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Abstract

This paper provides a discussion and evaluation of presolving methods for mixed-integer
semidefinite programs. We generalize methods from the mixed-integer linear case and
introduce new methods that depend on the semidefinite condition. The methods con-
sidered include adding linear constraints, deriving bounds relying on 2 x 2 minors of the
semidefinite constraints, tightening of variable bounds based on solving a semidefinite
program with one variable, and scaling of the matrices in the semidefinite constraints.
Tightening the bounds of variables can also be used in a node presolving step. Along
the way, we discuss how to solve semidefinite programs with one variable using a semis-
mooth Newton method and the convergence of iteratively applying bound tightening. We
then provide an extensive computational comparison of the different presolving methods,
demonstrating their effectiveness with an improvement in running time of about 22 % on
average. The impact depends on the instance type and varies across the methods.

1 Introduction

Presolving is one of the cornerstones of generic mathematical optimization solvers. It changes
an instance into an equivalent one that is hopefully easier to solve. This can often be achieved
by removing variables or constraints as well as tightening coefficients or bounds of variables.
As in the literature, we use the terms presolving and preprocessing interchangeably.

Presolving can have an impressive impact, especially if the underlying solution process can
in principle result in an exponential runtime behavior. For instance, Bixby and Rothberg [13]
report a slowdown factor of 10.8 when solving Mixed-Integer Programs (MIPs) with disabled
root node presolving for CPLEX 8.0; this factor was confirmed by Achterberg and Wunder-
ling [4] for CPLEX 12.5. For Mixed-Integer Nonlinear Programs (MINLPs), Puranik and
Sahinidis [50] demonstrate the importance of presolving and bound tightening, in particular:
not using presolving significantly slows down the solution process and decreases the number
of solved instances within the time limit for the solvers BARON, Couenne, and SCIP. It turns
out that bound tightening is essential for strengthening relaxations of non-convex problems.
Note that the instances in all of these publications come from publicly available benchmark
libraries and are quite diverse and generic. Indeed, presolving is very useful for instances that
have been generated by modeling languages. The impact of presolving of course depends on
the particular instances and might be less effective for instances that come from a less generic
source or are tuned (“presolved”) by humans.

In this paper, we consider presolving for general Mixed-Integer Semidefinite Programs
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(MISDP) of the following form:

inf by
m
s.t. ZAk yr — AY =0,
k=1 (1)
b <y <wy Vi € [m],
yi€Z viel,

with symmetric matrices A¥ € R™™ for k € [m]o :== {0,...,m}, b € R™, ¢; € RU {—oc},
u; € RU{oo} for all i € [m] := {1,...,m}. The set of indices of integer variables is given
by I C [m]. The notation M > 0 indicates that some matrix M is positive semidefinite.
Throughout this paper, we use the notation A(y) == >, AF g — AY for y € R™. Note that
in some applications, e.g., reformulations of combinatorial optimization problems, it is more
natural to have a positive semidefinite matrix variable X > 0, which leads to an equivalent
“primal” version of (1). In Appendix A, we outline the equivalence and also explain how to
reformulate an MISDP in one form into the other. Our presentation and implementation,
however, is based on the form in (1).

While for specific types of MISDPs, several presolving methods are known, this paper
focuses on presolving for generic MISDPs. We introduce several new techniques and provide
a computational evaluation of different variants. Often, these methods can be seen as a
generalization of presolving for mixed-integer programs. We note that several methods that
we describe can not only be performed at the root node, but also at further nodes in the
tree, which leads to node presolving. In particular, this includes propagation (of variable
bounds), which refers to the tightening of some variable bounds based on the bounds of other
variables.

In more detail, our contributions are as follows. We start with a brief description of
how (1) can be solved in Section 1.1. After a literature review in Section 1.2, we summarize
standard presolving methods in Section 1.3 and discuss their relation to solving MISPDs.
We then present several valid linear inequalities in Section 2, which can be added during
and are then used in presolving. In Section 3, we turn our attention to presolving based
on 2 x 2 minors of positive semidefinite matrices A(y). This involves variable bounds de-
rived from upper bounds on diagonal entries in Section 3.1. Using bounds on off-diagonal
entries, further variable bounds are derived in Section 3.2. As a next step, we present a
method to tighten variable bounds in Section 4. We prove that iteratively applying this
bound tightening converges to a best bound, which can also be computed by solving a sin-
gle SDP (Section 4.2). The underlying optimization problems for computing a single bound
tightening correspond to SDPs with one variable and can be solved by using a semismooth
Newton method, see Section 4.3. With similar techniques, one can also compute the tightest
scaling of the constraint matrices A* that does not change the feasible region; this generalizes
coeflicient tightening, see Section 4.4. Then, as one of the main contributions of this paper,
our computational results in Section 5 compare the different presolving methods and their
combination. The results show that, for the considered instances, presolving in the root node
has limited effect, but node presolving — and bound tightening in particular — can result in
a significant speed-up of up to 22 % in comparison to no presolving. Moreover, on the one
hand, presolving has a different impact on different types of instances. On the other hand,
since the methods only take a negligible amount of time, they can easily be applied without
much overhead. In conclusion, the techniques investigated in this paper provide a very good
basis for future applications of generic MISDP.

1.1 Solving MISDPs

We start with a brief review of the three main techniques for solving (1):



1. SDP-based branch-and-bound: One can adapt the general nonlinear branch-and-bound
process, as already proposed by Dakin [21] in 1965, by solving SDPs in each node.
Two of the first solvers based on this idea are YALMIP [40] and SCIP-SDP, which
was introduced by Mars [43] and continued by Gally [28]. See [30] for an analysis of
subproblem properties in the tree.

2. LP-based branch-and-bound: The second technique was proposed by Sherali and Frati-
celli [53] (see also Krishnan and Mitchell [37]) and applies a linear programming (LP)
based cutting-plane algorithm for solving the subproblems in each node of the tree,
see the next paragraph for more details. This LP-based approach is also implemented
in SCIP-SDP (see [43, 28] for computational results) and YALMIP. Kobayashi and
Takano [36] explicitly prove that this cutting-plane method converges to an optimal
point for each SDP in the tree.

3. Outer approximation: Outer approximation, proposed by Duran and Grossmann [22],
was investigated for mixed-integer conic problems by Lubin et al. [41] and is imple-
mented in the solver Pajarito [19]. We will not investigate this approach in this paper,
but will present results for the first two.

Notes on the LP-based Approach In the following corollary, we highlight that approx-
imating certain SDPs requires exponentially many linear inequalities, which can be seen by
combining results from the literature. This is in contrast to second-order cone programs,
for which e-approximate extended formulations of polynomial size in the input and log(1/¢)
exist, see [8].

Corollary 1. There are SDPs of dimension n x n for which any polyhedral approximation
is of size 224

Proof sketch. Braun et al. [16] proved that one may need polyhedral extended formulations
with extension complexity 22" to construct tight approximations of the feasible regions
of SDPs in R™ ™. The proof is based on a nonnegative rank of size 2% for particular
instances. Braun et al. [17] showed that the nonnegative rank deviates from the minimal
number of inequalities in a polyhedral description in the original dimension n x n by at
most 1. O

When solving general MISDPs of the form (1) with a cutting-plane approach, the positive
semidefiniteness of A(y) needs to be enforced through linear cuts. To do so, it is possible to
use the following characterization of positive semidefiniteness.

ZAkyk—AOEO < UTA(y)v:vT<ZAkyk—Ao)v20 Vv eR™
k=1 k=1

Thus, if a given relaxation solution y* does not satisfy the SDP-constraint A(y*) > 0, there
exists v* € R™ such that (v*)T A(y*) v* < 0. Consequently, the valid linear inequality

(U*)T(iAkyk _Ao)v* -

k=1

cuts the relaxation solution y* off. These cuts are sometimes called eigenvector cuts or
eigencuts. A simple choice for v* is an eigenvector for the smallest eigenvalue of A(y*),
which is negative if the SDP-constraint is violated. Of course, it is also possible to directly
add several eigenvector cuts, for example, one for each negative eigenvalue of A(y*). In our
implementation, there are two possibilities to add eigenvector cuts. The first variant separates
eigenvector cuts during the solution of the LP-relaxation, that is, eigenvector cuts are added



whenever a feasible solution of the LP-relaxation does not satisfy the positive semidefiniteness
constraint. This setting will be denoted by “LPA” in our experiments. The second variant,
denoted by “LPE”, only enforces eigenvector cuts, that is, these cuts are only added, if an
optimal solution of the LP-relaxation satisfies the integrality constraints, but still violates
the positive semidefiniteness constraint (a “lazy-cut” approach).

Although it is not the focus of this paper, let us comment on the computations in [36], who
compare the SDP-based approach with their own implementation of an LP-based algorithm.
The best performing method in [36] is to use LP-relaxations in which eigenvalue cuts are
only generated if all integer variables attain integral values (the lazy-cut approach). This
method is quite similar to our method of only enforcing integral solutions (LPE-MIX2), see
Section 5. The results of our computations differ in several aspects from [36]: For the LP-
based approach, it turns out that it is faster to also separate eigenvector cuts for fractional
solutions and not only for integer valued solutions. Our implementation based on SDP-
relaxations is much faster on average than the LP-based approach. Note that [36] used an
older version of SCIP-SDP with DSDP on the NEOS server. Here, we compare on the same
machines, use an improved implementation, and use Mosek as an SDP-solver. Moreover, we
test on similar but larger instances compared to [36], see Section 5.1.

1.2 Literature Overview

We first note that SDP-relaxations can be preprocessed to improve their numerical stability,
for example by facial reduction techniques, see, e.g, [45, 46, 47]. However, such features so far
have neither been implemented into the SDP-solver Mosek, which we use in our computations,
nor in our code.

In the following literature review, we concentrate on presolving techniques for problems
containing integer variables, since this is the main focus of this paper.

For MIPs, many presolving methods are known, see for instance Brearley et al. [18] and
Crowder et al. [20]. We note that details are not needed for understanding our contributions.
We will, however, add some pointers to MIP-presolving techniques later and refer to the fol-
lowing literature for more information. An overview and new techniques were presented by
Savelsbergh [52]. For a more recent overview see Mahajan [42]. Achterberg [2] discusses the
implementation of presolving in detail. Further recent contributions are introduced in Achter-
berg et al. [3] and Gemander et al. [31]. The last three publications describe the methods
implemented in the framework SCIP. Our implementation is SCIP-SDP 4.0.0, which is pub-
licly available at https://wwwopt .mathematik.tu-darmstadt.de/scipsdp/ and is based on
SCIP, available at https://scipopt.org/. We refer to [12| for more information on the
current SCIP-SDP 4.0.0 release.

Presolving is even more important for MINLPs, see, e.g., Vigerske [56], Belotti et al. 7],
Vigerske and Gleixner [57], and Puranik and Sahinidis [50].

Several presolving methods for MISDPs have been proposed by Mars [43], Gally et al. [30],
and Gally [28]; we explain the most relevant ones in the following section. Beyond the
mentioned references, we are not aware of any other presolving techniques for MISDPs.

1.3 Standard Presolving

Several known presolving steps are (relatively) straightforward to perform. For instance, any
linear inequality that might be present in (1) can be presolved as for MIPs (see above for
references). The following basic MISDP-specific methods have been introduced by Mars [43,
Section 3.3.2] and partly extended by Gally [28]: Fixed variables can be removed by appropri-
ately adjusting the constant matrix AY. Similarly, (multi-)aggregated variables, i.e., variables
that affinely depend on other variables, can be substituted, possibly adjusting the affected
matrices A*, k € [m]o. Furthermore, one can check whether all matrices A* for k € [m]o are
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diagonal. In this case, the SDP-constraint A(y) = 0 can be replaced by corresponding linear
inequalities. All these steps are automatically performed in our implementation.

Further presolving steps are the following, although they treat rather rare cases and are
therefore not implemented. Zero matrices A* and their corresponding variables y;, can be
removed. Moreover, duplicate constraints A(y) = 0 or duplicated blocks within A(y) = 0
can be detected and removed. Redundant constraints A(y) > 0 can be detected in several
special cases, e.g., if all variables are binary, all A¥, k € [m], are positive semidefinite and
AV is negative semidefinite. If m = 1 in the SDP-constraint A(y) = 0, i.e., there is only
one variable, the feasible region is an interval (see Section 4.3); thus, the SDP-constraint
can be removed and the variable bounds can be adjusted. Furthermore, if all matrices A¥,
k € [m]o, contain the same 0 rows and columns, the dimension can be reduced. This last step
is automatically performed in our implementation each time an instance is passed to an SDP-
solver. Furthermore, Mars [43, Section 3.3.2| discusses methods to detect block structures
in the SDP-constraint. Under certain conditions, one can also apply dual presolving. For
example, if for some k € [m] the matrix A* is positive semidefinite and disjoint from the rest
(i.e., A¥ has no common nonzero with the other matrices), one can fix y; to its upper or
lower bound, depending on the objective coefficient.

More expensive presolving includes so-called probing, see, e.g., Savelsbergh [52]. Probing
tentatively fixes binary variables to 0 and 1 and then checks whether propagation of vari-
able bounds leads to infeasibilities. If this happens, one can fix the binary variable to the
opposite value. Moreover, implications between binary variables can be detected. Probing is
automatically performed in our implementation, but the propagation methods often do not
seem to be strong enough to allow for many probing reductions.

One further method is optimality based bound tightening (OBBT) in which one maxi-
mizes/minimizes variables over a relaxation of the problem to determine lower and upper
variable bounds, see, e.g., Gleixner et al. [32] for a recent variant. This method was adapted
for MISDPs by Gally [28] and usually reduces the number of nodes in the tree, but increases
running times. It is therefore not considered in our analysis.

Dual fixing is a node presolving method, which is a generalization of reduced cost fixing,
and is always used in our implementation, see [30].

We finally note that node presolving has secondary effects. For instance, it affects con-
flict analysis, which in this context summarizes techniques that derive so-called conflict con-
straints, i.e., linear, set covering or more general disjunctive constraints, based on the infor-
mation that a certain node in the branch-and-bound tree is infeasible. For more information,
we refer to [1], [59], and [58]. If we use SDP-relaxations, the generated conflicts only arise
from so-called conflict graph analysis, which applies if the infeasibility of the node has been
determined by propagation of variable bounds. In the LP-based approach, however, conflict
analysis also uses LP infeasibility proofs. The computational results in Section 5 briefly treat
conflict analysis.

2 Implied Linear Inequalities

The following inequalities are known from the literature and can be added to (1) as linear

inequalities. All these inequalities are implied by the SDP-relaxation of (1), but might be

useful for standard presolving w.r.t. linear constraints or when solving a linear relaxation.

e Mars [43, Section 3.3.2] observed that the constraint A(y) > 0 implies that the diagonal
entries of A(y) are nonnegative (Diagonal Greater equal Zero, DGZ), i.e., for all i € [n]:

Zm:(Ak)n yk — (A% > 0. (DGZ)
k=1



o If Ak = A;?j =0 for all k € [m] and A?ZAE)] > 0 for some i # j € [n], then the following

inequality based on products of 2x2 minors (2-Minor Product, 2MP) is valid, see Gally |28,
Prop. 5.11]:

ZA e =AY —JADAD (2MP)

Furthermore, if exactly one A’fj # 0, then this yields upper or lower bounds for the
corresponding variable y, depending on the sign of Af’] Further similar inequalities can
be found in Gally [28, Prop. 5.13].

We also obtain the following slight generalization of the “diagonal-zero-implication cuts
(DZI)” introduced by Gally [28], based on an observation of Mars [43]. These inequalities
build on the presence of integral variables.

Lemma 2. Let i, j € [n| with i # j and A% # 0 as well as AY > 0. If Afj = 0 for
all k € [m], AL = 0 for all continuous variables k € [m]\ I, and £y > 0 for all integer
variables k € I, the following inequality is valid:

> o>l (DZ1)

kel:
AE>0

Proof. Any y feasible for (1) satisfies A(y) = 0 and therefore also A(y); > 0 and A(y),; > 0.
The 2 x 2 minor w.r.t. i and j yields A(y)i - A(y);; — (A(y)ij)* > 0. By assumption A(y);; =
A% # 0. This implies that A(y)s - A(y);; > 0 and therefore A(y); > 0 (and A(y);; > 0).
Since A¥, =0 for all k € [m] \ I and ¢ > 0 for all k € I, we obtain:

O<A n—ZAuyk ZAuyk_ S ZA“yk

kel kel:
AE>0

Since A% > 0, this implies that at least one variable y; with k € I and A% > 0 has to be
positive, i.e., at least 1. ]

The following inequalities, called 2-Minor Linear Constraints (2ML), are a special case
of eigenvector cuts (see Section 1.1). For all Z > 0, we have

Zii+ Zjj — 225 > 0, (2)

This follows by restricting to the 2 x 2 minor w.r.t. ¢ and j and multiplying from left and
right by (1, —1)" and (1,1) T, respectively. If Z = A(y), we obtain for the first inequality

Al yy, — +ZAJ]yk <ZAUZJ1¢ )ZO

(A§+A§j—2,4§j) yp > A + A% — 240,

NE

=
Il
—

(2ML)

(s
NE

1)

i
I

and similarly for the second inequality. As above, these inequalities are implied by the SDP-
constraint A(y) = 0, but might be used for propagation of variable bounds.



3 Presolving for 2 X 2 minors

In this section, we develop methods that are based on taking 2 x 2 minors of a positive
semidefinite matrix.

3.1 Using Bounds on the Diagonal
Lemma 3. Consider Z = 0 with 0 < Z;; < Uy for all i € [n]. Then

—VUiiUjj < Zij < /Ui Ujj (4)
holds for all i, j € [n].

Proof. Since Z is positive semidefinite, we have Z;Z;; — ij > 0. Rewriting this inequality

yields Zizj < Z;iZ;; < U; Uj;. Taking the square root shows the claim. ]

Remark 4.

e The bounds in Lemma 3 are tight, even for a rank-1 matrix Z: consider the rank-1 all-ones
matriz.

o Inequality (2) yields Z;j < 5(Zi + Zjj) < 3(Uss + Ujj). This derived bound is dominated
by (4), because

Zij < Ui - Uy < 5(Uii + Ujj),
using the inequality between the arithmetic and geometric mean.
Lemma 3 can partly be translated to the matrix pencil format A(y) by defining

ifij = Z Afj ug + Z AZ b, — A%

ke[m]:A¥; >0 ke[m]: Ak, <0

Thus, for any ¢ <y < u we have A(y);; < (?U This directly yields:

Lemma 5. For any solution y € R™ of (1), we have

/Ui Uj; < A(y)ij <\ Ui Uj; (5)
for all i, j € [n].

The downside of Inequalities (5) is that they can be quite weak if A(y);; depends on many
variables. We therefore concentrate on the case in which each entry A(y);; depends on one
variable only, i.e., there exists k = k(7,j) € [m] such that A(y);; = Ai-“j Y — Agj with Ai-“j # 0.

In this case, Inequalities (5) are equivalent to
\/ Ui Uy + A,
Vo T (PropUB)

—1/ Uy Ujj + A%
k b
Aij

k
AE

<yr <

if Afj > 0 and similarly if Ai-“j < 0. If £ € I, i.e., variable y; is integral, the lower bound
can be rounded up and the upper bound down. In our implementation, these inequalities are
used in presolving and possibly for propagation of variable bounds in every node, which is
denoted by Propagate Upper Bounds (PropUB). Again, since Inequalities (PropUB) are valid
for the SDP-relaxation, integral variables have to be present or a linear relaxation has to be
solved in order for Inequalities (PropUB) to be computationally useful.

By using trace constraints, one can also compute different bounds on the off-diagonal
elements as follows; this slightly strengthens Lemma 1 of [29].



Lemma 6. Consider Z = 0 with tr(Z) < a. Then

(Nl

< Zij <

|R

(6)
holds for all i, j € [n] with i # j.

Proof. Since Z > 0, we again have ij < Z;;Zj;. Using the trace constraint and the fact that
the diagonal entries are nonnegative, we obtain Z;; + Z;; < . This implies

Zii Zjj < Zii(a — Ziy) = aZi — Z}
Taking the derivative and equating 0 yields a maximal point Z}; = 5. Consequently,

o2 o _ o
2

75 < Zy Zi; < aZfi — (Z5)° =% — o

4T 4
Taking the square root shows the claim. O

Inequalities (6) can again be transferred to A(y) = 0, but with the same disadvantages.
Therefore, we only use these inequalities in the case that A(y);; only depends on a single
variable. As before, integrality of variables can be exploited for rounding the bounds.

3.2 Using Bounds on the Off-Diagonal

We now derive affine inequalities that depend on 2 x 2 minors. The following result is
motivated by and generalizes the special case in Nohra et al. [44].

Lemma 7. Consider a positive semidefinite matriz Z € R™™ with L < Z < U, where the
inequalities are meant componentwise. Then for all i and j € [n]:

Uijii Z 2LijZij — ij and Uijn’ Z 2UijZ’ij — UZQJ (7)
Proof. We first obtain

(Zij—Li)* 20 & Z}>2LiZi; — L.

The 2 x 2 minor for ¢ and j implies Z;; Z;; — ij > 0. Together with Z;; > 0, this yields

2LijZZ‘j — L?j § ZZ2] § ij Zii S Ujj Z“
The second inequality arises similarly. O

Remark 8.

e [Inequalities (7) are implied by the SDP-constraint and thus can only be useful when solving
LPs or in the presence of integral variables. Moreover, assume that L;; < 0 and U;; > 0,
which is typical for i # j. Then these inequalities are non-trivial, that is, the right-hand-
side is nonnegative, if Z;; < Lyj/2 and Z;; > Uyj/2, respectively.

e Note that cuts like (2) or (3) do not take the lower and upper bounds into account. Thus,
Inequalities (7) might further strengthen an LP-relazation.

o However, if we use Zy; < Uy, the last Inequality in (7) yields (if Uj; > 0):
UjjUii + U2
S A
g < 0 ®

The right hand-side is stronger than Z;; < Uy; if UUjj < Ufj. If U is positive semidefinite,
this never happens. Thus, one should use Inequalities (7) instead of (8).



We transfer Inequalities (7) to the form A(y) = 0 as in Section 3.1. For the second
inequality in (7), this yields:
2UijA(y)ij - 0jjA(y)ii < 0%

ok o ak 22 N0 A0 N~ 0 (2MV)
& Y 22U Af e — Y Uy Al <UL+ 205 A = > Uj; A,
k=1 k=1 k=1 k=1

where Uij and Ujj are defined as in Section 3.1. These inequalities are referred to as 2-Minor
Variable Bounds (2MV).

A particular case in which Inequalities (7) might be useful arises in SDP-relaxations of
quadratic programs or in truss topology optimization as considered in the following corollary.
For a short description of truss topology optimization see Section B.5.

Corollary 9. Consider (X, z,t) € R™™ x R™ x R satisfying

toa’ =0, f<x<u, t<p
T X —_ b - f— ) - b

where t is a scalar variable. Then for all i € [n]:

BXii Z 2&1‘@ — 512 and 5XZZ Z QUZ‘%‘Z' — ul2

4 Tightening Procedures

In this section, we investigate how SDP-constraints A(y) = 0 can be used to tighten variable
bounds and scale matrices A*.

4.1 Bound Tightening

For an index k € [m], define

Po={ic[m\{k}: Ai =0}, Ny:={icm]\{k}: A <0},

as well as
inf {p s At 3 At Y A A0 0} i M Vi € Py,
= ' 4 o 7 = 6> —0o Vie Ny,
Hy = 1€EP JEN,, (9)
- otherwise,
k i ‘ 0 o U <00 Vi€ Py,
SUP{MiAMJrZAuiJrZAJ@—A 50} it 15 ° :
ﬁk = iePk jENk ez > (0. ] VZ & Nk, (10)
oo otherwise.

Both p, and 7z, might be +o0, even if all bounds are finite, for instance, if A* is negative or
positive definite, respectively. Moreover, both might simultaneously be finite. The two SDPs
in (9) and (10) only contain a single variable and can be solved with the technique discussed
in Section 4.3 below.

The following lemma shows that the lower or upper bounds of the variables can be tight-
ened, depending on the semidefiniteness of the coefficient matrices. This procedure is referred
to as Tighten Bounds (TB) in our experiments.

Lemma 10 (Tighten Bounds (TB)). Let all A, k € [m], be (positive or negative) semidef-
inite. Then, A(y) = 0 implies that B, < Yk <y for all k € [m]. Finite bounds can be
rounded for integral variables.



Proof. Suppose that y;, < Hy O Y > [ig. Then, by definition of By and fiy,, there exists x € R"”
with

0> :ET(Akyk + Z Al + Z Ay, — Ao)m
i€ P, i€Nj,
=z Akx Yk + Z ol Atz u; + Z x! Alg l; — 2" A%
i€P, >0 iEN, <0
> gl ARy Yr + Z ! Al yi + Z ! Al Yi — ! Az
1€Py 1€ N

= xT<iAi Yi — A0>x,
i=1

which is a contradiction to A(y) = 0. Thus, By < Yk < By O

Remark 11.

e The conditions of Lemma 10 are frequently fulfilled for instances that we consider in this
paper; namely for 75 out of 185 instances in our testset, all matrices Ak are positive
semidefinite, see Section 5.1. If some matriz A is indefinite, one could write A¥ = BF—CF
with B*, C* = 0 and duplicate yy,.

e One could also explicitly add the constraint € < p < ug to (9) and (10). For instance,
this makes the problems bounded if the bounds are finite, see Section 4.3.

o If all A*, k € [m)o, are diagonal matrices, A(y) = 0 specializes to a linear inequality
aTy —ag > 0 witha € R™ and ag € R. If ap > 0, we obtain

1
ykZ,U«k:ak<ao_ Z ;i ui — Z aﬂj);

ita; >0 J:a;<0
itk

which is exactly linear bound tightening, i.e., Lemma 10 generalizes the linear case.

e We note that Inequalities (4) are implied by Lemma 10. This can be seen as follows:
Assume that we have a matriz Z = 0 with some finite lower bounds L € R"*" (the exact
values are not important, but they make (10) finite). Write Z = szzl E% Z;; = 0, where
EY € R™™ is 0 except for positions (i,j) and (j,1), where it is 1. Then the optimal
value fv of (10) for variable Z;; yields that the 2 X 2 minor for i and j is nonnegative, i.e.,
Ui Ujj — i > 0, which is (4). In comparison to the bounds of Lemma 10, the ones in (4)

(or (5)) can be computed more efficiently and depend on fewer variable bounds.

4.2 Convergence of Bound Tightening

Lemma 10 can be applied iteratively and we investigate the convergence of this process. This
section uses similar arguments as in Belotti et al. [6].

Let p(f,u) and m(¢,u) € R™ U {£oo} be the lower and upper bounds derived from
Lemma 10 for each variable, where the constraint ¢, < p < uy is added to (9) and (10).
Define the interval set Z .= {(¢,u) € R" x R" : £ < u} with the following ordering:

(lu) <z (0'u) & U<t u<d

for (£,u), (¢;u') € Z. Thus, bounds (¢,u) are at least as tight as (¢, u), if (¢,u) <z (¢',u').
Let
F:T—7T, (6,u) v (max({, p(f,u)), min(u, a(¢, u))),

where min/max is applied componentwise. Thus, F' represents one step of bound tightening
according to Lemma 10 and makes sure that the bounds do not get weaker.
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Lemma 12. F' is a contraction, i.e., F'(¢,u) <z ({,u) for all (¢,u) € I, and monotone, i.e.,
(l,u) <z (¢, u) implies F(L,u) <z F(¢',u').

Proof. The fact that F' is a contraction follows by definition of the max and min operations.

For monotonicity, we concentrate on the upper bounds (the lower bounds are similar).
Let f(¢,u) = min(u,z(¢,u)) and similarly for f(¢,u'). Assume for a contradiction that
(6,u) <z (¢,7) (and thus ' < £, u < o), but p = f(l,u)r > f(€,u)y = p' for some
k€ [m]. Thus by definition of 4/, the matrix A* y 4 diep, AU+ en, Al 0 — AY is not
positive semidefinite. Therefore, there exists z € R™ with

O>xT(Aku—i— S Al ZAW;—AO)x

iEPk iENk
_ Tk T gi. o/ T Ai. g T 40
=z A x,u—l—z.r Al u; + Z:L’ Az l; —x Az
1€P, >0 €N, <0
> acTAkx,u, + Z x Al u; + Z ! Al l; — x! Az
1€Py, 1EN
:xT<Aku+ Yo A+ Y A —A0>x,
1€ Py 1€ENy

which is a contradiction to the last matrix in parentheses being positive semidefinite by
definition of . O

Theorem 13. The operator F' has a unique greatest fized point gfix(F') = sup{(¢,u) € T :
(£,u) <z F(f,u)}.

Proof. Note that Z forms a complete lattice. Since F' is a contraction, we always have
F(l,u) <z (L,u), thus {({,u) € T : ({,u) <7 F(¢,u)} contains all fixed points. The result
then follows by the Knaster-Tarski Theorem [55] (see, e.g., Fritz [27, Theorem 20.4]). O

As in [6], we define the size |(£,u)| of the interval (¢,u) € T as Y ", u; — ¢;. Then [6]
shows that |gfix(F)| > |(¢,u)] for all fixed points (¢,u) of F. Thus, gfix(F') is the solution of

max  |(€,u)]
( ) ) <z F(&u)v
( ) ) <z (6071‘0)7

where (£°,u%) denote the initial bounds. This can be written as the following SDP:

iui—ﬁi

s.t. Akfk + Y A+ Y AL - A =0 Yk € [m],

i€ Py JEN} (11)
A+ Y A+ > A - A =0 k€ [m)],

i€ Py, JEN}
O <t u<d,

? <.

Let (£*,u*) be an optimal solution of (11). Then this solution is a fixed point: By the
constraints, we have £* > p and v* < @. Thus, these bounds would not be tightened by
F'. Moreover, consider the sequence of bounds { (¢4, ux)} produced by iteratively applying F
as long as this changes some bounds. Since F' is monotone, |(¢x,u)| is decreasing. Thus,
{(lg,u)} will converge to (£*,u*).
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In our implementation, we iteratively apply Lemma 10 as long as this changes bounds of
variables, instead of solving the SDP (11), because (11) is quite expensive to solve and we can
round bounds of integer variables after each iteration. Note that rounding for integer variables
complicates the analysis of fixed points. Indeed, [14] show that deciding the existence of an
integral fixed point is NP-complete.

As we shall see, bound tightening is often successful deeper in the tree using bounds
tightened by other components of the solver.

4.3 Computing Tightening Scalings

While in the linear case the values . and [z;, can be computed easily, in the general case, it
amounts to solving an SDP with one variable. For this, let us rewrite (9) and (10) with scalar
lower and upper bounds ¢ and u, respectively, objective direction v € {#1}, and appropriate
A, B € R"" as

w=inf {ypu: pA—B >0, £ <pu<u}. (12)

Problem (12) can be solved in different ways. In fact, there are several special cases in
which (12) — with infinite bounds — is easy to solve, for instance, if A =0 or B =0. If A is
positive definite, there exists an invertible matrix V with VT AV = I,,, where I,, is the n x n
identity matrix. It is then easy to see that u* = Apax(V " BV), the maximal eigenvalue of
VT BV. If there exists i with 1A — B = 0, Pong and Wolkowicz [49] or Jiang and Li [35] ([49]
cites Lancaster and Rodman [38]) describe an algorithm based on Cholesky decomposition;
these articles arise in the context of generalized trust region problems. One final special case
is the one in which A and B are simultaneously diagonizable: In this case there exists an
invertible matrix V with V' (uA — B)V = uC — D, where C and D are diagonal matrices;
then after computing this decomposition, the problem is easy to solve.

Here, we are interested in the general case of Problem (12). Inspired by [54, 34|, we
consider a semismooth Newton method. We state and prove the following for completeness.

Lemma 14. For any two symmetric matrices A, B € R™", the function f: R — R,
= Amin(t A — B) is concave and hence continuous.

Proof. For a symmetric matrix C' € R™"™, \pin(C) = min{z' Cz : ||z|s = 1}, see, e.g., [15].
Consequently, C' — Apin (C') is the minimum of linear functions and thus concave. Therefore,
(> Amin(p A — B) is concave as the composition with an affine function. O

Lemma 14 implies that Problem (12) is convex. Moreover, if the optimal value of (12)
is finite, it is attained: Otherwise, assume v = 1 and that there exists a sequence (uy) of
feasible points with pr — p*, where p* is the value of (12). Since f is continuous, we obtain
f(ug) — f(u*) and hence f(p*) > 0, i.e., p* is feasible.

To describe the semismooth Newton method, we state the following for completeness.

Lemma 15. Let i € R and © be a unit eigenvector for Amin(ft A — B). Then 0" Ab is a
supergradient, i.e.,

Amin(tt A = B) < Amin(t A = B) + (= ) &' A%
for all u € R. In particular, if 67 Ad = 0, then Amin(t A — B) is maximal.
Proof. By definition of 9, we have Amin(fi A — B) = 0 (i A — B)%. This implies
0" (WA=B)o=9" (1A= B)o+ (n— 1) 0" AD = Amin(p A — B) + (. — 1) 0 Ad.

Since Amin (4 A — B) < 0" (u A — B)0, the claim follows. O
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Algorithm 1: Semismooth Newton method

Input: Matrices A and B, scalar lower and upper bounds £ < u
Output: Solution of min {g : pA— B * 0, { < u <u} or “infeasible”
compute unit eigenvector w for minimal eigenvalue A of Au — B;
if A\ <0 and w' Aw > 0 then

‘ return “infeasible”;
compute unit eigenvector v for minimal eigenvalue A of A¢ — B;
if A > 0 then

‘ return /;
if v7 Av < 0 then

‘ return “infeasible”;
,LL()(-E, )\0<—)\, Uo(—U,k‘(—O;

10 while \; < 0 and (v¥)" Av* > 0 do

Ak .
11 He+1 = Bk — (Uk)TkAvlm

© 0 N o Ok w N

12 if ppy1 > u then

13 break;

14 compute unit eigenvector v**! for minimal eigenvalue A1 of A jupy1 — B;
15 k<+—k+1;

16 if Ay < 0 then

17 ‘ return “infeasible”
18 else
19 ‘ return py

Algorithm 1 provides the details of the resulting algorithm for the case v = 1, using the
following considerations; the algorithm for v = —1 is very similar.

e In the case of Step 3, we use Lemma 15 for i = u, ¥ = w to get

) _ < — 2\ nT
Amin(WA—B) < A +(p—u)9 Av <0

for every p. Therefore the problem is infeasible.
e In Step 6, £ is clearly the optimal solution.
e In Step 8, we have A < 0 and v Av < 0. Again using Lemma 15 for i = £, 0 = v, we get

. _ < _NsT
Amin(WA—B)< A +(p—~0v Av <0

for all u, and the problem is infeasible.

e Step 11 computes jgy1 such that Ay + (ppr1 — ue)(0F)TAvk = 0, ie., the eigenvalue
estimation via Lemma 15 becomes 0 (this is akin to the Newton iteration).

e Note that because of the while conditions, the sequence (uy) is strictly monotonously
increasing.

Remark 16. We can apply general convergence theory, for instance, Theorem 7.5.3 in [25]
(see also Qi and Sun [51]), which proves that the semismooth Newton method converges Q-
superlinearly to a zero p* of f(u) = Amin(pA — B), given that Of(u*) is nonsingular and
the starting point lies near pu*. Since f is concave, [ is semismooth and the theorem can be
applied.

As noted above, since we start with puy = ¢, after Steps 6 and 8, the sequence (py) is
strictly monotonously increasing. Therefore, the process always globally converges. However,
if Of () or Of (W*) becomes singular, we cannot rely on Q-superlinear convergence.
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4.4 Coefficient Tightening

We now consider ways to “tighten” matrices Ay, which we denote by (TM) in our experiments.
To this end, define
fe =min{pu : A¥p—A%>=0, 0, <p<u} (13)

and [ir, = min {jig, 1} for k € [m].

Lemma 17 (Tighten Matrices (TM)). Let A*¥ = 0 for allk € [m] andy € R™ with y € {0, 1}
for all integral variables k € I and £y, > 0 for k ¢ I. Then for all { <y < u:

Ay =0 & Y Aty — A =0,
k=1
where we define i, =1 for k ¢ I.

Proof. First assume that > ;" | i AF . — A% = 0. Since by assumption £, > 0 for all k € [m],
we get 0 < fix < 1. Then for every z € R"

m m m
0< xT<Zﬂk APy, — AO>£L' = Zﬂk ' Az oy, —2T A% < xT<ZAkyk — AO).TU,

which implies that A(y) = 0.

We now assume that A(y) = 0. By removing terms with y; = 0 for k € I, we can assume
that yr, = 1 for all k € I. Thus, Y7, A* — A% = 0. If i, = 1 for all k& € [m] then the
statement is directly clear. Therefore assume that there exists k € I with i = firx < 1. But
then already ji, A¥ — A° = 0. Adding the positive semidefinite matrices A’ for £ € [m] \ {k}
does not change this, which shows the claim. O

Remark 18. In the linear case (see Remark 11) with a linear inequality a'y—ag > 0, where
a € R, ag € R, and the variables y are binary, coefficient tightening would tighten coefficient
a; to min{aj,ao}. If aj > ag > 0, then fij = ap/a; < 1. Thus, Lemma 17 would change
coefficient a;j to fij - aj = agp, i.e., the same tightening. In this sense, Lemma 17 generalizes
coefficient tightening from the linear case.

5 Computational Experiments

In this section, we empirically demonstrate the impact of the presented presolving routines
for the SDP-based branch-and-bound approach and the LP-based cutting-plane approach.

We use SCIP-SDP 4.0.0 for solving the MISDPs, where all the routines mentioned in
the previous sections are implemented. SCIP-SDP interfaces with SCIP 7.0.4, and we use
Mosek 9.2.40 for solving the continuous SDP-relaxations in the SDP-based approach, and
SoPlex 5.0.2 for the continuous LP-relaxations in the cutting-plane approach. All tests were
performed on a Linux cluster with 3.5 GHz Intel Xeon E5-1620 Quad-Core CPUs, having
32 GB main memory and 10 MB cache. All computations were run single-threaded and with
a time limit of one hour.

The code, an online supplement, and the instances can be obtained via the webpage of
the second author.

5.1 Instances

We use a testset consisting of 185 instances for different applications, which are very briefly
described in Appendix B. Namely, 43 instances are Cardinality Least Squares (CLS) prob-
lems, 32 instances are Min-k-Partitioning (MkP) problems, 38 instances are Truss Topology
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Design (TTD) problems, and 46 instances are RIP problems. Moreover, there are 26 random
MISDPs in the testset. For 24 CLS problems, all 38 T'TD problems, and 13 random MISDPs,
all matrices A* are positive semidefinite. Thus, for these 75 instances, the two tightening
procedures from Section 4 can be applied. Note that the random MISDPs and the RIP in-
stances in our testset are larger than the random MISDPs and RIP instances used by [36].
Statistics for each instance such as the number of SDP- and LP-constraints, the maximal di-
mension of the SDP-constraints, the number of binary and continuous variables, and whether
all matrices A¥ > 0 can be obtained from Tables 47 and 84 in the online supplement.

5.2 Settings

We use the following names for the algorithmic variants in which each different presolving
routine described above is active and all other routines are deactivated.

e Basic linear inequalities:
— DGZ: add (DGZ) in presolving;
— DZI: add (DZI) in presolving;
e Tightening procedures only in presolving:
— TM: use Lemma 17 in presolving;
— TB-Pre: apply Lemma 10 only in presolving;
e Linear inequalities based on 2 x 2 minors:
— 2ML: add (2ML) in presolving;
— 2MP: add (2MP) in presolving;
— 2MV: add (2MV) in presolving;
e Propagation (of variable bounds) and tightening procedures:
— PropUB-Pre: apply (PropUB) only in presolving;
— PropUB: apply (PropUB) every time propagation is called;
— PropTB: apply Lemma 10 every time propagation is called.
Furthermore, we use the following combinations of presolving routines:
e nopresol: none;
e MIX1: DZI, TB-Pre, 2MV, PropUB-Pre, PropUB, PropTB;
e MIX2: DGZ, DZI, PropUB-Pre, PropUB.

e allpresol: all routines are activated in presolving, but not in propagation, i.e., PropUB,
PropTB are deactivated;

e allprop: PropUB, PropUB-Pre, PropTB, TB-Pre;

e allprop-DGZ: DGZ, TB-Pre, PropUB, PropUB-Pre, PropTB;

e allpresol-prop: all routines are activated in presolving and in propagation;

Note that “MIX1” is the default setting for SCIP-SDP 4.0.0 when using the SDP-based

approach. If there is no additional prefix, then the SDP-based approach is used for solving the

MISDPs. The prefixes “LPA” and “LPE” denote that the LP-based cutting-plane approach is

used instead of the SDP-based approach, in the following two variants: In “LPA”; eigenvector

cuts are separated, and in “LPE”, eigenvector cuts are only enforced, see Section 1.1. For the

settings “MIX1-NoCA” and “LPA-MIX2-NoCA” we additionally deactivated conflict analysis.

Finally, we also used the concurrent mode of SCIP, where the instances are solved in parallel

with settings “MIX1” and “LPA-MIX2”, and solving stops, once the first setting reports an

optimal solution. Note that our settings “LPA-DGZ” and “LPE-DGZ” roughly correspond to

the branch-and-cut algorithm and the cutting-plane algorithm from [36], respectively.
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5.3 Results

Table 1 shows the results using the described testset for various settings listed in Section 5.2.
Shown are the number of instances that were solved to optimality within the time limit of one
hour out of all 185 instances (# Opt), the number of instances which ran into the time limit
(# Limit), and the shifted geometric means! of the number of nodes (# Nodes) as well as the
CPU time in seconds (Time). The next columns list the shifted geometric mean of the CPU
time in seconds used for presolving (Time), the arithmetic mean of the number of domain
reductions (# Reds), i.e., changed bounds, and added constraints (# AddCons) in presolving
for SDP-constraints. The section “SDP Constraints” in Table 1 shows the arithmetic means
of the number of propagation calls (# Prop), domain reductions (# Reds), applied cuts (#
Cuts) and cutoffs (# CutOff) from SDP-constraints. The last section “SDP Timings” shows
the shifted geometric means of the the total time (Total) and the propagation time (Prop)
spent for SDP-constraints. For the shifted geometric means, we used a shift of s = 100 nodes
and s = 1 seconds for time, respectively. Tables 2-6 present the results for each class of
instances. Note that when comparing the number of used nodes for two settings, we only
take into account instances which have been solved to optimality by both settings, whereas
the numbers in Tables 1-6 also take into account instances which ran into the time limit.

First of all, it turns out that Constraints (2MP) and coefficient tightening in Lemma 17
(TM), as well as bound tightening in Lemma 10 (TB-Pre) were never active in presolving
throughout our testset. All other routines added constraints and/or changed bounds in
presolving and produced domain reductions deeper within the branch-and-bound tree. In
comparison with the setting “nopresol” in which all presolving routines are deactivated, adding
the constraints (DGZ) or (2ML) has a negative effect on the running time, whereas adding
the constraints (DZI) results in a speed-up of about 5 %. The latter is in line with the results
reported by Mars [43] and Gally |28]. Using Lemma 7, i.e., adding (2MV) in presolving yields
a minor improvement of the overall running time. Using Lemma 5 in propagation and/or in
presolving (PropUB, PropUB-Pre) also speeds up the solution process by 6 % and reduces the
number of used nodes by 11 %. The highest impact of all routines alone is achieved by using
bound tightening from Lemma 10 in propagation (PropTB), resulting in a 15% reduction
of the solution time. Interestingly, it solves one instance less than using no presolving at
all. Using all presolving routines (allpresol) yields only a minor further improvement over the
best pure presolving routine (DZI). If all propagation methods are activated as well (allpresol-
prop), we obtain a major improvement in terms of overall running time (13 % faster) and
processed nodes (28 % fewer nodes). Using only bound tightening and propagation (allprop)
results in a further speed-up, and using the combination MIX1 turns out to be the best
setting in terms of overall running times, which is about 22 % faster and processes about
23 % fewer nodes than using no presolving.

We also conducted experiments where the optimal objective value was set as objective
limit and all primal heuristics are turned off in order to remove the impact of primal solutions.
In this case, propagation via PropUB and PropTB reduces the number of nodes by 9% and
10 %, respectively, compared to using no presolving or propagation (nopresol). Activating
all propagation routines (allprop) results in a decrease of the number of nodes of 19%. The
propagation routines typically cut off nodes deeper in the tree. Thus, the speed-up of the
solution process when using propagation routines can at least partly be explained by the
fact that fewer nodes are needed to close the gap between the dual bound and the optimal
(primal) objective value.

For all considered settings, the time spent for presolving or propagation is neglectable, so
that all routines presented in this paper can safely be activated without needing a significant

' The shifted geometric mean of values t1, ..., t, is defined as ([[}_, (ti+s)) 1/n —s, where s is an appropriate
shift.
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amount of time by themselves.

In case of the LP-based cutting-plane approach, it turns out that DZI is the only setting
which improves the running times (around 4 % faster), whereas 2MV and propagating the
bound tightening (PropTB) have a negative impact. Moreover, only enforcing eigenvector
cuts (LPE-MIX2) is clearly much worse than separating them (LPA-MIX2).

Concerning conflict analysis, it turns out that it has almost no impact when using the
SDP-based approach, but it negatively influences the performance of the LP-based cutting-
plane approach, regardless of the instance class. For the setting MIX2, deactivating conflict
analysis results in a speed-up of almost 5% for the solution time.

Tables 2-6 present the results for each separate instance class. It turns out that for Min-
k-Partitioning and random MISDPs, none of the routines has any impact on the performance,
even if some constraints are added during presolving. No bounds are changed in presolving
and no domain reductions are found deeper in the tree. For Cardinality Least Squares, using
bound tightening from Lemma 10 in presolving and propagation (PropTB) reduces the overall
running time by almost a factor of 2. Using bound tightening only in presolving (TB-Pre) or
using the propagation from Lemma 5 in propagation and/or presolving (PropUB, PropUB-
Pre) has almost no impact. For the RIP, the performance impact is switched. Using bound
tightening (PropTB, TB-Pre) has no impact, whereas the propagation of Lemma 5 (PropUB,
PropUB-Pre) significantly improves the performance; the solution process is about 23 %
faster. Finally, for Truss Topology Design, Inequalities (DZI) turn out to be very effective
and reduce the solution time by about 22 %, whereas bound tightening and propagation have
no impact.

Interestingly, the winner between SDP- and LP-based approach also heavily depends on
the instance class. Namely, for Cardinality Least Squares, the LP-based approach is faster by
almost a factor 20, whereas for Min-k-Partitioning, the SDP-approach is almost a factor 35
times faster. For random MISDPs and Truss Topology Design, there is not much difference,
but the SDP-approach is slightly faster. Lastly, for the RIP, the LP-based approach only
solves a single instance within the time limit for the best setting, whereas the SDP-approach
solves 36 out of 46. Interestingly, the RIP instances are the only ones for which enforcing
eigenvector cuts is significantly faster than separating eigenvector cuts. Using a concurrent
solving mode with the best SDP-based setting (MIX1) and the best LP-based setting (LPA-
MIX2) yields the best performance overall on the testset, resulting in 41 % fewer processed
nodes and a solution process which is 26 % faster than using no presolving at all.

Overall, it turns out that several of the presented methods have a positive impact on the
performance of SCIP-SDP, at almost no additional time spent for executing these methods.
Most importantly, the inequalities in (DZI), and in Lemma 7 (2MV) should be added during
presolving, and the propagation in Lemma 5 as well as the bound tightening from Lemma 10
should be executed both in presolving and in propagation calls deeper in the tree. Depending
on the instance, it is beneficial to turn off one or more of these routines to gain improved
performance, and to switch to an LP-based approach. By using the concurrent mode with
an SDP and LP solving procedure run in parallel, one can exploit this performance difference
between SDP- and LP-approach automatically.

6 Conclusions

In this paper, we extended several presolving methods from mixed-integer linear programs to
MISDPs and introduced new methods. On our testset, these methods are effective on average
with a decrease of about 22% in running time compared to using no presolving (variant
MIX1 vs. nopresol), when applied in the nodes, i.e., propagation is performed in the whole
tree. The impact, however, depends on the type of instance. In the extreme, for partitioning
instances presolving has no impact at all. For others, (node) presolving implies a performance
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improvement of about 25% (RIP) or even 44 % (CLS), although in the latter case solving
LPs is even better with an improvement of at least one order of magnitude between SDP and
LP solving. These numbers illustrate again that the effectiveness of presolving depends on
the type of application. However, since the methods only cause a negligible runtime increase,
they can easily be used or tested on new instance types. This is true, in particular, if more
instances are generated by modeling software in the future. Thus, one could conclude the
results of this paper as follows: “The presolving methods are effective if they can be applied;
and if not, they only impose a very small overhead.”

Open questions for future research include the following: Can one derive effective pre-
solving based on larger minors of the positive semidefinite matrices A(y)? Can one predict
in which cases which presolving method is effective or when switching to LP solving seems
advisable? Can perspective reformulation techniques as, e.g., in [5], be automatically applied
if indicator constraints are present?
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A Primal Form of an MISDP

Apart from the so-called “dual” form (1) of an MISDP, one can also consider the corresponding
“primal” form:

sup (AY, X)
st (A X) = b Vi € [m],
Lij < X4 < Ui Vi, j € [n], (14)
Xij €7 Vi, jelxI,
X =0,
where (A, B) = 71", A(i, j)B(i, j) for two n x n matrices A and B. The bounds are given

by L;j € RU{—o0}, U;j; € RU {oo} for all 4, j € [m].
We note that (1) and (14) are equivalent: Indeed, starting from (1), one can define
Z=37", Aty; — A% The “primal” variables are

X = <Z 0 > c R(n+m)><(n+m)
0 Diag(y) ’

where Diag(y) denotes a diagonal matrix containing y on the diagonal (possibly y has to
be split into two nonnegative variables). The n? equations Z = Yoy Aty — A° can then
be written in the form (B? X) = d; for appropriate matrices B’ and scalars d;, i € [n?].
Conversely, given (14), using the Gauss algorithm on the equations (A%, X) = b;, one can
express the n? variables in X using r := n? — m variables y as X = Yoy Biy; — BY with
appropriate matrices B, i € [r]o. In both directions, the objective and variable bounds can
be chosen appropriately.

These transformations often simplify for particular problems. Moreover, the relaxations
of (1) and (14) are dual to each other.
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B Instance Classes

The following applications (with the exception of random MISDPs) are described in more
detail in Gally [28]. We only very briefly illustrate the structure of the problems.

B.1 Cardinality Constrained Least Squares

Given is a matrix A € R™*? whose rows represent sample points, and a vector b € R™, which

contains the corresponding measurements. For a fixed sparsity level k € IN, the (regularized)
cardinality constrained least squares problem is

: 1 2 1 2
inf {1 Ax = b3+ bpllel : llolo < k.
where [|z]|o is the number of nonzeros in z and pl||z(|3 is a regularization term for given
positive p € R. Pilanci et al. [48] showed that this problem is equivalent to the following
MISDP:

inf 7

1 : T
ot <Im +54 Elag(z) A b> - 0,
b T (CLS)

>z <k ze{0,1}4

d
—

J
where [, is the identity matrix of dimension m. We note that these problems can also be writ-
ten as mixed-integer second-order cone problems (possibly using a perspective formulation).
Moreover, [11] present a very effective method to solve an equivalent convex formulation.
We nevertheless add CLS instances to our testset, since they have distinctive features and
complement the other problem types.

We used a subset of the instances in [28], namely, 19 of the 20 instances based on real-world
data and 24 of the 45 randomly generated instances. See |28, Chapter 3.5| for information
on the generation of these instances. These instances are completely dense.

B.2 Minimum k-Partitioning

Given is an undirected graph G = (V, E) with n nodes, edge-weights ¢: £ — R, and a
positive integer k > 2. The minimum k-partitioning problem seeks to find a partitioning of
V={1,...,n} into k sets Vi,..., Vj such that

>3

i=1 ecE[V}]

is minimized. We use an MISDP formulation of Eisenblétter |23, 24]. Define the costs as
Cij = c({i,j}) for {i,j} € E and Cj; = 0 otherwise. This leads to the formulation

inf > CyYy
1<i<j<n
. -1 k
Yi=1,Y >0, Y e{0,1}"",

(Min-k)

where J is the all-one matrix. Additionally, using node weights w € R, we add the following
constraint with lower and upper bounds ¢ and u on the weights of the parts:

KSijYijgu Vi€ [n].
j=1
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We use 32 of the 59 instances in [28, Chapter 3.5|, which all contain very sparse SDP-
constraints, since every matrix A* only consists of a single nonzero entry.

B.3 Restricted Isometry Property

Given a matrix A € R™*", the s-th restricted isometry constant (RIC) d5(A) is defined as
05(A) = min {6 >0 : (1-4)|z[l3 < [[Az]3 < (1 +0)l|lz|3 Vo e B},

where X3 = {z € R" : ||z]|o < s}. The RIC plays a crucial role in Compressed Sensing, since
it can be used to decide when it is possible to reconstruct an unknown sparse vector z(¥) € R"
from its measurements Az(®) by solving min {||z|; : Az = Az}, see, e.g., [26]. For the
purpose of computing the RIC, it is more convenient to split the RIC into a lower and an
upper constant ag and s as follows.

as = max{a >0 : o||z[|3 < [|[Az|3 Vo € By} = min {[Az3 « 2] =1, [lzllo < s},
Bs =min{f >0 : f||lz[3 > |Az|3 Vo € T} = max {[|Az[3 : [lz|3 =1, [lzllo < s},

(15)
where ||z]lo = |supp(z)|. For more details, see [29]. Let z* be an optimal solution of
either of the two problems and S = supp(z*) be its support with k := [[2*||o. Consider the
submatrix Ag € R™** indexed by columns in S. Then A = AEAS € R**F is symmetric
positive semidefinite. By the Rayleigh-Ritz theorem (see, e.g., Helmberg [33, Thm. A.0.4])
we have

max {[|Ay]l3 : [[y[l3 = 1} = Amax(4)?,
yeR

min {[|Ay[3 : [yl3 = 1} = Anin(4)?,
yeR

i.e., computing the lower and upper RIC as defined in (15) are sparse eigenvalue problems,
which are of interest in their own regard. Moreover, the problem of computing the upper
RIC S, is also known as sparse principal component analysis (SPCA); see Bertsimas et al. [10]
for a tailored approach to SPCA.

These problems can be formulated as

max /min (AT A, X) (16a)
st. tr(X) =1, (16Db)
— Zj < Xz‘j < Zj for 4, jE [n], (160)
» z <k, (16d)
i=1
X =0, (16¢)
z € {0,1}". (16f)

In [29] (and [39] as well as [10]) it is proved that there exists an optimal rank-1 solution X*.
Thus, X* = 2*(z*)" for some z* € R" with ||z*|o < k. Let S = supp(z*). Then z% is an
eigenvector for a maximal eigenvalue of AgA g

We use 46 instances which are created similar to the instances in |29, Section 6]. Namely,
the following six types of random matrices A € R™*™ are used for generating the instances:
o 0+ 1: P(Ay = /1/m) = P(Ai; = —/1/m) = { and P(4;; =0) = %;
e band: band matrix, entries uniformly in {0, 1}, bandwidths 3, 5, 7, m = n;
e bernoulli: A;; uniformly in {£4/1/m};
e binary: A;; uniformly in {0,1};
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e normal: A;; ~ N(0,1);

e scaled normal: 4;; € N(0,2).

Here N (i, 02) denotes the normal distribution with parameters 4 and o2. The sizes (m, n, k)
are given by (m,n, k) € {(15,30,5), (25,35,4), (30,40, 3), (40,60,5)}. The band matrix in-
stances are larger with (m,n,k) € {(40,40,3), (60,60,5),(70,70,4)}. As in Minimum k-
Partitioning, the coefficient matrices A* only consist of one single nonzero entry, if (16) is
written in form (1).

B.4 Random MISDPs

We also consider random instances of the form

sup{b'y : > APy, — A= 0, y € {0,1}™ x R™},
k=1

where m = my, + m. and A¥ € R™ " are symmetric matrices for k € [m]o. These instances
are produced in the same way as done by Kobayashi and Takano [36], that is, we choose yj ~
UH{0,1}) for k < my, yr ~ U([0,1]) for & > my, Afj ~ U([-1,1]) for k € [m] and 1 < ¢ <
j < n. Here, U(C) denotes the uniform distribution on the set C. In order to ensure that
there exists a feasible solution, we set A = S\ Aky, — al, b, = (A* 1) for k € [m],
and o > 0. For half of the instances, the matrices A¥ are ensured to be positive semidefinite
and to have rank 1 by randomly choosing a* ~ U([—1,1]") and setting A* = a*(a*)T. The
dimension of AF as well as the numbers of binary variables my, and continuous variables m..
vary between {60,90,120}. The nonnegative factor is chosen as a € {0.1,10}.

B.5 Truss Topology Optimization

Truss topology optimization seeks truss structures that are stable with minimal total volume.
Given is a ground structure, which is specified by a simple directed graph D = (V, E') with n
nodes, ny of which are free, while the remaining nodes are fixed. The goal is to choose cross-
sectional areas coming from a discrete set A for the bars on the edges. The model includes
ellipsoidal robustness with respect to uncertain loads on the free nodes in {Qf : || f|l2 < 1}
for some matrix @, following [9], and uses binary variables for choosing bars, see [43]. This

yields the model:
inf Z le Z a xl
e€E acA

271 T
s.t. (Q AQ(:/U))EO’
Zx‘;gl Vee€ E,
acA
Tgcma)u
xzg € {0,1} Vee E, a€ A,

(TT)

where I is the identity matrix of appropriate dimension. The binary variables x¢ choose
a bar on edge e with cross-sectional area a € A. The stiffness matrix A(z) is given by
A(r) =D ccp Doaca Ac ax? with appropriate matrices Ac. The length of bar e € E is £, and
Chax provides an upper bound on the compliance (potential energy in the system). We use
38 of the 60 instances in [28, Chapter 3.5].
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