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Abstract

A common approach for minimizing a smooth nonlinear function is to employ finite-
difference approximations to the gradient. While this can be easily performed when no
error is present within the function evaluations, when the function is noisy, the optimal
choice requires information about the noise level and higher-order derivatives of the
function, which is often unavailable. Given the noise level of the function, we propose
a bisection search for finding a finite-difference interval for any finite-difference scheme
that balances the truncation error, which arises from the error in the Taylor series ap-
proximation, and the measurement error, which results from noise in the function eval-
uation. Our procedure produces near-optimal estimates of the finite-difference interval
at low cost without knowledge of the higher-order derivatives. We show its numerical
reliability and accuracy on a set of test problems. When combined with L-BFGS, we
obtain a robust method for minimizing noisy black-box functions, as illustrated on a
subset of synthetically noisy unconstrained CUTEst problems.

Keywords: derivative-free optimization, noisy optimization, zeroth-order optimiza-
tion, nonlinear optimization, finite differences

1 Introduction

A powerful approach for derivative-free optimization is to utilize finite differences. This
is done by computing a finite-difference approximation to the gradient, and substituting
the exact gradient with the approximation within a known nonlinear optimization method;
see [22]. These methods operate by spending at least n + 1 function evaluations at each
iteration to take a meaningful step, where n is the total number of variables. This lies in
contrast to interpolation-based methods, which utilize prior function evaluations with only
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one new evaluation at each iteration; see [0, 16]. Therefore, in order for the finite-difference
approach to be effective, one must ensure that the quality of the gradient is satisfactory
and significant progress is being made at each iteration of the algorithm (as opposed to n
steps of the interpolation-based approach).

Often, black-box functions to be optimized are contaminated by stochastic or computa-
tional noise. This noise could arise naturally from modeling randomness within a simulation,
or as a bi-product of an adaptive computation, for example through the early termination
of an iterative solver. The presence of noise has largely prevented finite-difference methods
from gaining more popularity within the derivative-free optimization community, as the
precise choice of the finite-difference interval becomes increasingly critical as the noise level
increases.

In particular, the finite-difference interval requires knowledge of both the noise level
and higher-order derivative of the function. While the former may be known a prior:
or can be estimated by sampling or computing difference tables [1%], the latter quantity
is not normally available to the user. In order to make finite-difference methods a viable
alternative in the presence of noise, a robust procedure is needed for estimating higher-order
derivatives, either implicitly or explicitly.

To put this more precisely, let us consider the problem of estimating the d-th order
derivative of a smooth univariate function ¢ : R — R. We will assume that we are only
provided noisy function evaluations of the form

f(t) = o(t) + €(t) (1.1)

where € : R — R models the error, and that the error is bounded, i.e., there exists ey > 0
such that |e(t)| < ef. We call € the noise level of the function. We focus on the univariate
case, although this can be easily extended to the multivariate setting for computing the
gradient by applying the procedure to each component.

The simplest and cheapest finite-difference approximation to the first derivative is the
forward-difference approximation. If ¢(9) denotes the d-th order derivative of ¢, then the
forward-difference approximation is computed by

oM (1) ~ W 2 Mt n) (1.2)
where h > 0 is the finite-difference interval. Note the slight abuse of notation by denoting
f@ as the finite-difference approximation to the d-th order derivative. With no noise,
excluding round-off error, one would ideally choose h as small as possible, the common
practical choice being h = max{1, |z|} /€rs, where €y is machine precision, to handle
rounding errors. However, this choice of the finite-difference interval may be poor under
the presence of large errors, as is well-known.

To see this, consider the following decomposition of the error in the forward-difference
approximation:

00 - oD ()| < (13)
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We will call the error induced by the first term truncation error since it arises from trunca-
tion of the Taylor series, and the error induced by the second term measurement error due
to error in the function evaluations.

Note that if h is small, then the truncation error is small but the measurement error
may be large. On the other hand, if h is too large, the measurement error may be small but
the truncation error may be too high. Therefore, the optimal h trades off these two terms
by making the error from each of these two sources equal. In this paper, we propose an
adaptive procedure for estimating the finite-difference interval in the presence of noise that
properly balances these two different sources of error. The procedure must be: (1) reliable,
that is, applicable to most, if not all, practical problems of interest; (2) accurate, producing
near-optimal estimates of the finite-difference interval; and (3) efficient, employing the least
number of function evaluations possible. We argue that our procedure achieves these goals
in many practical situations.

This paper is organized into five sections. We present the notation and literature review
in the rest of this section. In Section 2, we introduce our finite-difference interval estimation
procedure for the forward-difference case. In Section 3, we present the generalized procedure
for arbitrary finite-difference schemes and provide theoretical guarantees for the termination
of our procedure. Extensive numerical results on synthetic problems with injected noise are
provided in Section 4, and concluding remarks are made in Section 5.

1.1 Literature Review

The problem of estimating derivatives, particularly in the presence of rounding errors, is
a fundamental question within numerical analysis and scientific computing. Fornberg pro-
posed a stable algorithm for generating finite-difference formulas on arbitrarily spaced grids
[8]. Lyness and Moler observed that the Cauchy integral theorem allows one to evaluate the
d-th derivative of a complex function as a closed complex integral via numerical integration
techniques [17]. This was simplified and extended by Squire and Trapp who observed that
one could avoid cancellation error by using complex perturbations in the Taylor expansion,
called complex step differentiation [23]. This has more recently led to extensions of the
complex step to evaluating the Hessian by Hare and Srivastava [13]. Brekelmans, et al.
compared design of experiments schemes against standard finite-difference schemes within
the stochastic noise regime [1].

To handle rounding errors, Curtis and Reid describe a heuristic that estimates the
truncation and rounding errors using central and forward-difference estimates. The ratio
between the two estimates of these errors are used to determine the finite-difference interval
[7]. Stepleman and Winarsky use a set of decreasing central-difference intervals. The
optimal interval is obtained by the smallest interval that does not violate monotonic decrease

in the absolute difference between consecutive central-difference estimates [24]. Gill, Murray,
Saunders, and Wright introduced an adaptive procedure for computing forward-difference
intervals by utilizing a ratio to determine the second derivative [9, 10]. Their procedure

has some similarities with our approach, which we discuss in Section 2.1. Barton proposed
an adaptive procedure for handling rounding or multiplicative errors by interpreting the
function values as correct up to a fixed number of significant digits and ensuring that at



least a certain number of significant digits change from the resulting difference interval [1].
Most recently, Moré and Wild proposed a heuristic for estimating the second derivative
for determining the forward-difference interval that checks two conditions: (1) if the noise
dominates the second-order derivative; and (2) if the forward and backward difference is
too large relative to the function values [19]. A comparison of the resulting errors between
finite-difference and simplex gradients were analyzed in [3, 12].

Incorporating finite differences into optimization methods have also had a long history.
Kiefer and Wolfowitz first applied finite differences to stochastic approximation [15]. Kelley
developed an implicit filtering BFGS method that utilizes finite differences in the case
where noise decays as the iterates converge to the solution [5, 14]. Berahas, et al. proposed
a finite-difference L-BFGS method that incorporates ECNoise and a heuristic for estimating
the second derivative by Moré and Wild into L-BFGS [2, 18, 19]. Most recently, Shi, et al.
tested finite-difference methods within the unconstrained, least squares, and constrained
settings assuming knowledge of the noise level [22].

1.2 Notation

In the following sections, we will use Bachmann-Landau notation liberally. Suppose f,g :
R — RZ%. We will write g(h) = O(f(h)) if there exists a C € R such that g(h) = Cf(h).
If g(h) = o(f(h)), then for every e > 0 there exists a constant N such that |g(h)| < €|f(h)|
for all h < N. Similarly, if g(h) = O(f(h)), then there exists constants ¢ > 0 and N such
that |g(h)| < e|f(h)] for all h < N.

We will use (¥ : R — R to denote the d-th order derivative of ¢. For a given vector
xz € R", [z]; denotes the i-th component of z. Similarly, for a given matrix A € R", [A];;
denotes the (7, j)-th entry of A. We will use || - || to denote the standard Euclidean norm
unless otherwise specified.

2 An Adaptive Forward-Difference Interval Estimation Pro-
cedure

Suppose we are interested in determining the finite-difference interval for the forward-
difference approximation of the first derivative of ¢. Since the Taylor expansion of the
function ¢ is given by

(2)
ot + h) = o(t) + ¢ (t)h + qb2(t)h2 +o(h?),
the total error can be bounded by
(2) 2
60@) — f0 )| < L2
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By ignoring the higher-order term, this yields an optimal interval (with respect to the upper
bound) of

* €f
h ~ 2 M. (2.1)

This formula requires an estimate of the second derivative |¢(®)(t)|. We now propose a

procedure that yields an interval h = O (4 /m) without estimating |¢(?) (t)| separately.

Our procedure balances the truncation 77 and measurement error 7. To do so, it
estimates the ratio between these two errors directly and attempts to find an interval h
for which this ratio is close to some constant value. We claim that the ratio 77/T5 of the
truncation over measurement error can be approximated, for example, by the testing ratio

o ot ep) = M4 —4;06(;5+h)+3f(t)|. 22)

Given r; > 1 and r, > 1 + 2, we perform a bisection search to find an interval h > 0 that
satisfies

r(h; fit ep) € [y, rul. (2.3)

In particular, if r(h; f,t,€ef) < 7, then the numerator is dominated by noise, indicating that
h is too small. On the other hand, if r(h; f,t,ef) > 7y, then the numerator significantly
dominates the noise, which implies that h is too large. Our procedure for forward differences
is summarized in Algorithm 1.



Algorithm 1: Adaptive Forward-Difference Interval Estimation

Input: One-dimensional noisy function f : R — R; noise level €y > 0; lower- and
upper-bound (ry,r,) = (1.5,6);
Output: finite-difference interval h.
1 h <+ %\/«? ;
2 [+ 0, u ¢ 4o0;
3 while True do

4 | Evaluate r(h; f,t,e5) = lf(t+4h>f4ge<;+h>+3f(t>|;
5 if r(h; f,t,e5) <1 then

6 | | LM

7 else if r(h; f,t,e5) > r, then
8 ‘ u < h;

9 else

10 L break;
11 if u = 400 then

12 | | h<dh
13 else if [ = 0 then

14 | | h< h/4
15 else

16 | | he (tu)/z

17 return h

To see why this procedure works to give us a near-optimal h, note that
Ot + 4h) — 46(t + h) + 36(t) = 662 (t)h% + o(h?). (2.4)

Therefore, if we expand (2.2), we obtain:

3¢ (t)h? N e(t +4h) — de(t + h) + 3¢(t) N

h?)|.
des e O( )

T(h;f,t, Ef) = (25)

e(t+4h)—4e(t+h)+3e(t
Bef

|‘ < 1 by the fact that |e(t)| < ef for all t € R, by imposing (2.3)

and ignoring the o(h?) term, we approximately have

3|¢t) () |1 2 [ e 1
?G[ﬁ—l,’f‘uﬁ—l] S hE% m[m, ’I”u+1] (26)

Since

Therefore, if r; and r,, are chosen properly, such as r, = 1.5 and r, = 6, we obtain h €
[V0.5,V7] -,/ | ¢<2) ok which is the same order as the optimal finite-difference interval (2.1),

differing only by a small constant factor.

By scaling h by a factor of 4 in Algorithm 1 when v = oo or [ = 0, the new trial h
only requires a single new function evaluation to check the testing ratio when h is updated
monotonically.



In addition, the testing ratio is affine-invariant with respect to the function of inter-
est in the sense that r(h; f,t,ef) remains unchanged if applied to a modified function
f(t) = af(t)+bfor a# 0and b € R with noise level |aley, i.e. 7(h; f,t,|ales) = r(h; f,t,¢;).
Therefore, the finite-difference interval h will correctly remain unchanged under this trans-
formation.

2.1 Comparison to Prior Methods

Although the definition of the testing ratio appears similar to the ratio in Gill, et al. [9],
which is defined as the inverse ratio

deg
|f(t+h) = 2f(t) + f(t—h)|’

our approach markedly differs from theirs in three aspects: (1) we utilize the h derived
from Algorithm 1 directly as the chosen difference interval, whereas Gill, et al. use the
difference interval i to estimate the second derivative; (2) our approach utilizes a bisection
search to find h rather than monotonically increasing or decreasing h; and (3) it relies on
second-order forward-difference instead of central-difference estimates.

The first aspect follows from the observation made in (2.6) that h = O (, /W)

Hence, the difference interval h obtained by our bisection procedure is near-optimal in that
it is only a small constant factor away from the optimal interval (except for certain cases
discussed below). Two observations can be made from this derivation. The first is that since
f(t+h) and f(t) are used in the evaluation of the testing ratio, one can reuse prior function
evaluations from the bisection procedure to estimate f(1)(t;h). The second observation is
that the derivation motivates an initial choice of h = O(,/€y) as opposed to h = O(¥/€y),
as used in Moré and Wild [19]. This is corroborated by our experiments in Section 4.

The second aspect follows from different tradeoffs between cost and accuracy in the
finite-difference interval estimate. In particular, whereas Gill, et al.’s procedure is cheaper
but yields a less accurate estimate, our procedure is able to guarantee a sufficiently accurate
estimate at higher cost.

Lastly, the third aspect is designed to avoid cancellation due to symmetry in the nu-
merator of the testing ratio. In particular, Gill, et al. [9] rely on a testing ratio using the
central difference:

(2.7)

des
[f(E+h) = 2f(t) + f(t = h)|
However, we can obtain poor estimates of the derivative due to cancellation under symmetry
of the function, for example, on a quartic function ¢(t) = t* near (but not at) t = 0 with
sufficiently large noise.

Our procedure also differs from Moré and Wild’s procedure [19]. Their procedure esti-
mates the second derivative by

ft+h) — 2{}(;) +f(t—h) = f(t; h), (2.9)

€ [0.001,0.1]. (2.8)

o2 (1) ~




with interval h > 0, then inserts this estimate into the optimal formula (2.6). The difference
interval h is required to satisfy

(4 R) = 2f(8) + f(t = )| = ey (2.10)
|[f(t£h) — f()] < Tomax{| f(1)], | f(t+R)[} (2.11)

with 71 > 1 and 7 € (0,1). Their method attempts to satisfy this within two trials as
follows:

1. Set hy = €5 and compute py = |f@(t; hy)|. If conditions (2.10) and (2.11) are
satisfied for ﬁl, return p.

2. Set hy = /es/p1 and compute pq = |f?)(t; he)|. If conditions (2.10) and (2.11) are
satisfied for ilg, return .

3. If |y — pe| < %Mg, return fio.

If the heuristic is unable to return an estimate p after two trials, this is considered as a
failure.

Similar to Gill’s procedure, this method differs from ours in that it estimates the second
derivative rather than utilizing the h derived from the testing ratio directly. As a result, it
initializes h = O(y/€y) rather than O(,/€f). We have found this to be a poor initial choice

of ﬁ, particularly when € is large, as we will see in Section 4.

While (2.10) appears similar to the testing ratio, it is better interpreted as ensuring that
noise does not dominate the second-derivative estimation due to the large choice of 71 = 100.
The second condition (2.11) is not affine-invariant in the sense that adding a sufficiently
large b can force the condition to be satisfied. This is undesirable as perturbations of the
function should not change the overall behavior of the method.

3 Generalized Finite-Difference Interval Estimation

Typically, finite-difference interval estimation procedures for numerical optimization focus
on forward differences [1, 9, 19]. However, in the noisy regime, higher-order finite-difference
approximations, such as central differences, can yield more accurate approximations; see
[22]. As a result, in order to attain the highest possible accuracy, one must design meth-
ods that efficiently find a near-optimal difference interval for more general finite-difference
schemes. To handle this, we propose a generalization of the forward-difference case, Algo-
rithm 1, for d-th order derivatives.

Consider a finite-difference approximation scheme S = (w,s) defined over m points,
where we approximate qﬁ(d) (t) using the equation

Sy wy - f(t+ hsj)
hd

where w € R™ and s € R™ are the associated weights and shifts of the finite-difference
scheme. As in the forward-difference setting, we will use a slight abuse of notation by

£t h) = ~ 6@ (1) (3.1)



denoting the finite-difference approximation as féd) (t;h). Forward-difference and central-
difference schemes for approximating the first derivative (i.e., d = 1) are obtained by defin-
ing s and w as s = (0,1)7 and w = (-1,1)T and s = (-1,1)T and w = (-3, )T, respec-
tively. The standard second-order central-difference scheme is defined as s = (—1,0,1)7
and w = (1,-2,1)T.

In order for the finite-difference scheme to be valid, the coefficients w and shifts s must
be chosen such that the Taylor expansion of the finite-difference approximation over the

function ¢ satisfies

Y wj- ot + hsj) = $D (R + ¢, ()R + 0 (), (3.2)
j=1

where ¢ > d + 1 denotes the order of the remainder term'. This ensures that féd) (t;h) =
AC) (t). In order to guarantee this, the finite-difference scheme S must satisfy

1 & 1 ifl=d
1Y%= i
gt ifl<q, l#d

and as a result

| —

m
— E o4
Cqg = | szj'
Sy

J

L~

See Appendix A for more detail on how generic finite-difference schemes are derived.
Therefore, in the presence of noise, the worst-case error for the finite-difference scheme
of interest can be bounded by

FD(th) =6 (0)] < leg) [0 (0)| 1 + uwlhesh™ + 0 (7).

One can define an approximately optimal choice of h:

1/q

h* =~

7~ e@ (1 33

’ d_ Jwlies

While €y is assumed to be known and d, ¢, w and ¢, are available, the g-th order
derivative ¢(@ () is unknown and often difficult to estimate. Following the idea from the
forward-difference case, we propose a procedure for estimating (3.3) directly. We first
construct a testing ratio rg associated with scheme S:

STy iy - f(t+ D))
€f

rs(h; fitep) =

Note that the order of accuracy can be higher than d + 1 for certain schemes, such as central-difference
approximations.



where w0, 5 € R™ where m > g + 1, 5j # 5i for all j # k, and @ and § satisfies

M

W - Gt + hs;) = . D ()T 4 0 (RT), ¢ = qlin: (3.4)

<
Il
-

Without loss of generality, we require @ to satisfy
@]y =1,

the reason for which will be evident below. We then perform a bisection search to find an
interval h that satisfies

rs(h; f.t,€p) € i, (3.5)

for some r; > 1 and r, > r; + 2. The procedure is summarized in Algorithm 2.

Algorithm 2: Adaptive Finite-Difference Interval Estimation
Input: One-dimensional noisy function f : R — R; noise level e; > 0; testing ratio
rs(h; f,t,€er) for scheme S; lower- and upper-bound r; and r, satisfying
1 < r; <ry — 2; initial interval hg; scaling factor n
Output: finite-difference interval h.
18 h < hg;
19 | < 0, u < 4o0;
20 while True do

21 Evaluate rg(h; f,t,€f);

22 if rg(h; f,t,ef) <r; then
23 | 1 hy

24 else if r5(h; f,t,er) > r, then
25 ‘ u <+ h;

26 else

27 L break;

28 if uw = 400 then

29 | b nh;

30 else if [ = 0 then

31 ‘ h < h/n;

32 else

33 | he (I+u)/2;

34 return h

By (3.4), we can see that

6@ (£)hd ™ @ - e(t + h;
ro(h; ft,e5) = cqsef() JFZJ*1 ]Ef( ) +o(h?) (3.6)
(9) q ﬁl_ T t_|_h~.
TR A o), A2 2z i cHhS) (3.7)
€f €f

10



Note that by definition of A, |A| < 1. This is a consequence of the requirement that
|w|l1 =1 and that |e(t)| < ef for all t € R. Therefore, if we have rg(h; f,t,€ef) € [r,7,] and
if we the ignore o (h?) term, then we (approximately) have

(@) q
GO O 1+ 1), (3.8)
€f
ie.,
1/q 1/q
r—1 ¢ ry+1 €5
he || +— : : 3.9
(rcw \¢<q><t>\> ( ol [0 39

Note from (3.3) that h has the same dependence on ¢; and ¢(? (t) as h*. As in the forward-
difference case, our algorithm is invariant to affine transformations with respect to the
function.

Ezample 1 (First-Order Central Difference). Consider the first-order central-difference
scheme for approximating the first derivative:

fit+h) = f(t—h)
2h ’

where s = (—1,1)7 and w = (—1,1)7. The Taylor expansion of the numerator is given as:

¢t +h) — ot — h)
2h

o) (t)h?

5 + o(R?).

= ol (t) +

The full error of the derivative approximation and the approximate optimal choice of h are:

G (t)| B2
‘¢ ( )‘ + 67f +O(h2), h* ~ 3 36f

Dt ) — oM
1§ wm) = ()] < i+ o]

One example of a valid testing ratio is:

ol ot eg) = M+ 30) =37+ h)846rf3f(t —h) = f(t=3h)| G

Ezample 2 (Second-Order Central Difference). Consider the second-order central-difference
scheme for approximating the second derivative:

ft+h) =2ft) + f(t—h)
h? ’

f?)(t; h) = (3.12)
where s = (—1,0,1)7 and w = (=3, 3)T. The Taylor expansion of the numerator is given
as:
ot +h) —2¢(t) + ¢(t — h)
2

oW (t)h?

— 4@
=620 +

+ o(h?).

11



The full error of the derivative approximation and the approximate optimal choice of h are:

@y @] < [PUOIR ey
19 tm) 6P| < F A=+

. (i

2 * o
+o(h%), h*=2 ok

One example of a valid testing ratio is:

rs(hi fobs ) = | f(t + 2h) —4f(t+h)+61];ii) —Af(t—h) + f(t—2h)| (3.13)

3.1 Practical Considerations

In order to make the procedure both efficient and robust, we discuss a number of practical
considerations below.

L. Generation of Testing Ratio. Although many choices of rg are possible for any finite-
difference scheme S, it would be useful to have a method for automatically generating valid
testing ratios that efficiently utilize function values. A simple yet useful way to construct
rg is through the formula

(78t = 0ty (tsamy) e
Aey ’

r§(h; fs,t.ep) = (3.14)

where v # 1 and A is computed by normalizing the coefficients such that |||, = 1 is
satisfied.

This approach is guaranteed to generate a valid testing ratio rg for any « # 1 since it
cancels out the ¢(@ (t) term in the Taylor expansion, leaving only the relevant higher-order
term of order ¢ of interest. In particular, since

> wj - ¢(t+ hsy) = ¢ D ()0 + cg¢ D ()9 + o(9)
j=1

i wj - 6(t + ahs;) = ¢ D () (ah)? + ¢! (t) (ah)? + o(h?),
j=1

we obtain that

m

(£570m) = a0t am) ) h =37 (w; - 6(t + hsj) — o~ w; - 6(t + ahs;)

j=1
= cy1 = DD (D)7 + o(h),

which satisfies (3.4) with an effective ¢, = ¢;(1 — a979) /A as desired.

For finite-difference schemes with equidistant points, a small modification to the bisec-
tion search allows us to reuse 1 — 2 function evaluations at each iteration, depending on the
original scheme S. To do this, we can multiply or divide by the same factor » = o when

12



monotonically increasing or decreasing h within the bisection search, as done with n =4 in
the forward-difference algorithm (Algorithm 1).

In addition, with this choice of the testing ratio, the function evaluations needed within
the finite-difference scheme is implicitly evaluated within the testing ratio. We can therefore
obtain the finite-difference approximation using previously computed function values at no
additional cost.

1I. Choice of r; and r,,. Ideally, one should choose r; and r, such that they are close to the
optimal ratio

q

Nl

q—d

in order to yield an h that is close to A* in (3.3). However, this is not directly possible in the
presence of noise, which requires that 1 < r; < r, — 2 in order to ensure finite-termination;
see Section 3.2. We therefore select (r;,r,) sufficiently large such that 1 < r; < r, — 2 and,
if possible, such that r* is logarithmically centered within the interval [ry, 7,]:

*

T —max{l—l—n,;}, ro = max {3(1 +n), fr*} (3.15)
for some 7 > 0 and $ > 1. (In our experiments, we set n = 0.1 and § = 2.)

Note that when 77,7, > r*, the algorithm may overestimate |¢(?(¢)| and hence under-
estimate h. In order to avoid this in practice, we have found that it is preferable to choose
a testing ratio such that the optimal ratio »* > B(1 4+ n). This could be done by choosing
a different testing ratio, such as by choosing a larger « in (3.14).

III. Initialization of hg. Since the difference interval h that satisfies the procedure is ap-
proximately of the form (3.9), it is preferable to initialize hy = C’)(e}/ 7). Two possible

1/q
choices are hg = e}/ 7 or (q%‘ld . HIZJ qH|1 - € f> . The latter is based on the assumption that

|pD(t)| ~ 1. If instead the finite-difference interval is re-estimated within an optimization
algorithm, we can initialize hy as the difference interval h used at the prior outer iteration
of the algorithm.

We observe that on rare occasions a poor initial choice of hg can result in large error
in the derivative approximation. This occurs when the initial choice of hg is too large to
capture the local behavior of the function. Reducing the initial interval hg resolves this issue.

1V. Handling of Special Cases. The Taylor expansion analysis elucidates two possible failure
cases for our procedure. In particular, observe that

cr @ (t)hd

rs(h; f,t ef) = ”

+ A+ o(h9)| .

If h is large (for example, when the noise level €; is high), the higher-order terms o(h?) can
dominate the other terms in the Taylor series expansion. This can yield poor estimates of

13



h even if the condition rg(h; f,t,€ef) € [ry, 7] is satisfied. In practice, we have not found
this to be a common issue.

The more common case is when ¢(@(t) ~ 0. In this case, rg will be dominated by A.
In this case, rg(h; f,t,ef) < 1 for all h and h will thus monotonically increase until the
maximum number of iterations is reached (which we set max_iter to 20). This occurs, for
example, with any (¢—1)-th degree polynomial. In this case, the method provides a warning
but does not flag this as a failure. Note that in this case, h is a good choice because sending
h* — oo would allow for indefinite reduction in the noise.

V. Extension to Standard Deviation. In some settings, we only have access to the standard
deviation of the noise, where e(x) is modeled as a random variable. Assuming E[e(z)] = 0,
one can extend this procedure to the stochastic setting by replacing e with o5 = /E[e(x)?].
While finite termination (see next subsection) is not guaranteed, if the procedure succeeds,
it will yield an h that has the same dependence on o and |¢(?)(t)| as the optimal finite-
difference interval with respect to its mean-squared error.

VI. Error Bound Estimate on Gradient. Using the h we obtain from our procedure, we can
approximate the error bound. Ignoring the o(h9~%) term, the error is approximately given
by:

€yt h) = leg| [ 6D (O] BT + uullresh ™.

As we have shown in (3.8), we can bound ‘(b(q) (t)| by

€r(ry +1
WWM<fLWﬂ

Therefore, we can approximately bound the error by

@mms(wwwuwwwﬁqw¢

|er|

In practice, we have found that this error bound is able to obtain an order-of-magnitude of
the actual error, but may underestimate the error due to the o(h9~%) term.

3.2 Finite Termination

Next, we prove a finite termination theorem for Algorithm 2. We start by making the
following assumptions:

Assumption 3.1. The testing ratio rg satisfies:
Irs(h; é,t,ep) —rs(h; frt,ef)] <1, VEER, h>0

This assumption is satisfied by our requirement that |||y = 1 and that |e(t)| < €.
Note that this can be easily satisfied by simply rescaling the numerator to ensure that the
total noise accumulated in the numerator is bounded by €.

14



Assumption 3.2. As a function of h, rs(h; ¢,t,€r) is continuous with rs(0;¢,t,e¢) =0,
and there exists an integer K € N such that

rs(25ho; ¢, t,ep) > 1y — 1

Assuming that ey > 0, the requirement that rs(0; ¢,t,€e7) = 0 is automatically satisfied
by validity of the testing ratio (3.4). The second part of Assumption 3.2, while technical,
is satisfied, for example, when ‘¢(q) ()| =n >0 for all £ € [min;{t + h5;}, max;{t + h3,}].
With these assumptions, we can now show finite termination.

Theorem 3.3. Suppose Assumptions 3.1 and 3.2 are satisfied. In addition, suppose v, and
r; are chosen such that 0 < r; <r, — 2. Then, Algorithm 2 will terminate successfully in a
finite number of iterations.

Proof. We assume that h > 0. Assume by contradiction that Algorithm 2 does not termi-
nate finitely. We denote the variables [, u, h used at the beginning of the k-th iteration of
Algorithm 2 as i, ug, hg, respectively. Obviously, we have

0 <l <hp<u Vk€N,

and
lp <lkt1 < uggr < ug, Vk €N

First, we show that rg(ly; ¢,t,er) < r;+ 1 for all k& € N, by induction on k. Clearly
this is true for k = 0 since lp = 0, and we have rg(0;¢,t,e¢) = 0 by Assumption 3.2.
Suppose the statement holds for £ < K. We have two cases: (1) rg(hk; f,t,ef) < 1y,
which by Assumption 3.1 implies rg(hx; ¢, t,€r) < rs(hi; f,t,e) +1 <r;+ 1. In this case
lks1 = hi,sors(lgi1;0,t,€p) =rs(hi; .t ep) <r+1. (2) rs(hi; f,t,ef) > ry, in which
case [g4+1 = lx so by the induction hypothesis rs(lgy1;0,t,€r) = rs(lx; ¢, t,ep) < rp+ 1.
Therefore the induction hypothesis holds for (K + 1)-th iteration.

By a similar argument, we can show that either uj, = 400, or up, < +o0o and rg(ug; ¢,t,e5) >
r, — 1 for all k € N.

In summary, we can show that for all £ € N, we have

either r5(lk; d,t,€r) <+ 1 <1y —1 <rg(ug; ¢, t,ep), (3.16)
or rs(lg;¢,t,ef) <rp+1 and wuy = +oo. (3.17)

Next, we claim that there exists K; € N such that up < +oo for k& > Kj. Suppose
this is not the case, then we have rg(hy; f,t,ef) < r;, Vk € N. In this case, we have
hig+1 = 2lg+1 = 2hy, so hy = 26hg for all k € N. By Assumption 3.2, there exists K € N
such that rg(hg; ¢, t,er) > ry, — 1, and since rg(hg; f,t,ef) > rs(hi; ¢,t,€p) — 1, we have
rs(hi; f,t,€f) > 1y —2 > 1y, contradicting the inequality rg(hy; f,t,€¢) <1, Vk € N. This
proves the existence of K.

We are now ready to present the contradiction. For k > K7, since ui < 0o, we have

1
Ugq1 — g1 = 3 (ur — )
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This implies that u — I, — 0. Since rg(h; ¢,t,€f) (as a function of h) is continuous and
ur, < 400, [0,ug, | is compact so rg(h; ¢,t,€r) (as a function of h) is uniformly continuous
on [0,ug,|. Note that Iy, ur € [0, ug,] for kK > K, therefore we have

TS(uk;¢at7€f) - T'S(lk;¢,t,€f) —0
This contradicts the fact that
Ts(lk;d),t,ef) <rt+l<r,—1< Tg(uk;(;s,t, Ef), Vk € N, k> K;

Therefore, Algorithm 2 must terminate finitely. Clearly, whenever it terminates, the output
hpr must satisfy
TS(hR; f7 t, Gf) € [Tla ru]'

4 Numerical Experiments

In this section, we present numerical results demonstrating the reliability of our finite-
difference interval estimation procedure. We first utilize the method for computing first
and second derivatives of commonly tested functions, with added noise. We then insert
our procedure into a standard L-BFGS implementation and demonstrate its usefulness on a
subset of synthetic noisy CUTEst problems [11]. All methods were implemented in Python 3.

4.1 Finite-Difference Interval Estimation

We first test our proposed procedure on several univariate functions. We focus on the case
where d = 1 and 2 as this is most relevant to optimization. We test Algorithm 2 using 6
different estimating schemes, shown in Table 4.1. The testing ratios are generated using
formula (3.14) with different choices of a. The « for each scheme is chosen as the smallest
integer such that r* > 8 = 2.

label d S w qg o r* Comment

FD 1 (0,1) (—1,1) 2 4 3 forward difference

Ch 1 (—1,1) (—1/2,1/2) 3 3 3 central difference
FD3P 1 (0,1,2) (—3/2,2,-1/2) 3 3 3.69 forward difference w/ 3 points
FD 4P 1 (0,1,2,3) (—11/6,3,-3/2,1/1) 4 3 8.25 forward difference w/ 4 points
CD4P 1 (—2,-1,1,2) (1/12,-2/3,2/3,—1/12) 5 2 2.5 central difference w/ 4 points
L2.¢cb 2 (-1,0,1) (1,-2,1) 4 2 3 2nd-order central difference

Table 4.1: Schemes for approximating the d-th order derivative used in the experiments.
The scheme is defined by S = (w, s) as in (3.1); ¢ is defined in (3.2).
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Figure 4.1: Worst case relative error dg(h; ¢,t,€y) for forward and central differences against
h on function ¢(t) = cos(t) with different noise levels; the vertical dashed line represents
the hy output by Algorithm 2.

For a specific testing function ¢ at point ¢ with noise e¢ and scheme S = (w, s), we plot
the worst case relative error, as a function of differencing interval h, defined as:

1 Z?:l ’qub(t + th)
6 (1)] e

This function captures the relative error of the estimation scheme S on the noisy function
f at t, in the worst case. The differencing interval h that minimizes dg(h; ¢,t,€s) is the
optimal h. Notice that dg(h;¢,t,€r) is a deterministic function that does not rely on the
realization of actual noise in f(¢).

We manually inject uniformly distributed, stochastic noise into ¢,

F() = 6(t) + €(t), €(t) ~ Uniform(—es, ).

5S(h; o, t, 6f) = ‘ - ¢(d) (t)

€f
- uwulhd] .

independent of all other quantities. We then apply Algorithm 2 to obtain h;. We plot h;
and observe how far it is from the minimizer of d5(h; ¢,t,€f). In Appendix B, we report the
minimizer of the function dg(h; ¢,t,€¢) obtained by scipy.optimize.minimize_scalar.

4.1.1 Robustness to Different Noise Levels

To demonstrate that our method is reliable across a range of noise levels, we test our
adaptive procedure for both forward and central differences (FD, CD) on the simple function
@(t) = cos(t) for different noise levels. The plot of the worst case relative error and obtained
interval hy are illustrated in Figure 4.1. Our results demonstrate that our method performs
consistently well across a range of noise levels. For all figures on all finite-difference schemes
listed in Table 4.1 and complete numerical results, see Appendix B.
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4.1.2 Difficult and Special Examples

In this subsection, we consider examples of difficult functions given in [9] and [22]. These
examples include:

1. o(t) = (et — 1)2, at t = —8. This function has extremely small first and second-order
derivative at ¢ = —8, but quickly increases as ¢ increases beyond ¢t = 0; a naive choice

of h = y/es/|p(t)| for forward differences can result in an extremely large h and
lead to huge error.

2. ¢(t) = !9 at t = 0.01.

3. ¢(t) = t* + 3t2 — 10t, at t = 0.99999. This function is considered difficult because
¢'(1) = 0, and represents a case where the estimated derivative is very close to 0. In
addition, this function is a fourth-order polynomial, so the optimal h for CD_4P is 4oc0.

4. ¢(t) = 10000t + 0.01¢% + 5t, at t = 1077, This example is difficult in that it has ap-
proximate central symmetry at t = 0, which can lead to issues for adaptive procedures
such as those proposed in [9].

For each example, we again fix ¢ = 1073, and perform our estimation procedure for
different schemes, and plot the worst case relative error. The results can be found in Figure
4.2.

For the first two examples, we see that our procedure is able to estimate the derivative
well even when the function increases rapidly. These are cases where using our adaptive
procedure is significantly more effective than computing an interval based on higher-order
derivative information at the point of interest, as observed in [22].

It is also interesting to observe the results for the two polynomials. For ¢(t) = t* +3t2 —
10t and scheme CD_4P, our procedure generates a large h+; this is consistent with the fact
that scheme CD_4P has ¢ = 5, and ¢(®)(€) = 0 for all £ on this example, which implies that
we should choose h to be as large as possible. This similarly holds true for the schemes
FD_4P and CD_4P on the function ¢(t) = 10000t + 0.01¢% + 5t.

While theoretically speaking we should choose h = oo in such cases, we can observe in
Figure 4.2 that this is not the case. When plotting the worst-case relative error, we see that
there exists a large h such that 65(h; ¢, ¢, €¢) is minimized, beyond which the relative error
begins to sharply increase. This phenomenon is due to round-off error. When h becomes
too large, round-off error (which is multiplicative) will dominate €y; this approximately
happens when max; |¢(t 4 sjh)| epr becomes comparable to €.

4.2 Finite-Difference L-BFGS

In order to show the robustness of our procedure, we apply it within the L-BFGS method.
We now let ¢ denote a smooth multivariate function, ¢ : R” — R, and consider the problem

min ¢(z), (4.1)
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Figure 4.2: Worst case relative error dg(h; ¢,t,€f) against h on several special cases; the
vertical dashed line represents the hi output by Algorithm 2.
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while only provided noisy function evaluations of the form
f(z) = ¢(z) + e(x), e(x) ~ Uniform(—ey, ef), (4.2)

where € € {1071,1073,107°,10~7}. We perform our tests on a subset of synthetically
generated noisy CUTEst problems [!1] detailed in Table 4.2.

Problem Dim (n) Problem Dim (n) Problem Dim (n) Problem Dim (n)

AIRCRFTB 5 CRAGGLVY 100 FREUROTH 100 PFITA4LS 3
ALLINITU 4 CUBE 2 GENROSE 100 QUARTC 100
ARWHEAD 100 DENSCHND 3 GULF 3 SINEVAL 2
BARD 3 DENSCHNE 3 HAIRY 2 SINQUAD 100
BDQRTIC 100 DIXMAANH 90 HELIX 3 SISSER 2
BIGGS3 3 DQRTIC 100 NCB20B 100 SPARSQUR 100
BIGGS5 5 EDENSCH 36 NONDIA 100 TOINTGSS 100
BIGGS6 6 EIGENALS 110 NONDQUAR 100 TQUARTIC 100
BOX2 2 EIGENBLS 110 OSBORNEA 5 TRIDIA 100
BOX3 3 EIGENCLS 30 OSBORNEB 11 WATSON 31
BRKMCC 2 ENGVAL1 100 PENALTY1 100 wooDS 100
BROWNAL 100 EXPFIT 2 PFITILS 3 ZANGWIL2 2
BROWNDEN 4 FLETCBV3 100 PFIT2LS 3

CLIFF 2 FLETCHBV 100 PFIT3LS 3

Table 4.2: Subset of unconstrained CUTEst problems and their problem dimensions [11].

The L-BFGS method has the form

The1 = xk — apHig(zy), (4.3)

where g(xy) is a finite-difference approximation to the gradient, Hy is the L-BFGS matrix
with memory of 10 (see [20]), and «ay is a steplength selected by a relaxed Armijo-Wolfe
line search designed to handle noise.

To describe the line search, let o] denote the jth trial steplength at iteration k. Similar
to Shi et al.[21], the Armijo condition is relaxed as follows:

(= ) + cagg(@) if j =0, g(wr) px < —eglzx) ok
fop +ogpr) § < flaw) + arang(er) o+ 2, if 5> 1, glag) pe < —€g(a)|lpe]  (4.4)
< f(zx) if g(wi) o > —€g(zi)||pll,

where ¢; = 1074, ¢, = 0.9, and €g(xy) is the estimated gradient error described below.
Thus, we relax the line search only when the gradient is reliable; otherwise, we enforce
simple decrease. We check the Wolfe condition by evaluating the directional derivative
Vo(z)Tp using finite differences along the direction p, as in [21].

4.2.1 Forward Differences

In the first set of experiments, the gradient approximation g(zy) is obtained by forward

differences,

f(z + hie;) — f(z)
h; ’

l9(w1)); =
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where the differencing interval h; is determined by one of the following three strategies.

1. Fixed. The interval h is fixed across all components ¢ and for the entire iteration. This
strategy tries to emulate the common practice of hand-tuning h; at the start using problem
specific information. We simulate this using the formula

h=2,/%  where Ly = max {101, \/ZL[V%(%)E@' } : (4.5)
L2 n

which assumes that the diagonals of the Hessian are known. The gradient error is ap-
proximated assuming Ly is correct, that is, ¢;(x) = 2,/nLaes. We created this option for
benchmarking purposes only.

2. MW. The Moré-Wild heuristic for estimating and interval h; for every component i of the
gradient. We set Ly = max{lO_l,ﬁg}, where Lo is the estimate given by the Moré and
Wild heuristic. If the heuristic fails, we set Ly = 10~!. The gradient error is estimated
similar to Fixed but componentwise, i.e., €5(z) = 2y/€r > ;" Laj.

3. Adaptive Our adaptive procedure for estimating h; along each component using Algo-
rithm 1.

For the MW and Adaptive strategies, we re-estimate the second derivative or finite-
difference interval whenever a partial derivative needs to be approximated. For example,
when computing the full gradient, we estimate the finite-difference interval along each co-
ordinate direction separately. We chose not to compare against Gill et al. [9] as we regard
the Moré-Wild heuristic to be an improvement over their approach.

We present results for a few representative problems in Figure 4.3. The L-BFGS method
described above is terminated if no further progress is made on the objective function over
5 consecutive iterations. Figure 4.3 plots the optimality gap ¢(xx) — ¢* against the number
of function evaluations. The optimal value ¢* is obtained by solving the original problem to
completion without noise with L-BFGS. While we found Moré and Wild’s heuristic to work
well for €5 < 107!, their heuristic fails frequently for the case where e F= 10~%. (This can
be seen in the complete results presented in Appendix B.) For this reason, we report results
for e = 10~! and 107° to demonstrate the robustness of our algorithm compared to Moré
and Wild for different noise levels. When Moré and Wild’s heuristic succeeds, we observe
that our algorithm (Adaptive) is able to more efficiently achieve comparable accuracy to
the Moré and Wild heuristic, while attaining more accurate solutions than using a fixed
interval for some problems. The lack of accuracy in the Fixed strategy can be explained
by inability for a fixed interval to adapt to changes in the Hessian over the course of the
iteration — an exception being the TRIDIA problem, which is very well scaled.

4.2.2 Central Differences

In the second set of experiments, we employ central differences,

[g(z; h)]; = flz hiei)Q;Lif(a: = hici)
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Figure 4.3: Comparison of forward-difference L-BFGS methods with difference intervals
determined using a fixed interval, the Moré and Wild heuristic, and our adaptive algorithm.
Comparisons are made on representative problems with noise level e = 107! (top) and 107>
(bottom). The solid line plots the observed function value and the dashed line plots the
true function value. The dashed black line shows the noise level €, of the function.

The differencing interval is determined via a Fixed strategy or the Adaptive procedure
described in Algorithm 2. (The Moré and Wild’s heuristic does not apply to this case.) For
the Fixed strategy, we choose

h =y 3¢t where Lz = max { 1071 1 zn: (V26 (o + hea)lis — [V2(o)Li
LS ) ) g

n
i=1 h

(4.6)
and h = max{1, |[xo];|}\/€ar. Note that noiseless forward differences are applied to the true
Hessian to estimate the third derivative along each coordinate direction at the initial point.
This synthetic Fixed strategy is presented for benchmarking purposes; it is not generally
viable in practice.

Representative results are shown in Figure 4.4. Similar to the forward-difference case,
our algorithm is able to obtain higher accuracy in the solution compare to the Fixed strat-
egy, but at higher cost as expected. Complete experimental results for all problems and
noise levels are presented in Appendix B.

5 Final Remarks

We have developed a principled and robust procedure for determining the difference interval
for estimating gradients in optimization methods, assuming that the noise level is known.
Our procedure applies to any finite-difference scheme, including central- and higher-order
difference schemes. It performs a bisection search on a ratio that balances the truncation
and measurement errors such that one typically attains a near-optimal difference interval.
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Figure 4.4: Comparison of central-difference L-BFGS methods with difference intervals
determined using a fixed interval and our adaptive algorithm. Comparisons are made on
representative problems with noise level ey = 1075, The solid line plots the observed
function value and the dashed line plots the true function value. The dashed black line
shows the noise level € of the function.

Whereas some methods for estimating the difference interval prioritize efficiency, such as
Moré and Wild [19], and others compromise cost and accuracy, such as Gill, et al. [9], our
approach is designed to be as robust as possible so that finite-difference gradient approx-
imations can be reliably used in established nonlinear optimization techniques for solving
noisy problems.

As demonstrated in our experiments, reusing previous difference intervals from prior
iterations allows us to reduce the cost of the estimation procedure. Additional savings can
achieved by re-estimating the difference interval periodically; for simple problems only a
few times during the course of the optimization will suffice. The ability to exploit paral-
lelism by distributing the computation of the gradient is an advantage that should not be
underestimated when comparing the finite-difference approach with other techniques for
derivative-free optimization.
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A Finite-Difference Formula Derivation and Tables

We summarize the different standard finite-difference schemes with equidistant points, their
theoretical error, optimal steplength, and optimal error in terms of the noise level €; and
local bound on the g-th derivative L, for a smooth univariate function ¢ : R — R in Tables
A.1 and A.2. For completeness, we provide a complete derivation of the errors for a generic
finite-difference approximation to the d-th order derivative below.

We will use f: R — R to denote the noisy function evaluations f(t) = ¢(t) + €(t). We
will consider two settings for €(t): (1) we will assume that €(t) is bounded, i.e., |e(t)| < €
for all t; (2) we will assume that €(¢) is a random variable with Ele(t)] = 0 and E[e(t)?] = JJ%
for all t. The tables vary the number of evaluated points m and is dependent on the local
Lipschitz constant L, > 0 which bounds the g-th derivative

6D (t + hos)| < Lg

for all s € [s1, S, where ¢ is the order of the remainder term in the Taylor expansion.

In the most general case, given distinct shifts {s;}7", and points {t1,....tm} = {t +
hsi,t 4+ hsa,...,t + hsy,}, one can derive a generic finite-difference method to approximate
the d-th derivative of the form:

> wif(t+ s;h)

o (1) ~ o = 9t h).

We will assume without loss of generality that s; < sy < ... < s,,. First, note that f(¢ can
be decomposed into a noiseless finite-difference formula and its corresponding error:

2je wid(t +sih) DLy wye(t + sjh)
hd + hd )
Considering the noiseless finite-difference term, since the function is smooth, one can write

the Lagrange remainder form of the Taylor series expansions for each function evaluation
without noise as:

F Dt h) =

=}
=

— 1 1
o(t + hs;j) = ﬁﬁﬁm (1)} + a¢(q) (&)5]
1! !

Il
o

for £ € [t,t + hs;] for j =1,...,m. Therefore, if the weights w satisfy

1 «— . 0 forl#d, 1=0,1,...,q—1
N st —
d!; 7% {1 forl =d

then

Mo (t ih B
Z]_l wj}(fd( + sjh) _ (b(d) (t) + hqil ijqb@(fj)sg-
=

This can be written compactly by the linear system of equations:

V(s)Tw=dl"e, 4
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where V' (s) € R™*7 is the Vandermonde matrix defined as

q—1 _q-2 0
Sl 1 Sl 2 ... 81
s sd cee 8y
v= |t
-1 —2
st s s

and e,_q € R? is the (p — d)-th coordinate vector.

To derive a reasonable bound on the total error, suppose we are given hg > 0 and a
bound on ¢(@

16 (t + sho)| < Lg

for all s € [s1,sy,]. If we assume that the error is bounded, i.e., |e(t)| < €7, then one can
then bound the error in the approximation by:

—d m
7O () — o) < 1 Zugu”“’”lef— ()

for all 0 < h < hg. If we assume instead that Var(e(t)) = O'J%, then we can similarly show

L2pa=d) w303
B3 ) = 9 0)°) < o D i+ S = o

Jj=1

for all 0 < h < hg.

The above Taylor series analysis is pessimistic in that it requires multiple §; points,
and therefore yields a loose bound when applying the triangle inequality. Instead, one can
consider the derivation of finite-difference schemes for approximating the first derivative
at an interpolation point using Lagrange polynomials, which yields a tighter bound on the
€rror.

As above, suppose we are given distinct points {t¢1,...,t,,} = {t + hs1,...,t + hs,, } and
we are interested in approximating ¢(!)(t). Recall that the Lagrange basis polynomials are
defined as:

o =) wn(d o T
wpaj (t) - Hk;éj(tj _ tk) - w,(,i)(tj)(f ’ m(t) - H(t

- tj) j=1

Then the Lagrange interpolation is defined as:

=D W (D9(t;)
j=1

It is well-known that the remainder is

(D) — t(f) = 20 g g)

27



for some £ € [t1,tn]. Note that the finite-difference formula can simply be obtained by
differentiating the Lagrange polynomial

(N(1) i¢
7=1

Therefore, the finite-difference coefficients are obtained by evaluating 1#7(7% (t). The error is
also obtained by noting

oM (0) = ¢V (D) +

Since

plugging in £ = ¢; for any i = 1,...,m, we get the following equality
(1) (M)
1) = (D) 4+ “m B ym) gy (§>
oW (1) = eV (1) + =200 (€) = eV (1) + [ [ 1 - :
JF
Given hg > 0 and a bound on ¢(™
|6 (¢ + hos)| < Lum

for all s € [s1,sy,] and assuming t = t; is one of the interpolation points, we obtain the
bound

60 () — (0 (g < Lo e
- m! J
J#i
and if we incorporate the error in the function evaluations, we obtain a error and variance
bounds of

m—1
£y — 6O (0] < 2o s+ 12her —

|
m! iz h
12, 52m ) Jwli3o3
B[O ) -0V 0)) < =2 [+ L = oih)
ji

for all 0 < h < hg.
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6¢

m f(l)(té h) €g(h) h* €g(h*)
2 f(t'*‘h]z—f(t) L2h + 26f 92 zJ; 2\/@
3 —3f(t)+4f(t24}rbh)—f(t+2h) Lgh2 + 4Ef 3 % 62/3L1/3 2/3
4 —11f(t)+18f(t+h)—9f (t+2h)+2f(t+3h) L4hd 20€f 4/80€; 8.53/4 L1/4 3/4
6h + 9L4 3v3 5
95 f (1) 448 F (t+h)—36 £ (t-+2h) 16 f(t-+3h)—3f(t+4h) L h4 3ze 40¢ 5\4/5 52/511/5 4/5
5 12h s 3hf \ SL;{ 4(3) 2%/ L €y

Table A.1: Table containing the finite-difference formula, deterministic error bound |f()(¢; h) — ¢ (t)] < €,(h) for generic
h, optimal h*, and optimal error €,(h*) for forward-difference schemes with number of points m € {2,3,4,5}

m f(l)(t§ h) eg(h) h* eg(h")
F(t+R)—f(t—h Lah? | € 3es 2/3 21/3 2/3
2 (Ll 36 5 Vo e T
—2h)—8f(t—h)+8f(t+h)— f(t+2h 3e 45¢ 4/5 1/5 4/5
4 f(t=2h)-8f(t )l-zkhf(t+ )—f(t+2h) 0 + f 5 4L§ %( ) 54/5L/ /

G —f(=Bh)+9f(t=2h)—d5f(t—h)+45] (t-+h)~9f (t+2h)+(t+3h)
60

LyhS 116 385¢ 778/T 17 6/7

o+ VL, mmmElr 6

Table A.2: Table containing the finite-difference formula, deterministic error bound |f()(¢;h) — ¢ (t)| < €,(h) for generic
h, optimal h*, and optimal error e,4(h*) for central-difference schemes with number of points m € {2,4,6}




FD(t; ) o2(h) h* oy(h*)

p g
h)— L2h2 | 2€3
1 f(t+]2 f® CLLA ITQf gl/4 /1% 21/4@
—3f(t)+4f (t+h)—f(t+2h L2h* | 13¢5 1/3 2/3
9 f(@t) f(2h )—£( ) LA 2h2f (%)1/3131/6 3/%‘3 \QQ\/CL/ /
—1Lf(0)+18/ (t+h) 9] (t+2h)+2/ (t+3h) L3h® | 265¢¢ 9 3/800r1/8 4f¢ 1 3/8 1/4 3/4
3 oh o+ T (3)Y5265155/ 78 57/5265%5Ly )
4 =25f(0)+48F (t+h) =36 (t+2h)+16f(t+3h)—3f (t-+4h) L3h° 2245¢}  53/104491/10 o[y 57/10449%/5 71/5,4/5
Toh o5 T T 273 VIs  asis U5 6f
Table A.3: Table containing the finite-difference formula, MSE error bound E[(f(M)(¢;h) — ¢V (1))?] < o ( ) for generic h,
optimal h*, and optimal error o,(h*) for forward-difference schemes with number of pomts m € {2,3,4 5}
w
]
P FO(t; h) oz (h) h* og(h*)
f(t+h)—f(t=h) L3ht € € 3 71/3 2/3
2 2h 55 T e 3y 1 f oLy ey
F(t—2h)—=8f(t—h)+8f (t+h)—f(t+2h) L2h8 | 65¢7 3/10 1 51/10 5 /€7 57/10.132/5 ;1/5 4/5
4 2R goo” + 72h£ (2) 131108 LfS T12.0a Ly €f
6 — f(t—3h)+9F (t—2h)—A45 f (t—h)+45f (t+h)—9 f (t+2Rh)+ f(t+3h) LZh1Z | 2107¢; 72/7431/14 . [ef 717/14433/7L1/7 6/7
60R 1402 T 180072 3/ A\ L7 0327 L7 €f

Table A.4: Table containing the finite-difference formula, MSE error bound E[(f((t; h) — ¢(M(1))?] < o2(h) for generic h,

optimal h*, and optimal error o4(h*) for central-difference schemes with number of points m € {2,4,6}.



B Complete Experimental Results

Here, we present the complete experimental results from Section 4.

B.1 Robustness to Different Noise Levels

We test our procedure on a simple function ¢(t) = cos(t) for different noise levels using
different schemes listed in Table 4.1. These are shown in Figure B.1. Detailed numerical
results, including the number of iterations and relative error, are listed in Table B.1.

Observe that our method is able to consistently achieve low relative error using a similar
number of function evaluations across all tested noise levels. This is a desirable property, as
it demonstrates that our initial choice of the interval A and our method is consistent over
different noise levels.

B.2 Affine Invariance

One advantage of our proposed method is that the testing ratio remains unchanged under
affine transformations of the function. It is particularly obvious that our procedure is
invariant when adding a constant to the function. Hence, we focus on transformations of
the form ¢(t) — a - ¢(b-t) for some a,b # 0.

To do this, we test Algorithm 2 on the function ¢(t) = a -sin(b- t) at t = 0 for various
a and b. We fix the noise level to be ef = 1073, The results are shown in Figure B.2.
Detailed results can be found in Table B.2 and B.3. As seen in Figure B.2, our method is
affine-invariant and can output consistently correct results for different a and b.

B.3 Difficult and Special Examples

Here, we present the full table of results for the examples listed in Section 4 in Table B.4
with €y = 1073, For reference, the considered problems are:

Log(t) = (e —1)% at t = 8.

2. ¢(t) = !9 at t = 0.01

3. ¢(t) = t* 4 3t% — 10t, at t = 0.99999.

4. ¢(t) = 10000t> 4 0.01¢% + 5t, at t = 1077,

B.4 Comparison with Moré-Wild Heuristic

We compare our adaptive forward-difference procedure against the Moré-Wild heuristic [19],
as described in Section 2.1.

First, observe that if function ¢ has (near) central symmetry at ¢, then Moré-Wild
heuristic is very likely to fail. To demonstrate this, we test on ¢(t) = sin(¢) with various
value of ¢ close to 0 and different noise levels €y. The results are summarized in Table B.5.
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Figure B.1: Worst case relative error ds(h; ¢,t,€r) against h on function ¢(t) = cos(t) with
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different noise levels; the vertical dashed line represents the ht output by Algorithm 2.
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Figure B.2: Worst case relative error dg(h; ¢, ¢, €s) against h on function ¢(t) = a - sin(b - t)
for different @ and b; the vertical dashed line represents the A+ output by Algorithm 2.

33



Next, we test our adaptive procedure and the Moré-Wild heuristic on ¢(t) = a -
(exp(b-t) —1) at t = 0, with a fixed noise level: ey = 1E-3. We summarize our result
in Table B.6. Notice that Moré-Wild heuristic may not be able to find a suitable estimation
for h, in which case a failure is declared. In such cases, we will report the result as “——".

We can see that when the Moré-Wild heuristic does not declare a failure, it usually
outputs an interval h that is quite close to our procedure and produces similar relative
error as ours. However, there are many cases where Moré-Wild heuristic fails, while our

procedure works very robustly in all cases.

B.5 Finite-Difference L-BFGS

We present the total number of function evaluations and final optimality gap ¢(x) — ¢* used
by each method in Tables B.7-B.14.

In general, our adaptive procedure is more robust to different noise levels. Our method
only fails when the initial choice of h is not sufficiently small to initially identify the local
behavior of the function. This can be seen, for example, with the BOX2 example. On the
other hand, Moré and Wild’s heuristic frequently fails when the noise level is large (for
example, with e; = 1071). This is due both to the case where ¢(z) ~ 0 and hence (2.11)
fails, as well as the case where two iterations are insufficient to find an h that satisfies their
conditions. In both cases, we denote a failure case with *. As expected, using a fixed interval
is always efficient, but may perform poorly when the Hessian in the function changes, as
described in Section 4.
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scheme h+ h* r n_iter num_eval relative error €f

FD 2.00e-04 2.72e-04 2.08 1 3 1.86e-05 1.00e-08
FD 6.32e-04 8.59e-04 2.00 1 3 4.21e-05 1.00e-07
FD 3.50e-03 2.73e-03 4.79 4 8 1.17e-03 1.00e-06
FD 6.32e-03 8.64e-03 1.77 1 3 1.72e-03 1.00e-05
FD 2.00e-02 2.76e-02 2.00 1 3 1.69e-03 1.00e-04
FD 6.32e-02 9.05e-02 1.73 1 3 5.07e-04 1.00e-03
FD 5.00e-01 1.73e4+00 3.89 3 6 9.86e-02 1.00e-02
FD 6.32e-01 8.26e4+-00 1.52 1 3 2.97e-01 1.00e-01
CD 3.11e-03  3.29e-03 2.40 1 4 1.89e-06 1.00e-08
CD 6.69e-03  7.09e-03 2.66 1 4 5.39e-06 1.00e-07
CD 1.44e-02 1.53e-02 2.72 1 4 9.35e-06 1.00e-06
CD 3.11e-02  3.29e-02 2.05 1 4 3.34e-04 1.00e-05
CD 6.69e-02 7.09e-02 2.18 1 4 1.33e-03 1.00e-04
CD 1.44e-01 1.53e-01 2.55 1 4 3.32e-03 1.00e-03
CD 3.11e-01 3.30e-01 1.89 1 4 3.84e-02 1.00e-02
CD 6.69e-01 7.74e400 2.01 1 4 5.71e-02 1.00e-01
FD_3P 3.91e-03 4.14e-03 2.88 1 5 1.01e-05 1.00e-08
FD_3P 8.43e-03 8.92e-03 3.24 1 5 2.01e-05 1.00e-07
FD_3P 1.82e-02 1.92e-02 2.76 1 5 2.05e-04 1.00e-06
FD_3P 3.91e-02 4.11e-02 3.28 1 5 5.82e-04 1.00e-05
FD_3P 8.43e-02 8.77e-02 2.86 1 5 5.65e-03 1.00e-04
FD_3P 1.82e-01 1.86e-01 3.10 1 5 2.29e-02 1.00e-03
FD_3P 3.91e-01 2.99e4+00 2.88 1 5 9.96e-02 1.00e-02
FD_3P 2.53e+00 2.12e4+01 5.75 2 7 4.17e-01 1.00e-01
FD_4P 2.16e-02  2.04e-02 9.36 5 18 2.14e-06 1.00e-08
FD_4P 4.61e-02 3.67e-02 16.51 4 13 1.14e-05 1.00e-07
FD_4P 8.19e-02 4.76e-01 10.80 4 13 9.43e-05 1.00e-06
FD_4P 1.70e-01 1.25e-01 4.40 5 18 6.15e-04 1.00e-05
FD_4P 2.59e-01 3.28e+00 14.62 4 13 7.80e-04 1.00e-04
FD_4P 3.07e-01 3.28e+00 4.23 1 6 5.46e-03 1.00e-03
FD_4P 5.46e-01 8.78e+00 6.44 1 6 3.19e-02 1.00e-02
FD_4P 2.91e4+00 8.79e+00 4.28 2 8 9.55e-01 1.00e-01
CD_4P 4.08e-02 4.22e-02 2.52 1 6 1.16e-07 1.00e-08
CD_4P 6.46e-02 6.69e-02 2.04 1 6 8.34e-07 1.00e-07
CD_4P 1.02e-01 1.06e-01 1.95 1 6 8.81e-06 1.00e-06
CD_4P 1.62e-01 1.68e-01 1.79 1 6 4.29e-05 1.00e-05
CD_4P 2.57e-01 2.67e-01 1.71 1 6 4.00e-04 1.00e-04
CD_4P 4.08e-01 4.25e-01 1.89 1 6 8.32e-04 1.00e-03
CD_4P 8.07e-01 7.97e+00 4.83 4 20 5.87e-03 1.00e-02
CD_4P 1.54e+400 2.06e+01 4.25 3 14 2.34e-01 1.00e-01
L2_CD 3.29e-02 3.07e-02 3.78 4 15 1.00e-04 1.00e-08
L2_CD 4.68e-02 5.46e-02 1.89 1 5 8.55e-05 1.00e-07
L2_CD 1.04e-01 9.71e-02 4.22 4 15 7.28e-04 1.00e-06
L2_CD 1.48e-01 1.73e-01 1.90 1 5 1.06e-03 1.00e-05
L2_CD 3.29e-01 3.07e-01 4.03 4 15 8.28e-03 1.00e-04
L2.CD 5.85e-01 5.49e-01 3.81 4 15 2.84e-02 1.00e-03
L2.CD 1.04e+00 9.87e-01 3.45 4 15 7.95e-02 1.00e-02
L2.CD 2.96e+00 1.55e+01 5.45 2 7 5.40e-01 1.00e-01

Table B.1: Detailed results for ¢(¢) = cos(t) with different noise levels; r represents the
final testing ratio; h* is the h that minimizes dg(h; ¢,t,€s) reported by minimize_scalar
function in scipy.optimize and could be unreliable.
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a b scheme h+ h* r n_iter num_eval relative error

0.10 0.10 FD 2.53e+00 3.94e+00 1.89 5 8 1.75e-02
0.10 1.00 FD 3.48e-01  3.94e-01 4.34 6 11 5.29e-02
0.10 10.00 FD 2.77e-02  3.94e-02 2.68 4 8 2.01e-05
1.00 0.10 FD 1.39e+00 1.82e+00 2.61 7 12 1.30e-02
1.00 1.00 FD 1.58e-01 1.82e-01 4.91 3 6 3.01e-03
1.00 10.00 FD 1.58e-02 1.82e-02 4.58 2 4 6.97e-03
10.00 0.10 FD 6.32e-01 8.44e-01 3.23 4 7 4.76e-04
10.00 1.00 FD 6.32e-02 8.44e-02 3.38 1 3 2.83e-04
10.00 10.00 FD 6.92e-03 8.44e-03 3.34 5 9 2.92e-03
0.10 0.10 ¢D 3.89e+00 3.12e+00 5.47 4 10 2.51e-02
0.10 1.00 €D 2.88e-01 3.12e-01 2.30 3 10 1.38e-02
0.10 10.00 cD 3.20e-02  3.12e-02 3.13 4 14 1.70e-02
1.00 0.10 ¢cp 1.30e+00 1.44e4+00 2.17 3 8 2.81e-03
1.00 1.00 cDp 1.44e-01 1.44e-01 2.97 1 4 3.46e-03
1.00 10.00 CD 1.60e-02 1.44e-02 4.06 3 10 4.27e-03
10.00 0.10 €D 6.49e-01  6.70e-01 2.73 5 16 7.02e-04
10.00 1.00 €D 7.21e-02 6.70e-02 3.74 4 14 8.66e-04
10.00 10.00 €D 5.34e-03  6.70e-03 1.52 4 12 4.75e-04
0.10 0.10 FD_3P 4.91e+00 8.14e4+01 2.93 4 11 2.13e-02
0.10 1.00 FD_3P 5.45e-01 8.14e+00 2.45 2 7 6.48e-02
0.10 10.00 FD_3P 7.57e-02 8.14e-01 4.90 5 15 1.61e-01
1.00 0.10 FD_3P 1.64e+00 2.14e+01 2.25 3 9 8.79e-03
1.00 1.00 FD_3P 1.82e-01 2.14e+00 3.63 1 5 1.86e-04
1.00 10.00 FD_3P 2.02e-02 1.83e-02 4.43 3 9 1.15e-02
10.00 0.10 FD_3P 8.18e-01 8.45e-01 3.48 5 13 1.71e-03
10.00 1.00 FD_3P 9.09e-02 8.45e-02 4.58 4 11 1.77e-03
10.00 10.00 FD_3P 1.01e-02 8.45e-03 6.67 6 15 1.00e-03
0.10 0.10 FD_4P 9.33e+00 8.44e401 4.95 9 31 1.63e-01
0.10 1.00 FD_4P 9.79e-01 8.44e4-00 9.64 8 32 1.50e-01
0.10 10.00 FD 4P 1.96e+00 1.78e+01 7.71 7 29 9.60e-01
1.00 0.10 FD4P 2.76e4+00 3.59e+00 4.47 3 11 3.59e-03
1.00 1.00 FD_4P 3.07e-01  3.59e-01 6.55 1 6 8.16e-03
1.00 10.00 FD_4P 6.62e-01 5.88e+00 10.15 8 35 9.49e-01
10.00 0.10 FD_4P 1.84e400 2.25e4-00 6.57 4 14 3.68e-04
10.00 1.00 FD_4P 2.05e-01 2.71e+400 10.68 3 10 2.90e-04
10.00 10.00 FD_4P 3.07e-01 4.62e4+00 16.47 1 6 8.38e-01
0.10 0.10 CD_4P 6.52e+00 7.97e4+01 2.12 5 14 5.73e-03
0.10 1.00 cD_4P 6.11e-01 7.97e4+00 1.57 3 14 4.45e-03
0.10 10.00 cD_4P 7.64e-02 7.97e-01 4.32 5 18 1.06e-02
1.00 0.10 CD4P  4.08e+00 4.10e+00 2.30 7 26 9.02e-04
1.00 1.00 CD_4pP 4.08e-01 4.10e-01 2.30 1 6 9.02e-04
1.00 10.00 CD_4pP 3.82e-02 4.10e-02 1.68 6 20 6.98e-04
10.00 0.10 CD_4P 2.45e4-00 2.58e4-00 1.89 5 18 1.18e-04
10.00 1.00 CD_4p 2.55e-01 2.58e-01 2.31 4 20 1.39e-04
10.00 10.00 CD_4pP 2.55e-02  2.58e-02 2.31 5 14 1.39e-04

Table B.2: Detailed results for ¢(¢) = a - sin(b - t) with €; = 1E-3; r represents the final
testing ratio; h* is the h that minimizes ds(h; ¢, t, €7) reported by minimize_scalar function
in scipy.optimize and could be unreliable.
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a b scheme ht h* r n_iter num_eval relative error

0.10 0.10 L2.CD 9.36e+00 8.42e+4-00 4.39 8 23 5.97e-02
0.10 1.00 L2_CD 9.36e-01 8.42e-01 4.79 2 7 4.28e-02
0.10 10.00 L2_CD 8.78e-02 8.99e-01 3.28 5 15 5.32e-02
1.00 0.10 L2.CD  3.74e+00 4.70e+00 1.99 4 11 9.49e-03
1.00 1.00 L2CD 4.68e-01 4.70e-01 2.57 1 5 2.13e-02
1.00 10.00 L2_CD 4.39e-02  4.70e-02 2.15 6 17 1.70e-02
10.00 0.10 L2.CD  2.81e+4-00 2.64e+00 3.59 5 15 7.63e-03
10.00 1.00 L2.CD 2.34e-01  2.64e-01 2.62 2 7 6.94e-04
10.00 10.00 L2.CD 2.93e-02  2.64e-02 5.02 5 13 3.94e-03

Table B.3: Detailed results for ¢(t) = a - sin(b - t) with e; = 1E-3; r represents the final
testing ratio; h* is the h that minimizes dg(h; ¢, t, €;) reported by minimize_scalar function
in scipy.optimize and could be unreliable.

() scheme hy h* r n_iter num eval relative error
(¢! —1.0)* FD 1.01e4+00 1.46e4+00 4.49 3 5 1.02e400
(¢t —1.0)° cD 1.30e+00 1.53e+00 3.38 3 8 5.73e-02
(e" — 1.0)2 FD_3P  8.18¢-01 3.82e+02 2.28 5 13 6.63¢-01
(e —1.0)° FD4P  9.21e-01 3.82e+02 4.14 2 8 4.15e+00
(¢t —1.0)° CD4P  1.43e4+00 3.82¢+02 1.84 5 22 1.11e+00
(¢! —1.0)* L2.CD  2.34e+00 8.68e+00 3.03 6 19 3.90e-01
100t FD 4.32e-04 3.79e-04 3.72 7 11 2.74e-02
100t cD 1.19¢-03  1.03e-03 4.29 7 20 3.09e-03
100t FD_3P  1.12¢-03 3.82e+02 3.08 8 19 6.81e-03
100t FD_4P  1.90e-03 3.82e+02 6.54 8 23 4.97e-03
100t CD4P  3.18¢-03 3.82e+02 2.15 8 20 4.60e-04
100t L2.CD  3.66e-03 3.64e-03 3.01 8 19 1.18e-02
t* +3t2 — 10t FD 1.58¢-02 1.48e-02 3.55 2 4 7.97e+02
t* +3t2 — 10t cD 4.81e-02 5.00e-02 2.94 2 6 2.15e+01
t* +3t2 — 10t FD_3P  6.06e-02 6.16e-02 3.64 2 7 2.38¢+02
t* +3t2 — 10t FD_4P  1.54e-01 1.39e-01 11.90 4 13 1.93e+02
t* +3t2 — 10t CD_4P  9.39e+02 4.87e+03 1.62 16 48 2.71e-03
t* 4+ 3t2 — 10t L2.CD  2.34e-01 2.11e-01 4.53 2 7 5.38¢-03
100003 4 0.01¢% + 5¢ FD 3.95e-03  4.64e-03 4.36 3 5 5.46e-02
10000t3 4 0.01¢% + 5t CD 3.56e-03  3.68¢-03 2.63 6 18 4.02¢-02
10000t 4+ 0.01¢% + 5¢ FD_3P  4.49e-03 4.64e-03  3.65 6 15 1.17e-02
100003 4+ 0.01¢% + 5¢ FD_4P  6.72e+02 3.20e+03 11.72 8 22 2.37e-06
100003 4+ 0.01¢% + 5t CD_4P  8.35¢4+02 1.03e+04 1.95 12 28 1.99e-07
10000t 4+ 0.01¢%2 + 5¢ L2.CD  9.59e+02 2.84e+03 1.95 12 27 7.49¢-08

Table B.4: Detailed results for special examples, with e; = 1E-3; r represents the final
testing ratio; h* is the h that minimizes ds(h; ¢, ¢, €f) reported by minimize_scalar function
in scipy.optimize and could be unreliable.
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€f t hMW (5MW 3MVV‘ hada 5ada 5ada

1.00e-08  1.00e-08 ——  ——  ——13.20e-03 0.000 0.000
1.00e-08  1.00e-06 —— —— ——13.20e-03 0.000 0.000
1.00e-08 1.00e-04 | 1.68e-02 0.000 0.000 | 3.20e-03 0.000 0.000
1.00e-08 1.00e-02 | 1.68e-03 0.000 0.000 | 2.00e-03 0.000 0.000

1.00e-08 0.00e+00 —— —— ——13.20e-03 0.000 0.000
1.00e-06  1.00e-08 —— —— ——[1.40e-02 0.000 0.000
1.00e-06  1.00e-06 —— —— ——[1.40e-02 0.000 0.000

1.00e-06  1.00e-04 —— —— ——[1.40e-02 0.000 0.000
1.00e-06  1.00e-02 | 1.69e-02 0.000 0.000 | 1.40e-02 0.000 0.000

1.00e-06 0.00e+00 —— —— ——1.40e-02 0.000 0.000
1.00e-04 1.00e-08 —— —— ——5.00e-02 0.001 0.004
1.00e-04 1.00e-06 ——  —— ——16.50e-02 0.003 0.004
1.00e-04 1.00e-04 —— —— ——5.00e-02 0.001 0.004
1.00e-04 1.00e-02 —— —— ——5.00e-02 0.001 0.005
1.00e-04 0.00e+00 —— —— ——16.50e-02 0.000 0.004

1.00e-02  1.00e-08 —— —— ——12.00e-01 0.058 0.107
1.00e-02  1.00e-06 | 5.20e-01 0.067 0.083 | 3.50e-01 0.018 0.077
1.00e-02  1.00e-04 ——  ——  ——13.50e-01 0.019 0.077
1.00e-02  1.00e-02 —— —— ——3.50e-01 0.029 0.079
1.00e-02 0.00e+00 | 6.10e-01 0.085 0.094 | 3.50e-01 0.032 0.077

Table B.5: Comparison between the Moré-Wild heuristic against our adaptive procedure
on function ¢(t) = sin(t) with various €; and t. We use “——" to report the cases where
Moré-Wild heuristic fails. Subscript “MW?” labels the results corresponding to Moré-Wild
heuristic, and subscript “ada” labels the results corresponding to our adaptive procedure;
§ is the relative error, and § is the worst-case relative error.
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a b hvw  Omw  dmw hada  Jada Oada

0.01 0.01 —— —— ——14.05e+01 0.135 0.727
0.01 0.10 —— ——  ——14.05e+00 0.145 0.727
0.01 1.00 —— —— —— | 4.43e-01 0.275 0.710
0.01 10.00 [4.68e-02 0.177 0.702| 3.95e-02 0.084 0.732
0.01 100.00 ——  —— —— 3.95e-03 0.123 0.732
0.10 0.01 ——  —— ——11.62e+01 0.032 0.209
0.10 0.10 —— —— —— 1 1.77e4+00 0.074 0.207
0.10 1.00 | 1.64e-01 0.072 0.209| 1.58e-01 0.095 0.210
0.10 10.00 [ 1.62e-02 0.096 0.209| 1.58e-02 0.055 0.210
0.10 100.00 ——  —— —— 1.73e-03 0.078 0.207
1.00 0.01 ——  —— ——|7.08e+00 0.041 0.065
1.00 0.10 ——  —— —— 6.32¢-01 0.034 0.064
1.00 1.00 | 5.26e-02 0.029 0.065| 6.32e-02 0.036 0.064
1.00 10.00|5.28e-03 0.012 0.065| 6.92¢-03 0.014 0.064
1.00 100.00 ——  ——  ——| 6.18e-04 0.009 0.064
10.00 0.01 ——  —— ——12.53e+00 0.012 0.021
10.00 0.10 | 1.76e-01 0.011 0.020| 2.53e-01 0.009 0.021
10.00 1.00 | 1.68e-02 0.006 0.020| 1.58e-02 0.005 0.021
10.00 10.00|1.68e-03 0.002 0.020| 2.47e-03 0.014 0.021
10.00 100.00 —— —— —— | 2.47e-04 0.010 0.021
100.00 0.01 ——  —— —— 6.32e-01 0.003 0.006
100.00 0.10 | 5.39e-02 0.002 0.006| 6.32¢-02 0.004 0.006
100.00 1.00 | 5.31e-03 0.001 0.006| 6.92e-03 0.001 0.006
100.00 10.00|5.31e-04 0.000 0.006| 6.18e-04 0.001 0.006
100.00 100.00 —— ——  —— 6.18e-05 0.001 0.006

Table B.6: Comparison between the Moré-Wild heuristic against our adaptive procedure
on function ¢(t) = a - (exp(b-t) — 1) with ef = 1E-3 at t = 0. We use “——" to report the
cases where Moré-Wild heuristic fails. Subscript “MW?” labels the results corresponding to
Moré-Wild heuristic, and subscript “ada” labels the results corresponding to our adaptive
procedure; § is the relative error, and § is the worst-case relative error.
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Fixed Interval Moré-Wild Adaptive

Problem n €; | #Evals ¢(x) — ¢* | #Evals ¢(x) — ¢* | #Evals ¢(x) — ¢*
ATRCRFTB 5 le—1 1373 7.651 1457 4.777e—1 559 4.950e—1
ALLINITU 4 le—1 656 2.767 972 3.708e—1 686 1.003e—1
ARWHEAD 100 le—1 2513 2.027e—1 8784 3.040e—1 2811 2.458e—1
BARD 3 le—1 650 8.31le—1 602 7.581le—2 670 3.942e—1
BDQRTIC 100 le—1 2601 6.278 9213 5.902 5246 4.438
BIGGS3 3 le—1 650 1.195 726 1.348 674 1.545
BIGGS5 5 le—1 662 1.294 1457 1.319 696 1.359
BIGGS6 6 le—1 668 4.026e—1 853 5.483e—1 693 6.766e—1
BOX2 2 le—1 644 4.345e—2 709 4.095e—2 1975 3.406*
BOX3 3 le—1 650 4.843e—2 1385 1.887e—1 676 7.527e—2
BRKMCC 2 le—1 644 4.391e—2 709 5.850e—3 658 1.674e—1
BROWNAL 100 le—1 2513 5.097e—2| 10800 4.318e—2 3293 1.250e—2
BROWNDEN 4 le—1 656 1.159e—1 1364 1.568e—1 1328 1.465e—1
CLIFF 2 le—1 644 2.902e2 861 1.180el 1593 3.385e—1
CRAGGLVY 100 le—1 8011 1.850e2 | 207136  5.048e2* 11498 1.906el
CUBE 2 le—1 644 4.352e—2 6340 4.227* 659 8.670e—2
DENSCHND 3 le—1 650 2.254e2 2062 2.627e—1 1018 9.226e—3
DENSCHNE 3 le—1 650 1.151 2062 1.059 542 1.018
DIXMAANH 300 le—1 3713 1.382el | 22922 1.392¢l 7809 1.280el
DQRTIC 100 le—1 2513 1.743e2 | 26299 4.930 | 10912 4.944e—1
EDENSCH 36 le—1 2129 1.674 4995 1.642 4624 3.352
EIGENALS 110 le—1 2609 5.105el | 63118 1.496el 11630 1.236el
EIGENBLS 110 le—1 5103 6.717 8306 1.292el 5098 6.533
EIGENCLS 30 le—1 1452 1.401| 10899 1.218el 4088 1.907
ENGVAL1 100 le—1 2295 7.316e—1| 610646 2.114e2* 4956 1.186
EXPFIT 2 le—1 644 6.682¢e—1| 31080 1.270e2* 659 6.881le—2

FLETCBV3 100 le—1 2549 1.785e5 9488 1.785e5 | 21950 8.454e3
FLETCHBV 100 le—1| 40856 —1.175e9 | 135927 1.154e9 | 166981 5.696e9
FREUROTH 100 le—1 2295 7.097el 9658 5.756el 4008 5.912el
GENROSE 100 le—1 4326 1.421e2 | 36745 1.321e2 5347 1.364e2

GULF 3 le—1 650 6.713 1385 6.820 670 6.664
HAIRY 2 le—1 644 9.325el 1328  4.889e2* 1008 7.985e—2
HELIX 3 le—1 650 7.601 745 7.591 671 7.656

NCB20B 100 le—1 2295 4.793e—1 5531 2.000e—1 5393 1.280e—1
NONDIA 100 le—1 2513 5.546e—1| 10800 4.717e—1 5076 3.770e—1

NONDQUAR 100 le—1 2613 8.483e—1| 33658 7.457 5707 3.571le—1
0SBORNEA 5 le—1 662 1.748e—1| 52825 1.142e2* 2869 1.722e—1
OSBORNEB 11 1le—1 698 1.178 1014 3.021 769 1.851
PENALTY1 100 le—1 8895 1.008e2 | 20136 1.131| 12532 1.268
PFITILS 3 le—1| 17316 1.346e2 745 4.139 675 7.796
PFIT2LS 3 le—1| 20616 2.684e2 1385 2.350el 1991 4.006
PFIT3LS 3 le—1| 20088 9.024e2 2126 2.933 1988 2.171
PFIT4LS 3 le—1| 21702 2.771e3 3839 2.704 1989 9.426
QUARTC 100 le—1 2513 1.743e2 | 26299 4.930| 10912 4.944e—1
SINEVAL 2 le—1 644 5.576 566 4.712 664 5.554
SINQUAD 100 le—1 4326 1.254el | 28209 3.331el 5281 9.760
SISSER 2 le—1 644 3.393e—2 2026 1.61le—1 664 7.452e—3
SPARSQUR 100 le—1 4326 1.365 | 506948 6.928el* 5592 1.209e—1
TOINTGSS 100 le—1 2513 2.071el 8784 1.467el 4133 9.678
TQUARTIC 100 le—1 2513 1.108 | 62958 3.128* 3391 7.331le—1
TRIDIA 100 le—1 2513 8.478el| 18300 1.691el 5677 3.935el
WATSON 31 le—1 1881 7.753e—1 4702 1.993 2174 2.873

wooDs 100 le—1| 10414 8.618el | 16987 2.907e2 5255 5.533el
ZANGWIL2 2 le—1 644 2.686e—2 1349 3.307e—2 657 3.852e—2

Table B.7: Total number of function evaluations used and final accuracy achieved by
forward-difference L-BFGS method with different choices of the finite-difference interval.
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Fixed Interval Moré-Wild Adaptive

Problem n €; | #Evals ¢(x) — ¢* | #Evals ¢(x) — ¢* | #Evals ¢(x) — ¢*
ATRCRFTB 5 le—3 1008 3.772e—1 817 3.313e—1 560 3.286e—1
ALLINITU 4 le—3 656 2.354e—3 563 1.858e—3 686 1.172e—3
ARWHEAD 100 1le—3 2513 4.510e—2 7331 4.407e—2 4951 4.160e—2
BARD 3 le—3 650 2.093e—3 602 3.467e—3 538 3.273e—3
BDQRTIC 100 1le—3 6017 9.588e—2 8733 1.15le—1 8551 9.804e—2
BIGGS3 3 le—3 650 8.010e—4 712 1.375e—2 672 2.297e—2
BIGGS5 5 le—3 662 1.813e—1 1457 1.261le—1 680 1.453e—1
BIGGS6 6 le—3 668 2.904e—1 853 2.907e—1 563 2.909e—1
BOX2 2 le—3 644 1.964e—4 709 2.624e—6 661 1.882e—5
BOX3 3 le—3 650 9.556e—4 726 4.567e—4 672 3.568e—4
BRKMCC 2 le—3 644 3.552e—3 566 3.872e—3 661 8.029e—4
BROWNAL 100 1le—3 2513 6.869e—4 | 10800 4.648e—4 3293 1.670e—4
BROWNDEN 4 le—3 656 1.183e—3 706 1.912e—3 1327 8.187e—4
CLIFF 2 le—3 644 2.902e2 | 28980 8.220e—1 1008 3.059e—4
CRAGGLVY 100 1le—3 7993 4.852 8619 1.046 7272 9.025e—1
CUBE 2 le—3 644 4.201le—2 709 4.951e—2 659 4.381le—2
DENSCHND 3 le—3 631 4.109 1385 1.170e—3 1018 9.852e—4
DENSCHNE 3 le—3 650 9.994e—1 745 1.000 672 1.002
DIXMAANH 300 1le—3 7774 1.041| 37580 7.456e—2| 15794 9.375e—2
DQRTIC 100 le—3 6609 4.832| 21149 9.935e—3| 11600 1.713e—2

EDENSCH 36 le—3 1194 5.382e—2 6085 2.188e—2 3234 3.748e—2
EIGENALS 110 1le—3 4850 3.394e—1| 22676 8.848e—2 8753 7.456e—2
EIGENBLS 110 le—3 1932 2.084 | 21095 1.631 6825 1.740
EIGENCLS 30 le—3 1875 7.554e—2 8449 7.032e—2 3187 8.686e—2
ENGVAL1 100 le—3 2295 8.024e—2 9658 2.733e—2 4841 4.366e—2
EXPFIT 2 le—3 644 6.733e—3 566 3.80le—4 663 3.592e—4
FLETCBV3 100 le—3 2549 1.785e5 9488 1.785e5 | 29889 —1.181e2
FLETCHBV 100 le—3| 33825 —7.812e8| 141125 6.878e7 | 62282 —6.875e8
FREUROTH 100 1le—3 4861 2.366e—1 9725 2.041le—2 8226 4.143e—2
GENROSE 100 le—3 5779 1.109e2 | 17379 1.108e2 7561 1.110e2

GULF 3 le—3 650 6.626 599 6.622 672 6.622
HAIRY 2 le—3 644 7.979e—3 566 7.030e—4 853 3.304e—3
HELIX 3 le—3 650 4.079e—3 1091 2.495e—4 671 3.746e—4

NCB20B 100 le—3 2295 1.400e—2 8984 5.856e—3 6650 4.462e—3
NONDIA 100 1le—3 2513 4.911le—1| 13295 4.862e—1 8550 4.612e—1
NONDQUAR 100 1le—3 5534 9.503e—2| 29253 1.247e—2 8653 3.602e—2
0SBORNEA 5 le—3 662 1.525e—1| 54694 2.093 553 1.567e—1
OSBORNEB 11 le—3 555 3.697e—1 2314 3.170e—1 766 3.115e—1
PENALTY1 100 1le—3 4326 2.200el | 14928 1.345e—3| 12554 2.741le—4
PFITILS 3 le—3| 17244 7.787 2062 6.076e—2 1312 4.829e—2
PFIT2LS 3 le—3| 19169 1.147e2 2062 5.424e—2 1310 8.222e—2
PFIT3LS 3 le—3| 21645 6.633e2 2062 2.615e—2 1993 4.635e—2
PFIT4LS 3 le—3| 22928 2.305e3 2631 2.308e—1 1992 2.053e—1

QUARTC 100 le—3 6609 4.832| 21149 9.935e—3| 11600 1.713e—2
SINEVAL 2 le—3 644 1.557 2026 2.780e—1 1299 1.695e—1
SINQUAD 100 le—3 4326 3.852e—2| 19928 1.067e—1 5543 7.637e—2
SISSER 2 le—3 644 2.069e—3 566 1.051e—3 664 2.094e—4

SPARSQUR 100 le—3 6609 3.112e—2| 14021 8.064e—2 6625 3.022e—3
TOINTGSS 100 le—3 2513 2.198e—1 5071 1.026e—1 3730 6.133e—2
TQUARTIC 100 le—3 2513 7.227e—1 7529 7.241le—1 4090 7.220e—1
TRIDIA 100 1le—3 7921 3.607e—1| 28195 3.539e—1 9887 4.283e—1
WATSON 31 le—3 1881 1.862e—1| 10162 2.20le—2 2919 1.754e—1
wooDs 100 le—3| 11923 7.268e—1| 10536 6.643 5493 6.472
ZANGWIL2 2 le—3 644 8.620e—4 566 8.797e—4 657 6.88le—4

Table B.8: Total number of function evaluations used and final accuracy achieved by
forward-difference L-BFGS method with different choices of the finite-difference interval.
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Fixed Interval Moré-Wild Adaptive

Problem n €; | #Evals ¢(x) — ¢* | #Evals ¢(x) — ¢* | #Evals ¢(x) — ¢*
AIRCRFTB 5 le—5 662 3.023e—1 1880 2.674e—4 2014 4.084e—4
ALLINITU 4 le—5 656 1.835e—5 706 1.146e—5 682 6.468¢e—6
ARWHEAD 100 1le—5 3832 1.827e—4| 11900 3.262e—4 7570 5.117e—4
BARD 3 le—5 650 1.894e—3 602 1.878e—3 674 1.903e—3
BDQRTIC 100 le—5| 10225 3.227e¢—3| 14968 2.305e—4 9860 5.248e—4
BIGGS3 3 le—5 631 2.826e—4 712 2.404e—4 670 1.581e—4
BIGGS5 5 le—5 1008 2.170e—2 3911 1.064e—4 2030 9.355e—3
BIGGS6 6 le—5 1014 1.863e—3 2170 9.419e—5 1348 4.434e—4
BOX2 2 le—5 644 3.493e—6 1349 8.092e—6 658 2.480e—6
BOX3 3 le—5 650 7.493e—6 726 4.612e—6 672 1.114e—5
BRKMCC 2 le—5 644 3.927e—7 566 1.244e—5 661 3.079e—5
BROWNAL 100 1le—5 2513 1.963e—5 9567 1.629e—5 4851 1.487e—5
BROWNDEN 4 le—b5 656 3.971e—6 1145 1.268e—5 1324 1.062e—5
CLIFF 2 le—5 644 2.902e2 1349 2.275e—4 1008 2.238e—4
CRAGGLVY 100 1le—5 7993 8.012¢e—2| 13711 8.641e—3| 10935 1.884e—2
CUBE 2 le—5 644 4.069e—2 709 1.148e—2 662 4.524e—3
DENSCHND 3 le—5 996 1.720e—1 936 1.141e—5 1016 2.311e—5
DENSCHNE 3 le—5 650 9.993e—1 563 9.993e—1 672 9.993e—1

DIXMAANH 300 le—5| 19344 1.035e—2| 38056 5.615e—3| 15708 8.080e—3
DQRTIC 100 le—5 3486 2.687e—1| 16434 1.667e—4| 14109 1.864e—4
EDENSCH 36 le—5 1194 4.513e—4 4840 5.362e—4 4624 7.831le—4
EIGENALS 110 le—5 4921 1.929e—2| 18980 1.337e—2| 10030 1.353e—2
EIGENBLS 110 le—5 3178 1.556 | 11368 1.553 | 46254 1.018e—2
EIGENCLS 30 le—5 4370 5.560e—4 9380 8.302e—4 6373 5.415e—4
ENGVAL1 100 le—5 2601 2.285e—4 8619 2.302e—4 7134 2.310e—4
EXPFIT 2 le—5 644 4.595e—5 563 6.982e—6 666 6.814e—6
FLETCBV3 100 le—5 4326 1.785e5 | 44623 1.785e5 | 100756 —1.304e2
FLETCHBV 100 le—5 | 113423 3.562e9 | 315886 5.660e7 | 213807 1.765e9
FREUROTH 100 le—5 4326 2.559e—3 | 10097 5.248e—4 7166 6.820e—4
GENROSE 100 le—5| 27714 8.446e—3| 86415 5.674e—3| 56271 1.067e—2

GULF 3 le—5 650 6.596e—3 1091 2.275e—3 675 3.77le—3
HAIRY 2 le—5 644 1.129e—4 1328 4.688e—6 1008 8.137e—6
HELIX 3 le—5 650 7.422e—4 1385 8.376e—5 650 4.881le—5

NCB20B 100 le—5 4790 4.23le—4| 13270 3.565e—4 9691 3.06le—4
NONDIA 100 le—5 4326 2.174e—4| 21377 1.572e—2 8423 1.396e—2
NONDQUAR 100 le—5| 11923 9.225e—3| 33549 1.510e—3| 14104 1.836e—3
0SBORNEA 5 le—5 853 7.139e—4| 62478 5.603e—1 1334 1.215e—3
OSBORNEB 11 le—5 1137 1.051e—1 4506 2.381le—3 2936 3.325e—3
PENALTY1 100 le—5 4326 1.113e—1| 20475 1.893e—4| 12804 1.877e—4
PFITILS 3 le—5| 17338 1.609e—2 2062 2.921e—6 1312 2.320e—5
PFIT2LS 3 le—5| 18947 3.652e—2 2062 3.200e—3 1310 2.463e—3
PFIT3LS 3 le—5| 21038 2.034e—1 2062 2.364e—2 1999 2.822e—2
PFIT4LS 3 le—5| 22064 2.45le—1 2631 1.004e—1 1990 1.177e—1
QUARTC 100 le—5 3486 2.687e—1| 16434 1.667e—4| 14109 1.864e—4
SINEVAL 2 le—5 625 4.640e—3 2026 3.676e—3 1977 1.667e—4
SINQUAD 100 le—5 2613 1.417e—3| 11616 1.581le—4 5545 2.677e—4
SISSER 2 le—5 644 7.894e—6 709  2.995e—7 658 3.218e—6
SPARSQUR 100 le—5 8365 9.873e—4| 14478 7.713e—5 8320 3.739e—5
TOINTGSS 100 le—5 2513 2.193e—3| 10274 6.054e—4 3729 1.167e—3
TQUARTIC 100 le—5 4571 2.622e—1 9184 1.534e—1| 10072 1.199e—1
TRIDIA 100 1le—5 9428 1.900e—3 | 45233 3.442e—3| 19815 2.348e—3
WATSON 31 le—5H 3072 3.088e—3| 14287 8.549e—3 6393 6.386e—3
wooDs 100 le—5 7964 8.185e—3| 25179 5.822e—3| 13779 3.840e—3
ZANGWIL2 2 le—5 644 8.737e—6 670 1.685e—5 657 7.597e—6

Table B.9: Total number of function evaluations used and final accuracy achieved by
forward-difference L-BFGS method with different choices of the finite-difference interval.
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Fixed Interval Moré-Wild Adaptive
Problem n € | #Evals  ¢(z) — ¢* | #Evals  ¢(x) — ¢* | #Evals  ¢(z) — o*

AIRCRFTB 5 le—T7 662  9.768e—5 2985  1.199e—5 1334 1.00le—5
ALLINITU 4 le—7 656  2.172e—7 706  1.061le—7 543  7.839e—8
ARWHEAD 100 le—7 4326  1.643e—6| 11900 5.117e—7 5842  1.049e—6
BARD 3 le—7 650  2.376e—5 706  7.175e—T7 660 1.273e—7
BDQRTIC 100 le—7 8011 1.802e—5| 14968 5.277e—6| 12535  4.346e—6

BIGGS3 3 le—7 650  2.348e—7 726 3.990e—-7 1018  1.386e—6
BIGGS5 5 le—T7 1008  6.378e—6 1614  1.637e—6 2869  3.891le—5
BIGGS6 6 le—7 1014 —5.616e—3 2724 —5.595e—3 2023 —5.647e—3
BOX2 2 le—T7 644  1.726e—6 690  1.547e—T7 658  1.865e—6
BOX3 3 le—7 650  7.91le—7 602  6.639e—7 862  5.213e—7
BRKMCC 2 le—T7 644  2.465e—7 670  4.240e—7 661  9.632e—7

BROWNAL 100 1le—7 4326  2.571e—7 9567  1.334e—5 7259  5.981le—7
BROWNDEN 4 le—7 656  3.507e—T7 1145  1.214e—-T7 1324  1.468e—7

CLIFF 2 le—T7 644 2.902e2 861  2.198e—4 1300  2.192e—4
CRAGGLVY 100 le—T7 4678  1.570e—2| 18164 1.153e—4| 14124 7.253e—5
CUBE 2 le—T7 990 1.798e—4 1349  1.188e—4 662  1.404e—4

DENSCHND 3 le—7 650  3.918e—2 1385  3.805e—8 1311 1.209e—7
DENSCHNE 3 le—7 650  9.993e—1 1091 1.427e—-7 1015  8.898e—8
DIXMAANH 300 le—7| 62344 1.773e—4| 63812 2.194e—5| 37104 2.753e—5
DQRTIC 100 le—-7 4571 5.119e—3| 20136  3.509e—7| 17121  4.377e—6
EDENSCH 36 le—T7 2165  2.262e—6 3168  3.776e—6 4624  3.756e—6
EIGENALS 110 le—7| 23459 1.291e—3| 132863  2.204e—4| 43487 2.893e—4
EIGENBLS 110 le—7| 38955 1.169e—3| 182840 9.604e—4 | 92870 9.672e—4
EIGENCLS 30 le—7 3906  1.173e—5| 12408  9.139e—6 6345  8.639e—6
ENGVALL 100 le—-7 4326  1.734e—6 8997  3.737e—6 6527  2.550e—6
EXPFIT 2 le—T7 644  3.707e—7 709  5.737e—8 666  4.705e—8
FLETCBV3 100 le—7| 39622 4.451e2 | 281142 1.666e2 | 208557  —5.161el
FLETCHBV 100 le—7| 116172  —1.393e9 | 311603 2.365e9 | 212997 5.073€9
FREUROTH 100 le—7 4678  2.155e—5| 10097  8.099e—6 7165  6.707e—6
GENROSE 100 le—7| 27731 1.016e—4| 83521 6.277e—5| 56975  8.924e—5

GULF 3 le—7 650  4.478e—3 1163 3.909e—3 1992 1.893e—5
HAIRY 2 le—T7 644  1.478e—6 670 1.107e—7 1008  2.080e—7
HELIX 3 le—7 650  7.990e—6 1091  1.355e—5 674  1.967e—6

NCB20B 100 le—7| 12717  2.174e—5| 34691  2.432e—5| 21290 2.303e—5
NONDIA 100 le—7 5779  2.912e—6| 24808 1.134e—5 5826  8.625e—4
NONDQUAR 100 le—T7 8438  1.256e—3| 102555  1.348e—4 | 44583 1.199e—4
OSBORNEA 5 le—T7 662  8.747e—5| 47678 1.72le—1 2014  2.290e—5
OSBORNEB 11 le—T7 2015  1.342e—5 4408  1.260e—5 3626  2.063e—5
PENALTY1 100 le—7 4326  6.722e—4| 15829 1.869e—4| 13984 1.870e—4
PFITILS 3 le—7| 15490 5.585e—4 2062  1.259e—6 1021 7.981e—6
PFIT2LS 3 le—7| 18475 3.194e—2 2126  1.834e—3 1314 1.441e-3
PFIT3LS 3 le—7| 19911 4.062e—2 2062  2.782e—2 1989  3.161e—2
PFIT4LS 3 le—7| 22339 2.817e—1 2631 1.17le—1 2842  1.668e—1
QUARTC 100 1le—7 4571 5.119e—3| 20136  3.509e—7| 17121 4.377e—6
SINEVAL 2 le—T7 625  7.770e—4 2026  9.623e—7 1300  5.182e—4
SINQUAD 100 le—7 3400 1.629e—5| 11616  1.584e—6 5543  6.333e—6
SISSER 2 le—T7 644  2.687e—7 709  1.365e—9 661  6.235e—8
SPARSQUR 100 le—7 4861  2.668e—5| 26138 1.350e—7| 12562  2.022e—7
TOINTGSS 100 le—7 2513  2.192e—5| 10651 6.014e—6 3729  1.168e—5
TQUARTIC 100 le—-7 8895  1.645e—2| 14021  8.050e—4 | 10062 1.413e—3
TRIDIA 100 1le—7| 10619  2.499e—5| 47586  2.839e—5| 21947  3.486e—5
WATSON 31 le—7 4264 1.16le—3| 13658 1.172e—3 4585  1.854e—3
wooDS 100 le—7 6609 5.61le—5| 25179  4.354e—5| 10111  9.748e—5
ZANGWIL2 2 le—T7 644  8.738e—8 670  1.683e—7 657  7.832e—8

Table B.10: Total number of function evaluations used and final accuracy achieved by
forward-difference L-BFGS method with different choices of the finite-difference interval.
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Fixed Interval Adaptive
Problem n €r | #Evals ¢(x) — ¢* | #Evals o(x) — ¢*

AIRCRFTB 5 le—1 602 4.455e—1 3074 4.451le—1
ALLINITU 4 le—1 848 7.698e—1 1371 3.378e—3
ARWHEAD 100 le—1 4001 4.137e—2 5021 5.157e—2
BARD 3 le—1 669 2.616e—3 947 1.535e—2
BDQRTIC 100 le—1 8594 2.047e—1| 11555 1.918e—1

BIGGS3 3 le—1 669 2.607e—1 1150 1.154e—2
BIGGS5 5 le—1 693 8.829e—2 1125 3.740e—2
BIGGS6 6 le—1 705 2.966e—1 1419 2.907e—1
BOX2 2 le—1 657 1.013e—2 560 6.435e—3
BOX3 3 le—1 669 4.700e—2 594 1.444e—-3
BRKMCC 2 le—1 657 4.76Te—4 2418 1.983e—4
BROWNAL 100 le—1 7175 1.321e—5| 12140 1.331e—7
BROWNDEN 4 le—1 681 4.778e—4 2247 1.814e—3
CLIFF 2 le—1 657 2.902e2 4819 2.413e—2
CRAGGLVY 100 le—1| 11144 2.765 | 23987 6.089e—1
CUBE 2 le—1 657 4.421e—2 3101 4.462e—2
DENSCHND 3 le—1 669 5.418e—3 2310 8.228e—3
DENSCHNE 3 le—1 669 1.015 576 1.025

DIXMAANH 300 le—1| 32019 7.30le—1| 41575 4.225e—2
DQRTIC 100 le—1| 10891 4.910e—1| 28135 7.032e—4
EDENSCH 36 le—1 4217 5.638e—2 6835 7.687e—2
EIGENALS 110 le—1 7295 2.049 | 20145 1.099e—1
EIGENBLS 110 le—1| 12096 2.326 | 13672 1.801
EIGENCLS 30 le—1 3161 6.304e—1 8124 3.930e—1
ENGVAL1 100 le—1 6704 1.473e—1| 11258 2.414e—1

EXPFIT 2 le—1 7418 2.456el 5915 2.093e—2
FLETCBV3 100 le—1 2546 1.785e5 | 136921 —1.561e2
FLETCHBV 100 le—1| 138282 6.330e9 | 380580 —1.079€9
FREUROTH 100 le—1 6216 2.650e—1| 14495 4.930e—2
GENROSE 100 le—1 7084 1.116e2 | 28786 1.117e2
GULF 3 le—1 669 6.621 2124 6.728
HAIRY 2 le—1 657 1.26le—4 1483 6.896e—4
HELIX 3 le—1 505 8.544e2 4900 2.476el
NCB20B 100 le—1 3028 2.230 | 12309 4.906e—2

NONDIA 100 le—1 4782 4.94le—1 9226 4.929e—1
NONDQUAR 100 le—1 7210 1.974e—1| 14490 7.33Te—2
OSBORNEA 5 le—1 693 1.530e—1 2345 8.790e—1
OSBORNEB 11 le—1 746 6.496e—1 3119 1.366
PENALTY1 100 le—1 7210 3.404e—2| 21785 1.847e—4
PFITILS 3 le—1| 17843 1.276el 3706 8.023e—1
PFIT2LS 3 le—1 3466 1.453e2 2827 5.360e—1
PFIT3LS 3 le—1| 26780 8.283e2 3807 1.767e—1
PFIT4LS 3 le—1| 27602 2.416e3 3727 3.979e—1
QUARTC 100 le—1| 10891 4.910e—1| 28135 7.032e—4

SINEVAL 2 le—1 501 5.547 3266 7.918
SINQUAD 100 le—1 5279 2.818e—1| 11289 3.892
SISSER 2 le—1 657 9.267e—3 491 2.900e—5

SPARSQUR 100 le—1 5345 6.181le—2| 18495 1.016e—2
TOINTGSS 100 le—1 5391 1.021e—2 8324 4.000e—9
TQUARTIC 100 le—1 2605 8.336e—1| 12297 7.326e—1
TRIDIA 100 le—1| 10830 1.695e—1| 88893  5.839e—13
WATSON 31 le—1 2880 2.177e—1 5954 1.693e—1
wooDS 100 le—1 5279 6.439 | 21136 5.545
ZANGWIL2 2 le—1 657 4.902e—4 1351 —9.999e—11

Table B.11: Total number of function evaluations used and final accuracy achieved by
central-difference L-BFGS method with different choices of the finite-difference interval.
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Fixed Interval Adaptive
Problem n €r | #Evals ¢(x) — ¢* | #Evals o(x) — ¢*

AIRCRFTB 5 le—3 594 4.451le—1 2306 4.451le—1
ALLINITU 4 le—3 574 3.325e—3 1377 1.847e—5
ARWHEAD 100 le—3 7175 5.590e—4 8379 6.125e—4
BARD 3 le-3 669 1.905e—3 713 1.883e—3
BDQRTIC 100 le—3| 11220 3.667e—3| 31078 4.314e—4

BIGGS3 3 le-3 669 1.009e—3 1363 1.314e—4
BIGGS5 5 le—3 1333 1.649e—2 1921 1.418e—2
BIGGS6 6 le—3 705 5.18le—2 1844  —3.749e—3
BOX2 2 le—-3 657 1.287e—5 560 1.740e—4
BOX3 3 le—3 669 3.555e—5 1351 5.017e—5
BRKMCC 2 le—-3 657 2.500e—6 556 3.658e—7

BROWNAL 100 le—3 4782 8.022e—6| 12030 2.446e—8
BROWNDEN 4 le—3 681 2.721e—6 1525 1.803e—7

CLIFF 2 le—3 657 2.902e2 3590 2.497e—4
CRAGGLVY 100 le—3| 11976 1.745e—2| 30115 2.086e—3
CUBE 2 le—3 657 4.239e—2 2418 4.580e—2

DENSCHND 3 le—3 669 4.714e—3 1969 6.472e—4
DENSCHNE 3 le-3 669 9.993e—1 1002 9.994e—1
DIXMAANH 300 le—3| 28496 1.428e—2| 48610 3.693e—3
DQRTIC 100 le—3| 11015 1.313e—2| 25201 2.425e—5
EDENSCH 36 le—3 2128 2.700e—4 4599 2.101e—4
EIGENALS 110 le—3 8516 4.539e—2| 27468 1.303e—2
EIGENBLS 110 le—3| 47792 3.108e—2| 25441 1.551
EIGENCLS 30 le—3 4087 2.953e—3| 10419 1.545e—3
ENGVAL1 100 le—3 7210 1.658e—4| 14954 4.131e—4

EXPFIT 2 le—3 9839 3.021 1013 2.602e—4
FLETCBV3 100 le—3 2546 1.785e5 | 198233 —1.561e2
FLETCHBV 100 le—3| 107444 —1.473e9 | 239215 3.847€9

FREUROTH 100 le—3 7175 4.683e—4| 14972 1.047e—4
GENROSE 100 le—3| 54819 2.202e—3 | 124290 9.891e—4

GULF 3 le—3 1309 2.995e—3 1782 4.249e—3
HAIRY 2 le—3 418 5.279e—6 4113 1.608e—7
HELIX 3 le—3 432 8.522e2 2867 2.475el

NCB20B 100 1le—3 5918 1.353e—1| 14781 1.608e—3
NONDIA 100 1le—3 6475 1.027e—2| 10213 1.263e—2
NONDQUAR 100 1le—3 7084 1.973e—2| 28713 3.712e—3
OSBORNEA 5 le—3 1333 2.88le—3 2237 8.790e—1
OSBORNEB 11 le—3 2082 2.869e—1 3565 7.271e—2
PENALTY1 100 le—3 7210 1.928e—4| 20312 1.917e—4
PFITILS 3 le—3| 24764 1.500el 2027 1.183e—3
PFIT2LS 3 le—3| 28415 1.973e2 2030 4.006e—3
PFIT3LS 3 le—3| 31502 1.018e3 3796 3.066e—2
PFIT4LS 3 le—3| 31607 3.352e3 3891 9.033e—2
QUARTC 100 le—3| 11015 1.313e—2| 25201 2.425e—5

SINEVAL 2 le—3 588 5.327 3436 4.873e—5
SINQUAD 100 le—3 5391 6.603e—4 | 14970 1.277e—4
SISSER 2 le—3 657 9.026e—6 684 5.497e—5

SPARSQUR 100 le—3 5542 2.341e—3| 19979 2.489e—5
TOINTGSS 100 le—3 2896 1.267e—5 9505 4.000e—9
TQUARTIC 100 le—3| 19220 2.492e—1 8491 7.221e—1
TRIDIA 100 le—3| 17514 3.205e—5| 92231 4.283e—15
WATSON 31 le—3 3173 2.462e—2 9834 2.186e—3
wooDS 100 le—3| 11220 3.320e—3| 23074 6.287e—4
ZANGWIL2 2 le—3 657 9.871e—7 598 —9.999e—11

Table B.12: Total number of function evaluations used and final accuracy achieved by
central-difference L-BFGS method with different choices of the finite-difference interval.
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Fixed Interval Adaptive
Problem n e | #Evals  ¢(x) — ¢* | #Evals o(x) — ¢*

AIRCRFTB 5 le—=5 612  4.45le—1 2558 3.293e—1
ALLINITU 4 le—5 681  7.277e—6 2035 7.767e—9
ARWHEAD 100 le—5 7487  4.138e—6 7477 1.108e—6
BARD le—5 669  1.867e—3 1500 1.678e—7
BDQRTIC 100 le—5| 11220 1.539e—6| 19106 4.834e—6

w

BIGGS3 3 le—5 669  4.019e—6 1088 3.251e—7
BIGGS5 5 le—5 1756  4.920e—5 3617 1.465e—5
BIGGS6 6 le—5 2358 —5.228e—3 4142 —5.625e—3
BOX2 2 le—=5 657  2.137e—6 1327 1.773e—6
BOX3 3 le—5 669  6.746e—7 1349 7.643e—7
BRKMCC 2 le—5 437 5.850e—10 558 1.300e—9

BROWNAL 100 le—5 3508  1.384e—7| 19759  1.759e¢—16
BROWNDEN 4 le—5 681  7.291e—9 2060 —1.455e—11

CLIFF 2 le—5 657 2.902e2 4442 2.272e—4
CRAGGLVY 100 le—5| 17145 3.635e—5| 32645 5.568e—6
CUBE 2 le—5 657  2.696e—7 2510 3.013e—6

DENSCHND 3 le—5 1015  3.165e—4 1878 2.382e—6
DENSCHNE 3 le—5 669  9.993e—1 1073 7.559e—8
DIXMAANH 300 le—5| 45747  8.540e—5| 235332  1.565e—10
DQRTIC 100 le—5| 13738 1.50le—4| 28793 1.977e—6
EDENSCH 36 le—5 2382  3.038e—7 6843 3.233e—7
EIGENALS 110 le—5| 27694 1.556e—3| 93131 2.888e—4
EIGENBLS 110 le—5| 86034 9.991e—4 | 167257 1.114e—3
EIGENCLS 30 le—5 5297  3.243e—5| 15418 5.660e—6
ENGVALLT 100 le—5 5244  1.653e—6| 12432 7.819e—-7

EXPFIT 2 le-5 2953  1.015e—2 1097 3.382e—7
FLETCBV3 100 le—5| 61879  —7.404el | 405665 —1.561e2
FLETCHBV 100 le—5| 69727 1.786€9 | 168055 —3.029e8

FREUROTH 100 le—5 6618 1.67le—6| 17360 1.873e—7
GENROSE 100 le—5| 53552  5.526e—6 | 119843 3.104e—6

GULF 3 le—5 669  4.155e—3 2094 1.869e—6
HAIRY 2 le—5 657  3.882e—9 2015  2.389%e—11
HELIX 3 le—5 445 8.521e2 5026 2.475el

NCB20B 100 le—5| 14030 1.578e—3| 37332 7.086e—5
NONDIA 100 le—5 7210  1.054e—5| 13740 1.839e—5
NONDQUAR 100 le—5| 18545  9.490e—4 | 55137 2.686e—4
OSBORNEA 5 le—5 693  9.012e—4 2295 8.790e—1
OSBORNEB 11 le—5 3861 4.164e—4 5596 2.698e—5
PENALTY1 100 le—5 9496  1.868e—4 | 22443 1.875e—4
PFITILS 3 le—=5| 26200 5.375 2883 8.388e—6
PFIT2LS 3 le—5| 29030 1.010e2 2008 2.499e—3
PFIT3LS 3 le—5| 30940 6.034e2 2339 4.427e—2
PFITA4LS 3 le—5| 31645 2.140e3 6937 7.936e—2
QUARTC 100 le—5| 13738 1.50le—4| 28793 1.977e—6

SINEVAL 2 le—5| 18967 3.956 3089 2.075e—-7
SINQUAD 100 le—5 5127 1.373e—6| 16276 4.398e—7
SISSER 2 le=5 657  3.088e—7 1337  5.212e—11

SPARSQUR 100 le—5 7464  2.220e—5| 19032 5.543e—6
TOINTGSS 100 le—5 8221  2.253e—8 8385 4.000e—9
TQUARTIC 100 le—5| 12669 8.689e—4| 15299 3.231le—4
TRIDIA 100 le—5| 20802 5.305e—7 | 107193  1.824e—17
WATSON 31 le—5 7718  1.087e—3| 16253 1.209e—3
WwooDS 100 le—5 9234  2.150e—5| 24007 3.869e—6
ZANGWIL2 2 le=5 657  2.019e—9 1347 —1.000e—10

Table B.13: Total number of function evaluations used and final accuracy achieved by
central-difference L-BFGS method with different choices of the finite-difference interval.
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Fixed Interval Adaptive
Problem n €r | #Evals ¢(z) — ¢* | #Evals o(x) — ¢*

AIRCRFTB 5 le—T7 1585  6.912e—12 2929  2.059e—22
ALLINITU 4 le—7 463 1.644e—8 1493  3.211e—10
ARWHEAD 100 le—T7 5391 1.192e—8 8298 2.636e—9
BARD 3 le—7 669 2.756e—9 1357 4.989e—9
BDQRTIC 100 le—7| 11220 1.885e—8 | 27324 6.486e—9

BIGGS3 3 le—7 669 1.115e—8 1357  5.031le—10
BIGGS5 5 le—T7 1530 2.281e—8 3911 4.135e—9
BIGGS6 6 le—7 2022 —5.642e—3 5582  —5.649e—3
BOX2 2 le—7 657 3.579e—9 678 1.419e—9
BOX3 3 le—7 669 6.337e—7 1092 6.848e—10
BRKMCC 2 le—T7 657  2.043e—10 680  2.005e—10

BROWNAL 100 le—T7 3799 2.783e—8 | 24944  6.904e—19
BROWNDEN 4 le—7 681 —3.638e—10 1695 —3.929e—10

CLIFF 2 le—T7 657 5.621e—1| 10094 2.902e2
CRAGGLVY 100 le—7 | 18747 5.581e—7| 39527 3.028e—8
CUBE 2 le—7 657 1.452e—7 1905 7.199e—9

DENSCHND 3 le—7 1309 1.440e—5 2057 8.977e—8
DENSCHNE 3 le—T7 669  3.754e—11 2034  2.051le—10
DIXMAANH 300 le—7| 52791 4.060e—7 | 394134 0.000
DQRTIC 100 le—7| 14367 2.836e—6 | 29677 2.399e—9
EDENSCH 36 le—T7 2434 1.106e—9 6835  8.345e—10
EIGENALS 110 le—7| 86646 7.971e—6 | 194737 2.282e—6
EIGENBLS 110 le—7 | 194875 1.129e—6 | 257660 9.239e—4
EIGENCLS 30 le—T7 7754 1.060e—7| 17966 7.350e—8
ENGVAL1 100 le—7 7210 5.117e—9 | 13746 7.956e—9

EXPFIT 2 le—T7 3032 6.553e—5 1341  8.708e—10
FLETCBV3 100 1le—7| 101241 —2.737el | 693140 —8.437el
FLETCHBV 100 le—7 | 106670 1.635€9 | 410157 —1.297€9

FREUROTH 100 le—T7 6382 —3.050e—9 | 14775 —5.215e—9
GENROSE 100 le—7 | 53767 2.215e—8 | 118006 2.538e—8

GULF 3 le—7 1504 3.522e—7 2098 5.298e—8
HAIRY 2 le—T7 657 1.723e—12 1511 0.000
HELIX 3 le—7 413 8.521e2 2825  5.755e—13

NCB20B 100 1le—7| 31569 2.837e—5| 73674 1.549e—5
NONDIA 100 le—-T7 6618 6.417e—8 | 14890 6.216e—8
NONDQUAR 100 le—7| 77500 5.554e—5 | 239505 1.867e—5
0SBORNEA 5 le—T7 1333 2.245e—5 2162 1.562e—1
OSBORNEB 11 le—7 2933 1.612e—8 6229 6.560e—9
PENALTY1 100 1le—T7 8565 1.868e—4 | 76226 2.507e—6
PFIT1LS 3 le—7| 26224 4.862e—4 4269 2.294e—5
PFIT2LS 3 le—T7| 28717 1.295e—2| 14332 2.756e—5
PFIT3LS 3 le—7| 28777 5.848e—2 | 22899 1.676e—5
PFIT4LS 3 le—T7| 29320 2.991e—1| 25011 1.775e—5
QUARTC 100 1le—7| 14367 2.836e—6 | 29677 2.399e—9
SINEVAL 2 le—T7 1722 1.177e—11 1879  1.601le—10
SINQUAD 100 le—7 5544 5.534e—9 | 16166 3.215e—-9
SISSER 2 le—T7 657 2.663e—8 703 6.479e—9
SPARSQUR 100 le—7| 10891 3.396e—T7 | 24709 2.323e—9
TOINTGSS 100 le—T7 4087 4.042e—9 6671 4.000e—9
TQUARTIC 100 le—7 9496 3.400e—7| 19028 3.207e—7
TRIDIA 100 1le—7| 30055 2.966e—10| 114846  1.242e—19
WATSON 31 le—T7 8296 1.016e—4 | 21230 1.002e—4
wooDS 100 le—T7 8594 5.693e—7 | 20454 7.795e—8
ZANGWIL2 2 le—T7 657 —9.543e—11 1345 —1.000e—10

Table B.14: Total number of function evaluations used and final accuracy achieved by
central-difference L-BFGS method with different choices of the finite-difference interval.
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