44),
for all iterations k where ‖∇F (xk)‖2 <∞, we have

Eζi

[((
Hk∇FDFζi(xk)

)T
Hk∇FDF (xk)−

∥∥Hk∇FDF (xk)
∥∥2
)2
]
<∞.

Hence,

ESk
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Hk∇FDFSk(xk)

)T
Hk∇FDF (xk)−

∥∥Hk∇FDF (xk)
∥∥2
)2
]

≤
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Hk∇FDFζi(xk)
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∥∥2
)2
]

|Sk|
.

A.2 Nonconstant Step Lengths

Generalizations of Lemma 5, and subsequent lemmas and theorems, that allow
for step lengths αk that vary by iteration are readily available. Below we provide
one such generalization of Lemma 5.

Lemma 11. Suppose Assumption I is satisfied. For any x0, let {xk : k ∈ Z++}
be generated by iteration (8) with αk > 0, and with |Sk| chosen such that

ESk [F (xk+1)] ≤ F (xk)−
a1αk

2
‖∇F (xk)‖2 + a2αk

for some constants a1 > 0 and a2 > 0. Then,

E [F (xk)− F (x∗)] ≤
k∏
i=1

(1− µa1αk)

(
F (x0)− F (x∗)− a2

µa1

)
+
a2

µa1
∀k ∈ Z++.
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Proof. Employing Assumption I at iteration k, substituting into (36), and sub-
tracting F (x∗) from both sides, we obtain

ESk [F (xk+1)− F (x∗)] ≤ F (xk)− F (x∗)− µa1αk(F (xk)− F (x∗)) + a2αk.

Subtracting the constant a2
µa1

from both sides and taking total expectation, we
obtain

E [F (xk+1)− F (x∗)]− a2

µa1
≤ (1− µa1αk)E [F (xk)− F (x∗)] + a2αk −

a2

µa1

= (1− µa1αk)

(
E [F (xk)− F (x∗)]− a2

µa1

)
. (45)

The lemma follows by applying (45) repeatedly through iteration k ∈ Z+.

A.3 Initial Heuristic Step Length Derivation

Because of the stochasticity of the function values f , it is not guaranteed that a
decrease in stochastic function realizations can ensure decrease in the true function
F . A conservative strategy to address this issue is to choose the initial trial step
length to be small enough such that the increase in function values when the
stochastic approximations are not good is controlled. Bollapragada et al. [15]
proposed a heuristic to choose the initial trial estimate for αk such that there is
a decrease in the expected function value. Following a similar strategy, we derive
a heuristic to choose the initial step length as

α̂k =

(
1 +

Vari∈Svk
[
∇FDFζi(xk)

]
|Sk|‖∇FDFSk(xk)‖2

)−1

.

By Assumptions A, B, and D and Lemma 1, for any deterministic αk we have
that

ESk [F (xk+1)] ≤ F (xk)− ESk
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]
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2
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∥∥2
]
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2
k

2
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2
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2
ESk
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]

≤ F (xk)− αk∇FDF (xk)
THk∇F (xk)

+
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2
k

2
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.
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By using δk = ∇FDF (xk) − ∇F (xk), Rk =
Eζi

[
‖Hk∇FDFζi (xk)−Hk∇FDF (xk)‖2

]
|Sk|‖Hk∇FDF (xk)‖2 ,

L̂k = L∇F (1 +Rk), and Assumption G, we have that

ESk [F (xk+1)] ≤ F (xk)− αk(∇F (xk) + δk)
THk∇F (xk) +

L̂kα
2
k

2
‖Hk(∇F (xk) + δk)‖2

= F (xk)− αk∇F (xk)
THk∇F (xk) +

L̂kα
2
k

2
(‖Hk∇F (xk)‖2 + ‖Hkδk‖2)

− αk(H
1/2
k δk)

T (I − L̂kαkHk)(H
1/2
k ∇F (xk)).

If

Wk = I − L∇F

1 +
Eζi
[∥∥Hk∇FDFζi(xk)−Hk∇FDF (xk)

∥∥2
]

|Sk|‖Hk∇FDF (xk)‖2

αkHk

is a positive-definite matrix, then we have

ESk [F (xk+1)] ≤ F (xk)− αk∇F (xk)
THk∇F (xk) +

L̃∇Fα
2
k

2
(‖Hk∇F (xk)‖2 + ‖Hkδk‖2)

+
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2

(
(H

1/2
k ∇F (xk))
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)
+
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2

(
(H

1/2
k δk)
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)
= F (xk)−

αk
2
∇F (xk)

THk∇F (xk) +
αk
2
δTkHkδk,

where the first inequality is due to the assumption that Wk is a positive-definite
matrix, and 2|xTAy| ≤ xTAx + yTAy for any positive-definite matrix A. There-
fore, to obtain a decrease in the expected function value (to a certain neighbor-
hood), the matrix Wk must be positive definite. The only difference between
the deterministic case and the stochastic case is the presence of the additional
variance term in the matrix Wk. In the deterministic case, for a reasonably good
quasi-Newton matrix Hk, one expects that αk = 1 will result in a decrease in the
function (to a certain neighborhood), and therefore the initial trial step-length
parameter should be chosen to be 1. In the stochastic case, the initial trial value

α̂k =

1 +
Eζi
[∥∥Hk∇FDFζi(xk)−Hk∇FDF (xk)

∥∥2
]

|Sk|‖Hk∇FDF (xk)‖2

−1

will most likely result in the decrease in expected function value (to a certain
neighborhood). However, since this formula involves the expensive computa-
tion of the individual matrix-vector products Hk∇FDFζi(xk), we approximate the
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variance-bias ratio as follows:

α̂k =

(
1 +

Vari∈Svk
[
∇FDFζi(xk)

]
|Sk|‖∇FDFSk(xk)‖2

)−1

,

where Svk ⊆ Sk.

A.4 Assumption G can be Guaranteed to Hold Algorithmically

Assumption G can be shown to hold both for convex and nonconvex functions by
updating Hk only when yTk sk ≥ β‖sk‖22, where β > 0 is a predetermined constant
[8]. We first provide the following technical lemma, which is similar to Lemma
3.1 in [8].

Lemma 12. If Assumption C is satisfied, and the quasi-Newton matrix update is
skipped whenever one of (26) and (28) is not satisfied, then there exist constants
Λ2 ≥ Λ1 > 0 such that

Λ1I � Hk � Λ2I, ∀k ∈ Z++.

Proof. From (27) and (28), we have

‖yk‖2

yTk sk
≤ 3L2

β1
+

3ν2d

2β1‖sk‖2
≤ 3L2

β1
+

3ν2d

2β1β2
2

. (46)

From (26), we have

β1‖sk‖2 ≤ yTk sk ≤ ‖yk‖sk‖,

and therefore

‖sk‖ ≤
1

β1
‖yk‖.

It follows that

yTk sk ≤ ‖yk‖‖sk‖ ≤
1

β1
‖yk‖2

and hence
‖yk‖2

yTk sk
≥ β1. (47)

Let Λl = β1 and Λu = 3L2

β1
+ 3ν2d

2β1β2
2
. Combining upper bound (46) and lower bound

(47), we get

Λl ≤
‖yk‖2

yTk sk
≤ Λu. (48)
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The rest of the proof follows directly from the proof of Lemma 3.1 in [8]. We
provide it here for the sake of completeness. Now, consider the direct Hessian
approximation Bk = H−1

k . The limited memory quasi-Newton updating formula
is given as follows

1. Set B
(0)
k =

yTk yk
sTk yk

I and m̃ = min{k,m}; where m is the memory in L-BFGS.

2. For i = 0, . . . , m̃− 1 set j = k − m̃+ i and compute

B
(i+1)
k = B

(i)
k −

B
(i)
k sjs

T
j B

(i)
k

sTj B
(i)
k sj

+
yjy

T
j

yTj sj
.

3. Set Bk+1 = B
(m̃)
k .

Due to (48), the eigenvalues of the matrices B
(0)
k =

yTk yk
sTk yk

I at the start of the

L-BFGS update cycles are bounded above and away from zero, for all k. We
now use a Trace-Determinant argument to show that the eigenvalues of Bk are
bounded above and away from zero.

Let Tr(B) and det(B) denote the trace and determinant of matrix B, respec-
tively, and set ji = k − m̃ + i. The trace of the matrix Bk+1 can be expressed
as

Tr(Bk+1) = Tr(B
(0)
k )− Tr

m̃∑
i=1

(
B

(i)
k sjis

T
ji
B

(i)
k

sTjiB
(i)
k sji

)
+ Tr

m̃∑
i=1

yjiy
T
ji

yTjisji

≤ Tr(B(0)
k ) +

m̃∑
i=1

‖yji‖2

yTjisji

≤ Tr(B(0)
k ) + m̃Λu

≤ C1, (49)

for some constant C1 > 0, where the first inequality is due to positive semi-

definiteness of B
(i)
k update formula, the second inequality is due to (48) and the

last inequality is due to the fact that the eigenvalues of the initial L-BFGS matrix

B
(0)
k are bounded above and away from zero.

Using a result due to Powell [49], the determinant of the matrix Bk+1 generated
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by the proposed algorithm can be expressed as,

det(Bk+1) = det(B0
k)Πm̃

i=1

yTjisji

sTjiB
(i−1)
k sji

= det(B0
k)Πm̃

i=1

yTjisji

sTjisji

sTjisji

sTjiB
(i−1)
k sji

≥ det(B0
k)

(
β1

C1

)m̃
≥ C2, (50)

for some constant C2 > 0, where the first inequality is due to (26) and the fact

that the largest eigenvalue of B
(i)
k is less than C1, and the last inequality is due

to the fact that the eigenvalues of the initial L-BFGS matrix B
(0)
k are bounded

above and away from zero.
The trace (49) and determinant (50) inequalities derived above imply that

largest eigenvalues of all matrices Bk are bounded above, uniformly, and the
smallest eigenvalues of all matrices Bk are bounded away from zero, uniformly.
Therefore, the inverse Hessian approximation Hk also has eigenvalues bounded
above and away from zero.

B Additional Numerical Results

Here we include numerical results for the smooth problems in Table 1; see Sec-
tion 5.1 for further details.
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Figure 5: Osborne function (d = 11, p = 65) results: Using fabs with σ = 10−3

(left column) and σ = 10−5 (right column). Top row: F −F ∗ value versus number
of f evaluations. Middle row: Batch size versus number of iterations. Bottom
row: Step length versus number of iterations.
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Figure 6: Osborne function (d = 11, p = 65) results: Using frel with σ = 10−3

(left column) and σ = 10−5 (right column). Top row: F −F ∗ value versus number
of f evaluations. Middle row: Batch size versus number of iterations. Bottom
row: Step length versus number of iterations.
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Figure 7: Bdqrtic function (d = 50, p = 92) results: Using fabs with σ = 10−3

(left column) and σ = 10−5 (right column). Top row: F −F ∗ value versus number
of f evaluations. Middle row: Batch size versus number of iterations. Bottom
row: Step length versus number of iterations.
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Figure 8: Bdqrtic function (d = 50, p = 92) results: Using frel with σ = 10−3 (left
column) and σ = 10−5 (right column). Top row: F − F ∗ value versus number of
f evaluations. Middle row: Batch size versus number of iterations. Bottom row:
Step length versus number of iterations.
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Figure 9: Cube function (d = 20, p = 30) results: Using fabs with σ = 10−3 (left
column) and σ = 10−5 (right column). Top row: F − F ∗ value versus number of
f evaluations. Middle row: Batch size versus number of iterations. Bottom row:
Step length versus number of iterations.
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Figure 10: Cube function (d = 20, p = 30) results: Using frel with σ = 10−3 (left
column) and σ = 10−5 (right column). Top row: F − F ∗ value versus number of
f evaluations. Middle row: Batch size versus number of iterations. Bottom row:
Step length versus number of iterations.
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Figure 11: Heart8ls function (d = 8, p = 8) results: Using fabs with σ = 10−3 (left
column) and σ = 10−5 (right column). Top row: F − F ∗ value versus number of
f evaluations. Middle row: Batch size versus number of iterations. Bottom row:
Step length versus number of iterations.
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Figure 12: Heart8ls function (d = 8, p = 8) results: Using frel with σ = 10−3 (left
column) and σ = 10−5 (right column). Top row: F − F ∗ value versus number of
f evaluations. Middle row: Batch size versus number of iterations. Bottom row:
Step length versus number of iterations.
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C Properties of the Nonsmooth Test Function

Here we collect properties of the nonsmooth stochastic function (43) and its ex-
pectation

F (x) = Eζ [f(x, ζ)] =

p∑
i=1

Eζi
[∣∣aTi x− bi − ζi∣∣] =

1

2

p∑
i=1

∫ 1

−1

∣∣aTi x− bi − ζi∣∣ dζi
(51)

in the case where ζ1, . . . , ζp are i.i.d. and uniformly distributed over the interval
[−1, 1].

Lemma 13. For any c ∈ R, when ζ ∼Unif[−1, 1], we have that:

2Eζ [|c− ζ|] =

∫ 1

−1
|c− ζ| dζ =

{
c2 + 1 if |c| ≤ 1

2|c| if |c| > 1.
(52)

Proof. If |c| ≤ 1, then∫ 1

−1
|c− ζ| dζ =

∫ c

−1
(c− ζ) dζ −

∫ 1

c
(c− ζ) dζ

=

(
c2 − 1

2
c2 + c+

1

2

)
−
(
c− 1

2
− c2 +

1

2
c2

)
= c2 + 1.

If c < −1, then∫ 1

−1
|c− ζ| dζ = −

∫ 1

−1
(c− ζ) dζ = −

(
c− 1

2
+ c+

1

2

)
= −2c.

If c > 1, then∫ 1

−1
|c− ζ| dζ =

∫ 1

−1
(c− ζ) dζ =

(
c− 1

2
+ c+

1

2

)
= 2c.

We observe from (52) that

Eζi
[∣∣aTi x− bi − ζi∣∣] =

1

2

∫ 1

−1

∣∣aTi x− bi − ζi∣∣ dζi (I[|aTi x−bi|≤1] + I[|aTi x−bi|>1]

)
=

1

2

((
aTi x− bi

)2
+ 1
)
I[|aTi x−bi|≤1] +

∣∣aTi x− bi∣∣ I[|aTi x−bi|>1],

where I[·] is the Dirac delta function. Thus,

∇xEζi
[∣∣aTi x− bi − ζi∣∣] = ai

(
aTi x− bi

)
I[|aTi x−bi|≤1] + aisgn

[
aTi x− bi

]
I[|aTi x−bi|>1]

= ai

((
aTi x− bi

)
I[|aTi x−bi|≤1] + sgn

[
aTi x− bi

]
I[|aTi x−bi|>1]

)
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and, for |aTi x− bi| < 1,

∇2
xxEζi

[∣∣aTi x− bi − ζi∣∣] = aia
T
i .

As a consequence of the above and from the definition (51) we have thus shown
that

F (x) =
∑

i: |aTi x−bi|≤1

(
aTi x− bi

)2
+ 1

2
+

∑
i: |aTi x−bi|>1

∣∣aTi x− bi∣∣
=

p∑
i=1

((
aTi x− bi

)2
+ 1

2
I[|aTi x−bi|≤1] +

∣∣aTi x− bi∣∣ I[|aTi x−bi|>1]

)
∇xF (x) =

∑
i: |aTi x−bi|≤1

ai
(
aTi x− bi

)
+

∑
i: |aTi x−bi|>1

aisgn
[
aTi x− bi

]
=

p∑
i=1

ai

((
aTi x− bi

)
I[|aTi x−bi|≤1] + sgn

[
aTi x− bi

]
I[|aTi x−bi|>1]

)
∇2
xxF (x) =

∑
i: |aTi x−bi|<1

aia
T
i ,

where the last expression is only well defined when there is no ai 6= 0 for which
|aTi x− bi| = 1. We conclude that F is continuously differentiable.

Furthermore, at any x∗ for which Ax∗ = b, we have that F (x∗) = p
2 .
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