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Abstract

In this paper, we study the behavior of feasible rounding approaches for mixed-integer
linear and nonlinear optimization problems (MILP and MINLP, respectively) when in-
tegrated into tree search of branch-and-bound. Our research addresses two important
aspects. First, we develop insights into how an (enlarged) inner parallel set, which is the
main component for feasible rounding approaches, behaves when we move down a search
tree. Our theoretical results show that the number of feasible points obtainable from the
inner parallel set is nondecreasing with increasing depth of the search tree. Thus, they
hint at the potential benefit of integrating feasible rounding approaches into branch-and-
bound methods. Second, based on those insights, we develop a novel primal heuristic for
MILPs that fixes variables in a way that promotes large inner parallel sets of child nodes.

Our computational study shows that combining feasible rounding approaches with the
presented diving ideas yields a significant improvement over their application in the root
node. Moreover, the proposed method is able to deliver best solutions for SCIP for a
significant share of problems which hints at its potential to support solving MILPs.
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1 Introduction

In this paper, we study the task of computing good feasible points for mixed-integer linear
and nonlinear optimization problems (MILP and MINLP, respectively). Our work is based
upon feasible rounding ideas from [16] [I7) [19], which aim at quickly computing such points
by relaxing the difficulties imposed by integrality constraints. To do so, they make use of a
so-called inner parallel set of the continuously relaxed feasible set (cf. Section [2)) for which
any rounding of any of its elements is feasible for the original problem. This inner parallel
set can be explicitly computed in the linear case and approximated in different ways in the
nonlinear case. If it is nonempty, then the problem is called granular, and one can minimize
the original objective function over it and round any of its optimal points to a point which is
feasible for the original problem.

The task of computing a feasible point for mixed-integer optimization problems is known to
be an NP-hard problem, even if all constraint functions are linear [20]. This has triggered the
development of many primal heuristics, among them the feasibility pump [I} [7, 8], undercover



[4], relaxation enforced neighborhood search [2], diving strategies [5], and many others (see
[3] for a comprehensive overview).

What distinguishes feasible rounding approaches from the above methods is the underly-
ing geometric notion of granularity, which allows us to better understand the circumstances
needed for their successful applicability. This concept not only allows us to state conditions
when the approaches can be used for the computation of feasible points, but it also enables
the derivation of a priori error bounds for the objective value which indicate when they work
well [16] [18].

Feasible rounding approaches were successfully tested as standalone concepts for mixed-
integer linear optimization problems [17], mixed-integer nonlinear convex optimization prob-
lems [16], and mixed-integer convex and nonconvex quadratically constrained quadratic op-
timization problems [19]. However, so far it is untested how these approaches work when
integrated in branch-and-bound methods. In particular, it has not been studied how explor-
ing the search tree affects the inner parallel set.

In this paper, we intend to close this gap. Additionally, based on these results, we de-
velop a novel method that is specifically tailored to inner parallel sets and feasible rounding
approaches. The paper is structured as follows.

In Section [2| we briefly introduce the basic concepts of an inner parallel set and of gran-
ularity. We then provide a theoretical analysis of the behavior of inner parallel sets when
variables are fixed in Section [3] Thus, we investigate the theoretical potential of integrating
feasible rounding approaches into branch-and-bound methods. Moreover, the results from
this section give rise to a new primal heuristic which can improve upon standalone feasible
rounding approaches. This is the content of Section [d} To arrive at a specific algorithm, we
formulate a method for MILPs. Finally, in Section [5], we conduct a computational study on
the MIPLIB 2017 [10] that sheds a light on the effectiveness of these diving strategies and also
on the potential benefit of integrating feasible rounding approaches into the solver SCIP [9].
Section [f] concludes the article and offers directions for further research.

2 Preliminaries
We study mixed-integer nonlinear optimization problems of the form

MINLP : min clz+d'y st g(z,y) <0, iel, Az+ By <b, y* <y <y,
(z,y)eR™ xZ™
with real-valued functions g;, i € I, defined on R™ x R™, a finite index set I = {1,...,q},
q € N, a (p,n)-matrix A and a (p,m)-matrix B, p € N, ¢ € R", d € R™, b € RP and box
constraints with 3¢, y* € Z™, y* < y*. Moreover, with M we denote the feasible set of the
continuous relaxation NLP of MINLP, that is,

M = {(z,y) e R" x R™| gi(z,y) <0, ie I, Az + By <b, y* <y <y"},

so that we may write the feasible set of MINLP as M = M (R™ x Z™).

In this section, we introduce inner parallel sets in a general (geometrical) context, which
will be the foundation for the rest of this article. We briefly discuss how this concept can be
used computationally in the special case of MILPs (i.e., I = &) for which we will develop a
novel diving heuristic in Section [



2.1 Geometrical idea

Crucial for all feasible rounding approaches is the construction of the inner parallel set

—~

M~ := {(z,y) e R" x R™| {z} x By (y,3) < M} (1)
of the relaxed feasible set M , with the box

By (y.3) = {neR™ |n—ylo < 5}

The decisive characteristic of this set is that it ensures the feasibility for MINLP of roundings
of its elements. To be more specific, we call (Z,7) rounding of a point (z,y) € R™ x R™, if

I=a, JeZ™ |-yl <3, j=1,....m (2)

hold, i.e., each component of y is rounded to a closest point in the integer grid and x remains
unchanged. Then for any (x,y) € M~ we have (Z,y) € M, see [I7]. This gives rise to the
following definition of granularity.

Definition 2.1 The feasible set M is called granular if its inner parallel set M~ is nonempty.
A problem MINLP is called granular if its feasible set M is granular.

Notice that granularity is sufficient but not necessary for the consistency of MINLP and
that it depends on the problem formulation due to its dependency on M. In particular, less
tight formulations are beneficial for the consistency of M~ and thus for the applicability of
the granularity concept.

Such enlargements may be viewed as a preprocessing step that transforms M to M , with

M =M~ (R" x Z™) and M 2 M, (3)

where enlargement ideas range from small perturbations to the construction of structurally
different formulations [I9]. To use the granularity concept, one can then work with the
enlarged inner parallel set M ~, where the transition from M to M~ is defined as in . In
Section we provide an example of this enlargement procedure for MILPs.

For a set S € R™ x R™ we define the set of roundings obtainable from S as

R(S):={(Z,9) e R* x Z™| (z,y) € S and (2)}

and abbreviate R := R(M\*).
Figure [1] illustrates the construction of the inner parallel set M~ for a two dimensional

purely integer example. The set M consists of four feasible points, but only the filled points
are obtainable as roundings from M, i.e., R = {(0,1)7,(0,2)T}.

2.2 Construction of inner parallel sets for MILPs

Next, we elaborate the algorithmic construction of inner parallel sets for the special case
I = &, where MINLP is an MILP. In this case, the relaxed feasible set reads as

—

M = {(z,y) eR" x R™| Az + By < b, y* <y <y"},
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Figure 1: Const/rllction of the inner parallel set M~—. The filled points are obtainable as
roundings from M~ and thus form the set R.

and we can use the results from [I7] to obtain a functional description of the enlarged inner
parallel set as follows.

Let aiT and @T denote the rows of A and B, respectively. Moreover, let w; € Ny stand for
the greatest common divisor of the entries of 3;, if 5; € Z™ and «; = 0 hold, and be zero,
otherwise. For a real number a, with |a]., we denote the floor function with respect to w;,
that is

max{z € w;Z| z < a}, w; #0
[G’Jwi = .
a, otherwise.

Moreover, for a € R? and w € Nj, let
-
la)w = ([at]ws - - [aprp)
Then, with an enlargement parameter & € [0,1), b := |b]., + dw and the all-ones vector e of
dimension m, an explicitly computable enlarged relaxed feasible set is

M = {(z,y) e R" x R™| Az + By < b, y* — de <y < y" + de}. (4)

For ease of notation, we omit the §-dependency of M and the reader may just think of ¢
as being some fixed value close to (but smaller than) one. This enlargement guarantees
M A (R™ x Z™) = M and, for sufficiently large values of 9, MoM [17].

Moreover, with [|8]l; :== (1B1lly - -, 18pll;) " the enlarged inner parallel set is

~

M~ ={(z,y) e R" x R™| Az + By <b— 3 [18],, v/ + & —de<y<y*— (3 —de}, (5)

where, again, we refer the reader to [I7] for the derivation. We next illustrate the compu-
tation of the enlarged inner parallel set for a binary knapsack example which we shall also
revisit in Section 3| to demonstrate the usefulness of fixing binary variables. Here, we use the
abbreviation R := R(M_).

Example 2.2 Let us consider the (binary knapsack) feasible set

M={yeB3 1<

)

y; < 2}

3
=1



Using with w = (1,1)" and ||B]; = (3,3)T we can compute the enlarged inner parallel set
M- ={yeR®3-0<Y? yi<its L-0e<y<(+de},

which is empty for any § € [0,1). This also implies R = & for this example.

3 Fixing variables and inner parallel sets - a geometrical per-
spective

In this section, we present a geometrical perspective on the effects that occur when we move
down a search tree. We investigate the implications of fizing integer variables to values ¢ € Z.
This covers the important case of branching on binary variables and is often also feasible for
an integer variable ¢ when the difference of the bounds y}* — yf is small enough. Feasible
rounding approaches work especially well for problems with a relatively small number of
binary variables compared to general integer variables, which was noted in the computational
study in [I7] and further substantiated by the theoretical bounds derived in [I§]. Therefore,
the case of fixing binary variables is of particular interest for the present article.

In the following, we make no further distinction between different nodes of a branch-and-
bound tree, but demonstrate the effects only for the root node of MINLP. We stress that
this is for notational convenience only and that our results are applicable to fixing variables
in any branch-and-bound node.

As we shall presently demonstrate, fixing integer variables increases the chances for finding
good feasible points using feasible rounding approaches. To be more specific, fixing an integer
variable i to a value £ € Z n [y, y%] results in the i-¢-fixed relaxed feasible set

o~

M(z)(g) = {(33,77) e R™ x IR’m_1| (:L" (:’717 s a:'jiflygv gia tt 737m71)) € ]/\Z} (6)
Moreover, with

My (D)™ = {(2,5) € R* x R™| {2} x Boo(§ ) < My (0)} (7)
we denote the i-(-fixed inner parallel set. We abbreviate the set of roundings obtainable from
this set as R;)(£) := R(M)(£)7).

Remark 3.1 The analysis in this section makes a connection between inner parallel sets and
i--fixed inner parallel sets that is independent of an enlargement step. Hence, while we make
this connection only explicit for the sets M~ and M(;)(£)~, all results will be equally valid for

the connection of enlarged inner parallel sets M~ and their enlarged i-f-fixed inner parallel
sets M (€)™

The following notation facilitates a comparison of inner parallel sets with ¢-/-fixed inner
parallel sets and thus the investigation of the effects of fixing integer variables. For y € R™
and i€ {1,...,m} let

i

yi = (y17 e Yi—1,Yir 1, - - 7y’fl’L)T € Rm717

and, correspondingly, for y € R™~! and some ¢ € R, let

) = (Y1, Y1, b Yy Yme1) | €R™



Y2 Y2

{1} x2 M(1)

Y1

© Y

O]

{0} x2 M(2(0) {0} xo M2 (0)~

Figure 2: Construction of the i-f-relaxed feasible set (left) and the i-¢-fixed inner parallel sets
(right) with ¢ = 2 and ¢ € {0, 1}.

denote the vectors where we remove or insert an element at position ¢, respectively. Moreover,
for S' < R and S%2 < R™ 1, let

St x; 8% = {sTi(s!) e R™| st € ST, s € S?}.
The construction of i-¢-fixed (inner parallel) sets is illustrated in Figure [2| for ¢ = 2 and
¢ € {0,1}. Remarkably, fixing y, results in
{0} x2 Rezy(0) = {(0,0)T,(0,1)7,(0,2)T}, {1} x2 Rpzy(1) = {(1,1)7}

and thus allows us to obtain all points in M as roundings from i-/-fixed inner parallel sets.
Recall from Figure [I|that we were only able to obtain the two points (0,1)",(0,2)" as round-
ings from the inner parallel set M- Hence, this example shows that the number of roundings
obtainable with feasible rounding approaches can increase when we move down a search tree.
We will presently show that there is a crucial theoretical link between roundings from inner
parallel sets and roundings from i-¢-fixed inner parallel sets which offers an explanation for
this observation.

In fact, this link is already depicted on the right-hand side of Figure for any point
Yy € M —, we have a “corresponding point“ y~2 e (]\//.7(2) (0))~, which is illustrated by the

dashed lines from M~ to (M\(Q) (0))~. The next lemma proves that this is not a coincidence,
but that for any point from the inner parallel set, we always have a corresponding point in
the i-f-fixed inner parallel set if we choose £ to be the rounding of component ¢ of y.

Lemma 3.2 For any (x,y) € M~ and any i € {1,...,m}, we have (z,y ") € M\(i)(ﬂi)*.
Proof. Let (z,y) € M~. Then by definition of M~ we have
{} x Boo(y, 5) = {} x [yi = 3,9 + 5] xi Boo(y ™, 3) € M,
With 3 € [y; — 3, v; + 3], this implies
o} x (Fi} %o Bao(y ™, 5) € M o (R" x {y € R™ yi = i}) = {3} i Moy (),
and dropping {g;} in the cross product yields

{x} x Boo(y ™", 5) S M (¥i),



which shows the assertion. ]

The next theorem uses this connection to show that the number of roundings obtainable
from the inner parallel set is nondecreasing with increasing depth of the search tree.

Theorem 3.3 For any i =1,...,m, we have R < Jyez[y¢ 4] ({0} xnti Ripy(0)).

Proof. Let (Z,y) € R. For a corresponding point (z,y) € M\_, Lemma implies (x,y7%) €
M;y(7:)~ . Note that, although the rounding (Z, (y~%)) of (x,y™*) is in general not unique, it

can be chosen such that (y\:’) = (§)~ holds.
This shows (I, (§)™") € R;(%i) and, with £ := §j; € (Z n [vf,y"]), implies

(T,9) € {£} xnti Ry (0),

which proves the assertion. O

In summary, Theorem [3.3] together with our considerations from Figures [I] and [2] imme-
diately yields the following corollary.

Corollary 3.4 The set of feasible points obtainable by feasible rounding approaches is non-
decreasing and potentially increases with increasing depth of the search tree.

Let us next revisit Example [2.2] to illustrate the explicit construction of i-/-fixed enlarged
inner parallel sets for MILPs.

Example 3.5 Let us consider the feasible set M from Example 2.2] and fix y3. Again, with
w = (1,1)7, this results in the two 3-/-fixed enlarged sets

M (0) = {FeR) 1 -0 <§i+72 <2+6, —de << (1+0d)e},
My(1) = {TeRY —6<Hi+P<1+34, —5e<y<<1+6>e},

and, with |3, = (2,2) ", yields the enlarged inner parallel sets

Mz)(0)” ={JeR}2-0<P1+P<1+6, (3—0)e<y<(5+0e},
M) ={HeR1-6<Hh +02<0, (3 —0e<y<(}+d)e}.

The crucial difference compared to the (unfixed) enlarged inner parallel set is that we no
longer have to account for possible rounding errors of y3 which results in the fact that each
value of ||3]|; can be reduced from 3 to 2. Thus, while the enlarged inner parallel set of the
original feasible set is empty for any ¢ € [0,1), both i-3-fixed enlarged inner parallel sets are
nonempty for § € [%, 1).

With R (€) := R(M(€)7), we even have ({0} x3 R (0)) U ({1} x5 R(z)(1)) = M for
b€ [%, 1), that is, all feasible points may be obtained as roundings from these 3-/-fixed inner
parallel sets.



Hence, Example not only offers a computational perspective on the construction of i-¢-
fixed inner parallel sets, but also further substantiates the potential of fixing integer variables
for feasible rounding approaches.

Let us conclude this section with some considerations on the enlargement step. In Re-
markwe highlighted that the transition from M~ to M. B )(E) is analogous to that from M~

to M- @) (¢) and that all results derived in this section are hence equally valid for this transition.
Yet, there is an additional potential that can be harvested: there can be the possibility to
enlarge the set ]\7(2-) (¢) even further, once variable i is fixed to £. As an example, consider
a constraint BTy < b; with 8; = (1,3,3)" and b; = 3. Then, when fixing y; and using the
enlargement techniques introduced in Sectlon [2.2] the entry w; can be increased from 1 to 3
in the transition from the set M to M( y(£). We will exploit this fact in our development of
a diving method for MILPs in the following section.

4 A diving heuristic for MILPs

In this section, we elaborate some algorithmic ideas on how the results from the previous
section can be used for the development of a diving heuristic. We formulate an explicit method
for mixed-integer linear optimization problems, i.e., I = J, and use the same notation as in
Section [2| In particular, we employ the construction of the enlarged inner parallel set from
Section 2.2

Some important considerations of Section (the so-called degree of freedom) explicitly
need linearity of the constraint functions, which is one of the main reasons we formulate the
method for MILPs. We stress, however, that many results of this section generalize directly
to mixed-integer nonlinear optimization problems (Section as well as Proposition and
thus may serve as a foundation for the development of a diving method for MINLPs as well.

We initially elaborate diving approaches for the cases of a nonempty and an empty inner
parallel set separately, and subsequently bring them together into a general framework. In
the first case, we show how to ensure that inner parallel sets of resulting child nodes remain
nonempty. Our aim is to find a feasible point with improved objective value. For empty inner
parallel sets we show how certain auxiliary optimization problems and ways of fixing variables
are likely to generate nonempty inner parallel sets of child nodes.

4.1 A diving step for a nonempty enlarged inner parallel set

Let us initially elaborate a method for M~ # . Minimizing the objective function of MILP
over the enlarged inner parallel set yields the objective-based problem

~

pob . @ y)rerl%ki?me cle+d'y st (v,y)e M.

Due to our assumption M~ # &, the problem P is either solvable or unbounded, where
unboundedness of P?® would imply unboundedness of MILP. As we develop a method that
generates good feasible points, the latter case is not interesting in our context. In this section,
we therefore assume that MILP is bounded. This, together with M- # g, guarantees the

existence of an optimal point (z°°,y°) of P°. We denote any rounding of (x°°,y°) by
(°0,7°?) and the objective value of the rounded optimal point by 7% = ¢T#° + dTV”b



One crucial observation from Lemma [3.2]is that if the enlarged inner parallel set of some
branch-and-bound node is nonempty and (z,y) is any of its feasible points, we immediately
obtain m nonempty i-¢-fixed (child node) enlarged inner parallel sets, where i € {1,...,m}
and £ = 7;.

Then, as a diving step, we may solve a corresponding i-/-fixed objective-based problem

~

ob [y . : T —iNT~ ~ N
Pey(0) : (x,g)eflggﬂw—l cx+(d’) grdl st (x,9) € Mg(0),

denote any of its optimal points by (z°,7°) and its optimal value by v&.b) (¢). Due to the
previous considerations on the possibility of an additional enlargement step of the i-/-fixed
inner parallel set, we suggest to fix variable i to ¢ before determining the vector w in the

computation of M;(¢)™ in accordance with ().
Moreover, we abbreviate

(@, 5%) @) (0) == @, (5*)7(0)) (8)

so that we can analogously denote the (rounded) MILP-feasible point obtained by solving
the i-¢-fixed objective-based problem, rounding all y components and “re-inserting” value £
at position i with (¥, yj"b)(i) (). The objective value of (¥, ﬂOb)(i) (¢) is denoted by UE’;’) 0).

While this applies to roundings of any feasible point from M —, one fruitful idea is to
(iteratively) use roundings of optimal points of (i-¢-fixed) objective-based problems, that is,
to set £ = gjiob. The next example elaborates this idea in more detail and shows that, even
though the fixing value for variable i is given by 3%, different orders of selecting variables can
yield different feasible points.

Example 4.1 Consider the optimization problem

1P : lerL% —y1 —3ys s.t. yr+y2+2y3 <3, —2y1 —2y2+y3 < -1, 0 <y < 2Ze.
ye

By using Equation with § = 0.9, we can formulate the objective-based problem

P ;&{% —y1 —3y3 st y1r+y2+2ys <19, -2y —2y2 +y3 < —2.6, —0.4de <y < 2.4e

and compute its optimal point y°® = (1.82,—0.4,0.24)T. Rounding y° yields the I P-feasible
point 7°° = (2,0,0)" with objective value 7°° = —2.
Fixing yo = 0 and setting 7 := (y1,ys) yields the 2-0-fixed objective-based problem

P 0) : min —y; —3ys sty + 23 < 24, =241 +y3 < —1.6, —0.de < § < 24e
yeR

with optimal point (y1,y3)?* = (1.12,0.64) and thus the I P-feasible point y\j?é’) (0) = (1,0,1)"
with improved objective value b/(og)(O) = —4.
After solving the problem P° we also had the options to fix y; = 2 or y3 = 0. Both

fixings, however, rule out the possibility to obtain the feasible point (1,0, 1)T on a path in
the search tree and this point is hence only obtainable if we initially fix yo = 0.

Example shows that fixing components of rounded optimal points from P° has the
potential to yield improved points and that the choice of variables actually matters. When



fixing one component, new options for other components become available - and thus new
feasible points. In a diving heuristic, this allows the flexibility to select a component and thus
to choose the order of fixing while ensuring nonempty inner parallel sets of child nodes. We
will make some remarks on possible strategies for fixing variables in Section 4.3

Remark 4.2 The main reason for our choice of fixing variable i to ﬂfb was that it guaranteed
granularity of child nodes and that this particular choice is promising with regard to the
objective value. Yet, to have more flexibility may be fertile for developing further diving
ideas and may offer possibilities to obtain better feasible roundings. In this regard, note that
if we have two points (21, y'), (22,y2) € M~, again by Lemma we can fix any 4 of these
k variables to values ¢ € {g}, f} In our linear setting, the inner parallel set is convex and
hence even all values from the interval [min{y}, 72}, max{7}, y?}] are possible.

As a next step, we consider diving possibilities similar to those developed so far for an

empty enlarged inner parallel set.

4.2 A diving step for an empty enlarged inner parallel set

In this section, we develop a diving method for non-granular nodes. To gather information
about the “degree of non-granularity” and about the impact of fixing variables, it will turn
out to be beneficial to investigate the (solvable) feasibility problem

P! min z st (x,y,2)e M,
(z,y,2)eER™ xR™ xR

where the feasible set of P/ is the lifted enlarged inner parallel set of M ,

]\7; ={(z,y,2) e R" x R™ x R]
Az +By—ze<b—3|Bl,, v + (3 — e <y <y"— (3 —d)e, 2> -1},

Note that the introduced enlargement techniques work only for constraints where continuous
variables are absent. Therefore, it is crucial to lift the problem after the application of an
enlargement step, that is, after the computation of w.

We denote an optimal point of P/ by (acf oyl 2t ) and its optimal value by vf. As already
mentioned in [17], granularity is equivalent to v/ < 0 which implies (zf,y/) € M~ and thus
(&f,47) € M. Moreover, we may obtain an MILP-feasible point even in the case of a non-
granular problem where v/ > 0 holds. Hence, the “reverse implication” (v/ > 0) = (%7, 5/) ¢
M is not true. Of course, this possibility to generate non-granular feasible roundings can be
used algorithmically to find feasible points for more problems from practice.

We next establish a crucial property of diving methods which fix y-components to round-
ings 77/ of y/: this way of fixing entails that the optimal value v/ of the auxiliary problem
P/ cannot deteriorate. To state this formally, analogously to the i-¢-fixed objective-based
problem, with

0 (0) : (w’z)eé{llixrﬁ%mflxﬂ{z st (2,9,2) € (ML) (0)~

we denote the i-¢-fixed feasibility problem, with (z/, %7, 2/) any of its optimal points and with
v{i) (¢) its optimal value.

10



Proposition 4.3 Let (z/,y7, 2) be an optimal point of P'. Then for anyie {1,...,m} the
following assertions are true:

(a) (7, (yF)7%, 1) is feasible for P(J;) (Ui)-

(b) the inequality v{i) (g\jlf) < ol is valid.
Proof. Part (a) is an immediate consequence of Lemma It implies v{i) W) < 2/ =/
and thus part (b) of the assertion. ]

Proposition establishes a firm basis for a diving step in the sense that it offers possi-
bilities to fix variables which guarantee that the degree of non-granularity cannot deteriorate.
Of course, we are interested in actually improving upon the value v/ > 0, which is not ruled
out, but also not immediately implied by Proposition [4.3l Therefore, we next derive condi-
tions under which actual progress towards feasibility in the i-¢-fixed feasibility problem (i.e.
V(i) (gj{ ) < v') is guaranteed. This will also help us to determine components of y whose fixings
might be fruitful.

In this regard, let us examine a constraint j from ML_ evaluated at (xf oyl 2t )
ojal + Byl == <b =161

With Bj; denoting the entry located at row j and column 7 of B, using the relations

18 = | 87"

|+ 1Bjil, and Bly" =B ) + By,
this constraint can be written as

of el + (87T - o <B; - 4()|85"

+ 1Biil) — Bjiy. (9)

Proposition implies that evaluating the corresponding constraint j of (M L)) (gf )~ at
(zf, (y) 7%, 27) yields the valid inequality

ajTa:f + (,B;")T(yf)fi - < Ej — 3 Hﬁ;l

Bl (10)

Moreover, because the left-hand sides of inequalities @ and coincide, we can now com-
pare their right-hand sides to see if constraint j is relaxed in the transition from P’ to P(’:.) (0).
Subtracting the right-hand side of @ from the right-hand side of yields the degree of
freedom

fii = 51Bjil + Bji(y! — ) (11)

that becomes available in constraint j of the problem P(j;) (gjzf ) due to fixing variable i. Note
that fj; € [0, |Bji|] not only confirms Proposition[4.3]a, but also shows that often some leverage
is possible in constraint j. In fact, we only have f;; = 0, if either B;; = 0, or \yzf — gf | = %
holds, where in the latter case, additionally ylf — Vlf needs to have the opposite sign as Bj;.

Hence, if a variable appears in a constraint, usually also a strictly positive degree of freedom

11



is possible, in particular because \ylf — g\jlf | = % implies ambiguity of the rounding ﬂ{ , so that
one might be able to choose g\]lf such that fj; = |Bj;| holds.

In the following, let J4 < {1,...,p} denote the index set of rows of Ax + By — ze <
b— 21181, that are active at (z/,y”,2f). Moreover, let f; € RI7al denote the vector with
entries fj;, j € Ja, where |J4| < p denotes the cardinality of J4.

The next lemma shows that progress towards feasibility due to fixing variables can be
guaranteed for each variable ¢ which has a strictly positive degree of freedom in all active
constraints, that is, f; > 0.

Lemma 4.4 With an optimal point (xf,yf,27) of Pf and v > 0, for some i e {1,...,m}

let fi > 0. Then we have v (ng) <o,

Proof. By Proposition , the point (zf, (y) ™", 27) is feasible for P(J:.) (7i)- As its objective

value coincides with v/, it suffices to show that it is not optimal for P(J;) (Us)-

Indeed, optimality of (zf, (y/)™%, 2f) requires the activity of at least one constraint of
(ML)(i)(g\]f)* where zf occurs, that is, due to zf = v/ > 0, inequality holds with
equality for some j € {1,...,p}.

For j € Jy this is ruled out by our assumption fj; > 0. Moreover, for j € {1,...,p}\Ja
inequality @ is strictly satisfied. This, with fj; > 0, implies that also inequality is
strictly satisfied. Hence, (27, (yf)~% 2/) cannot be optimal and the assertion is shown.  []

The next example illustrates how the degree of freedom f; may indeed guide us towards
a successful diving step.

Example 4.5 Let us consider the feasible set
M={yeBly1+y2+2ys <2, —pn—y2—2ys < —1, 2y —y2 —y3 < 1}.

Adding the first two constraints of the corresponding feasibility problem

pr. min z s.t. Y1 +ye +2y3 — 2z <9,
(y,2)eR?
—y1—Y2—2ys —z < —3+9,
291 —y2 —ys — 2 < —1+9,
zz=-—1

yields the lower bound on the optimal value z > % — 6 > 0 which proves that M is not
granular. This also shows that the P/-feasible point (y/,2f) = (3 — 6,3 +6,0.25,3 — )7
which realizes this lower bound is optimal for P7.

In the following, let us assume 6 > 0 so that the rounding of y/ is uniquely defined by
7/ = (0,1,0)T. Notice that 7/ is a non-granular feasible rounding which is already useful if
one is interested in computing some feasible point of M. Yet, to be able to compute feasible
points with improved objective value, e.g. by using objective diving steps, a granular node is
crucial so that a feasibility diving step still makes sense.

For the selection of a fixing variable, only the first two constraints are active in (y7, /)
independently of the choice of 6 > 0, that is, J4 = {1,2}. Computing the degree of freedom

12



thus yields the three positive vectors
1 1 1
5+1(5—0—-0) F+1E+6-1) 1+2(5—0)
— (2 2 d fa= 1 .
h <;— dos—o) 2 U _1dis_n) mdh={1 o1 _y
To promote granularity, one usually chooses § close to one (e.g. 1 — 10~%) and hence only
fixing y3 offers a notable degree of freedom for both constraints.

This positive degree of freedom is sufficient to yield a granular 3-0-child node. Indeed,
when fixing y3 = 0 we obtain the enlarged inner parallel set

M(0)" ={yeR¥ y1 +y2 <140, —y1 — 4o < —2+8, 2y1 — 42 < —4 + 4},

which is nonempty for any § > % because it contains the feasible point (%, % +)7".
On the other hand, the 1-0-fixed enlarged inner parallel set contains the two inequalities

Adding these constraints together with § < 1 again shows that they are unattainable and that
we thus have M( y(0)™ = . Using the same arguments, one easily sees that M(Q)( )T =0
holds as well so that deciding by the degree of freedom indeed seems to be a fruitful possibility
for fixing variables.

For practical applications of larger dimensions, the requirement of Lemma [£.4] might often
be too strict; a necessary condition which will often be violated is that one integer variable
occurs in every active constraint. The next result shows how this requirement can be weak-
ened, if we allow the flexibility to fix multiple variables in one diving step. Indeed, we will
presently show that then it is sufficient if each active constraint contains at least one variable
from a group of variables with a positive degree of freedom.

To state this formally, with k& < m, an index set I = {i,...,ix}  {1,...,m} and a set
of corresponding integer values L = {/;,,...,¢; }, in the following let the I-L-fixed enlarged
inner parallel set M, ( j)(l_/)_ be defined analogously to Equations @ and @ where, instead of
fixing one variable y; to ¢;, we now fix each y; with i € I to the corresponding value ¢; € L.
Moreover, we extend this notation to the I-L-objective-based problem and the I-L-feasibility
problem, as well as to their feasible sets, (rounded) optimal points and (optimal) objective
values. For this purpose, y5 € RII denotes the vector with entries yi,iel.

We are again interested in values L that correspond to roundings of components of an P7-

optimal point, that is [ = {gjlfl - ,g\]f; }. Then, a repeated application of Lemma shows
that (acf (yF) 71, 27) is feasible for P’ D (L). Moreover, using the arguments from Equations (9]

(
- , it is straightforward to see that the degree of freedom f;; for constraint j which is

available by fixing variables i € I coincides with the sum of degrees of freedom of these
variables, that is,

fr= =), (%|Bﬂ| +Bji(yf*ylf)) (12)
iel iel
Again with f7e RI74l defined as the vector with entries [, J € Ja, we can extend Lemma
to the following proposition.
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Proposition 4.6 With an optimal point (xf,yl, 2f) of P!, for some I < {1,...,m} let
fr > 0. Then we have U{D(g\]}f) <ol

For a variable 4, let J; := {j € Ja| fji > 0} denote the index set of constraints for which
variable 7 has a strictly positive degree of freedom. Then with the set of active constraints
where a positive degree of freedom is possible Jy = | J;c (1,..m} J;, there exists some index
set I with f; > 0, if and only if J;y = J4 holds. Therefore, by Proposition Jy = Jyp is
sufficient to ensure v{ D(V%c ) <ol

If this is the case, a natural task for a diving step is to find the minimum number of
variables to fix such that progress towards feasibility is guaranteed. This question coincides
with the set covering problem (cf., e.g., [I4]), where Ji; is the universe and {J;| i € {1,...,m}}
is the collection of sets. This set covering problem is also of interest for Jy & J4. In this
case, it minimizes the number of fixings which guarantees a positive degree of freedom for
those active constraints for which a positive degree of freedom is possible.

As the set covering problem is NP-hard, solving this problem to optimality just for deciding
which variables to fix seems to be out of order. Hence we suggest to use a greedy method
instead, where theoretical results for worst case objective bounds on the greedy algorithm for
set covering problems [6l [T1] make it a suitable choice for our purpose.

Applied to our context, the greedy algorithm starts with &k = 0, I = ¥ and iteratively

chooses a variable i;, so that J;, contains the largest number of uncovered elements of Jy, i.e.

ix = argmax |{j € J;| j € JK\(| ] F)}I- (13)

ie{l,...,m} EEI_k

It then updates I**! = I* Uiy, and k = k + 1.

For obtaining a feasible solution to the set covering problem, this is repeated until Jy =
U;ezx Ji holds. This leads to the fact that in each diving step the number of variables to be
fixed may differ. If one is interested in specifying the number of variables to be fixed in each
diving step, the greedy method can run some predefined number of iterations, fixing only the
corresponding variables. We will specify this idea more precisely in our computational study.
Let us next use the preceding considerations for the development of concrete algorithms.

4.3 An algorithmic framework for inner parallel set diving

In this section, we tie together considerations from the previous sections and illustrate how
diving ideas can be used to extend and improve feasible rounding approaches. Like in the
previous sections, we describe these methods as starting from the root node of a search tree
but stress that this is for notational convenience only and that they can be applied in any
node of a search tree. To ensure quick convergence, the suggested methods won’t use any
backtracking strategies but will dive straight to the leaves of the search tree.

We may either solve the problem P° or the problem P/ to determine if the enlarged inner
parallel set of the root node is nonempty. If it is empty, we can apply feasibility diving steps
as introduced in Section [4.2] until we possibly obtain a nonempty enlarged inner parallel set
of some child node. The detailed procedure, feasibility-InnerParallelSet-diving, is outlined
in Algorithm [I| and can be summarized as follows.

In each iteration k, we fix variables to roundings of optimal points of the I*-LF-fixed
feasibility problem. Recall that we obtain a nonempty I*-L*-fixed enlarged inner parallel set,
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Algorithm 1: feasibility-IPS-diving
Data: a mixed-integer optimization problem MILP
Result: a non-granularity measure v/ with fixed variable-value pairs I,L, and, if
successful, an MILP-feasible point (Z/¢, /)
1set k0, IF — g LF— @ vft—ow

2 while v/? > 0 and I* < {1,...,m} do
3 compute a minimal point (zF, 4, 2¥) of
P(fl—k)(ik) : min  z st. (2,9,2)€ (ML)(jk)(I_/k)_,
(z,7,2)ER? xRm—ITF xR

with merged rounding (&/, 3/ ) Ik)(Lk) and non-granularity measure v{ )(Lk’)

4 set v/ v( )(Lk)

5 if (#/,97) ) (L") € M then

6 | | @1, } xf 5 oy ()

7 end

8 choose a set of indices I* < {1,...,m}\I*

o | set I PO IE, DA IF O e I, ke k41
10 end

11 set [« [F1 [« [F-1

if and only if the optimal value v Ik)(Lk) of P(f )(Ek) is less or equal than zero, and that

obtaining an MILP-feasible point is possible even if v Ik)(l_/k) > 0 holds (cf. Example .

Hence we check if (ff,ﬂf)(jk)(Lk) is feasible for MILP in every iteration and, if this is the
case, store it (cf. Line @ so that a feasible point can be returned after termination of the
method even in the non-granular case.

The method terminates when the optimal value of the I*-LF-fixed feasibility problem is
nonpositive, or when all variables are fixed. For choosing a set of indices to be fixed in Line
one possibility is to use the greedy algorithm aiming at impacting as many active constraints
as possible.

If feasibility-IPS-diving terminates with an index set I and a corresponding value set L
such that v/¢ < 0 holds, the I-L-fixed objective-based problem is consistent and we can apply
objective-based diving steps. Note that the case I = L = ( corresponds to a granular root
node.

This is the starting point for Algorithm [2] which outlines a method that takes as in-
put a nonempty I-L-fixed enlarged inner parallel set and aims at obtaining a feasible point
(z°bd 37°b4) with improved objective value 7°°? for the bounded problem MILP. We remark
that the boundedness assumption is only for the sake of readability and our focus on com-
puting good feasible points. In fact, Algorithm [2] could be modified to encompass unbounded
MILPs as well by additionally checking if P("I—b)(i) is unbounded and, if this is the case, re-
turning a certificate for unboundedness of MILP.

Boundedness of MILP implies that every problem P("Ibk)(f/k) is also bounded. Moreover,

consistency of P(Olf’k) (L¥) follows from Lemma|3.2together with the consistency of the initial I-
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Algorithm 2: objective-IPS-diving
Data: a bounded mixed-integer optimization problem MILP, an index set IV and
corresponding values L? such that M) (L°)~ # &

Result: a good MILP-feasible point (Z°%, °°¢) with objective value 5%
1 set k «— 0, 7% — 40

2 while some quality criterion is not met and I¥ < {1,...,m} do
3 compute an optimal point (z¥,4"*) of the problem
P(Ik)(Lk): min cla+(d” ™7y + Z dit; st. (x,9)€ M(Ik)(ik)_,

- 7k
(z,§)eR™ xRm— 17| ielk

With merged rounding (F°°, 3701’)( )(Lk) and its objective value U(Ik)(ik)

4 if o7} b (L¥) < 7°% then

5 ( obd7yobd) ( b,§0b)(jk)(ik)

6 7o v( )(Lk)

7 end

8 choose a set of indices I¥ < {1,...,m}\I*

o | set Il THOIE, M TG (g ige I, ke 41
10 end

L-fixed enlarged inner parallel set. Hence we can iteratively compute rounded optimal points
of I*¥-L*-fixed objective-based problems. If the objective value ¥ U( )(Lk) =c'#F +dTgF +

3. dil; of the rounded (and merged) optimal point (¥, 7° )( fk)(Lk) improves upon that
of previously found points, the latter is stored in Line

Let us conclude this section with a few remarks on the choice of indices in Line[§] We only
derived sufficient conditions for progress in the objective value of the feasibility problem in
Proposition but similar ideas apply to the objective-based problem as well. In particular,
the sets M~ and ]\75 as well as their ¢-f-fixed counterparts only differ in the appearance of
the variable z. Therefore, by using equations @ and without the occurrence of z, we
see that the degree of freedom gained in the transition from M~ to M, (;) (¢) exactly coincides

with (L1). Yet, notice that while the optimal value v{ I—)(l_}) is meaningful in the sense that it

contains information about the degree of non-granularity, this is not the case for the value
v(o% (L). Indeed, within the framework of objective-IPS-diving, we would rather be interested
in certifying progress of the objective value of the rounded optimal point 5(09) (L). Yet, due
to the appearance of the term )}, _;d;¢; in the objective function as well as due to rounding
effects, this is more intricate and not easy to predict. Still, choosing indices in accordance
with equation offers new flexibility in the constraints and is thus likely to enable the
possibility of obtaining different roundings, which might be beneficial for obtaining new (and

hopefully improved) values v{ 0 (L).
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5 Computational study

The main intention of our computational study is to show that feasible rounding approaches
can benefit from applying diving steps as outlined in Algorithms [1] and [2l In particular, our
results show that the granularity concept can be extended to encompass more problems by
using feasibility-IPS-diving, and that the objective values of the feasible points generated in
the root node can be improved by applying objective-IPS-diving steps.

Corollary [3.4] states that the number of roundings is nondecreasing and potentially increas-
ing with increasing depth of the search tree. Our analysis shows that we can actually expect to
obtain an increasing number of feasible roundings via inner parallel sets in branch-and-bound
trees for practical problems.

Additionally, we examine the influence of different choices of fixing variables and demon-
strate that the introduced greedy strategy for feasibility-IPS-diving usually finds granular
nodes faster than a random strategy. Finally, we address the important question whether the
generated points can add value to the arsenal of primal heuristics within the solver framework
SCIP [9].

The test bed of our computational study stems from the collection set of the MIPLIB
2017 [10]. We have collected instances without equality constraints on integer variables, as
the latter need a special treatment when feasible rounding approaches are applied (cf. [15]).
We further discarded problems with special constraint types (indicator constraints) which
would also need a special treatment.

We have implemented the feasible rounding approaches with diving strategies outlined
in Algorithms [1| and [2| in Matlab R2020a and in SCIP 7.0 [9] with SoPlex 5.0.0 using the
PySCIPOpt interface [13]. The tests of Section were run on an Intel i7 processor with 4
cores running at 4GHz Turbo Boost and 16 GB of RAM and those of Section were run
on an Intel i7 processor with 8 cores with 3.60 GHz and 32 GB of RAM.

Before we report the results of our computational study, we initially clarify the selection
of variables in the diving steps. Subsequently, in the first part of our computational study,
we evaluate the improvements gained by feasibility- and objective-IPS-diving compared to
the root node using our Matlab implementation. We conclude our study with evaluating the
possible benefit of integrating feasible rounding approaches and diving ideas into the solver
framework SCIP. In this last part of our study, we focus on objective-IPS-diving for problems
which are root-node granular.

When closely related LPs are solved in sequence, the use of warm-start ideas is common
in the literature and usually very beneficial. In our context, optimal points of objective-
based problems are feasible for I-L-fixed objective-based problems but usually lie in the
interior of their feasible sets. Finding a good warm-start basis for the simplex algorithm
is therefore nontrivial. As our aim is to demonstrate the potential of the method, in our
computational study we solved each LP from scratch and postpone a thorough study of
warm-start capabilities, which might be able to significantly speed up the diving procedure,
to future research.

5.1 Selection of variables

Recall that the flexibility of our diving method introduced in Section [4.3|lies in the choice of
the variables to fix. We propose and evaluate two methods for this. The first is to select fixing
variables at random. The second method is to run the greedy algorithm in each iteration,
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choosing the variables to be fixed according to Equation . To avoid collecting variable
constraint pairs (i, j) with trivial degrees of freedom, we set J; := {j € Ja| fj; > 1074|Bj;|}
(cf. Equation ([L1])).

To ensure comparability, we fix k = [m/30] variables in each step for the greedy as well
as for the random method. This guarantees at most 30 rounds of fixing even if all child nodes
are non-granular.

For the greedy algorithm, this has two effects. First, the number of fixings might not be
enough to cover all active constraints. Second, we might have covered all active constraints
with less than k variables so we need a secondary selection criterion. Concerning the latter,
we decided to use the overall impact on all active constraints, that is, once all constraints
were covered, we selected remaining variables ¢ according to their overall impact

frai= Y fi= > 3Bjil + Biily! — ).

jEJA jEJA

Note that, while f;; € R denotes the impact on constraint j of fixing all variables from I, the
value f7,; € R stands for the added up impact on all active constraints of fixing variable i.

5.2 Improvement due to IPS-diving steps

In this section, we investigate the effectiveness of IPS-diving ideas. First, we evaluate
feasibility-IPS-diving steps by comparing the number of (root node) granular problems to
that of problems where our diving strategies found some granular node. Second, we show
that applying objective-IPS-diving steps yields feasible points with improved objective value
compared to the root node and assess the significance of this improvement.

Discarding problems with indicator constraints as well as problems with equality con-
straints on integer variables yielded 288 instances. We ran into memory problems with the
instance supportcase38 and observed numerical instabilities with the instance npmv07 (points
obtained from Gurobi did not satisfy several equality constraints with the expected feasibility
tolerance of 1e-06). Removing these two problems yields a test bed of 286 instances for which
we found 136 to be granular in the root node.

Using feasibility-IPS-diving with both diving strategies, we were able to find granular
nodes for 167 problems so that the share of problems for which we may compute granularity
based feasible points increases from 47.6% (root node only) to 58.4% (using feasibility-IPS-
diving). Thus our first finding is that using diving steps increases the applicability of the
granularity concept. We report detailed results for these 167 problems in Table [2] in the
appendix.

As a comparison of the two methods for selecting fixing variables (random and greedy),
we can state that for 25 non-granular instances both diving methods are able to find granular
nodes. The random strategy finds a granular node in four additional cases, and in two
cases only the greedy strategy yields a granular node. This shows that different orders of
fixing indeed yield different outcomes and points to the fact that different strategies can be
complementary. Concerning the chances of finding some granular node, the greedy strategy
does not seem to offer an advantage over randomly fixing variables.

Yet, as the boxplot of the number of iterations of both methods shown on the left-hand side
in Figure [3[reveals, the greedy method usually finds granular nodes much earlier in the search
tree. Indeed, for the 25 instances where both methods yield a granular node, the median
number of iterations is eight for the greedy and 20 for the random method and also the 25th
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Figure 3: Two plots comparing the success of both diving strategies. The left plot visualizes
statistics for the number explored nodes until a granular node is found for 25 non-granular
instances. The right plot shows a cumulative historgram of the remaining optimality gap
compared to the optimality gap in the root node for 120 granular instances.

and 75th percentiles differ significantly (three vs. 14 and 21 vs. 28 iterations). Additionally,
a direct comparison of the number of iterations for each problem individually shows that the
greedy method needs (often significantly) less iterations than the random method in 16 cases
and more iterations in only two cases. Hence, if we are interested in quickly finding granular
nodes, the greedy strategy seems to be the better choice.

For the 136 (root-node) granular problems, we can compute and evaluate the improvement
yielded by objective-IPS-diving. In this regard, with v* denoting the optimal (or best known)
value obtained from the MIPLIB 2017 Websiteﬂ for each problem with 7 # v* we compute
the value

9aPclosed = (UOb - 5Obd)/(ﬁ()b - U*), (14>

which measures the optimality gap closed by IPS-diving steps (recall that 7°° and 7°*¢ stand

for the objective values of the points obtained by solving the objective-based problem in the
root node and by applying objective-IPS-diving, respectively). This ratio is one, if and only
if objective-IPS-diving finds an optimal point, and zero, if there is no improvement in the
objective value.

For the instance p500x2988d the rounding of the optimal point of the objective-based
problem (#°°, ) was already optimal for MILP and we therefore subsequently analyze only
the remaining 135 problems. For all these problems, the value of 7°° — v* was above 0.25 and
the values for gap.oseq Were hence well-defined.

The right-hand side of Figure [3|summarizes our results by plotting a cumulative histogram
of the number of instances over the remaining optimality gap, that is, over 1 — gapgoseq. It
includes the gap closed by both strategies individually, as well as a third option best, which
is the gap closed collectively by both strategies. This can be seen as a scenario where we run
both diving strategies in the root node and use the best feasible point.

We find that for 70 of the 135 problems, more than half of the optimality gap is closed by
applying both diving strategies. For the random and the greedy method individually, this is

"https://miplib2017.zib.de/tag_collection.html
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the case for 57 and 48 problems, respectively. Moreover, in our test bed the greedy strategy
performed better than the random strategy in closing more than 80% of the optimality gap
(shown in the first and second set of bars), but the random strategy outperformed the greedy
method with respect to closing more moderate optimality gaps, e.g., the above mentioned
50%. This again demonstrates that it is beneficial to apply different fixing strategies from
the root node.

Overall we conclude that combining feasible rounding approaches with diving strategies
yields a significant improvement over their application in the root node only. The greedy
fixing method is particularly promising for finding granular nodes early, yet when performing
objective-IPS-diving steps at granular nodes it does not offer an advantage over randomly
fixing variables.

5.3 Integration of feasible rounding approaches and diving ideas into a
solver framework

In a second experiment, we study the potential benefit of integrating feasible rounding ap-
proaches with and without diving steps into a solver framework. We use SCIP for this purpose
and initially evaluate the quality of the generated feasible points compared to the best solu-
tion SCIP obtains with its various heuristics [3] after solving the root node. To this end, we
test objective-IPS-diving using the PySCIPOpt interface by including it as a primal heuristic.
The method is executed once, after the processing of the root node is finished. To ensure that
SCIP is processing the root node only once, we disabled restarts by setting the parameter
limits/restarts = 0. After fixing variables in our diving approaches, the variable bound
tightening techniques implemented in SCIP are applied to further reduce the domain of other
variables. We observed that this significantly reduces the number of diving nodes needed to
find granular nodes.

We focus our analysis on instances where the root node is granular and apply up to five
dives using the random strategy with different seeds. As described in Section in each run
we need to solve at most 30 linear optimization problems (of decreasing size).

The test bed again contains granular problems from the MIPLIB 2017. We collected
all instances without equality constraints on integer variables where SCIP executed feasible
rounding approaches within 30 minutes. Discarding 8 instances due to memory limitations
yielded 320 instances out of which 128 were granular. Thus, we obtained 128 problems that
are granular after SCIP completely processed the root node of the branch-and-bound search.
Apart from the instances buildingenergy, ramos3, scpjiscip, scpk4, and scpli, we were able
to apply five dives within the time limit of 30 minutes. For those five problems, we use the
best solution found within 30 minutes for our analysis.

We report that in 16 cases the feasible point obtained by solving the root node is able to
improve upon those previously found by SCIP. By applying one, three and five random dives,
this number is increased to 25, 32 and 34, respectively. Detailed results for the 34 instances
where five dives yield better solutions than the ones found by SCIP can be found in Table
in the appendix. The significant increase in best solutions again highlights the potential of
applying diving steps when using feasible roundings approaches. Moreover, the number of
best solutions increases significantly when three dives are applied (compared to one). With
five random dives, we only obtain two additional best solutions (compared to three dives)
which suggests that three dives might be a good compromise between effort and benefit of
the method.
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Figure 4: Cumulative histogram of the remaining optimality gap compared to the op-
timality gap of SCIP’s best solution in the root node for 34 instances where five dives yield
best solutions.

This is further substantiated in Figure [} which gives an impression of the relative im-
provement compared to SCIP’s best solutions in a cumulative histogram. Once more we
display the remaining optimality gap 1 — gapgosed, where the 7° in Equation is replaced
with the best solution of SCIP. For 15 problems, more than half of the optimality gap is
closed by the points obtained with three rounds of diving. For one diving round, this is the
case only for nine problems which again shows that running objective-IPS-diving more than
one time can be beneficial.

To give a fuller impression of the potential of integrating these methods into SCIP, we ran
a second experiment. Here, we compared the time SCIP needs to compute a feasible point of
similar quality without integrating feasible rounding approaches with diving steps for the 32
problems where three rounds of diving yield best solutions. To this end, we executed SCIP
with plain settings, and report the run time when SCIP finds a feasible point of similar quality
for the first time.

We report that SCIP needs additional time to compute such a feasible point in 27 cases.
To give an impression of the potential benefit of the method, we list the 12 instances in
Table [1| where SCIP needs more than 30 seconds additional time to compute a feasible point
of similar quality. Here we list the objective value obtained by feasible rounding approaches in
the root node and after three diving rounds, as well as the optimal (or best known) objective
value. As a comparison, we list the time for these three diving rounds and that of SCIP for
computing a feasible point of similar quality. Due to the so-called performance variability of
global solvers [12], we checked our results for robustness by running SCIP additionally with
five different LP random seeds and reporting the shortest run time among these five. For
these runs, we also report the time SCIP spends in primal heuristics only, as a lower bound
for the time SCIP needs for the computation of feasible points of similar quality.

In most instances from Table [1| the additional time SCIP needs to compute a point of
similar quality is quite significant, even when we investigate the best of five runs and the time
only spend in heuristics. This is particularly true for the problem gsvm2rii2, where SCIP
fails to find such a point within 30 minutes. Interestingly, for this problem the objective value
is already available without applying diving steps and even applying three rounds of diving
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objective time time SCIP
name root diving optimal | diving | one run best of five  heur
blclsl 72555.0 69071.5 24544.2 0.8 35.2 349 791
b2clsl 73676.5 68701.5 25687.9 1.5 45.5 449  9.91
dg012142 25623489.0 14373382.6 2300867.0 6.8 41.0 40.7 8.4
gsvm2rlll 42635.3 39792.8 18121.6 15.9 64.8 63.7 19.6
gsvm2rl12 34.4 34.4 22.1 29.4 | >1800.0 729.7 430.8
gsvm2rl9 16382.8 13611.9 7438.2 3.9 368.0 51.3 5.6
mushroom-best 3613.9 2072.9 0.1 114 80.0 5.5 4.7
neos-983171 50987.0 8747.0 2360.0 84.7 230.0 207.4 105.2
opm?2-z10-s4 -1489.0 -22681.0  -33269.0 18.2 299.0 294.6 199.5
opm2-z8-s0 -2220.0 -11328.0  -15775.0 6.7 50.7 49.8  23.7
sorrell7 -45.0 -160.0 -196.0 | 622.1 1770.0 1290.5  29.5
sorrell8 -168.0 -324.0 -350.0 11.8 560.0 538.0 8.0

Table 1: Instances selected from root node granular problems, where SCIP needs significantly
more time to compute a feasible point with similar quality.

take no longer than 30 seconds. Even in the best of five case, SCIP needs 729.7 seconds to
find a feasible point of similar quality and spends a significant proportion in primal heuristics
so that feasible rounding approaches offer a remarkable improvement for that problem.

For both listed instances of the problem sorell, the time difference is also quite remarkable
and, in contrast to the problem gsvm2rii2, here the diving steps are crucial. For these
problems, however, the time spend only in primal heuristics is quite low so that the benefit
of using feasible rounding approaches with diving steps within SCIP is less clear. The results
for the instances opm2 (where diving steps are also crucial) are more robust and, because
SCIP spends a significant proportion of time in primal heuristics, they show the usefulness of
feasible rounding approaches with diving steps.

Overall, our results show that in some cases, feasible rounding approaches combined with
the introduced diving ideas can be beneficial and help state-of-the-art software to compute
good feasible points more quickly. While this improvement is possible in the root node (e.g.
in the case of gsum2ri12), the application of diving steps makes it significantly more likely.

6 Conclusion and outlook

In this article we developed new theoretical insights into how inner parallel sets change within
branch-and-bound methods. This allowed us to show that the number of roundings obtainable
within a search tree is nondecreasing with increasing depth of the search tree. Moreover, we
provided examples that demonstrate that this number can actually increase.

Based on these results we developed a novel diving method for MILPs with two remarkable
features. First, applying an objective-based diving step to a granular node retains granularity.
Second, the measure of non-granularity of a feasibility diving step in a non-granular node
cannot deteriorate after the application of this step. In the latter case we additionally derived
sufficient conditions for an actual improvement in the measure of non-granularity.

Our computational study on problems from the MIPLIB 2017 shows two main benefits of
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the diving methods. First, a considerable number of instances is not granular in the root node
but becomes granular in some child node explored by our diving strategies. Indeed, the share
of instances for which we were able to exploit the granularity concept increased from 47.6% to
58.4% when diving steps were applied. Second, for root-granular instances, our evaluation of
the closed optimality gap shows that objective diving steps are able to significantly improve
the quality of feasible roundings compared to the root node. This second effect is further
substantiated by a comparison with SCIP, where the number of best incumbent solutions
provided by feasible rounding approaches is significantly increased when objective-IPS-diving
steps are applied.

Both benefits not only confirm the effectiveness of the diving method, but also show that
the number of roundings obtainable with feasible rounding approaches can be expected to
be increasing with the exploration of a branch-and-bound tree. This fact could be further
exploited by integrating suitable backtracking strategies into the diving procedure, which we
postpone to future research.

We further wish to point out that within the scope of our diving approaches, the appearing
linear optimization problems solved sequentially are closely related. Therefore, it might be
interesting to investigate warm-start possibilities, which we also leave for future research.

Moreover, while our theoretical results on the number of roundings hold in the general
MINLP setting, the diving heuristic is made explicit and studied computationally for MILPs
only. The transfer of most ideas from the linear to the nonlinear setting is straightforward.
The only exception is the computation of the degree of freedom where the polyhedrality of
the feasible set is used explicitly. The derivation of a similar measure in the nonlinear setting
which potentially includes information of the possibility of using smaller Lipschitz constants
after variables are fixed is also left to future research.
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