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Abstract. This paper develops solution strategies for large-scale nonsmooth optimization
problems. We transform nonsmooth programs into equivalent mathematical programs with
complementarity constraints (MPCCs), and devise NLP-based strategies for their solution.
For this purpose, two NLP formulations based on complementarity relaxations are put for-
ward, one of which applies a parameterized formulation and operates with a bounding algo-
rithm, with the aim of taking advantage of the NLP sensitivities in search for the solution;
and the other relates closely to the well-studied Lin-Fukushima formulation. Relations be-
tween the solutions of these NLPs and of the MPCC is revealed by sensitivity analysis.
With appropriate assumptions, the resulting solution of the NLP formulations are proved
to be C- and M-stationary for the MPCCs in the limit. Numerical performance of the pro-
posed formulations, and the formulations by Lin & Fukushima and by Scholtes are studied
and compared, with selected examples from the MacMPEC collection and two large-scale
distillation cases.

1 Introduction
We consider the nonsmooth system written as
c(z,y,q) =0, y; =max(0,z;), 7 =1,...,n,, (1)

where z,y € R™ and ¢ € R™. The related optimization problem is given by

min  f(z,y,q) (22)
st. c(z,y,q) =0 (2b)
y; —max(0,z;) =0, j=1,...,n,, (2¢)



where f : R?"t% — R and ¢ : R?"=+% — R" are twice continuously differentiable functions,
and their second-order derivatives are Lipschitz continuous. For simplicity, we assume that
any inequalities in the original optimization problem can be transformed to barrier terms in
f.

Based on concepts of generalized derivatives and nonsmooth equation solving of Clarke
[9], Barton and coworkers [2, 30,43, 46] have developed a powerful conceptual framework
for the solution of engineering models with nonsmooth elements. In addition to provid-
ing algorithmic differentiation tools [30] and modeling strategies, they have demonstrated
these approaches on nontrivial process systems, including thermodynamic models with phase
transitions. On the other hand, nonsmooth optimization is difficult for large-scale nonlinear
systems. Modern large-scale NLP algorithms [37] exploit exact first and second derivatives
from the optimization and apply Newton-based approaches to solve for the KKT conditions.
Since the solution of nonsmooth optimization problems do not satisfy KKT conditions, NLP
methods do not apply directly to these systems.

An alternate approach to solve these optimization problems is through reformulation
of the nonsmooth model to Mathematical Programs with Complementarity Constraints
(MPCCs). Based on active research over the past four decades, NLP-based solution strate-
gies have been developed to find stationary points of MPCCs. Moreover, more recent NLP
methods incorporate exact Hessian information, which allows them to verify convergence to
locally optimal solutions that satisfy second order sufficient conditions (SOSCs). In addi-
tion, Griewank, Walther, Hegerhorst-Schultchen et al. [17, 18, 20-22] have studied related
abs-normal NLPs, which are also equivalent to MPCCs.

Nonlinear complementarity systems that are closely related to nonsmooth systems (1)
are given by

c(2)=0,0<G(z) L H(z) > 0. (3)
Defining
T c(z)
z = Y ) Y- G(’Z) =0,
q y—z—H(z)

and noting that
0<yly—2z>0 & vy =max(0,z;), j=1,...,0n,,

shows the equivalence of (3) to (1), and also (2) to the following MPCC:

MPCC: min f(x,y,q) (4a)
st. c(z,y,q) =0 (4b)
0<yly—xz>0. (4c)

The purpose of this paper is to develop NLP-based frameworks for the solution of large-scale,
nonsmooth optimization problems. The proposed approach is designed to take advantage of
efficient, off-the-shelf NLP solvers frequently used for smooth systems optimization, where
exact first and second order derivatives can be exploited. These solvers apply Newton-
based algorithms to the KKT conditions and also provide dual information for parametric



sensitivity of the optimum. The incentive to use these solvers is particularly great in the
case of large-scale applications.

The remainder of this section presents NLP and MPCC preliminaries as well as a review
of NLP-based MPCC and smoothing approaches. Section 2 develops solution strategies
for the nonsmooth optimization equivalent MPCCs, including NLP formulations and the
applicable algorithm. Convergence properties of the proposed approaches are analyzed in
Section 3. Numerical studies in Section 4 verify the theoretical results and also demonstrate
some practical issues.

1.1 Preliminaries

We first present essential NLP concepts with a parametric formulation, which is closely
related to the strategies devised in Section 2.
Consider the general NLP problem

mzin f(z) st.e(z,p) =0, g(z,p) <0, (5)

where z € R™, f : R — R, ¢ : R"* — R, g : R»* — R™, and p € R™ is a fixed
parameter. To characterize the solution of (5) we define its KKT point.

Definition 1.1. (KKT, [37]) Karush-Kuhn—Tucker (KKT) conditions for Problem (5) are
given by

Vf(2)+ Ve(z,p)A + Vyg(z,p)a = 0, (6)
c(z,p)=0, 0<puLg(zp <O,

for some multipliers X\ and [i, where z is a KKT point. We also define L(z,\, i, p) =
f(z)+c(z,p) "X+ g(z,p)Tu as the Lagrange function of (5).

A constraint qualification (CQ) is required so that a KKT point is necessary for a local
minimizer. For Problem (5) the following CQ is widely invoked.

Definition 1.2. (LICQ, [37]) The linear independence constraint qualification (LICQ) holds
at a feasible point z of (5) when the gradient vectors

Vei(z,p),i=1,....,n. and Vyg;(z,p), Vj € I,(2) (7)

are linearly independent, where 1,(z) = {j|g;(z,p) = 0}. LICQ at a KKT point also implies
that the associated multipliers satisfying (6) are unique.

Theorem 1.3. (SOSC, [13]) A KKT point z with multipliers X and [i is a strict local
optimum of (5), if the following second-order sufficient conditions (SOSC) hold:

d"V..L (2, N\ i,p) d > 0 (8)
for all d # 0, such that
p)Td=0, i=1,...,n,
Vg;(z,p)7d =0, forall i; >0 and j € I,(2) (9)
Vg,;(z,p)7d <0, forall i =0 and j € I,(%).
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Definition 1.4. (Strict Complementarity, [13]) At a KKT point Z of (5) and the associated
multipliers A and p satisfying (6), the strict complementarity condition (SC) is defined by

i — gi(Z,p) > 0 for each j € 1,(Z).
Theorem 1.5. (Sensitivity Results, [13]) Let Z(po) be a KKT point of Problem (5) with
nominal parameter value py, and assume that SC, LICQ and SOSC hold at Z(py). Further

let the functions f,c,g in (5) be at least ¢ + 1 times continuously differentiable in z and ¢
times continuously differentiable in p. Then

e Z(po) is an isolated minimizer, and the associated multipliers \(po) and Ji(po) are
unique;

e for p in a neighborhood of py, the set of active constraints remains unchanged;

e forpin a neighborhood of po, there exists an € times continuously differentiable function
s(p) = (2(p), AM(p), fi(p)), that corresponds to a locally unique minimum for (5);

e there exist finite Lipschitz constants L, Ly > 0, such that
Is(p) = s(po)ll < Lsllp — poll and [ f(2(p)) — f(Z(po))| < Lyllp = poll- - (10)

We now generalize these properties to stationarity conditions of MPCC (4). Necessary
conditions for a local minimizer of an MPCC are described by the concept of B-stationarity.
A point z* = (z*,y*, ¢*) is B-stationary, if it is feasible to MPCC (4) and d = 0 is a solution
to the following linear program with complementarity constraints (LPCC):

min V(=) "d (11a)
st. c(z) +Ve(z)'d=0 (11b)
0<y " +d, L (y"+d,) — (z"+d;) >0. (11c)

Verification of B-stationarity may require the solution of 2 linear programs, where m is the
cardinality of the biactive set I(z*) N I(2*), with

L(2") = {j|y; = O}>
I(z*) = {jly; — ] =0} .

More stationarity concepts are developed by using weak stationarity. Given a feasible point
z* of MPCC (4), if there exist multipliers \*, o}, o5 satisfying

(12)

Ne 0 —6]'
V") + Z AV (2%) — Z oy | e | — Z o5 | e | =0, (13)
i=1 jeh(z¥) 0 jelz(z*) 0

where e; is a vector with the jth element being 1 and other elements being 0, then z* is
weakly stationary. Furthermore, z* satisfies

o C-stationarity, if o703, > 0 for all j € I;(2*) N I(z%);
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e M-stationarity, if o7, 05, > 0 or 07,05, = 0 for all j € I,(2*) N I5(2");
e S-stationarity (i.e., strong stationarity), if o7;,03; > 0 for all j € I,(z*) N I2(z").
In particular, a strongly stationary point z* of MPCC (4) solves the relaxed NLP given by

RNLP: min f(z,y,q)
st. c(z,y,9) =0

y; =0, y; —x; >0, jeli(z)\ L(z") (14)
y; >0, y; —x; =0, je&h(z)\ L(z)

In general, S-stationarity is stronger than B-stationarity. A notable exception is their equiv-
alence in the presence of MPCC-LICQ [40], namely, the following set of gradients is linearly
independent at z*:

0 —Gj
{Vei(z9)]i=1,...,n. U e; | 7€ hLi(z) U e; |j € I(2%) p . (15)
0 0

1.2 Previous Work on NLP-based MPCC Solution

Transforming a large-scale nonsmooth system into the equivalent MPCC, we usually arrive
at a model that contains a small part of complementarity conditions, while the remaining are
regular smooth (nonlinear) equations. Dealing with the complementarity structure explicitly
can be expensive, which has motivated the adaptation of well-developed NLP methods for
MPCC solution. However, complementarity conditions, for example (4¢), introduce a combi-
natorial structure to the equivalent NLP and generally result in failure of standard regularity
assumptions on the NLP constraints, posing challenges for regular NLP algorithms even to
find a feasible point. Starting from seminal monographs on MPCCs [11,36], a rich, com-
prehensive framework has been developed to characterize MPCC solutions and algorithmic
strategies.

Fukushima and Pang [16] study the behavior of a sequence generated by a smoothing
continuation method for MPCCs using the Fischer-Burmeister smoothing function. They
show that under the linear independence constraint qualifications and an additional condition
called the asymptotic weak nondegeneracy, the limit of KKT points satisfying the second-
order necessary conditions for the perturbed problems is a B-stationary point of the original
MPCC.

Scheel and Scholtes [40] characterize B-, C-, M- and S-stationarity for MPCCs, develop
second-order optimality conditions and present some stability results for MPCCs. These
properties also relate to penalty formulations and relaxed NLP problems. Scholtes [41]
considers a sequence of stationary points of parametric NLPs which relax MPCC solutions
with a vanishing positive ¢:

REG(t) : min f(z,y,q) (

st. c(z,y,q) =0 (
y>0,y—z=>0 (16¢

yily; —x5) <t, j=1,...,n,. (
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He shows that stationary points are C-stationary if MPCC-LICQ qualification holds; they
are M-stationary if, in addition, an approaching subsequence satisfies second-order necessary
conditions, and they are B-stationary if, in addition, an upper level strict complementarity
condition holds. These complement the results of [16]. It is further shown that every
local minimizer of the MPCC which satisfies the linear independence, upper level strict
complementarity, and a second-order optimality condition, can be embedded into a locally
unique piecewise smooth curve of local minimizers of the parametric NLP (16).

Lin and Fukushima [35] present a bounding scheme for MPCCs using two-sided relax-
ations of complementarity constraints. This approach also provides lower bounds on the
MPCC solution. Under mild assumptions they show that their approach converges to C-
stationary points, with additional sufficient conditions for M-stationarity. Several additional
two-sided relaxation approaches have been developed, including a nonsmooth relaxation [26],
a local-support approach [44], and a relaxation of both complementarity and nonnegativ-
ity [10]. These approaches also converge to C-stationary points, under reasonable assump-
tions.

Moreover, Guo et al. [19] present an approach where the MPCC conditions (for C/M/S
stationarity) are reformulated as smooth equations with box constraints. A modified Levenberg—
Marquardt method is developed to solve these constrained equations. The method is shown
to be locally and superlinearly convergent, and sufficient conditions are given for local error
bounds.

Ralph and Wright [39] describe properties of regularized and penalized NLP formula-
tions for MPCCs, and focus on properties of these formulations near MPCC local solutions,
where strong stationarity and second-order sufficient conditions are satisfied. Existence and
uniqueness of solutions for these formulations are investigated, and estimates are obtained
for the distance of these solutions to MPCC solutions.

Hoheisel, Kanzow and Schwartz [23] provide a theoretical and numerical comparison of
several relaxed MPCC schemes. In particular, they improve the convergence properties of
several existing relaxation methods for MPCCs, show which CQs are satisfied by relaxed
problems and present a numerical comparison of all relaxation schemes based on the MacM-
PEC test problem collection [33]. Kanzow and Schwartz [29] also consider relaxation methods
for MPCCs, based on solving a sequence of nonlinear programs depending on a vanishing
parameter. Most of these relaxation methods can obtain C-stationary points, although
M-stationary points can be obtained with stronger second-order conditions. Moreover, Ho-
heisel et al. [23] and Schwartz [42], generalize the definition of stationarity conditions for
MPCCs, through relaxed constraint qualifications (i.e., MPCC-LICQ = MPCC-MFCQ
— MPCC-GCQ) to define appropriate stationarity conditions. In particular, it has been
shown that a local minimum that satisfies MPCC-LICQ also satisfies strong stationarity (see
also [15,40]), while a local minimum that satisfies MPCC-GCQ also satisfies M-stationarity
(see also [14]). Weaker necessary conditions with MPCC-GCQ include C-; A- and weak
stationarity. Also, they show that the C-stationarity results of [41] and [35] hold under the
weaker MPCC-MFCQ condition.

More recently, Hegerhorst-Schultchen and coworkers [20-22] considered abs-normal NLPs,
developed in [17, 18], which are given by

min f(xz, |z]|) s.t. cp(z,|z]) =0, ¢(z,]z]) >0, cz(x,|2]|) — 2 = 0.



The objective and constraint functions are level-one nonsmooth functions, as in (2). The
abs-normal NLP can be reformulated to the MPCC:

min f(z,u+v) st. cg(z,u+v) =0, ¢f(r,u+v) >0, cz(z,u+v)—u—v =0, 0<u L v >0,

and can also be written equivalently using max operators, i.e., |z;| = max(0, z;)+max(0, —z;).
An extensive analysis of this problem is provided in [22], where optimality conditions are
characterized with extensions of KKT conditions and kink qualifications that replace con-
straint qualifications. Moreover, the relationships of abs-normal NLPs to MPCCs in terms
of specialized constraint qualifications are provided in detail as well as stationary point
properties relating to first and second order optimality conditions.

1.3 Smoothing the Max Operator
NCP-functions ¢ represent complementarity (4c) as
¢(y, 9 — ;) =0 if and only if - y; > 0,y; — z; > 0,y;(y; — 2;) = 0. (17)

The functions are usually Lipschitz-continuous but not differentiable at (y;, y; —x;) = (0,0);
therefore their perturbed smooth approximations are often used. A typical example is the
perturbed Fischer-Burmeister function:

s (Yi, v — 23) = v + (U — ) — \/y? + (Y —a5)? + 1%,

where the smoothing factor ¢ > 0, and ¢ = 0 recovers the property (17). A wide variety of

NCP-functions have been developed and applied to reformulate MPCCs and approximate

the solution by solving a sequence of NLPs with their smoothing factor tending to zero

(12,16, 25,29, 34]. In this research, we reformulate the max operator in (1) with a class of

parametric smooth NCP-functions generated from distribution density functions 6(¢),£ € R

[8], which approximate a Dirac delta function, the twice derivative of the max function.
Assume the density function §(¢) satisfies the following properties.

Assumption 1.6. The function §(§) is smooth and has infinite support, i.e.,
i) >0, V¢ e R;

and

/ " se)de =1, / " els(e)ae < oo. (18)

oo -

The shape of the density function can be parametrized by € and we define the parametrized
density as

g0 = 20(2¢e), (19)

the smoothed step function as

3
s(60) = / A(E, €)dE. (20)



and the smoothed max function as

I3
m(E.c) = / S(E )dE. (21)

Function (21) satisfies the following properties.
Proposition 1.7. [8, Proposition 2.2] Let Assumptions 1.6 hold, then:

1. m(&,€) is continuously smooth.

2. The following inequalities hold.

0 <m(§, ) —max(0,€) < ke/2, where k = /0 |€]6(£)dE; (22a)
m(&, €) > & (22b)
0<Vem(§,e) < 1. (22¢)

3. m(&,€) is strictly increasing with & and strictly convex.
4. m(0,€) = ke/2.
5. maxe [m(€, €) — max(0,£)] = m(0,€) = re/2.

Proof. Ttems 1 — 4 follow directly from Proposition 2.2 in [8]. Item 5 is proved as follows.
Defining ¢, (§) = m(&;e) — & for € > 0 and ¢_(§) = m(&;¢) for £ < 0, we have from Item
2 that V¢, () < 0 and Vo_(§) > 0. Hence ¢, (0) > ¢, (&) > ¢4(&) for 0 < & < & and
¢-(0) > ¢_(&1) > ¢_(&) for 0 > & > &. Since ¢_(0) = ¢4(0) and m(§, €) — max(0,§) is

absolutely continuous, it has its maximum value at & = 0. O
We consider two popular examples of m(&, €) that satisfy Proposition 1.7:

with

m(&,€) = 5 (E+ V& + ), (23)

where k =1 and Ve m(0,€) = s(0,¢) = 1/2.

5

e The smoothed square root function [1,6

DO | —

e The neural network function [7] with
m(g,€) = €+ 5 log(1 + e/, (24)

where k =log2 and Ve m(0,¢€) = 5(0,¢) = 1/2.

By defining the vector function h¢(z) with elements h$(x) = m(z;,¢), j =1,...,n,, we can
rewrite (2) as the modified NLP:

min f(z,y,q) (25a)
st. c(x,y,q) =0 (25b)
y — h(z) =0. (25¢)
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2 Solution Strategies

To solve (2) we develop a strategy that considers the errors of the smoothed function h¢(x),
which is embedded within a parametric form of NLP (25). This modification, i.e., NLP (27),
can be adapted to provide a local upper bound to (2). A relaxed smooth problem, i.e., NLP
(28), is also formulated, which provides a local lower bound to (2). These two problems are
the basis for the proposed algorithm, which finds a solution of (2) by solving a sequence of
NLPs with decreasing € and, additionally, adaptively determined parameters. This section
provides background concepts and properties for the NLP formulations and the resulting
algorithm.

2.1 Smooth NLP Formulations for Problem (2)
The KKT conditions for (25) can be written as

Vaf(@,y.q) + Vac(z,y, )N = Vb (2)u = 0 (262)
Vyf (@, y,q) + Vyelz,y, )A +u = (26b)
Vof(z,y,9) + Ve(z,y,q)A = 0 (26¢)

c(x,y,q) =0, y — h(z) = 0. (26d)

Assume that NLP (25) satisfies LICQ and SOSC at its local solution z = (
the parametric program:

,U,q). Defining

&I

min  f(z,y,q) (27a)
sit. c(x,y,q) =0 (27b)
y—h(z)+p=0, (27¢)

the same KKT conditions (26) apply, with the addition of parameter p € R"* in the last
equation. We know from Theorem 1.5, that for € > 0 sufficiently small and p; € [0, ke/2] for
all j = 1,...,n,, there exists a local solution z(e) within an e-ball of Z; and we can easily
obtain sensitivity information from the KKT conditions for (27). Note that the interval for p;
is sufficient to find a feasible point of the original problem (2), since 0 < A§(z) —max(0, z;) <
ke/2 (Item 2, Proposition 1.7).

We also consider the relaxed NLP given by

min f(z,y,q) (28a)
st c(z,y,q) =0 (28Db)
—(ke/2)e <y —h(z) <0, (28¢)

where e” = [1,1,...,1]. Here we assume that (28) satisfies SC, LICQ and SOSC at its KKT
points. Note that the feasible region of (28) contains the feasible region of (2) and the
solution of (28) therefore locally provides a lower bound to (2). The KKT conditions for



(28) are given by

Vof(x,y,q) + Vec(z,y,)N — Voh(z)(ug —ug) = 0 (29a)

Vyf(@,y,q) + Vye(z,y, A+ (v —uy) = (29b)

Vof(z,y,q) + Voc(z,y, )N = 0 (29¢)

0<up Ly—h(z)+ (ke/2)e >0 (29d)

0<wuy Ly—nh(z)<O0. (29e)

Note that u in (26) is replaced by uy — uy in (29). Moreover, since the constraints (28¢c)

cannot be active simultaneously for € > 0, we have 0 < u; L uy > 0.

To derive e-bounds for a solution of (2), we note that for € > 0 there exist some values of
p; € [0,k€/2], j=1,...,n,, with which a solution of (27) is feasible to (2) and hence forms
an upper bound to (2). On the other hand, a solution of (2) is feasible to Problem (28);
hence (28) can provide a lower bound to (2). Moreover, problems (27) and (28) are closely
related, so that for e > 0 sufficiently small, we can make sensitivity corrections with respect
to p at the solution of (27), which approximates the solution of (28). These observations can
be summarized by the following proposition.

Proposition 2.1. Let LICQ and SOSC hold at local solutions of (25) and (27), and SC,
LICQ and SOSC hold at local solutions of (28), for e > 0 suitably small and p; € [0, ke/2], j =
1,...,n.. Then the following statements hold.

1. A solution of (25) along with a correction based on linearization of the KKT conditions
provides an €%-approzimate solution to (27) with p # 0.

2. A solution of (25) (or (27)) with sensitivity corrections provides an €*-approzimate
solution to (28).

3. Let z(p) be a KKT point for (27), then the sensitivity of f(z(p)) with respect to p, i.e.,

%}Sp)% is giwen directly by u(p).

Proof. Each claim is proved as follows.

1. Theorem 1.5 allows the KKT conditions of (25) to be expanded in a Taylor se-
ries. Define s(p) = (z(p), A(p), u(p)) as the primal-dual solution of (27) and s(0) =
(2(0),A(0),u(0)) as the primal-dual solution of (25). For the Lagrangian £ = f(z) +
c(2)TN + (y — he(x) + p)Tu, represent the KKT conditions (26) as V,£(s(0),0) = 0
and the KKT conditions for (27) as VL(s(p),p) = 0. Using the solution of (25), the
sensitivity correction to approximate the solution of (27) is derived from the following
Taylor expansion:

V.L(5(0),0) + (vspc<s<o>,o>T STLL(0.0 T )p+ Olpl?) = V.L(s(p).p).

Since V£(s(0),0) = VsL(s(p),p) = 0, we have

lim (Vspﬁ(s(()), 0) + Voo L(s(0), O)ET)

llpll—0
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which implies that
ds”
dp
Also since LICQ and SOSC hold, VL is nonsingular and bounded in € neighbor-

hood of solutions of (25) and (27). Applying Taylor’s theorem, and noting that
VL (s(0),0)Tp = VL(s(0),p) and VL(s(p),p) = 0, we can derive

s<o>+j—;p—s<p>=s<o>—s<> LL(5(0),0)"1V,£(5(0). p)
— Vo L(5(0),0) [VauL(5(0),0)(5(0) — 5(p)) — (VaL(5(0).p) — VuL(s(p). p))]
(

= Vs L(5(0),0)7" (VasL(5(0), 0) = Vs L(s', ) (s(0) — 5(p)),
where s = s(p) + 7(s(0) — s(p)) for some 7 € (0,1). Hence,

— —V,.L(5(0), 00V, £(5(0), 0)". (30)

dsT

0+ b s<p>H < CuLuaa5(0) — s = O(lp|?) = O(),  (31)

where Ly is the Lipschitz constant for V£, and C},, is the upper bound on the norm
of its inverse; and we have used the fourth item of Theorem 1.5 and p; € [0, ke/2] for
the equalities.

. From the solution of Problem (28) given by (27, A\, ur,uy), define p~ = h¢(x™) — y~
and u = uy — uy. Substituting p~ for p in Problem (27) leads to the same solution 2™,
with the multipliers (A, u).

We also note that p; € [0, ke/2] because of (28¢). To show that the solutions of (25)
and (27) with sensitivity corrections are e2-approximate to (28), or equivalently, to (27)
with parameter p~, we apply the result from Item 1 and note that

ds” _ _ _
s(0)+ 2 » —s7) = O(lp[*) = O(<"),
P

s)+ 3, 7 =) =s7) = Ollp—7I") = O().
. Consider the Lagrange function for (27) at two KKT points and two parameter values
p # p'. Applying Taylor’s theorem with p(7) = p+ 7(p' — p) (7 € [0, 1]) leads to
FGW) = f(2(p)) = L(s(), P) = L(s(p), p)
1 dST ,

Vo L(s(p(7)),p(7))" + VL (s(p(7)), p(7))" — ) (p' —p)dr

1

u(p(r))" (p' — p)dr, (32)

S— S—

where we used V,L(s(p(7)
obtain that df(z(p))/dp

p(7)) = 0 to deduce the last equality. As p’ — p, we

);
u(p)-

O
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2.2 Bounding Algorithm for Problem (2)

From the above properties, for any parameters p;, p; € [0, k¢/2] (j = 1,...,n,) where € > 0,
and the corresponding solutions z(p) and z(p’) of (27), it is straightforward to show that
df(z(p))

fz0)) = fz(p) + d—p(p’ —p)+O(lp' — pII?),

and hence that

)+ 3 )6 )l + 0(D)] 2 F0) 2 Zm p)l = l0(@)].

(33)
This can be specified for a (local) solution 2z~ of (28) and z* of (2) as

Zlu] 0] = F(=) > f(=7) > fz0) =5 D lus(p)| — [O(H)]. (34)

To isolate the solution of (2), we devise the Bounding Algorithm. For a sequence of
smoothing parameters {¢*} tending to zero, NLP (27) is solved to local solutions {z*}. At
each solution z¥ = z(p*), the sensitivities u(p”*) are applied to estimate both the upper bound
of f(2*) and f(z7) in (34) based on the current objective value f(z(p*)), as well as to update
the parameters p*! as shown in (35) for the subsequent formulation (27) to be solved. At
its convergence, the Bounding Algorithm arrives at an €y-approximate solution of (2), for
the prescribed tolerance €.

A sensitivity analysis plays an important role in the course of exploring a MPCC solution.
As shown in Step 3 of the algorithm, possible improvement of the objective value at a solution
2¥ is examined based on sensitivities %ﬁ:) (j = 1,...,ng), given by u¥ = u;(p*). In the

J
case of u¥ < 0 (or u} > 0), increasing (or decreasing) the value of p¥ can lead to decrease in
the objective function. If these pé? stay within [0, ke/2] after the adaptation, then they are
recorded by the sets Jy and J., which are used in (35) to prescribe the parameters for the
next solution.

In fact, the adaptation of parameters p; changes the active bounds of the underlying
problem (28). Specifically, for all j € Jy, the constraints y; — h§(z) leave their upper bounds
at ¥ and instead come to the lower bounds at z**!; and the inverse happens for all j € J..
NLP (27) is solved repeatedly with such possible ‘jumping’ of p; between 0 and ke/2 as €
tending to zero, in the hope that this will identify the correct active set and approximate
the solution of (2) better in subsequent steps.

12



Bounding Algorithm: A procedure to isolate the solution of (2)

Specify initial smoothing factor € > 0, reducing factor v € (0, 1), initial point
20 = (2°,4°, ¢°), solution tolerance €, > 0. Set initial paramater p® <— 0, counter
k <+ 0.

(Optional) For some ¢ € (€1, €°), starting from €® and z°, solve a sequence of
problems (25) with € — €, to obtain a local solution z = (7,9, q). Set ® < ¢,
2%« %, and pf « g; — max(0, ;).

while €¥ > ¢,,; do
Step 1: Solve NLP (27) with p* to obtain primal variables 2% = (z*, y* ¢*) and
dual variables (A*, u®).

Step 2: Approximate the upper bound of (2) with

.....

Step 3: Approximate the objective of Problem (28) as follows.
e Let Jy = {j|p§? =0 and uf < 0}; setting pf = ’%k for j € Jy would reduce f(z¥).
o Let J. = {jlp¥ = % and uf > 0}; setting p¥ = 0 for j € J. would reduce f(z*).
e The objective value with the above p* adaptation would be (approximately)

flow = f(zk) - (’%k) ZjeJOUJe

Step 4: Set €' < ~e* correct the parameters as

kektL /2 G e Jy;
pitt =40, j€Je (35)
'ypg‘? , otherwise.

Step 5: Set k <— k+ 1 and go to Step 1.
end

2.3 Relation to Lin-Fukushima Regularization

We reveal the equivalence between formulation (28) and the well-studied regularization pro-
posed by Lin and Fukushima in [35]. As a consequence, convergence results derived for
the latter should be also applicable to (28). However, at the same time, we can see tech-
nical differentiation between these two relaxations, which motivates further discussion on
convergence in the next section.

According to the method of [35], MPCC (4) is approximated by

LE(t): min f(z,y,q) (36a)
st. c(x,y,q) =0 (36b)

Upi(2) =y +)(y; —z;+t) >t j=1,...,n, (36¢)

V() = yly; — ;) <, j=1,...,n,, (36d)

where t is a positive parameter. Suppose MPCC-LICQ (15) holds at a feasible point Z of
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MPCC (4). It has been proved that in a neighborhood N(2) of Z, standard LICQ holds at
every feasible point z € N'(2) of NLP (36) for ¢ > 0 sufficiently small.

With this constraint qualification, convergence results have been established for MPCC
(4). Specifically, for a sequence {t*} with limy_,, t* = 0, suppose the stationary points {2*}
of (36) have an accumulation point z* where MPCC-LICQ holds, then z* is C-stationary for
MPCC (4). Furthermore, if every z* meets additional second-order conditions

dTvzzﬁLF(zkuAkvulE?M]Z)d 2 _aﬁFHdH27 (37>

for the Lagrangian Lrp = f(2%) + c(2F)TANF — (U (2%) — (t9)))Tuh + (U (2F) — (%)) Tk,
for the bounded sequence {a¥ ..} of positive constants, and all the directions d (chosen to be
bounded) in the set

Ve (Z)Td=0, i=1,...,n,
Dip(z") = d| VUL;(2F)Td =0, Vje Iy, (2" t*) = {j|Vr;(z") = (t*)*}
VUy,;(2)Td =0, Vje Iy, (2" tF) = {j]| Yp;(2*) = (t*)°}

then z* is M-stationary for MPCC (4). These convergence properties have been extended in
later studies. C-stationarity is proved under a weaker MPCC-MFC(Q) assumption on z* [24].
In addition, when the sequence of NLPs (36) is only solved approximately, C-stationarity of
z* still holds as analyzed in [27,28].

We establish the relation between NLPs (28) and (36), based on the smoothed square
root function (23). Then from the upper bound of (28¢) we have

Ty + /25 + €
<0

Y

Yj —

2
< Yty — ) < \/90§+€2 = \/(yj—(yj—%))ZJrEQ
& yily —25) < €E/4 (38)

and from the lower bound we have
xj+ \/W
Yi — 5 > —€/2
& Yty — ) +e> \/$?+€2 = \/(yj—(yj—xj))2+€2
& yly— )+ Sy + (g — ) 20

2
& (Y +¢/2)(y; — x5 +¢/2) > /4 (39)

With e = 2¢, inequalities (38) and (39) are identical to Uy ;(z) and ¥y, ;(z), respectively, and
thus leads to the same relaxation.

On the other hand, the complementary elements y; and y; —x; do not present explicitly in
(28¢), unlike in the functions (36¢)-(36d). Hence we cannot compare Lagrange gradients and
Hessians of these two reformulations of complementarities directly, while such comparisons
are needed for the test on constraint qualifications and stationarity properties.
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3 Convergence Analysis

Suppose that an infinite sequence of stationary points {z*} of NLP (27) or NLP (28) is
generated with a sequence {€*} of positive scalars tending to zero and, additionally for
(27), a sequence {p*} of parameters determined by the Bounding Algorithm. This section
analyzes stationarity of limit points of {z*}, for the nonsmooth problem equivalent MPCC
reformulation (4). The discussion follows the convergence analysis in [16], which is related
to Problem (25).

Sections 3.1 and 3.2 develop convergence results for the square root function (23) smoothed
problems. Section 3.3 extends these results to problems based on the neural network function
(24).

3.1 Constraint Qualification of Subproblems

To facilitate and generalize the analysis, we apply the MPCC notation in (3) and denote
G,(z) =y;,Hj(z) = y; — z;. For € > 0, define the function

05(2) = y; — hj(x) = G;(2) = hj(Gy(2) — H;(2)).

At a feasible point z of NLP (27), we have ®5(2) +p; =0 (j = 1,...,n,), where the value of
p; is determined by the Bounding Algorithm. On the other hand, the equation @;(z) +p; =0
also holds for any feasible point z of NLP (28), where p; = 0 if z locates on the upper bound
of the constraint (28c), p; = ke/2 if z on the lower bound, and p; € (0,ke/2) if z in the
interior. Based on this observation, the following presentation is applicable to both of the
NLPs.

With the square root function (23), we have that (recall K = 1)

5(2) +p; = ;(23/]—@ ,/1:?+62+2pj>
=5 (G + 1t - fies) ~ e vy,
ey Lo Gi(2) — H(2)
Vel = 2¢<Gj<z>—Hj<z>>2+e2’
oo L G~<> Hy(2) (40)
H j(Z) 5—1—2\/ o) T

—2(G,(= )+pg)(H( ) + ;)
((Gj(2) = Hj () + €22
2(Gy(= )+pj)(H( ) +5)
((Gj(2) = Hj(2))* + €)%

At a point z such that ®§(z) + p; = 0, it follows that

Vea®5(2) = Van®j(z) =

VGHq);(Z) = VHG(I)E( ) =

20y +py) —ay = (25 + )2 >0 (41a)
= ((yj+pj) + (5 — 2 +p))* = ((y; +pj) = (y; — 2 +p;)° + €
= (yj —l—p])( — Ly +py) = 62/4 (41b)
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This leads to the equivalence:

o) =0 = { @ (42)
P(2)+p;=0 & Hj(z) +pj =y; —x;+p; >0, (42b)
(G(2) +pj)(H;(2) +pj) = (5 + i) y; — = +pj) = €/4.
Here, (42a) is the limit of (41b) at € = 0 (and thus p = 0), which recovers the complemen-
tarities in MPCC (4). On the other hand, (42b) characterizes the status when e > 0, which
follows by noting from (41b) that y; + p; and y; — z; + p; must have the same sign, and that
if they are both negative then (41a) is violated. It follows from (42b) that

VI(Gi(2) = Hy(2)2 + ¢ = \J(Gs(2) +p5) — (Hj(2) + 7)) + €2

= J(G3(2) + 1) + (Hy(2) + py)? + 2(G5(2) + ;) (Hy(2) + 1)
= [Gj(2) + Hj(2) + 2p;| = G;(2) + H;(2) + 2p;.
This simplifies the derivatives in (40) at a point ®5(2) + p; = 0 as follows:

H;(z) + p;
VS (z) = 2T
)= G E+ I6) 2,
G(z) +p,
Vdi(z) = J J ,
O BT )
—2(G;(2) + p;)(H;(2) + pj)
Vaa®(2) = Vau®i(z) = J I 2
002 = Vun®E) = G0+ Hy(e) + 20,0
2(G;(2) +py) (H;(2) + pjy)
Van®(2) = Via®(z) = =2 LSS 2,
an®(2) = Vae® 2 = =G Gy + 1y () + 2,)
Thus the gradient of ®$(z) is given by
H;(z) +pj Gj(2) +p;
Voi(z) = J J VG;(z)+ J / VH;(z
O B A T B e E A
0 e 44
_ Y~ T+ . Y; + pj 6?] (44)
2y; — 2 +2p; | 2y — 2 +2p5 |

Now consider ¢ = 0 (and thus p = 0). At any feasible point Z of the MPCC, with

T;=1; =0 (j € [(£) N1y(Z)), the function ®f is not differentiable. In this case, the Clarke
generalized gradient is defined as

0PY(2) {r}r = khrn V®I(2"), with 2* — 2 and V®I(z") exist} . (45)
—00

It is worth noting, following from (44), that any accumulation point 7 of {V®$(z)} for

J € 11(2) N Iy(2) is contained in the set

0 —€j
G;(2) = 7"7’253' ej |+ | e |, (§0) €By (46)
0 0
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where B = {(fj, AN —E)2 4 (1 —7)2 < 1}, and hence is represented by

0 —Gj
T = ]VGJ(?:’) + ﬁJVH](?:“) = éj €j + ﬁj €j s (47)
0 0

for some (&;,7;) satisfying (1 — éj)Q + (1 —n;)* < 1. This leads to the following results.

Theorem 3.1. Suppose MPCC-LICQ holds at a feasible point Z of MPCC' (4). Then in a
neighborhood U(Z) of z, LICQ holds at every feasible point z € U(Z) of NLP (27), for any
€ > 0 sufficiently small and p; € [0,€/2],j =1,...,n,.

Proof. We note that the proof is not restricted to the feasible points of NLP (27) whose pa-
rameters p; are set by the Bounding Algorithm. Instead, p; € [0, €/2] is the only requirement
on the parameters.

It follows from the Lipschitz continuity of Vc in (4), and the gradient of ® characterized
by (44) and (46), that

lg%Vci(z) = V¢(2), i=1,...,n

0
- (48)
lim V§(2) = VH,(2) = eog , J ¢ Li(2),
lim dist(V5(2), G(2)) = 0, jeL(2)NI1(3),

where dist(V®$(z),G;(2)) is the minimal distance between V®$(2) and the set G;(2). For
NLP (27), consider the equation

z‘: j=1 (49)
= Z ANVe(z)+ Y wVE(2) + Y V() + Y uVES(2).

JE12(2) JE11(2) JENL(2)NI2(2)

In view of the limits in (48), and the MPCC-LICQ assumption at 2, we can conclude that,
for € > 0 sufficiently small, \; =u; =0(i=1...n. j=1...n,). O

Theorem 3.2. Suppose MPCC-LICQ holds at a feasible point Z of MPCC' (4). Then in a
neighborhood U(Z) of z, LICQ holds at every feasible point z € U(Z) of NLP (28), for any
€ > 0 sufficiently small.

Proof. For NLP (28), define the following sets for the active inequality constraints:

I(z6) = {j[®5(2) = —€/2},
Iy(z,€) = {j]®5(z) = 0},
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Consider the equation

0 =>" \Vea(z) — Z ur, ;VO;(2) + Z up,; VO5(2)

JElL(z)¢) j€lu(z5€)

=S AVaz) = Y ug |G GV G + GBS VH ()] (50)

Gj(z)+H;(z)+e (2)+H;(z)+e
JEIL(2,€)
+ ws |Gt VO () + aitiatm VH )]
J€Iy(2,€)
where we have used the derivatives in (43), and recall that p; = —e/2,Vj € I (z,€), and

=0,Vj € Iy(z,¢€). In view of the MPCC-LICQ assumption at Z, and the relation I (z, €)U
IU(Z €) C I;(2) U I5(2) holding for € > 0 sufficiently small, we obtain from (50) that

= 1=1,...,n,
Hy()+e/2 | ez | .
L. [W} 0, ur,; [G )+, (z JJ = jeI(ze)
Uy,j [W%} 0, uy [ z)+H } J € Iy(z,e).

Note from (42b) that

Hj(z)+€/2 Gj(z)+e/2 .
Goee > O G en > 0 Vi€ iz ),
H,(2) Gi(2)
Geremm ~ O G > 0 VI € vz,
Therefore, the solution of (50) is \; =up; =uy; =0(i=1...n, j=1...n,). O

3.2 Stationarity Properties

Consider a sequence of the stationary points of NLP (27) or NLP (28), generated with ¢ — 0
and, additionally for (27), a vector p adapted by the Bounding Algorithm. As a consequence
of the properties (42), limit points of the sequence are feasible to MPCC (4). Now we
investigate stationarity properties of the limit points for the MPCC.

3.2.1 C-Stationarity

Theorem 3.3. For a sequence of positive scalars ¥ — 0, apply the Bounding Algorithm to
NLP (27), such that the parameter p* is updated whenever €* is updated. Let the generated
sequence of stationary points z* — z*. Suppose that MPCC-LICQ holds at z*. Then z* is a
C-stationary point of MPCC (4).

Proof. Rewrite the conditions (26a)-(26¢) as follows:

0=Vf(")+ V()N + DY ubveszh) + > uvaesh) + Y uivaes(eh),

JEI2(z%) JE(z%) JENL(2*)NI2(2*)
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where the multipliers A\¥, u* are unique for every ¢* > 0 sufficiently small. According to (48),
we have at z* that

0=V/f(")+Ve(z)N\+ > uwVG(z")+ > uVH;(z")

j¢12(2*) j%ll(z)k) <51)
+ (WS VG(2") + uinyVH;(2))
]GIl(Z*)ﬁIQ(Z*)
where
N = lim M, u; = lim uf,
ek —0 ek —0
and

rt=&VG(27) + 0y VH(2")

* * : : *)2 *\2 * : .
for some (&5, 77) Satlsfylpg (1 =¢&)°+ (1 —n;)° <1, such that r* is an accumulation point
of {V®5(z¥)} for every j € I (2*) N Iy(z*). Given the MPCC-LICQ assumption at z*, the
multipliers associated with z* are unique, which are the limit points of the unique NLP
multipliers A\¥, . With the following settings:

o1 = —uj, J & I(2%),

=, JENE) )
oy; = —wi&;, j € L(2")NIx(z"),

05 = —winy, j € L(2") N Ix(z"),

the point z* satisfies the weak stationarity conditions (13). For the biactive set, since §n; =
0, then o};03; = (u})*¢in; > 0, which proves C-stationarity of z*. O

Examining C-stationarity based on NLP (28) is not so straightforward. For the inequality
relaxation (28c) of the complementarity conditions, not only the active lower and upper
bounds, but also the interior needs to considered, so as to derive a complete set of the
MPCC multipliers.

Theorem 3.4. For a sequence of positive scalars €¥ — 0, let the sequence of NLP (28)’s
stationary points 2F — z*. Suppose that MPCC-LICQ holds at z*. Then z* is a C-stationary
point of MPCC' (/).

Proof. 1t follows from the conditions (29) that

0 VEER) + Ve(@)N = YT uf Ve + Y Vas(eh)

jEIL(Zkvek) jEIU(Zk7€k)

- Xl [l VO () + o V()

G;(zF)+H;(2F)+ek G;(zF)+H;(2%)+eF

k H;(2%) G, (2") &
+ Uy.; [G Eorr T VG2 (%) + WVH]'(Z )} ,
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where the multipliers A\*, u¥ uf, are unique for every €* > 0 sufficiently small. By setting

alfj = uIZJ [Gj(lj,i)(ik;j(fk/)iek_ , jEIL(ZF, ") and j € I1(2),
0% = Ul [Gj(ffzgikl){j(fk/)z—i—ek_ , J € I(" ") and j € I(2"), (53
ot = —up; [W%%% , j € Iy(2¥, ") and j € I, (%),
agj = —u’&j [G](z%(fz}z(zk) . j € Iy(2, ") and j € I,(z"),

we rewrite the above equations as

0=V +Y " MVa(t
ek €
— Z alj |:VG]‘(Z )+ MVH( )] Z Ugj [VHj(Zk) + HVG (")

JEIL(2F %) JEIL (2" ,eF)
J¢I2(2%) JEI(z%)

— X [ VGE) + ok VH, ()

JEIL(2",€F)

Jjeli(z*)NI2(2*)
. Zk . Zk
= Y A VGE + REVEE| - Y ok [VH () + B G ()]
jGAIU(zk,ek) JEIY (2F,€F)
J#I2(z) J¢h(z")

— X [ VG(E) + ok VH ().

j€l (z*,F)
jeli (Z*)ﬂ]z(z*)

(54)

Denote (54) as V f(2*) + A(2*)w* = 0, where w* contains all the multipliers A}, of;, and o3,
while their corresponding vectors are columns of matrix A(2*). Now consider the following
augmented system:

VI (2",e*)Uly (25 ,eF)
7\

- ~ wk
VIR + A" = VR + [A(ZR) :VGj(zkz : :VHj(sz 0 | =0.
0

jen (=) jeh (=)
In the limit, A(2*) converges to a matrix A(z*), which has columns

{Va()[i=1,...,n} U{=VG;(z") |j € L(z")} U{=VH;(z") |j € o(z")};  (55)
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and W* converges to a vector @*, whose elements are as follows (refer to (53)):

o= Eggloxf, i=1,...,n,, (56a)
((up; = ElkiLHOU’z,j >0, jelI?and je (%) \ I(z*)
up &5 =& elkiinou’z’j > 0, j€I?and j € I(2*) N I(z*)
ol = —upy=—lmup; <0, G eIy and je N(x)\ b(") (56b)
—up&) = =& lim ug; <0, j €Iy and j € L(z) N Io(:7)
L 0, j¢ (ILUI]) and j € L(2"),
(up,; = limuj; >0, j€I) and j € I(z*) \ [i(z")
uy ;= n; elkirﬁnoulzvj >0, jeI?and je I(z*) N Iyz*)
03 = y Uiy =~ g, <0, j€IY and j € I(2*) \ I1(z*) (56¢)
—up1; = —n; lim up; <0, jeliyand j e Ii(z*) N Iy(z%)
L 0, J& (I2UIY) and j € I(z*),

for the sets

Ig ={jlje IL(Zk, ek) for every >0 sufficiently small},
IY ={j|j € Iy(z", ) for every € > 0 sufficiently small},

and some (£F,77}) satisfying (1 —&7)*+ (1 —n7)? < 1, such that 7* = &V G;(2*) + ) VH,(2%)
is an accumulation point of {V®$(2*)} for every j € I (2*) N I;(z*). Given the MPCC-LICQ
assumption at z*, the matrix A(2*) has full column rank, and the multipliers A}, o7;, 03; in
(56) are unique, which are converged from the unique NLP multipliers \* u% u¥. Then 2*

is C-stationary because

(up ;)26 >0, jelp and j € L(2") N Ix(2Y)
0102 = (U*U,j)gf;n; >0, jelyandjeLi(z")NL(z")

]

In the light of the expressions (52) and (56), the limit point z* is B-stationary, or
equivalently, strongly stationary since MPCC-LICQ is assumed, if (i) u; < 0 for all j €
I(2*) N L(2*), (i) Iy = 0, or (iii) ug;; = 0 for all j € Ij N I1(2*) N I(2*), which indicates
the violation of SC at every stationary point 2* of (28) for small positive ¢*. Condition (ii)
represents the case that for ¥ > 0 small enough, the relaxed constraints —e*/2 < @;(zk) <0
do not have active upper bounds, namely, u’f]’j =0, Vj € I1(z*) N I3(z*). From the point of
view of the parameterized constraints @;(zk) + pé? = 0, in this case p;? = ¢"/2, and uf <0
(since uf = up;; — uf ;), for all j € I;(z*) N Ir(z*).
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3.2.2 M-Stationarity

Now we consider the second-order conditions at stationary points z* of the NLPs, with the
aim of exploring stronger results beyond C-stationarity in the limit.

Define the Lagrangian for NLP (27) as Lpa (2, A\, u) = f(2) +c(2)" A+ (®°(2) +p)Tu. The
Hessian of the Lagrangian is given by

VZZEBA(Z7 )\7 u) = vzzf(z) + Z )\zvzzcz(z) + Z ujvzzq); (Z) (57)
i=1

i=1

Theorem 3.5. For a sequence of positive scalars € — 0, apply the Bounding Algorithm to
NLP (27), such that the parameter p* is updated whenever €* is updated. Let the generated
sequence of stationary points 2* — z*. In addition to the assumptions of Theorem 3.3,
suppose that the reduced Hessian of the Lagrangian at each z* is bounded below when €* > 0
suitably small, in the sense that

dTvzzﬁBA(zka )‘k7uk)d > _agA||d||2a Vd € DBA(Zk)v (58)

for the bounded sequence {a,} of positive constants, and

Ve (2¥)d=0, i=1,...,n,
DBA(zk):{d ci(Z7) i n }

el kN\NT 7 _ N
VOs(2¥)'d=0, j=1,...,n,

Then z* is an M-stationary point of MPCC (4).

Proof. For the purpose of deriving a contradiction, suppose z* is not M-stationary. According
to Theorem 3.3, there exists some index jy € I1(z*) N I(z*) such that

o=yt nt
O250 = ~ U5, < 0.

This implies w}y, &, 750 > 0, because (1 —&5)* + (1 —nj)* < 1.

We can choose a direction d* such that

Td* =0, j € L(z*) and j # jo,

Td* =0, j € I(z*) and j # jo, (61)
Td" =dg = Vo ("),

Td" =dy = —Vq® (2.

<
=
A~~~ o~~~
N
\_/\_/\_?\_/

The direction d* is well-defined for € > 0 sufficiently small, because the MPCC-LICQ
assumption at z* guarantees linear independence of the coefficient vectors of d*, and the

right-hand sides of the last two equations are confined by the set G;o(2*) in the limit. Note
from (43) and (44) that d* € Dga(2").
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Contribution of the constraint ®$(z*) + p¥ = 0 to (d*)"V..Lpa(2*, N\, u*)d" is that

us (dN)TV . 5(2")dr
= ub(d")T[Ve®(2") V.G (") + V(") V.. H; (%)
£ Vae® (VG (HVC, (M) + Von® (VG (M) VH, ()
+ Vue®(2")VH;(z")VG;(2")" + V@ (z")VH; (2*)VH;(2*)"]d". (62)
This term is zero for all j # jo, which follows from the definition of d* and V..G;(z%) =
V..H;(z*) = 0 for MPCC (4). For j = jo, we derive the following from (43):
k ( gk e (,ky k
uj (d )Tvzzq)jo(z )d
= ul [Vaa®, (2")dg + 2Van®, (2" dady + Vi ®, (z")d} ]
205 (G (2F) + ) (H, () + p3y) >
- k k k\3 (de — du)
(Go(27) + Hjy () + 2p5,)
—2uf (G () + ) (Hjo (=) + pf)
(Gjo(2%) + Hjy (%) + 2pf )
—2uk

Gjo(2%) + Hjy (2%) +2p§OVG 5 (2 )V ®5 (27) (63)

Aséd — 0, uj V@S, (2 ) Vu®5 (2 *) converge to s, &5, 175, which are positive and bounded,
while G, (2%), Hj,(2"), pf, tend to zero. As a consequence,

k (kT e (K gk
ug (d7)" V. @5 (27)d" — —o0. (64)

Since all other terms in (d*)TV..Lpa (2%, \¥, u¥)d* are bounded, then (64) yields the contra-
diction to (58). Hence the assumption must be false and z* is M-stationary. O

To investigate M-stationarity based on NLP (28), define the Lagrangian Lypr(z, A, up, uy) =
f(2) 4+ c(2)" A = ((2) + €/2)"ur, + @(2)"uy. The Hessian of the Lagrangian is given by

vzszLF(za )‘7 ur, UU) zzf + Z A vzzcz Z ur, ]VZZ(I)E ) + Z uU,jvzz(I)§'<Z>-
j=1

Theorem 3.6. For a sequence of positive scalars € — 0, let the sequence of NLP (28)’s
stationary points z* — z*. In addition to the assumptions of Theorem 3.4, suppose that the
reduced Hessian of the Lagrangian at each 2* is bounded below when €* suitably small, in the
sense that

wTVZZ,CMLF(zk, )\k,ui,ulf])w Z _aﬁ/ILFHwHQJ Vw - DMLF(Zk), (65)

for the bounded sequence {afp} of positive constants, and

Daaee(2H) = V(M) Tw=0, i=1,...,n. (66)
MY v () Tw = 0, W) € Ik, e U Ty (h, ) [
Then z* is an M-stationary point of MPCC (4).
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Proof. The proof is similar to that of Theorem 3.5. Suppose for contradiction that z* is not
M-stationary. It follows from Theorem 3.4 that there exists some index jo € I;(2*) N I5(z*)
such that 01‘] < 0 and o3, < 0. In view of (56), we have jo € Iy N I1(2*) N I5(z*) and

uU]O? 5]07 77]0 > 0.
We can choose a direction w* such that

Ve ()Twh =0, i=1,...,n,,
VG, (")t =0, j € Li(2*) and j # jo,
VH;(z")"w* =0, j € I,(z*) and j # jo, (67)
VG ()b = wg = VH<I>§0(zk),
VHjO(zk)ka = wy = —VG(I>§0(zk)

The direction w* is well-defined because of the MPCC-LICQ assumption and the bounded
right-hand sides. Also note that w* € Dypp(2F).
As before, (w*)"V_.®5(2*)w* = 0 for all j # jo. While for j = jo, we have that

ugyjo(wk)TVm(I)jo(zk)wk
= ugjo [VGGCIDEO (zk)wé + 2VGHCI>;0(zk)wGwH + VHHQEO(Zk)wz}
o 2uUjoGJO(Zk)H]0(Zk)( —wy)?
T (G + Hjy ()P !
2“Ugo JO( ) Jjo (zk)
(Gjo (%) + Hjy (2%))?
—2u’f]j0

T G(E) + Hyy (2 )VGCI> (Z)Vi®5,(27) = —o0, (68)

because uUjO,VGCDe ( ),VHCDjO(zk) converge to ug ., &5, 15, Which are all positive and
bounded, while G, (2*) and H},(z*) tend to zero. This brings the desired contradiction, since
all other terms in (w*)T'V_, Lymr (2%, \F, vk uf )w* are bounded. Therefore we conclude that
z* is M-stationary. O

3.3 Extension to Neural Network Functions

This section extends the convergence results for the reformulation using the square root
function to that using the neural network function. For simplicity, we only present outlines
of the extension pertinent to NLP (27); the results for NLP (28) can be extended similarly.

With the neural network function (24), the function ®$ enforces the following properties
(Item 2, Proposition 1.7; see also [8, Proposition 3.3]):

max (0, —G;(2)) < ke/2, max(0, —H;(2)) < ke/2, max(0, G;(2)H;(2)) < €2/2. (69)

Obviously, the complementarity conditions of MPCC (4) are satisfied more accurately as
e — 0. The smoothed constraint function and its gradients are given below (recall p; = ke/2
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and k = log2):

€ € —zXj /€
©5(2) +pj =y — x5 — 5 log(l +e 201) + p;

= Hi(z) — g log(1 + e 2G@=Hi@N/ey 4 oy

e—2(G;(2)—H;(z))/e

VGQJ(Z) - 1 + e—Q(Gj(Z)—Hj(Z))/57
o | (70)
VH(I)J'(Z) T 1+ e20G()-H;(2)/e’

6 6 96~ 2(Gj(2)—Hj(2))/e
Vaa®i(2) = Vin®(2) = o= e m e

E ) 2e~2(Gj(2)—Hj(2))/e
VGHCI)j(Z) = VHG(I)]‘(Z) - 6(1 + 6—2(Gj(z)—Hj(2))/€)2.

At a point z such that ®5(z) +p; = 0, we have
e2(Hj()+pj)/e — + e~ 2(G;(2)—Hj(2)) /e (71)
Substituting (71) into (70), we can simplify the derivatives to

VGCI);(Z) — G—Q(G’j(Z)ﬂij)/e7
VH<I>§(z) _ 6—2(Hj(2)+pj)/67

Vea®S(2) = VindS(2) = _72 e~ 2G () HH; () h2ps) e, (72)
Ven®(2) = Vi (z) = % o~ 2(C5(2)+ H (2)+2p) e
Thus the gradient of ®f is given by
V&i(2) = Va®VG(2) + Vg d5VH(z)
— o~ 2Gj(2)+pj)/e (?j + e 2(Hj(2)+pj)/e _ejj . (73)
0 0

Denote Z as a feasible point of MPCC (4), and U(2) as a neighborhood of 2. With
the MPCC-LICQ assumption at z, we firstly verify that LICQ holds at every feasible point
z € U(Z) of NLP (27), for any € > 0 sufficiently small and p; € [0, Elozgg],j =1,...,n,.
Multiplying both sides of (71) with e~2(Hi(=)+ri)/¢ Jeads to

e 2G5 p)/e § o=2H; () +ps)/e _ 1 (74)

Combining this with (72), we deduce that for any j ¢ I,(2), lim.,o Ve®5(2) = 0 and
lime o Vy®5(2) = 1; for any j ¢ I5(2), lim. 0 Va®§(2) = 1 and lim. o Vg ®5(2) = 0. Hence
the limits in (48) still hold and the rest of the proof for Theorem 3.1 directly applies.

For a sequence of positive scalars e — 0, apply the Bounding Algorithm to NLP (27)
formulated in the neural network function. Let the generated sequence of stationary points
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2% — 2*, and suppose that MPCC-LICQ holds at z*. Then C-stationarity of z* for MPCC
(4) immediately follows from the proof of Theorem 3.3.

With the additional second-order conditions (58), we can prove M-stationarity of z*
for MPCC (4) by contradiction. Here we again assume (60) holds for some index j, €
I(2*) N I(z*), and choose the direction d* € Dga(2*) given by (61). Then we have

ufo (dk)Tvzz(D;O (Zk)dk
= b [Vaa®, ()2 + 2V an®, (M) dady + Viu®,(2F)d%]

—2uk
— ﬂeﬂ(@o(Z’“)+Hjo(zk)+2pjo)/6’“ <e*2(G10(zk)+py’0)/6’“ + ez(Hjo(zk)+Pjo)/€k)2
k
€
—216?0 € k € k
= V6, () VRS, () — oo (75)

as € tending to zero, where we have used (72) and (74) to derive the last equality, and the

limit is obtained by noting that uﬁ)? Vgcbjo(zk), \Y HCDjo(zk) converge to positive and finite
values u} , &5, n7 . Since all other terms in (d*)IV .. L (2%, N}, uF)d* are bounded, then (75)

contradicts the boundedness in (58). Thus z* must be M-stationary.

4 Numerical Results

To demonstrate the performance of the above methods, this section provides numerical
results for MPCCs drawn from two sources. The first set is selected from the MacMPEC
test set, and the second is a set of distillation case studies. Five MPCC formulations are
considered for the numerical study.

Regularized (REG) formulation (16) of Scholtes.

The Lin-Fukushima (LF) formulation (36) using the smooth square root function.

NCP formulation (25) using the smooth square root function.

The Bounding Algorithm (BA), based on (27) using the smooth square root function.

The modified Lin-Fukushima (MLF) formulation (28) using the smooth square root
function.

CONOPT is chosen to solve the reformulated NLPs, since it is a Newton-based active
set method, which converges the sequence of problems with ¢ — 0 quickly by taking ad-
vantage of the results of preceding solutions. The following characteristics of CONOPT are
beneficial to this numerical study. (i) It checks for directions of negative curvature, in or-
der to confirm whether second order necessary conditions are satisfied. (ii) By partitioning
the problem variables into basic, nonbasic, and superbasic variables, it frequently applies
Newton’s method to the basic variables, and checks for degeneracy of the basis Jacobian.
If no degeneracies are flagged at the solution, then the variable partition corresponds to
satisfaction of the LICQ for the NLPs.

26



In our initial numerical experiments we also applied the neural network smoothing func-
tion, but it did not perform as well, or as stably, as the square root function. As we can see
from the expression (70) of the function ®5(2) + p;, when Gj(z) is (nearly) zero, H;(z) > 0,
and € is small, the exponential term becomes very large and can lead to numerical errors.
In GAMS we frequently encountered overflows as e < 1072, where the argument in the ex-
ponential term exceeds 320 and the corresponding functions are undefined. A typical case
vulnerable to such errors is the complementarity problems converted from bilevel programs
with inequality constraints in the lower-level optimization, where the complementary ele-
ments are the lower-level constraints and their multipliers. An easy way to deal with such
errors is to switch the role of G;(z) and H;(z) in (70). However, this can only be done by
a trial and error solution strategy, based on whether G;(z) or H;(z) is active at the solu-
tion; this is unknown a priori. Because this leads to a solution strategy that may not allow
meaningful comparisons, our numerical study focuses only on the square root function.

4.1 MacMPEC Results

Out of 133 problems from the MacMPEC collection [33], 15 problems are selected that have
nonempty biactive sets at their solutions. Such problems are of interest because nonempty
biactive set complicates the analysis of MPCC stationarity; and biactive elements often pose
numerical difficulties for solving the reformulated NLPs, hence they can be employed to
test performance of different NLP formulations. The above five MPCC formulations are
implemented in GAMS and applied to these problems. The outer loop is controlled by
€? = 0.25, o1 = 107%, and the reducing factor v = 0.1; for BA, € = 0.01 is chosen to start
bounding. The resulting sequence of NLPs are solved by GAMS solver CONOPT4, where
the optimality tolerance is 10~7. Biactive elements are recognized at the last NLP solution
z, if both G;(2) and H;(Z) are no more than 107°.

The following demonstrates performance of the MPCC formulations in three parts, namely,
for 11 problems from the selected set that converge to strongly stationary points, for 3 prob-
lems that do not converge to strongly stationary solutions, and a discussion of problem
ralph2 for special discrimination of strong stationarity.

4.1.1 Examples with Strongly Stationary Solutions

Starting from the default initial points, we solve 11 problems of the selected set to strongly
stationary points by using BA, MLF, and NCP formulations. General information at the
solutions is shown in Table 1. On the other hand, REG solves 10 of them (except bilevell),
while LF solves 9 of them (except bilevell and outrata3l), to the same solutions. For bilevell,
REG and LF converge to a strongly stationary point which has an empty biactive set. For
outrata3l, LF converges to a point infeasible to the original MPCC.

For those problems all the formulations converge to the same points, Table 2 shows the
iteration counts and complementarity residuals at the final solutions z, from which we can
see REG takes the fewest iterations to converge. Multipliers of the reformulated constraints
corresponding to the biactive elements are given in Table 3. As discussed at the end of Section
3.2.1, strong stationarity of the solutions can be identified by BA with nonzero parameters
p; > 0, or by MLF with inactive upper bounds, i.e., uy; = 0 for all j € [;(2) N [5(2). In
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Problem | f(2) z L(Z)N1y(2)
bard2m | -6598 <§38207 _1123'_43’31)8'6’ 0,9, 31,0, 3
bilevell ) (25, 30, 5, 10, 0, 0, 0, 0, 0, 0) 6
dfl 0 |[(1,0) 1
25, 30, 5, 10, 0, 0, 0, 0, O, 0,
ex9.2.3 g é 0, 15, 15, 20, 10) 2
x9.2.8 15 |(0.25,0,0,0,0,1) 1
€x9.2.9 2 (2,6,0,2,0,0,0,6,0) 3
kth1 0 |[(0,0) 1
outratadl | 3.21 | (2.68, 1.49, 0, 0.66, 4.06) 3
(-1,-1,-1, -1, -1, -1, -1, -1, -1, | 11, 12, 13,
qpecl 80 [-1,0,0,0,0,0,0,0,0,0, 0,0, 14,15, 16,
0,0,0,0,0,0,0, 0, 0) 17, 18, 19, 20
scholtes2 15 | (0,2,0) 1
sll 0 (2.01, 0, 10, 0.01, 0, 0, 0.04, 0) 3

Table 1: MacMPEC examples converged to strongly stationary points

addition, REG multipliers vy ; = 0 for all j € I;(2) N I3(Z) also indicate strong stationarity
of the solution [41].
Note that LF often leads to very large multipliers for the biactive elements. To check

linear independence of the constraints, consider the following equation (in contrast to (50)
for MLF):

0= Z ANVe(z) = Y g [(Hi(2) + )VG5(2) + (Gy(2) + )V H,(2)]
=1 je€ly; (2,t) (76)

+ > g [Hi(2)VGy(2) + Gy(2) VH;(2)].

EI\I/U (2,t)

For j € I1(z) N I5(z), the coefficients of VG,(z) and VH,(z) in the brackets all converge to
zero as t — 0, although they are not exactly zero when ¢ > 0. As a consequence, even if z
is close to a feasible point of the MPCC where MPCC-LICQ holds, the multipliers pz, ; and
pw,; are not necessarily zero to satisfy (76) with ¢ > 0 sufficiently small. From a practical
point of view, numerically dependent systems arise from the LF formulation for very small
positive t.

Further, we solve the problems in Table 2 to a smaller tolerance e < 107'2. All the
formulations except LF converge to the same solutions as before more accurately, with the
complementarity residuals vanishing to zero. With € (or t) getting smaller, REG usually only
requires a few iterations for convergence of each NLP, while for the NCP-based formulations
(i.e., BA/MLF/NCP), the number of iterations in solving each NLP does not always decrease.
On the other hand, LF converges more accurately only for €x9.2.9. For dfl, gpecl, and
sl1, complementarity residuals at z cannot be decreased below 1.08e-5, 1.97e-5, and 2.7e-
7, respectively. For bard2m, €x9.2.3, ex9.2.8, and scholtes2, the multipliers i and iy
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Problem BA LF MLF NCP REG
bard2m 61/1.25e-6 47/1.25e-6 59/1.25e-6 61/1.5e-7 9/8.88¢-16
dft 0/9.160-0 | 26/1.08¢-5 | 25/2.607 | 9/1.24e-6 770
ex9.2.3 58/1.25e-6 | 121/3.93e-16 | 69/1.25e-6 | 50/1.02e-6 17/1.7e-7
ex9.2.8 38/9.34e-16 | 21/1.56e-12 | 13/1.56e-10 | 85/1.73e-12 | 14/2.5e-6
ex0.2.9 | 28/1.250-6 | 17/1.250-6 | 12/1.25¢-6 | 40/1.25¢-6 770
kthl 40/3.37e-11 | 17/1.92e-10 | 12/6.38e-12 | 57/1.25e-6 7/0
qpecl | 28/1.25e-6 | 124/1.25e-6 | 42/1.256-6 | 28/1.256-6 | 56/5.556-17
scholtes2 | 43/2.3e-7 57/3.01e-6 59/2.3e-7 | 49/1.02e-6 10/0

sl1 33/1.25e-6 38/1.25e-6 31/1.25e-6 29/8.8e-7 6/2.22e-16

Table 2: Total iterations/complementarity residuals (¢) in strongly stationary cases. The
iteration count is the sum of iterations in consecutive CONOPT4 solutions till the outer
loop converges. The complementarity residual is calculated by

¢ = max; (min(G;(2), H;(2))),j € L1(2) N L5(2).

become significantly more ill-conditioned as t decreases, deflecting the previous solutions
to points without biactive elements, with the complementarity residuals also become very
small. However, these points are infeasible to the original MPCC, with one of the G;(2)
and H,;(Z) negative and the other close to zero. Finally, kthl fails in NLP solution when
t < 10712, Profiles for the last five problems are presented in Figure 1.
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Figure 1: LF profiles as t decreases from 0.25 to 1071%, where

complementarity residual = max;(min(G,(z%), H;(2"))),
positivity violation = max;(0, —G;(2*), —H;(z")), for j = 1,... ,n4;
multiplier norm = max(||12¥ || o, |45 00)-

Examples without Strongly Stationary Solutions

Starting from the default initial points, all the five formulations solve problems ex9.2.2,
gpec2, and scholtes4 to the solutions as shown in Table 4. Iteration counts and complemen-
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BA LF MLF NCP REG
Problem — — — — — — — - = —
u p KL Hu ur, uy UNCP Va Yy GH
bard2m | -144.00 1.25e-6 | 1.17e8 1.14e8 | 144.00 0 | -144.00 | 2.00 142.00 0
df1l 0 1.25e-6 0 0 0 0 -2.5e-6 0 0 0
€x9.2.3 -2.50  1.25e-6 | 1.35e6 1.30e6 | 2.50 0 -2.50 1.00 1.50 0
€x9.2.8 -0.50  1.25e-6 | 4.00e5 0 1.00 0 -2.10 0.50  2.00 0
€x9.2.9 -2.00  1.25e-6 0 0 0 0 -2.00 0 1.00 0
kthl -2.00 1.25e-6 | 8.00e5 0 2.00 0 -2.00 1.00 1.00 0
-4.00  1.25e-6 | 1.60e6 0 4.00 0 -4.00 4.00 - 0
-4.00  1.25e-6 | 1.60e6 0 4.00 0 -4.00 4.00 - 0
-4.00  1.25e-6 | 1.60e6 0 4.00 0 -4.00 4.00 - 0
-4.00 1.25e-6 | 1.60e6 0 4.00 0 -4.00 4.00 - 0
apecl -4.00 1.25e-6 | 1.60e6 0 4.00 0 -4.00 4.00 - 0
-4.00  1.25e-6 | 1.60e6 0 4.00 0 -4.00 4.00 - 0
-4.00  1.25e-6 | 1.60e6 0 4.00 0 -4.00 4.00 - 0
-4.00  1.25e-6 | 1.60e6 0 4.00 0 -4.00 4.00 - 0
-4.00 1.25e-6 | 1.60e6 0 4.00 0 -4.00 4.00 - 0
-4.00 1.25e-6 | 1.60e6 0 4.00 0 -4.00 4.00 - 0
scholtes2 | -10.00 1.25e-6 | 5.09e6 4.97e6 | 10.00 0 -10.00 | 6.00  4.00 0
sl 0 1.25e-6 0 0 0 0 |-1.33e-6 0 0 0

Table 3: Multipliers of biactive elements in strongly stationary cases. REG does not have
vy for gpecl, in that G; and H; have identical expressions in this example.

tarity residuals at the final solutions z are given by Table 5. Table 6 gives multipliers of the
biactive elements at Z.

For these problems, NCP-based formulations outperform the others, in terms of iteration
counts and complementarity residuals; and MLF is the only formulation that identifies the
two biactive pairs of €x9.2.2 precisely. The behavior of LF is about the same as in the
strongly stationary examples. However, REG does not exhibit superior iteration counts as
before, and it cannot converge accurately in terms of the complementarity residuals. When
€l = 10712 is applied, all the formulations converge to the same solutions as in Table 4; and
LF and REG still cannot converge accurately. For LF, the complementarity residuals stay
at their previous levels; for REG, the nonzero multipliers 7gg in Table 6 increase to O(10%)
or larger, and the complementarity residuals cannot decrease below 1075.

Problem | f(z) z Li(z) N 1(2)
ex9.2.2 100 | (10, 10, 0, 0, 0, 0, 0, 10, 10, 0) 1,4
(1.5,15,15,1.5,15, 1.5, 1.5, 1.5, 1.5, | 11, 12, 13,
qpec2 45 | 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, | 14, 15, 16,
1.5,1.5,0,0,0,0,0,0,0,0,0, 0) 17, 18, 19, 20
scholtesd | 0 | (0, 0, 0) 1

Table 4: MacMPEC examples converged to C-stationary points

30



Problem BA LF MLF NCP REG

ex9.2.2 40/1.25e-6 | 30/7.80e-6 | 24/1.25e-6 | 48/7.2e-7 | 28/9.13e-4
qpec2 26/1.25e-6 | 115/1.92e-5 | 32/1.25e-6 | 26/1.25e-6 | 211/1.58e-3
scholtesd | 14/1.25e-6 | 12/1.11e-5 | 12/1.25e-6 | 14/1.25e-6 | 12/1.58e-3

Table 5: Total iterations/complementarity residuals (¢)) in C-stationary cases. The
iteration count is the sum of iterations in consecutive CONOPT4 solutions till the outer
loop converges. The complementarity residual is calculated by

¢ = max;(min(G;(2), H5(2))), 7 € 1(2) N L(2).

BA LF MLF NCP REG
Problem — - — — — — — — — —
u p KL Hu ur Uy | UNCPp G VH VGH
5.74 0 0 220e5| 0 574|667 | 0 0 1.83e3
€x9.2.2
0 1.25e-6 | 0 0 0 0 0 0 0 0
4.00 0 0 1.04e5| 0O 4.00| 4.00 | 0 - 1.26e3
4.00 0 0 1.04e5| O 4.00| 4.00 | O - 1.26e3
4.00 0 0 1.04e5| O 4.00| 4.00 | O - 1.26e3
4.00 0 0 1.04e5| O 4.00| 4.00 | O - 1.26e3
apec2 4.00 0 0 1.04e5| 0O 4.00| 4.00 | O - 1.26e3
4.00 0 0 1.04e5| 0O 4.00| 4.00 | O - 1.26e3
4.00 0 0 1.04e5| O 4.00| 4.00 | O - 1.26e3
4.00 0 0 1.04e5| O 4.00| 4.00 | O - 1.26e3
4.00 0 0 1.04e5| O 4.00| 4.00 | O - 1.26e3
4.00 0 0 1.04e5| O 4.00| 4.00 | O 1.26e3
scholtes4 | 2.00 0 0 8984 | 0 2.00( 2.00 | O 0 6.32e2

Table 6: Multipliers of biactive elements in C-stationary cases. REG does not have vy for
gpec2, in that G; and H; have identical expressions in this example.

Performance degeneracy of REG can also be attributed to numerical failure in satisfying
LICQ. For REG (16), consider the equation

0 =30 MVe(z) — Z e VG (2) — Z vir;VH;(2)

j€lg(z) Jj€Ig(2)
+ > ven; [Hi(2)VG;(2) + Gi(2)VH;(2)], (77)
Jj€lgH(2,t)

where Ig(2) = {j|G;(2) = 0}, In(2) = {j | H;(z) = 0}, and Iou(z,t) = {j | G;(2)H;(2) =t}
are active sets of the inequality constraints. The nonzero multipliers 7y in Table 6 indicate
that Icy(2,t) N I1(2) N I3(Z) # 0. In such circumstance, G;(z) and H;(z) in (77) both tend
to zero as t — 0, although from (16) they are nonzero for any t > 0. As a consequence,
even if z is close to a feasible point of the MPCC where MPCC-LICQ holds, the multipliers
vem,; may not be zero to satisfy (77) with ¢ > 0 sufficiently small. This degeneracy can
be recognized from large REG multipliers and inaccuracy in satisfying the complementarity
conditions.
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Now we discuss stationarity of z for the MPCCs. Table 6 shows that €x9.2.2 has one of the
biactive pairs that has multipliers obviously meeting the requirements for strong stationarity;
in all the other cases we have u; > 0 (i.e., p; = 0) (by BA), and @ ; > 0 (by MLF). We know
from (52) and (56) that Z is at least C-stationary. More properties about these examples are
analyzed below.

Example €x9.2.2:

min 2%+ (y — 10)?
s.t. r <15
A —x4+y<0
—z <0

At x+y+s =20

A3t —y+53=0

At y+s3=20

As: 2x+4y+1 — s+ 13 =060
Uy, g - 0<Il; Ls;>00i=1,...,4,

where the multipliers \; correspond to ordinary active constraints at z. The KK'T conditions
at z for the RNLP requires that

up = A5,  Usp = =35 — 10, 0 < Ay,

U = _)\Sa Us2 = 07 0= >\1 + )\5 - ]-07 (78)
Uiz = /\5, U3 — O, 0= )\2 + 3/\5 + 10,
Ug = 0, Ugqg — O, 0= )\3 = )\4.

This implies that u;;, us; cannot both be nonnegative, hence z cannot be strongly stationary.
On the other hand, since LICQ does not hold at z, we can choose A5 = 0 or A5 = —10/3, so
that z is M-stationary.

Example gqpec2:

min 22101(1’1 — 1) Zz (Y1 — 2)? Z; (Yo — 2)?
s.t. cl-c10: 0 Syh—xl J_yh Z O, 1= 1,,].0
cl11-c20: 0 < Y2; 1L Y2j > 07 ] = 1, ceey 10.

The biactive complementarity conditions c11-c20 are actually ordinary equality constraints
y2; = 0,7 =1,...,10, and there is no restriction on the sign of their multipliers. Therefore,
z = (Z,y1,72) is a strongly stationary point if conditions c¢11-c20 are viewed as ordinary
constraints; otherwise, z is C-stationary and gpec2 has no solution with stronger stationarity

properties. Specifically, weak stationarity conditions for every z = (x, 1, y2) feasible to the
MPCC require

2(x —1) —e; 0 0
2(y1 — 2) — 20'1 €; — Z Oy1 €; — Z Oy2 0 = 0, (79)
2(ys — 2) ich 0 i€l 0 j€Lys e;
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where Iy, I,;1, I;» are the active sets for conditions y; — a2 > 0,y; > 0,32 > 0, respectively.
Since y» = 0, the multipliers 0,5 (of the artificially biactive elements) can only be 0,0 ; =
-2, j=1,...,10.
Example scholtes4:
min 21+ 29 — 23
s.t. )\1 . —421 + 23 S 0
)\22 —422+23 SO
Uy, Uy - OSZlJ_ZQZO.

The point zZ = (21, 22, 23) = (0,0, 0) is not strongly stationary, because it is not a KKT point
of the RNLP. In fact, there do not exist multipliers uy, us > 0 satisfying the KKT conditions
for the RNLP, because:

1 —4 0 1 0
1 + )\1 0 + )\2 —4 — Uy 0 — U9 1 = 0. (80)
—1 1 1 0 0

However, by noting that multipliers for this system are not unique, we can choose one of
u; and us be 0, and the other one be —2, such that z is M-stationary. This example was
also discussed in [40] to demonstrate that MPCC-MFCQ ensures C-stationarity of z, while
strong stationarity requires more restrictive constraint qualification at the local minimizer

of the MPCC, for example MPCC-SMFCQ, which fails at Z.

4.1.3 Discussion based on Asymptotic Weak Nondegeneracy

The two preceding subsections have shown examples for which we can judge the solutions to
be strongly stationary or not, from the parameter p; or multipliers u; (by BA) or from the
multipliers @y ; (by MLF), for all j € I(2) N I2(Z). Now we discuss a case where we do not
have such strong evidence.

Example ralph2 is described as

min 22 + y? — 4wy
st. 0<zly>0.

Starting from (z,y) = (1,1), all the formulations converge to (z,y) = (0,0), which is the
global optimum and satisfies the MPCC-LICQ. Numerical results are summarized in Table 7.
At the solution, the lower bound of MLF is inactive such that u; = 0, while the upper bound
is not strongly active such that uy is nearly zero. Correspondingly, BA has the parameter
p = 0, and at the same time the multiplier # > 0 is close to zero. These observations are
not compliant with the immediate evidence for strong stationarity. Note that the multiplier
Ugy is positive but bounded; Scholtes [41] has proved that with bounded multiplier vgy as
t — 0, the solution is strongly stationary.

In fact, strong stationarity of z for this simple example can be verified conveniently by
the RNLP, namely, by that z is a KKT point of the RNLP. However, strict complementarity
does not hold at z for the RNLP, and hence the upper level strict complementarity (ULSC)
for the MPCC does not hold either. Indeed, z* = y* = 0] = 05 = 0 in the limit, which
explains the nearly zero NLP multipliers at Z.

33



ralph2 BA LF MLF NCP REG

. ({0 p| UL fu | urg uy uncp | Ya Vg VgH
Multiplier 50le-6 0] 0 2.00| 0 5.00e6|50le-6| 0 0 2.00
Total iteration 57 44 40 57 40
Complementarity residual 1.25e-6 9.5e-7 1.25e-6 1.25e-6 1.58e-3

Table 7: Results of Example ralph2.

Another way to analyze the stationarity with the NCP-based formulations takes advan-
tage of the concept of asymptotic weak nondegeneracy [16]. We will see more usage of this
approach in the sequel for larger cases. Recall that z¥ — z* as € — 0. For every ¢¥ > 0
sufficiently small, we only need to consider the cases pi = 0 (j € [1(z*) N Ix(z")) (for BA)
and j € Iy(2*, ") N 11 (2*) N 1y(z*) (for MLF). For any accumulation point r* of {V®¢(z%)},
asymptotic weak nondegeneracy requires that

& >0, 75> 0. (81)

According to the expression (44) of V@, this means that there exist p;, po > 0 such that
0 < p1 < G(2%)/H;j(z*) < py < +o0; that is, G;(2*) and H;(2*) approach to zero in the
same order of magnitude.

For problem ralph2, we have G(z%) = 2% H(z*) = y* &°(2%) = aF — [a% — yF +
V(% — y*)2 + (e¥)2]. Obviously, every 2" is asymptotically weakly nondegenerate. Sup-
pose that the point z = (Z,7) = (0,0) is not strongly stationary. Then u > 0 by (52),
ay > 0 by (56). With the asymptotic condition and the null space matrix [_ﬁ/g], the
reduced Hessian of ®¢(Z) tends to —oo, i.e.,

[ —z/y 1}u—2xy[_11 jl}-{_ﬁ/y}:—%-% — —o0. (82)

The same result can be derived for MLF by substituting uy for u. Because (82) contradicts
the optimality of z for the NLP, the hypothesis is false and z must be strongly stationary.
(Note that strong stationarity instead of M-stationarity is concluded because of the presence
of asymptotic weak nondegeneracy.) This analysis is validated by the numerical results. As
shown in Table 7, we have u and @y very close to zero, and Z is declared to be (locally)
optimal

4.2 Distillation Case Studies

Phase behavior of a vapor liquid system is determined by minimization of the Gibbs free
energy. Embedded within distillation optimization, or other process optimization problems,
these conditions lead to two-level optimization problems, which can be modeled through
complementarity constraints. These conditions allow phase disappearance to be described in
distillation systems for optimization of both steady state and dynamic tray columns [31,38].
The distillation column models consisting of MESH (Mass Balance, Equilibrium, Summation,
and Heat Balance) equations are incorporated within an MPCC to optimize the feed tray
location and total tray count.
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The MPCC model is developed in [3]. This distillation MPCC formulation uses distri-
bution functions that direct all feed, reflux and intermediate product streams to the column
trays. Asshown in Figure 2, streams for the feed and the reflux are fed to all trays as dictated
by two discretized Gaussian distribution functions. Note that the grayed area in Figure 2
consists only of vapor traffic, and consequently, each tray model (i) includes a relaxed phase
equilibrium model and the following complementarities that allow for disappearance of the
liquid phase.

By(Th)

vig = Bi—p— @iy, fi=1- si+ 87, (83a)
0<L;Lsi>0, (st —max(0,s — L;) =0, (83b)
0<V;,Ls!>0, (s —max(0,s) —V;) =0,i € S, (83c)

where i is tray index numbered from reboiler(= 1), j is components index, (; is the relaxation
parameter, P is column pressure, T; is temperature of tray ¢, L;/V; > 0 is flow rates of
liquid/vapor, z;;/y;; € [0, 1] is fraction of component j in liquid/vapor leaving tray i, s\ and
s are slack variables, the tray set S = {2,..., N — 1} with N as total number of trays. We
choose two additional continuous optimization variables Ny, the feed location, and Ny, the
number of trays, with N; > Ny. We also specify feed and reflux flowrates for i € S based on
the value of the distributions at tray i, given by

—(i—Ny)? —(i—Ny)?
exp(———-) exp(———
F,=F i~ =R i R 3 i €S, (84)
> exp(— =) > exp(—+ =)
jES ! JES

where 05,0, = 0.5 are parameters in the distribution. Note that feed and reflux flowrates
are allowed on all trays i € S.

The resulting MPCC model is used to determine the optimal number of trays, reflux
ratio and feedtray location for a benzene/toluene separation. The five MPCC formulations
are considered for the distillation case study. All of these solution strategies were solved in
a sequence of 13 NLPs with € = 102 k = 0,...,12. These formulations are modeled in
GAMS and solved with CONOPT4, using default options.

Benzene-Toluene Separation

The MPCC model from [3], consisting of the mass, summation, energy balances, equlib-
rium complementarities (83) for each tray and tray distributions (84), is applied to a binary
column with a maximum of N = 10 trays; its feed is 100 mol/s of a 70%/30% mixture of
benzene/toluene and distillate flow is specified to be 50% of the feed. The objective function
for the benzene-toluene separation minimizes

objective = wt - D - Tp Tolyene + WT - T + wn - Ny, (85)

where NV, is the number of trays, r = R/D is the reflux ratio, D is distillate flow, Zp Tomuene
is the toluene mole fraction and weighting parameters are set to wt = 1, wr = 0.01, and
wn = 0.45; these weights allow the optimization to trade off product purity, energy cost and
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Lll X1

Figure 2: Distillation column showing feed and reflux flows distributed according to (84).
The grayed column section is above the reflux location and has negligible liquid flows.

capital cost. The reflux ratio r is allowed to vary between 1 and 20, the feedtray location
Ny varies between 2 and 20, and the total tray number [V, varies between Ny +1 and N —1.
For all cases, there were 2N — 2 complementarity constraints.

With N = 10 the resulting GAMS models consists of 142 (inequality and equality)
constraints and 148 variables for BA and NCP formulations, 144 constraints and 149 variables
for the REG formulation, 160 constraints and 148 variables for the LF and MLF formulations.
Three cases were considered with zp romene < ¢ with ¢ = 0.05,0.01,0.005. In addition, a
fourth case was considered with ¢ = 0.001 and with N = 25 trays. This larger case leads
to GAMS models with 352 constraints and 358 variables for BA and NCP formulations, 354
constraints and 359 variables for REG formulation, and 400 constraints and 358 variables
for LF and modified LF formulations.

All 20 problems were initialized far away from the optimum with N, = 21, Ny =7, R =
2.2. Temperature and mole fraction profiles were initialized with linear interpolations based
on the top and bottom product properties. While the model is nonconvex and admits
multiple optima, all five MPCC formulations converged to tolerance with CONOPT4 (1077)
with essentially the same optimal solutions. Optimal objective function and design variable
values are presented in Table 8, along with the cardinality of the biactive complementarity
set. Iteration counts for the five formulations are presented in Table 9 along with an estimated
e—convergence rate of the 13 NLPs for each MPCC. From this table we observe that NCP
approach requires the lowest computational cost, followed by the BA approach. On the other
hand, the LF and MLF approaches require the most effort to solve, while the REG approach
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takes intermediate effort. These trends can be especially observed in the last case, which is
larger and overall takes more effort to solve.

¢ N | Objective N, Ny T |1, N Lo
0.05 | 10 3.9916 7.6804 | 3.85 | 0.72 0
0.01 | 10 2.9078 884 | 294 | 1.52 0
0.005 | 10 | 3.2336 8.93 | 2.86 | 2.09 0
0.001 | 25 3.0755 12.83 | 293 | 1.74 10

Table 8: Solutions of Benzene/Toluene cases.

¢ N BA LF MLF NCP REG
0.05 | 10 | 127/1.08 | 154/1.07 | 154/1.08 | 92/1.91 | 184/ 0.90
0.01 | 10 | 120/1.08 | 167/1.08 | 140/1.08 | 77/1.64 | 125/1.01
0.005 | 10 | 125/1.06 | 145/1.08 | 131/1.07 | 66/2.02 | 107/1.03
0.001 | 25 | 208/1.06 | 461/1.08 | 287/1.07 | 189/1.08 | 266,/0.55

Table 9: Total iterations/convergence rate (1) of MPCC formulations for Benzene/Toluene
cases. The iteration count is the sum of 13 consecutive CONOPT4 solutions with
€ =107/%2,i=0,...,12. The estimated convergence rate 1 is calculated from

|[f(z(e) = F(DI/|f(2(er) = F(2)] = (ei/ex)”

At the solution of all cases, CONOPT reports no negative curvature directions nor Ja-
cobian degeneracies, which indicates satisfaction of LICQ and second-order necessary con-
ditions. For the first three cases, I1(z) N I3(Z) = () at the last NLP solution Zz, hence Zz
is strongly stationary for the MPCC. For the last case, I;(Z) N I5(Z) # 0, and there is no
evidence supporting easy discrimination between S- and M-stationarity. Specifically, for all
J € L1(2)N1y(Z), we have p; = 0 and small positive @; (with BA), 1y, ; = 0 and small positive
ty,; (with MLF), and positive and bounded vy ; (with REG).

We employ again the concept of asymptotic weak nondegeneracy to determine the sta-
tionarity properties at the solution. We solve the last case to smaller tolerances, and all the
formulations converge to the same point z as before. When decreasing €* to 107'2, at the
result of BA, for j € I1(2) N I3(Z), we still have all p; = 0; however, except for three small
multipliers (0 < @; < 0.3), the remaining multipliers are essentially zero (0 < @; < 107?).
Recall that u; is the sensitivity df(z)/dp;. These vanishing multipliers suggest that small
changes of the p; (say, increasing p; to €/2) would not influence the objective value; on the
other hand, it would not matter for MLF to have uy ; > 0 or 4y,; > 0 for these constraints.
In the course of decreasing €* from 107" to 107'%, the multipliers u¥ are still approach-
ing zero. In addition, we observe that the biactive elements corresponding to the nonzero
multipliers satisfy O(107%) < G;(z%)/H;(2*) < O(10%), which meets the asymptotic weak
nondegeneracy requirement. Again, CONOPT reports no negative curvature directions nor
Jacobian degeneracies. Therefore we conclude with all these observations that the solution
Z should be strongly stationary. Finally, it is worth mentioning that the largest REG multi-

plier at € = 107'? and € = 107"% is 1¢y ; ~ 2297, which also suggests that we are probably
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approaching a strongly stationary solution.
Argon Column Optimization

As the second distillation MPCC we consider a larger, ternary model, which deals with
the separation of argon from air. The argon separation column has N = 63 trays, its
feed is 6546.54 Ibmol/h of a 0.005%/9.753%/90.24% mixture of nitrogen/argon/oxygen, and
distillate flow is specified to be 202.4576 1bmol /h with less than 1 mol % oxygen. The reflux
ratio 7 is allowed to vary between 20 and 100, the feedtray location Ny varies between 1 and
10, and the total tray number NV, varies between 31 and 63. The objective function for the
argon problem minimizes

objective = r + Ny, (86)

where 7 is the reflux ratio. For all cases, there were 2N — 2 complementarity constraints.

The first case is Reflux Constrained and limits the reflux ratio to » < 35, while the second
case has a reflux ratio with » < 100 which is not constrained at the solution. These two cases
were initialized with N; = 25, Ny = 5, R = 25. The resulting GAMS models for these cases
consist of 1260 (inequality and equality) constraints and 1264 variables for the BA and NCP
formulations, 1260 constraints and 1264 variables for the REG formulation, 1382 constraints
and 1264 variables for the LF and MLF formulations.

In addition, a third case was considered. This case is Tray Constrained with N; < N = 30,
and it was initialized with N, = 25, Ny = 5, R = 35. Temperature and mole fraction profiles
were initialized with linear interpolations based on the top and bottom product properties.
This GAMS model consists of 598 constraints and 604 variables for BA, NCP and REG
formulations, and 656 constraints and 604 variables for LF and modified LF formulations.

While the models are nonconvex and admit multiple optima, all five MPCC formulations
converged to KKT tolerance (10~7) with CONOPT4 with the same optimal solutions for
each case. Optimal objective function and design variable values are presented in Table
10, along with the cardinality of biactive complementarity set. Iteration counts for the five
formulations are presented in Table 11 along with an estimated e—convergence rate of the 13
NLPs for each MPCC. From the table we again observe that the NCP approach requires the
lowest computational cost, followed by the BA approach. Also, the LF and MLF approaches
require the most effort while the REG approach takes intermediate effort. These trends can
be especially observed in the first and second cases, which are larger and overall take more
effort to solve.

Case Objective | Ny Ny r I, N I
Reflux constrained 72.47 37.47 | 5.20 | 35.0 22
Unconstrained 72.20 36.46 | 4.89 | 35.79 23
Tray constrained 84.85 29.17 | 2.73 | 56.67 0

Table 10: Solutions of Argon column cases

At the solution of all cases, CONOPT reports no negative curvature directions nor Ja-
cobian degeneracies, indicating satisfaction of LICQ and second-order necessary conditions.
The Tray Constrained case converges to a strongly stationary point z, where I;(2)N13(z) = 0.
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Case BA LF MLF NCP REG

Reflux Constrained | 293/1.08 | 1193/1.08 | 1100/1.08 | 259/1.17 | 552/0.85
Unconstrained 285/1.04 | 993/1.06 | 455/1.07 | 247/1.43 | 517/0.88
Tray Constrained 148/1.08 | 182/1.08 | 242/1.08 92/2.0 | 229/1.02

Table 11: Total iterations/convergence rate (1)) of MPCC formulations for Argon column
cases. The iteration count is the sum of 13 consecutive CONOPT4 solutions with
¢, =107%2 i =0,...12. The estimated convergence rate 1/ is calculated from

|[f(z(e) = F(DI/|f(2(er) = f(2)] = (ei/ex)”

In the other two cases, I1(Z) N I3(Z) # 0 and we need the condition of asymptotic weak
nondegeneracy to estimate the stationarity properties. The problems are further solved to
€ = 107%. In the Reflux Constrained case, for j € I1(z) N Ix(z), BA has four nonzero
multipliers, the largest of which is 0 < @; < 0.008, whose corresponding biactive elements
show G;(z)/H;(z) < 3.59 x 107. In the Unconstrained case, BA has three nonzero multi-
pliers, and the largest one is 0 < u; < 0.0008, whose corresponding biactive elements show
G;(2)/H,;(Z) < 10. Again, while e decreasing, no negative curvature directions nor Jacobian
degeneracies are reported. Based on these observations, we prefer to be slightly conservative
and conclude that the solutions of the Reflux Constrained and Unconstrained cases are M-
stationary and strongly stationary, respectively. For comparison, the largest REG multiplier
is Ugu,; ~ 4415 (Relux Constrained case) and Ugy ; = 6.66 (Unconstrained case).

To conclude, the LF and MLF formulations require the most effort for both distillation
systems. This is likely because determining the active sets becomes more difficult as € — 0,
which is also observed in [29]. With the BA approach, the underlying optimality conditions
relate closely to LF and MLF, while the NLP structure is similar to the faster NCP formu-
lation. As a result, BA provides a good compromise among the five MPCC formulations.

5 Conclusions

Nonlinear programs involving nonsmooth systems occur frequently in practice. This study
deals with nonsmoothness arising from max operators, by expressing them equivalently in
complementarity form. Strategies have been widely investigated to converge the resulting
MPCC problems to a meaningful solution, by employing nonlinear programming formula-
tions and algorithms. We put forward two NLP formulations (BA and MLF) based on
NCP-functions generated from e-smoothed square root and neural network functions. In
particular, BA operates together with a sensitivity directed bounding strategy to isolate the
minimizer of the MPCCs. It has been proved that with sensitivity corrections, the solution
of the two formulations differs by O(e?) from the solution of the MPCCs (Proposition 2.1).

Stationarity at the limit of the stationary points of the proposed formulations are in-
vestigated. In the presence of MPCC-LICQ, LICQ holds at every feasible point of the
proposed NLPs in a neighborhood of a point feasible to the MPCC (Theorems 3.1 and 3.2);
in the limit, the stationary point of the NLP is guaranteed to be C-stationary (Theorems 3.3
and 3.4); furthermore, M-stationarity is established with additional second-order conditions
(Theorems 3.5 and 3.6).
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The proposed formulations, together with the closely related Lin-Fukushima formulation
(LF), well-studied Scholtes’ formulation (REG), and the ordinary NCP formulation (non-
parametric), are applied to selected MacMPEC examples and two large-scale distillation
cases. It turns out that the NCP-based approaches (BA/MLF/NCP) have advantages in
dealing with biactive elements, because of the robustness in satisfying LICQ in the pres-
ence of nonempty biactive set; this is a potential benefit from the accumulation point of
the derivatives of the NCP-functions. On the other hand, regularization methods LF and
REG may have LICQ failure when biactive elements arise, with the phenomena of very large
NLP multipliers and inaccurate solutions. Numerical studies of the large-scale cases also
demonstrate that the two-side bounded formulations LF and MLF need the most iterations
to converge; a possible cause is the challenge in determining the active set with vanishing e.
Instead, the BA and ordinary NCP formulations are the most efficient alternatives in these
cases.

In this research, all the theoretical results on stationarities are developed from the MPCC-
LICQ and NLP LICQ assumptions. Inspecting convergence properties of the NLP-based
strategies with weaker constraint qualifications will be considered for future work. In ad-
dition, the asymptotic weak nondegeneracy condition is hard to enforce in practice; more
practical conditions to characterize B-stationarity would be beneficial.
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