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ABSTRACT1
The increasing levels of congestion and infrastructure costs in cities have created a need for more2
intelligent transport systems. Urban Air Mobility (UAM) offers a solution by introducing intra-3
urban aerial transport to overcome the existing congested infrastructure. The performance of UAM4
systems are highly dependent on vertiport locations, vehicle sizing and infrastructure specifica-5
tions. This study takes a holistic approach to UAM network optimisation by considering the inter-6
relatedness of these decisions. A vertiport placement model with vehicle sizing constraints is de-7
veloped to determine the optimal vertiport configuration while considering eVTOL performance.8
The resulting configuration is used to model waiting times depending on infrastructure specifica-9
tions. These waiting times are incorporated in the vertiport placement and vehicle sizing models.10
An iterative approach is undertaken to find the network configuration that balances the infrastruc-11
ture, operational costs as well as passenger waiting times. The purpose of the study is to inform12
policy-making by proposing a holistic approach to UAM network design.13

14
Keywords: vertiport placement, urban air mobility, queuing theory, vehicle sizing15
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INTRODUCTION1
Urban Air Mobility (UAM) as a concept has been pursued by research and industry since the2
mid-1900s, yet only recently has technology reached the level of maturity required to make urban3
air travel economically feasible. By September 2018, approximately $1 billion was invested in4
UAM, and over 70 electrical vertical take-off and landing (eVTOL) manufacturers were founded5
(1), highlighting the industry’s potential market value.6

While UAM includes varied operation types, one of its most promising aspects is On-7
Demand Air Mobility (ODAM), which envisions a demand-responsive operational model to serve8
intra- and inter-urban transportation, as well as short-haul flights that are not sustainable using9
traditional aviation (2). ODAM seeks to solve two of the main problems that are expected to10
shape the future of the aerospace industry: demand for increased travelling speeds and the need for11
reduced emissions (3). Its potential market size is currently valued at $2.5 billion in the first years12
of operations and increase to up to $500 billion (1).13

ODAM is expected to operate between a network of vertiports, which have take-off, landing14
and charging capabilities. These can be retrofitted into existing infrastructure such as unused15
helipads or highway cloverleafs, to significantly reduce the initial investment cost compared to16
traditional modes of transport (4).17

Recently, several initiatives have launched to further develop the field of ODAM. Uber18
expressed its aspiration to launch an air-taxi service in the near future through the Uber Elevate19
initiative (4). Additionally, alongside NASA, Uber Elevate organises yearly conferences and work-20
shops to form a community centred around building solutions for UAM development (4, 5). NASA21
is also developing new air-traffic management methods that accommodate ODAM operations into22
the urban airspace (6).23

(7) reported that achieving a return on invested capital in the ODAM market is possible24
even for small networks, but highlight that the cost of charging and refuelling will significantly25
affect the business case. At the same time, the study stresses the importance of ensuring very fast26
turnaround times in minimising the total operating costs. Turnaround time is governed by many27
factors, such as the number of pads at each vertiport, battery capacity, charging rate, length of trips28
as well as the dispatch strategy.29

These findings suggest vertiport placement models that determine the optimal configuration30
of supporting infrastructure, as well as vehicle parameters, are essential in ensuring the viability31
of ODAM systems. Failing to do so results in network configurations which are infeasible from32
an operational perspective. For example, neglecting vehicle sizing constraints in the vertiport33
placement model might lead to configurations where the operational requirements are not satisfied.34
Further, neglecting the effects of the number of pads at each vertiports on waiting times, might35
lead to underestimating turnaround times. However, our review of current literature suggest that36
an integrated solution that encompass these aspects is yet to be developed (see Section 3).37

To address this gap, this paper proposes an approach to designing air-taxi networks by38
considering the optimisation of three inter-related decisions: vertiport locations, vehicle and in-39
frastructure specifications. Each decision is captured in a stage, with vertiport locations being40
determined through a hub-location problem, and infrastructure specification being obtained using41
Jackson open network theory. An iterative algorithm is developed that solves three stages sequen-42
tially, improving the solution through a feedback mechanism that updates problem parameters until43
an optimal solution is achieved.44

The paper’s contribution is threefold:45
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1. To the authors’ knowledge, it is the first study to propose a methodology to design a1
UAM network considering the interrelationships between vehicle sizing, vertiport in-2
frastructure and network design.3

2. It models vertiport operations using open network theory, instead of relying on network4
simulation usually found in literature.5

3. It presents a computationally efficient solution heuristic that can accommodate large6
problem instances. A case study based on the hypothetical design of a London UAM7
system, in which our algorithm shows significant improvement in all metrics compared8
to our benchmark.9

The remainder of the paper is structured as follows. An analysis of the current state of10
the art is presented in the next section, followed by a description of the mathematical model and11
formulation. After, the case study based on the city of London is introduced and the results of our12
algorithms are presented and analysed. Finally, our concluding section suggests further works.13

CURRENT APPROACHES IN ODAM NETWORK DESIGN14
This section reviews the state-of-the-art in the field of ODAM vertiport location planning and15
vehicle sizing. A summary of the literature reviewed is presented in Table 1, highlighting the16
features unique to our methodology.17

Vertiport Location18
The vertiport placement problem is generally structured as a facility or hub location problem,19
in which the geographical position of hubs is determined to optimise a specific objective. The20
literature of the facility location problem is extensive (8), with one of the first formulations being21
proposed by (9), known as p-median problem.22

Extensions to the original problem have been proposed for multiple applications (10). How-23
ever, the p-median formulation provides an adequate framework to model vertiport placement mod-24
els, as it allows the positioning of hubs to be governed by economical metrics, such as the travel25
time savings, weighted demand distance, and infrastructure costs.26

Within this framework, (4) proposed an initial network configuration model applied to27
Los Angeles and London case studies. A clustering algorithm is used to group the demand into28
discrete facility candidate locations, and a facility location algorithm is developed to maximise trip29
coverage.30

Another vertiport placement model is presented by (11) that assumes short-term eVTOL31
demand is driven by high income car users with large travel times. Consequently, the objective32
is to maximise the total travel time savings relative to driving, but ignores the investment costs33
relating to infrastructure development and costs of operations. In fact, operational constraints are34
not evaluated, as vertiports are given unlimited capacity to allow the optimisation not to focus too35
many ports in areas of large demand.36

A capacitated p-median problem instance is explored by (12). A neighbouring searching37
algorithm is used to partition service region into catchment areas for each supporting facility and38
select the optimal placement that minimise weighted demand distance.39

(13) presented an uncapacitated p-median formulation to solve the vertiport placement40
problem for airport strips, where demand is estimated using airport incoming hourly trips. Selected41
vertiports are then modelled as an M/M/c queue system during post-processing, to determine the42
potential market penetration at each port.43
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Operational parameters are incorporated to the vertiport placement problem by (14). The1
study proposed a two stage model for vertiport placement and operation scheduling problem, where2
the latter optimises the charging scheduling of vehicles to minimise total delay for all passengers.3
However, given that the stages are produced in sequence without feedback the algorithm will not4
produce optimal results, as the operations model is executed as a post-process.5

Deviating from the original hub location formulation, (15) and (16) both propose a vertiport6
location problem using a k-means clustering approach. Without applying the hub location problem7
formulation, this approach is unable to consider factors relating to the operation, cost, or capacity8
of the infrastructure.9

To date, no vertiport placement study considers vehicle sizing, charging and operational10
constraints. Without notion of such concepts, the resulting vertiport configuration could lead to11
vehicle designs with unreasonable battery masses, charging requirements, and costs.12

Vehicle Sizing13
This stream of research aims to determine the optimal power and battery requirements for vehicles14
to sustain operations, which requires uses set mission parameters as input, namely the flight time15
requirements and charging time requirements.16

Among the most widely employed tools to design air vehicles is NASA’s Design and Anal-17
ysis Rotorcraft (17), which has already been used to design air-taxi vehicles (18, 19).18

(20) proposed a cruise depletion rate parameter to encompass the energy performance into19
a single parameter. The approach is refined in (21) in order to incorporate relationships with20
other critical vehicle properties, such as vehicle mass. The iterative process in (21) assumes a21
power loading parameter for each mission segment to determine the battery size that achieves the22
specified mission requirements.23

Another vehicle design tool is presented by (22) that compares the performance of VTOL24
and STOL aircraft in terms of maximum take-off weight given varying flight ranges and cruise25
speeds. (23) developed a vehicle sizing model focusing on noise emission, power/energy con-26
sumption rates, and costs in the context of UAM.27

Deviating from the previous literature, (24) performed a weight-based optimisation with28
consideration of range, speed, rotor size, wing loading and battery energy density parameters.29
Weight is assumed to act as a proxy for the direct operational cost.30

This section reveals that vehicle sizing is mainly driven by cost, which is dependent on the31
required levels of cruise and hover specified by the mission profile. Nevertheless, the provision32
of insufficient supporting infrastructure in the form of vertiports or landing areas may lead to33
significant loiter times, which would require a larger battery size, therefore driving up costs, while34
also increasing turnaround times.35

However, current research does not consider the effect of loiter time on vehicle perfor-36
mance, vertiport placement and costs. These can be estimated using UAM network simulation,37
which have been developed with varying level of detail (20, 25–27).38

While simulation-optimisation frameworks can be used to optimise network design using39
agent-based models, the approach will never yield an optimal solution, and an analytical approach40
is nevertheless required to benchmark the output of the simulation. Furthermore, the simulation41
speed becomes the limiting factor of the optimisation, which increases as the scope increases in42
size and complexity.43
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TABLE 1 Literature summary
Focus Author Approach Objective Features

V
er

tip
or

tL
oc

at
io

n (4) C, EA WD Demand aggregation
(11) EA TS Traffic; Demand
(12) EA WD Vertiport capacity
(13) EA TS Transfer; Queue post-process
(14) C TT Charging; Scheduling
(15) C D Case Study
(16) C D Time Savings

V
eh

ic
le

Si
zi

ng (18) - W Aircraft layout
(19) - W Aircraft layout
(20) - W Energy source
(21) - C Battery size
(24) - W Aircraft layout

This paper EA TS Queuing; Battery size

Legend:
Approach: C - K-means clustering, EA - Exact algorithm.
Objective: C - Cost, D - Distance, TT - Travel Time, TS - Travel Savings, WD - Weighted
Demand, W - Weight.

Contribution1
The infrastructure limitations in vertiports (number of charging, take-off and landing pads) sug-2
gests that vehicle fleets will experience loitering during operation. The available loiter time of3
vehicles is determined through vehicle sizing. As such, the vertiport placement models that ignore4
the loitering and infrastructure requirements will result in operationally infeasible configurations.5
While network simulations can be used to model operations in simulation-optimisation frame-6
works, they lack practicality due to the large run times of existing simulations.7

To solve the integrated network design and vehicle sizing problem, this paper proposes a8
three stage iterative approach. In the first instance, a modified p-means hub location model is used9
to determine the optimal geographical position of vertiports. The outputs of this stage serves as10
the inputs to the vehicle sizing model that calculates the vehicle battery size requirements given11
the operational requirements of the proposed UAM network. The final stage uses a queuing model12
to estimate loiter times and define the infrastructure requirements of the vertiports. A feedback13
loop collects the results of the infrastructure model and modifies the initial vertiport placement14
model. This process is repeated until the marginal cost of operating an additional pad outweighs15
the marginal benefit of doing so. The proposed approach allows us to model the inter-dependencies16
between between various UAM decisions, while also finding the configuration that optimises op-17
erational, infrastructure costs as well as service times.18

METHODOLOGY19
This paper proposes a holistic approach to UAM network optimisation, the objective is to deter-20
mine the optimal location of vertiports given pre-defined demand intensity, as well as determining21
the appropriate vehicle battery size and vertiport properties that minimise overall implementation22
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FIGURE 1 Solution method workflow. Highlighted in green are the inputs, processes and
outputs of the vertiport placement model, in blue the vertiport sizing model, and in orange
the infrastructure model.

costs. A three-stage algorithm is presented composed of a linear vertiport placement model, a1
vehicle sizing stage, and an infrastructure model.2

The vertiport placement model focuses on selecting the vertiport locations that maximises3
travel savings to customers provided. In doing so, the proposed model ensures that selected links4
between the vertiports conform with the operational constraints defined by the aircraft and infras-5
tructure properties.6

The vehicle sizing stage determines the battery size that satisfies the energy requirements7
outlined by the placement model. Once the battery size is determined, the charging requirements8
are calculated based on the C-rate and discharge rates of the battery, which vary based on its mass9
and the specific energy of the vehicle.10

Finally, the infrastructure model is applied to each vertiport to determine their service rate11
requirements. Utilising open network theory, the congestion at the vertiports is modelled, and the12
allowed loiter times based on the number of landing, charging and take-off pads throughout the13
network is calculated. As network theory requires arrival demand rates, these are obtained from14
agent-based modelling tools at the beginning of the optimisation run. The input and output for15
each stage are presented in Figure 1, which outlines the problem framework.16

The stages are executed in sequence and continuously through a feedback loop until the17
marginal cost of operating an additional pad outweighs the marginal benefit of doing so. At this18
point a solution is reached that outlines the optimal state of infrastructure, operational costs and19
passenger waiting times.20

Formulation21
The problem formulation of the solution method components: vertiport placement, vehicle22

sizing, and vertiport infrastructure, are presented separately. Throughout the remainder of this23
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section, the variable and parameter definitions used are outlined below.1

Indices Sets
i, j = nodes V = node set
u = segment U = route segment set
k = vertiport pad type K = pad set

Link Parameters Vehicle Parameters
Gi j = driving time from i to sp,u = specific power [W/kg]

j [h] se,u = specific energy [Wh/kg]
Li j = expected trip time from i N = flight cycles [-]

to j [h] mp = vehicle payload [kg]
Di j = relative demand from i mb = battery mass [kg]

to j [trip] BU ,BL = upper/lower battery level bound [%]
Hi j = haversine demand from i C = battery C-rate [%/h]

to j [km] E = battery energy [J]
ps = flight segment power r = reserve battery [%]

requirement [W/kg] Rr,Rd = recharge/discharge rate [%/h]
ls = flight segment power loa- Q = required recharge [%]

ding requirement [W/kg] r = recharge time [s]
ts = flight segment travel time M = max take-off mass [kg]

Q = battery capacity [mAh]

Decision Variables Queuing Parameters
xi j = Boolean: open or closes Qi j = arrival rate [W/kg]

link between two vertiports P0i j = probability of no queue [-]
oi = Boolean: open or closes βc,βl = charging and VTOL pads bound [-]

vertiport i λqi j = queue length [-]
cik = Integer: number of servers pikl = probability of changing

per type k at vertiport i from state k to l at i [-]
zi j = Boolean: flight link Wqi j = waiting time of queue q [s]

requirements satisfied

Vertiport Placement2
The vertiport placement model finds the most optimal vertiport locations in a city given relative3
demand levels between candidate locations. The model is based on a variant of the uncapacitated4
p-hub location problem and aims to maximise the total travel time saved in the system relative5
to driving to quantify the overall benefit to its users. The following modelling simplifications are6
adopted:7

Assumption 1: Driving is the main competitor of air-taxi services. Qualitative air-taxi8
demand studies (28, 29) found autonomous cars to be the biggest competitor to air-taxi services.9
As such, the objective maximises the total time saved in the system relative to driving.10

Assumption 2: Trips are only operated when the factored routing distance lies within a11
specified bound Hmin,Hmax. Vehicles are assumed to fly at a average speed of 242km/h as required12
by (30), and a safety routing routing factor µ = 1.42 is assumed.13

Assumption 3: Relative demand levels between vertiports are considered. As (31) postu-14
lates, absolute demand levels will vary as the service is introduced and are challenging to model.15
Thus, relative demand levels provide a more accurate depiction of the operational service require-16
ments between vertiports.17
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Assumption 4: Following (4), air taxi trips must provide over 40% travel time savings to1
be considered relative to driving. Furthermore, travel time savings constitute the main benefit of2
UAM.3

maximise (Gi j−Li j)Di jxi j (1)

∑
i∈V

oi = n (1.1)

xi j ≤ o j ∀i, j ∈V (1.2)
xi j ≤ oi ∀i, j ∈V (1.3)
zi jHmin ≤ zi jHi j ∀i, j ∈V (1.4)
zi jHi j ≤ zi jHmax ∀i, j ∈V (1.5)
0.6zi jDi j ≤ zi jLi j ∀i, j ∈V (1.6)

zi j
∑

U
u putuM

mb
≤ zi jsemax ∀i, j ∈V (1.7)

zi jsemin ≤ zi j
∑

U
u putuM

mb
∀i, j ∈V (1.8)

zi jM max
u∈U

(lu)≤ zi jCmaxse,imb ∀i, j ∈V (1.9)

zi j
Q
r
≤ zi jCmaxse,imb ∀i, j ∈V (1.10)

zi j
∑

U
u putuM
semax

− Emax−Emin

N
≤ zi jCmaxse,imb ∀i, j ∈V (1.11)

xi j ≤ zi j ∀i, j ∈V (1.12)
oi = {0,1} ∀i ∈V (1.13)
xi j,zi j = {0,1} ∀i, j ∈V (1.14)

The objective is outlined by equation (1), which maximises the savings of using the UAM4
service compared to driving between each origin destination pair. Constraints (1.1-1.3) ensure that5
n vertiports are opened, and only links between opened vertiports are activated. Note that variables6
oi, zi j and xi j are set as Boolean by (1.13) and (1.14).7

Constraints (1.4-1.11) outline the operational conditions that must be met for a link to8
be usable in the network. As specified by assumption 2, (1.4) and (1.5) state that the length of9
activated paths are bounded by [Hmin,Hmax] bounds. Constraints (1.6) constitutes assumption 4,10
ensuring that links activated provide at least 40% travel time savings with respect to driving.11

The remaining constraints relate to the vehicle size requirements. The specific energy of the12
battery must lie within the bounds semin and semax given (1.7) and (1.8). Finally, (1.8-1.11) ensure13
that the battery size satisfy the charging and discharge requirements for each vertiport i. The origin14
of these relationships are described in the next section.15

Vehicle Sizing16
The vehicle sizing stage aims to minimise the battery mass required to undertake a trip defined17
by its mission profile. As observed in equations (1.8-1.11), the size of the battery and its recharge18
capability determine the viability of the UAM network. The methodology developed in this section19
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assumes that 50% of the vehicle mass is attributed to structure and the remaining 50% to battery1
and payload as informed by (18). Thus, the maximum take-off mass (M) is expressed as follows:2

M = 2(mb +mp) (2)
Determining the battery mass requires the estimation of the operational power require-3

ments. Using the output specified by the vertiport location algorithm, we select the trip with4
highest power requirements and model the battery to ensure operations are feasible for this trip.5
Thus, the energy requirement for a trip is calculated using equation (3).6

Et =
U

∑
u
(putu) (3)

Given a maximum specific energy esmax parameter which determines the amount of energy7
produced per unit mass of battery, the minimum battery mass mb that satisfies the design mission8
profile is given by 4.9

mb =
M maxu∈U (lu)

esmax

(4)

Rearranging this equation leads to the following expression for battery mass:10

mb =
2mp ·maxu∈U (lu)

esmax−2maxu∈U (lu)
(5)

Consequently, the specific energy es required to undertake a trip can be written as:11

es =
Et

mb
(6)

Uber’s operational requirements (30) requires vehicles to be able to undertake the largest12
trip in the system for 3 hours continuously while only charging for 5 minutes between trips. This13
minimises the opportunity costs associated with vehicles servicing less demand due to charging.14

Consequently, loiter times would lead to increased recharge rates as the vehicle maintain15
flight for longer periods. If the recharge rate exceeds to maximum allowable C-rate for Li-Ion16
batteries, a vehicle will not satisfy Uber’s requirement. As such, minimising loiter time not only17
minimises lost opportunity costs, but also reduces the peak time requirement for each vehicle. The18
battery level En+1 after charging Echarge following a trip En that requires an energy of Etrip can be19
obtained using the following arithmetic sequence:20

En+1 = En−Etrip +Echarge (7)
Let ∆t be the duration of one cycle during rush hour, Emin be the required battery level at21

the end of rush-hour and Emax be the battery level at the beginning of rush-hour. The number of22
cycles during that window is given by N = ∆t

T cycles, where T is the time to undertake the largest23
trip in the system. To reach a desired battery level Emin at the end of rush hour, the required energy24
recharge R is given by:25

Rr = Et−
Emax−Emin

N
(8)

Emax = 2(mb +mp)esBU max
u∈U

(lu) (9)



Khalife, Slim, Escribano and Angeloudis 11

Emin = 2(mb +mp)esBL max
u∈U

(lu) (10)

As the battery discharges rapidly and unpredictably when it falls below its 10% threshold1
(BL = 0.1), this limit constitutes a lower bound that should never be reached, in addition to any2
charge reserves required. Furthermore, the top 20% take significantly longer to charge and are3
usually ignored in UAM models (BU = 0.8) (32). Thus, 30% of the battery capacity is to never4
be consumed, which is represented mathematically by scaling the battery capacity by a factor5
B f = 0.7.6

The required recharge rate R to satisfy Uber’s requirement given a charging time tr is given7
by:8

R =
Rr

r
(11)

Li-Ion’s batteries dictate the maximum charge/discharge rate a battery can sustain. This is9
added as a hard constraint in the vertiport placement model. The maximum discharge rate given a10
battery capacity Bc is given by:11

Rd =
2maxu∈U(lu)(mb +mp)

Q
(12)

Infrastructure Specifications12
Given a vertiport configuration, the queuing theory model finds the number of landing, charging,13
storage and take-off pads which balance the waiting times in the system, as well as the operating14
and infrastructure costs. These waiting times are fed back into the vertiport placement model until15
the marginal cost of removing an additional vertiport outweighs the marginal benefit.16

Vertiports can be modelled as open-network multi-server queuing systems using Jackson’s17
theory (33), which assumes independence of arrival rates at each server in the steady state. How-18
ever, waiting times at each pad are not independent of each other in congested scenarios. In prac-19
tice, congestion will propagate upstream, from storage pads to charging pads, and from charging20
pads to landing pads. This scenario infeasible from an operational and service level perspective as21
loiter times will exceed the predefined battery specifications and passenger waiting times will not22
be tolerable.23

To avoid the aforementioned scenario, the service rate at each pad must exceed the vehicle24
arrival rate. Assuming a Poisson distributed arrival rate, and a service rate that exceeds arrival rate25
rate, a steady state configuration can be reached. In this case, the arrival rates and queue sizes at26
each server can be assumed to be independent of the other servers in the system.27

However, UAM demdand is expected to have a bi-modal daily distribution, suggesting that28
the system will not operate in a steady state configuration. Nevertheless, designing the system29
to a steady state configuration with a similar behaviour to rush hour conditions will lead to a30
configuration that is feasible for lower demand levels. Consequently, queuing theory can be used31
to optimise the number of landing, charging, storage and take-off pads assuming a steady state,32
rush-hour configuration.33

The arrival rates at each vertiport, transition probabilities between pads of a given vertiport34
and the service rate of each pad are obtained by running an agent-based model for a very large35
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number of pads. In this scenario, all demand is satisfied. This enables us to study the behaviour1
of each vertiport independently. At each vertiport, the vehicles are routed to different pads in a2
probabilistic manner.3

Given the rush hour arrival rate Qi j, the service rate µi j of pad j at vertiport i and the set of4
probabilities pi jz of a vehicle in vertiport i follows:5

Qi j

µi jmi j
< 1 (13)

If steady state conditions are not satisfied, the queue size is expected to increase indefinitely,6
leading to the aforementioned congested scenario. Given an arrival rate Qi1 at the landing pads of7
vertiport i, the transitional probabilities pi jk of a vehicle transitioning from pad type j to k at8
vertiport i, the arrival rate Qi j at each pad j of vertiport i is calculated as follows:9

Qi j =
Z

∑
z
(pik j)Qi1 (14)

For each pad j of vertiport i, the utilisation ρi j is defined as:

ρi j =
Qi j

µi j
(15)

The probability P0i j of an empty queue at pad j of vertiport i is calculated as follows:

P0i j =
c−1

∑
n=0

[
ρn

i j

n!
+

ρc
i j

c!(1− ρi j
c )

]−1 (16)

The average length of the queue λqi j is given by:

λqi j =
P0i jρi j

c ρi j
c

c!(1− ρi j
c )2

(17)

Finally, the waiting time Wqi j at pad j of vertiport i is given by:

Wqi j =
λqi j

Qi j
(18)

Waiting times directly affect the vertiport placement and vehicle sizing models. Larger10
wait times requirements reduce the travel time savings relative to driving and overall benefit of11
the UAM network. Longer loiter times lead to larger battery sizes, which can make some trips12
unfeasible due to the recharge requirements. Larger vehicle size and increased energy depletion13
due to loiter increase the cost of vehicle procurement, charging and maintenance. Consequently,14
waiting times heavily influence the operational feasibility of the UAM network and the system15
costs.16

Operational and Infrastructure costs17
The operating costs in this study are composed of: vehicle maintenance, vehicle insurance, pilot18
salary, energy costs, battery procurement and life cycle costs, indirect costs, carbon tax and op-19
portunity costs. The values and reference for all the parameters introduced in this section will be20
outlined in the Case Study section.21

Maintenance costs are calculated assuming a specific rate of maintenance requirements per22
flight-hour. Vehicle acquisition costs are based on the vehicle maximum take off weight, with23
insurance consisting of a percentage of the total vehicle acquisition cost. Crew costs include all24
pilot salaries given the number of vehicles required. Energy and battery costs are determined based25
on the estimated average flight time which includes loitering, with battery life-cycles obtained as26
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per (28).1
Indirect costs include credit card fees, overhead for commercial aviation, taxing, landing2

fees and others and are assumed to represent 10% of the total costs. Opportunity costs are calcu-3
lated based on the proportion of waiting time Tw from the total trip time Tt :4

O = α
Tw

Tt
Co (19)5

where α corresponds to the operating margin (29), and Co to the operational costs.6
The main infrastructure cost components are associated with the landing, charging, storage,7

and takeoff pads. This includes the cost of piling, composite decking as well as the carrier terminal8
cost. These costs are used to determine the infrastructure cost of different vertiports deployment9
scenarios. Additionally, a high voltage charger cost of is included for each charging pad. The10
take-off and landing pads for eVTOL vehicles are comparable to a helicopter pad.11

Feedback Loop12
Increasing the number of landing, charging and storage pads will lead to improve waiting times13
and reduce opportunity costs provided the operational requirements are satisfied. Despite these14
improvements, it will also increase the infrastructure costs.15

This interrelationship is captured using a feedback mechanism, which collects the output16
of the vertiport infrastructure model and updates the constraints of the vertiport placement model17
based on the requirements of the vertiport infrastructure. The feedback loop aims to find a balance18
between the infrastructure, operational costs and passenger waiting times. The number of pads is19
decreased with every iteration until the marginal cost exceeds the marginal benefit or the problem20
becomes infeasible.21

CASE STUDY22
The method described in the methodology is applied to find the optimal system configuration for a23
potential deployment scenario in the city of London. This study assumes a five vertiport configu-24
ration for the short-term UAM application. To showcase the study’s contribution, a baseline model25
based on current literature is developed which ignores the interdependencies between vertiport26
placement, vehicle sizing and infrastructure specifications. This baseline is used as a comparison27
to the integrated approach proposed in this paper. All cost parameters used are presented in Table28
2.29

Demand Generation30
As stated by (31), UAM is still in its early stages of development to forecast absolute demand31
levels for trips within a city. However, using existing transportation data, one can estimate relative32
demand levels between different areas for the purpose of vertiport placement.33

Assumption 1: TfL’s Rolling Origin and Destination Survey (RODS) is assumed to give an34
adequate representation of London’s underground travellers’ behaviours35

The RODS captures important statistics on trips undertaken in the London Underground36
Limited (LUL). It provides an origin-destination matrix classified by station, zone, and time of day.37
The data is based on November 2017 counts and abnormal fluctuations in demand due to unusual38
conditions are neglected (40). As such, the RODS is considered to give an adequate representation39
of London’s underground travel behaviours on a typical weekday and will be used to infer air-taxi40
demand.41
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TABLE 2 Cost parameters.
Operating costs

Parameter Value Reference
Mechanic salary [$/h] 60 (28)
Maintenance time [h] 0.68 (28)
Vehicle acquisition [$/kg] 333 (28)
Pilot salary [$/h] 100 (23)
Pilot yearly flight-hours [h] 500 (28)
Energy costs [$/MJ] 0.0492 (34)
Emissions rate [kg/MJ] 0.0786 (35)
Battery acquisition [$/MJ] 111 (28)
Carbon tax [$/kg] 0.0198 (36)
Operating margin [-] 0.3 (7)

Infrastructure costs
Vertiport costs [$/m2] 4122 (37–39)
High-voltage charger [$] 453 (4)

Assumption 2: Each borough can hold at most one vertiport1
Most vertiport placement studies have been undertaken in the United States, where the2

demand is usually aggregated on a census tract level (31), (11), equivalent in size to London wards.3
Considering the differences between the United Kingdom’s and United States’ potential air-taxi4
market (41), it is more adequate to discretise London into larger geographical entities. Further,5
there are more wards than London underground stations which will result in many OD pairs not6
having demand associated to them. As a result, a coarser, borough level aggregation was chosen,7
which produced the candidate presented in Figure 2 and Table 3. One limitation of this approach8
is that the boroughs of Bexley, Bromley, Croydon, Kingston upon Thames and Sutton, which are9
not served by underground stations, do not have demand associated to them.10

FIGURE 2 London borough map

Assumption 3: Applying (20)’s distance weighing factor to the aggregated RODS demand11
gives us a good indication of relative UAM demand between boroughs12
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To represent realistic air-taxi demand levels based on existing transport datasets, (21) define1
a distance weighing function, which is calculated based on the haversine distance d as follows:2

wd =
1

367.8791
d2e−0.001d2

(20)3
4

The distance weighing factor centres demand around distances of 8 to 20 km: trips that are5
too short or too long to be attractive by air-taxi have been de-emphasised. The weighted demand6
distribution is thus more suitable for representing potential air-taxi demand and will be used as an7
input to the vertiport placement model.8

Results9
To reflect the current state-of-the-art, the baseline model developed for this study is defined by10
equations 1-1.7 and 1.12-1.14. Rather, vehicle sizing is undertaken by post-processing the vertiport11
placement’s outputs. The effects of waiting times on the system will also be ignored.12

Our holistic model proposed in Section 4, is also used to incorporate the effects of waiting13
times and vehicle performance into the original vertiport placement model, as well as determining14
the optimal pad configuration at each vertiport. An initial upper boundary pad configuration of15
16 pads per vertiport is used to ensure operational feasibility. This number is reduced until the16
marginal cost of removing a certain pad outweighs the marginal benefit of doing so, provided the17
operational constraints are satisfied. To quantify the effects of increasing demand on the system,18
the model is run for three rush-hour demand scenarios: 50, 150 and 250 vehicles/hour.19

FIGURE 3 Vertiport placement results for the baseline and optimal case. Haringey, West-
minster and Newham are selected in both cases.

All demand scenarios lead to the same optimal vertiport configuration and vehicle size. In20
comparison to the baseline model the longest trip in the system is 39% shorter, that being the 14km21
trajectory connecting Barnet to Westminster. The baseline selects the Brent-Newham connection22
of 23km as its longest trajectory.23

In spite of the shorter travel distances, the battery size in the holistic model is 6% larger24
than in the baseline case. This suggests that the vehicle sizing model is unable to produce a feasible25
battery size for this trip, highlighting a key limitation of existing methods.26

Figure 5 highlights that, although both vehicle configurations are effectively able to fly the27
largest trip in the system, the baseline configuration does not satisfy Uber’s operational require-28
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TABLE 3 Borough candidate vertiport location.
Borough Latitude Longitude
Enfield 51.6538 -0.0799
Barnet 51.6252 -0.1517
Haringey 51.6 -0.1119
Waltham Forest 51.5908 -0.0134
Harrow 51.5898 -0.3346
Havering 51.5812 0.1837
Brent 51.5588 -0.2817
Redbridge 51.559 0.0741
Hackney 51.545 -0.0553
Hillingdon 51.5441 -0.476
Islington 51.5416 -0.1022
Camden 51.529 -0.1255
Ealing 51.513 -0.3089
Tower Hamlets 51.5099 -0.0059
Newham 51.5077 0.0469
Southwark 51.5035 -0.0804
Kensington and Chelsea 51.502 -0.1947
Westminster 51.4973 -0.1372
Hammersmith and Fulham 51.4927 -0.2339
Greenwich 51.4892 0.0648
Hounslow 51.4746 -0.368
Lambeth 51.4607 -0.1163
Wandsworth 51.4567 -0.191
Bexley 51.4549 0.1505
Richmond upon Thames 51.4479 -0.326
Lewisham 51.4452 -0.0209
Kingston upon Thames 51.4085 -0.3064
Bromley 51.4039 0.0198
Merton 51.4014 -0.1958
Croydon 51.3714 -0.0977
Sutton 51.3618 -0.1945
City of London 51.5155 -0.0922
Barking and Dagenham 51.5607 0.1557
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FIGURE 4 Battery state of charge variation during peak-time.

ments under reasonable C-rate assumptions. In fact, battery levels deplete below reserve after only1
undertaking 2 trips while charging at a 5C rate. The holistic model provides sufficient capacity to2
undertake the longest trip in the system continuously for 3 hours while only charging for 5 minutes3
at a 4.8 C-rate.4

With notion of the effects of the pad configuration on waiting times, and hence operational5
costs, the holistic model can also be used to determine the optimal pad configuration at each verti-6
port.7

FIGURE 5 Yearly operational costs.

The yearly operational cost is £198 million for the 250 vehicle/hour scenario, compared8
to £119 and £40 million in the 150 and 50 vehicle/hour scenario, respectively. Nevertheless, the9
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TABLE 4 Vertiport infrastructure requirements and costs.
Scenario Low-Demand Medium-Demand High-Demand

Number Landing Pads [-] 16 25 34
Number Charging Pads [-] 16 29 38
Number Take-off Pads [-] 11 22 29

Waiting Time Proportion [%] 3.1 0.91 0.56
Landing Pads Cost [$ million] (% of total) 4.39 (47) 6.86 (42) 9.33 (43)
Charging Pads Cost [$ million] (% of total) 1.85 (20) 3.35 (21) 4.39 (20)
Take-off Pads Cost [$ million] (% of total) 3.02 (32) 6.04 (37) 7.96 (37)

Total Infrastructure Cost [$ million] 9.26 16.25 21.69

operational cost breakdown is similar for all scenarios, with batteries, vehicle maintenance and1
crew incurring the largest costs.2

It is also interesting to note that opportunity costs are minimal in all scenarios. In fact,3
total waiting times remain below 5% of the total flight time in all optimal configurations, with 1504
and 250 vehicle per hour demand scenarios yielding waiting times that constitute under 1% of the5
total flight time. Waiting times increase the energy, opportunity and maintenance costs, leading to6
greater marginal costs that out weight the benefit of removing a vertiport pad.7

Due to the Li-Ion’s battery life and price ranges, the battery costs are the highest opera-8
tional cost component, which is in line other studies (7). Improvements in battery performance9
thus offers significant cost reduction opportunities. (28) assumption of 33 minutes per flight hour10
for maintenance makes associated costs significant. Further, automation has the opportunity to11
eliminate pilot costs, but will lead to additional costs which should be quantified.12

Increasing peak hour demand from 50 to 150 and 250 vehicles/hour leads to a 76 and 130%13
increase in the total number of pads. Under all conditions, a larger number of charging pads are14
required compared to the other types. This makes intuitive sense due to the longer service time of15
charging pads. Further, there are more landing pads than take-off pads in all scenarios, suggesting16
that marginal cost of removing a landing pad is larger than the one associated with removing a17
take-off pad.18

The yearly infrastructure cost is £21.7 million for the high demand configuration, 134%19
larger than the lower demand scenario (£9.5 million). Although all configurations require more20
charging pads than any other pad type, landing pads account for the highest proportion of infras-21
tructure costs as shown in Table 4.22

It is interesting to note that operating costs are orders of magnitude larger than infrastructure23
costs in both scenarios, strengthening the notion that, if retrofitted into existing infrastructure,24
UAM offers significant cost advantages compared to other transport modes.25

DISCUSSION26
The study demonstrates the importance of adopting a holistic approach to UAM network design.27
Its major contribution lies in the development of a method that optimises the main components of28
UAM systems, while also considering the inter-dependencies between them. By integrating vehicle29
sizing and performance constraints into the vertiport placement model, the proposed methodology30
generates a vertiport configuration that satisfies Uber’s peak time requirements.31

In contrast, the baseline model yields an infeasible solution that is only detected during32
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post-processing. A potential solution is to reduce the number of opened links between the network1
in order to reduce the peak demand at the vertiports, but this solution will result in a suboptimal2
UAM network.3

Our results show that under low waiting times, battery acquisition and replacement cost4
are the largest operating cost component. Nevertheless, opportunity costs quickly dominate when5
waiting times increase, making UAM networks unsustainable. Thus, UAM operations should be6
designed to operate under minimal turnaround times.7

Another interesting insight is that operating costs grow at a faster rate than infrastructure8
costs when waiting times increase. Therefore, it is advisable to design vertiports to accommodate9
near 0 theoretical average waiting times at rush-hour. Loiter times lead to the largest increases10
in operational costs. Not only do they lead to opportunity cots, but they also deplete additional11
energy, therefore requiring larger batteries and larger charging times.12

Sub-system level interactions largely affect the wider UAM network. Increases in waiting13
times lead to changes in network configuration, operating costs and battery requirements which14
can make the system unfeasible. Waiting times are heavily dependent on the configuration of pads15
at each vertiport. Consequently, feedback loops can be used to model the effects of sub-system16
interactions on the wider UAM system to a reasonable degree.17

In spite of these findings, there are several limitations with the approach in this study. The18
demand modelling is on RODS (40) which only consider trip undertaken in the London Under-19
ground. The model can be improved by considering other modes of transport and including a logit20
decision model based on the utility parameter of each mode (42). This includes analysing the21
effects of different pricing schemes in UAM demand as well as queue management.22

Furthermore, multi-mode trips, where UAM can be used to complement existing transport23
modes, are ignored in this study. The safety routing factor mu specified in Assumption 2 simplifies24
the potential effects of air traffic management and noise in the routing of eVTOLs and the con-25
figuration of vertiports. Finally, incorporating stochastic travel times, waiting times, and demand26
levels would provide a more robust network, particularly when incorporating weather effects on27
demand and flight times.28

CONCLUSIONS29
This study proposes a holistic approach to optimising UAM networks by considering sub-system30
interactions on the wider UAM network. The methodology contains three main components: a31
vertiport placement model, a vehicle sizing process, and a infrastructure queuing model. The latter32
can be modelled using multi-server open network theory by considering a rush-hour, steady state33
demand configuration, and its outputs are used to modify the constraints of the vertiport place-34
ment model. This approach overcomes the speed limitations related to simulation-optimisation35
approaches that could be used with the existing agent-based models in the literature.36

The method is applied to find the configuration that optimises operational, infrastructure37
costs as well as service times for the city of London under different demand levels. Results show38
that UAM systems could effectively be deployed in small scale, with low turnaround times. The39
findings show that operational costs significantly increase with waiting times, and as such these40
should be reduced under all circumstances, particularly at higher demand levels. Thus, vertiport41
design approaches not considering vertiport congestion will lead to suboptimal or infeasible con-42
figurations, as was the case with the baseline approach used in this study.43

Further work is required to improve the demand modelling to include a logit decision model44
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that considers competing transport modes and multi-modal trips. Moreover, travel times, waiting1
times, and demand could be modelled stochastically. With the addition of pricing models, these2
changes would allow the determination of expected profit margins and optimal investment strate-3
gies.4
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