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Abstract This paper considers contextual stochastic optimization with endogenous uncertainty, where
random outcomes depend on both contextual information and decisions. We analyze the statistical properties
of solutions from two prominent approaches: predict-then-optimize (PTO), which first predicts a model
between outcomes, contexts, and decisions, and then optimizes the downstream objective; and estimate-
then-optimize (ETO), which directly estimates the conditional expectation of the objective and optimizes
it. Unlike many existing studies that assume independent and identically distributed observations and/or
decision/context-independent noise, we consider a setting where historical observations form a general time
series, allowing for arbitrary dependencies between current outcomes and past realizations, contexts, and
decisions. For both approaches, we establish non-asymptotic performance guarantees using two criteria,
approximation error and regret, deriving slow and fast convergence rates.
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1 Introduction

Contextual stochastic optimization addresses the problem

min
𝑥∈X

𝔼ℙ𝜉 |𝜁

[
Ψ(𝑥, 𝜉)

]
where 𝑥 ∈ X represents the decision variable, 𝜉 denotes the random outcome realized after the decision is
made, 𝜁 symbolizes the contextual information available before decision-making, and Ψ is the objective
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function dependent on both 𝑥 and 𝜉. The distribution of 𝜉 is influenced by the contextual information 𝜁 .
By leveraging the contextual information 𝜁 , decision-makers can achieve more accurate and customized
optimization outcomes.

In classic stochastic programming literature (e.g., [44]), uncertainties 𝜁 and 𝜉 are often assumed to be
exogenous, namely, their distribution is independent of the decision 𝑥. However, endogenous uncertainty,
where the uncertainty is influenced by the decision, frequently occurs in many applications. For instance,
consider a revenue management problem, where the decision maker determines the pricing vector 𝑥 for all
products to maximize the expected revenue Ψ(𝑥, 𝜉) = 𝑥⊤𝜉. Here, the demand 𝜉 depends not only on the
product and customer features but also critically on the pricing decision 𝑥. Motivated by such problems,
this paper considers endogenous uncertainty, and to reflect the dependence of the distribution of 𝜉 on the
decision 𝑥, we explicitly write it as ℙ𝜉 | (𝜁 ,𝑥 ) and our problem of interest is

min
𝑥∈X

𝔼ℙ𝜉 | (𝜁 ,𝑥)

[
Ψ(𝑥, 𝜉)

]
. (1)

In the simplest case where there is no context (other than the decision), the distribution ℙ𝜉 |𝑥 is decision-
dependent, and (1) reduces to the stochastic optimization with decision-dependent uncertainty [20, 35, 34, 36].

Two popular solution approaches for solving (1) are predict-then-optimize (PTO) and estimate-then-
optimize (ETO). PTO first estimates a prediction model between 𝜉 and (𝜁, 𝑥), then uses this model to
solve (1). When Ψ is linear in 𝜉 (e.g., Ψ(𝑥, 𝜉) = 𝑥⊤𝜉), thanks to the linearity of expectation, it suffices
to estimate the conditional expectation of 𝜉 given (𝜁, 𝑥). In this case, it has been shown that PTO can
achieve a fast convergence rate when there is no endogenous uncertainty. However, when Ψ is nonlinear in 𝜉

or the noise exhibits heteroscedasticity with respect to the decisions, the model uncertainty in the noise
distribution may be amplified in the downstream optimization task, raising concerns about the accuracy and
robustness of the solutions. To address these concerns, the second approach, PTO, directly estimates the
functional relationship between the conditional mean objective 𝔼ℙ𝜉 | (𝜁 ,𝑥) [Ψ(𝑥, 𝜉)] and (𝜁, 𝑥), thereby reducing
(1) to finding the optimal 𝑥 using the estimated function [4]. These two approaches are widely adopted in
practice, offer clear interpretability, and have been proven statistically effective in scenarios without model
misspecification [22, 15]. Given the challenges in analyzing the statistical properties of these two approaches
under endogenous uncertainty, we focus our study on PTO and ETO in this paper, while providing a brief
discussion of other frameworks in Section 1.1.

In this paper, we are interested in assessing the statistical quality of the solution to (1). Endogeneity
significantly impacts this assessment, and most existing analyses impose assumptions that rarely hold in
its presence. For example, it is often assumed that one has i.i.d. observations. While this assumption is
reasonable when this distribution is exogenous, it rarely holds under endogenous uncertainty. For example,
in the pricing decision scenario, it is uncommon for the historical pricing decisions to be i.i.d. Another
common assumption in the literature is that the noise in the regression model is independent of the context
or decision, implying that the variability in outcomes remains constant regardless of the context and the
decision. However, this assumption may not hold in practical scenarios. For example, the demand variation for
a product might be larger during periods of promotional activities compared to periods without promotion.

We consider a general data-generating mechanism where the observations of {(𝜁𝑖 , 𝑋𝑖 , 𝜉𝑖)}𝑛𝑖=1 form a time
series. The random outcome 𝜉𝑖 can depend on its historical realizations {𝜉 𝑗 }𝑖−1𝑗=1, as well as historical and
current contexts and decisions {(𝜁 𝑗 , 𝑋 𝑗 )}𝑖𝑗=1, in an arbitrary manner. Notably, the noise in the regression
model can be context- and decision-dependent (see Section 3 for details).

In Section 4, we quantify the parameter estimation error in the regression model. To deal with the
dependent sequence, we employ a martingale argument based on self-normalized processes. This technique,
previously used to establish the regret bounds for (generalized) linear bandits, is extended to more general
parametric settings by coupling with a covering number argument.

Based on the statistical analysis of the estimator, in Section 5, we establish performance guarantees for
both the PTO and ETO approaches. We use two criteria widely adopted in stochastic programming and
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learning theory: the approximation error, which quantifies the difference between the optimal value using
the estimated model and that using the ground truth; the regret, which measures the objective difference
between the estimated solution and the true optimal solution under the ground truth model. For both
approaches, we establish a slow rate, proportional to the parameter estimation accuracy, and a fast rate,
quadratic to the parameter estimation accuracy, under additional conditions. These results are illustrated in
the context of a pricing problem.

1.1 Related Literature

Contextual stochastic optimization frameworks can be broadly categorized into three types: sequential
learning and optimization (SLO), integrated learning and optimization (ILO), and decision rule optimization.
Both PTO and ETO fall under the SLO category; their definitions are aligned with the tutorial [40]. Below
we will focus on the statistical aspects of these problems, referring readers to [43] for an excellent recent
survey on modeling and computational aspects.

Within the SLO framework, [4, 2] derived asymptotics for ETO using various non-parametric estimators.
[2] provided finite-sample bounds when the objective function belongs to a reproducing kernel Hilbert space.
[23, 24, 25] studied asymptotics and finite-sample guarantees for residual-based sample average approaches
and distributionally robust optimization.

In the ILO framework, [12, 21, 32, 13] developed generalization bounds and risk bounds for the “Smart-
Predict-then-Optimize” approach. [54] related their proposed robust estimates uncertainty set with confidence
regions through maximum likelihood. [41] derived asymptotics and finite-sample guarantees for Integrated
Conditional Estimation-Optimization. [45, 3, 6, 48, 9, 46] provided performance guarantees for approaches
based on regularization and robust optimization.

For decision rule optimization, [5] provided asymptotics and finite sample guarantees for decision rules
in a reproducing kernel Hilbert space. [18] demonstrated that the bias-corrected policy enjoys provably
strong performance in the small-data, large-scale regime. [52] showed the consistency for the piecewise
affine decision rule. [8] established performance guarantees for training a neural-network decision rule. In
the context of feature-based newsvendor problems, [2] developed risk bounds for affine decision rules, [16]
established consistency for decision rules based on operational statistics, and [51, 19] derived generalization
bounds for Lipschitz regularized policies driven by Wasserstein distributionally robust optimization.

Comparing frameworks, [22] demonstrated that PTO could achieve faster regret convergence than
Integrated Empirical Risk Minimization for linear objective functions. For nonlinear decision objectives, [15]
proved that ETO could outperform ILO asymptotically in terms of stochastic dominance of regret when
there is no model misspecification. Our fast convergence rate results on PTO and ETO are aligned with
their insights.

All above analyses assume i.i.d. observations, except for a few exceptions. [4] analyzed scenarios when the
data sequence is a certain mixing process and [46] considered finite-state Markov chains and auto-regressive
process. [16] assumed that the new context is independent of previous outcomes conditional on the previous
contexts in a newsvendor model. In contrast to these works, we consider a general time series setting allowing
arbitrary dependence on the history. For approaches that involve an explicit noise component, most of
them assume homogeneous noise, except for [24] that considered a decision-independent multiplicative
noise heteroscedasticity. In contrast, our model allows arbitrary dependence of noise on past decisions and
contexts.

Finally, our analysis is also related to the bandits literature (see, e.g., [28]), where the action depends
on historical contexts so that the observations are adapted. A fair amount of works have been developed
for linear bandits [11, 42, 30, 10], generalized linear models [17, 31, 27], kernelized contextual bandits [47],
and neural contextual bandits [49, 53]. However, while the analysis in these works relies essentially on some
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(generalized) linear structure, we do not have hidden linear structure in our model and instead focus on the
statistical inference for a general parametric class.

2 Model Setup

2.1 Predict-Then-Optimize

Suppose the random outcome 𝜉 ∈ Ξ, the context 𝜁 ∈ Ω, and the decision 𝑥 ∈ X have a relationship

𝜉 = 𝜙
(
𝑓𝜃∗ (𝜁, 𝑥)

)
+ 𝜖, (2)

where 𝜙 : ℝ𝑑Ξ → ℝ𝑑Ξ is a link function, which is useful when 𝜉 is linked with a transformation of 𝑓𝜃∗ (see
Example 1 below); 𝑓𝜃∗ : ℝ

𝑑Ω+𝑑X → ℝ𝑑Ξ models the parametric relationship between the random outcome
and the context; 𝜃∗ ∈ ℝ𝑑 is an unknown parameter that can only be estimated from historical observations;
and 𝜖 ∈ ℝ𝑑Ξ denotes the noise vector. Our assumption on the noise (see Assumption 1 below) allows
heteroskedasticity and arbitrary dependence on the context and decision.

Given 𝑛 historical observations, the PTO approach first estimates the unknown model parameter,
denoted by �̂�𝑛, then optimizes the downstream objective building upon �̂�𝑛. We focus on cases where Ψ is
linear in 𝜉. This is crucial because when Ψ is nonlinear in 𝜉, the objective function depends not only on
the conditional expectation of 𝜙( 𝑓𝜃∗ (·)) but also on the noise distribution. Consequently, estimating only
the unknown parameter is insufficient for the downstream optimization, as relying solely on expectation
information would introduce bias into the objective, especially in the presence of heteroskedasticity. Under
the linear assumption, we can express Ψ(𝑥, 𝜉) = 𝜓(𝑥)⊤𝜉. With the estimator �̂�𝑛, the PTO approach solves
the downstream optimization

min
𝑥∈X

𝜓(𝑥)⊤𝜙
(
𝑓
𝜃𝑛
(𝜁, 𝑥)

)
. (3)

This formulation extends existing literature [14, 33, 22] where 𝜓 and 𝜙 are the identity maps.
The following example illustrates the application of our model in a single-product pricing problem.

Example 1 Let 𝑥 ∈ ℝ denote the pricing decision for a product, and let 𝜉 ∈ {0, 1} denote whether to
purchase the product. Let 𝑓𝜃 (𝜁, 𝑥) = 𝜃⊤ [1; 𝜁 ; 𝑥] and 𝜙(𝑧) = 1

1+exp(−𝑧) , then the demand function 𝜙( 𝑓𝜃∗ (𝜁, 𝑥)) =
1

1+exp(−(𝜃∗ )⊤ [1;𝜁 ;𝑥 ] ) models the relationship between the purchasing probability and context 𝜁 , known as the
logit model. When the parameter associated with 𝑥 is the price sensitivity coefficient. The objective function
denotes the negative revenue Ψ(𝑥𝜉) = −𝑥𝜉. The unknown parameter can be estimated using estimation for
generalized linear models. One can also consider other demand models, such as linear demand. In this case,
the demand 𝜉 ∈ ℝ+ has an expectation 𝜙( 𝑓𝜃∗ (𝜁, 𝑥)) = (𝜃∗)⊤ [1; 𝜁 ; 𝑥] with 𝜙 being the identity map. ♣

2.2 Estimate-Then-Optimize

The ETO approach directly works with the conditional expectation 𝔼ℙ𝜉 |𝜁 [Ψ(𝑥, 𝜉)]. Set 𝑦 := Ψ(𝑥, 𝜉). Suppose
𝑦 can be represented as

𝑦 = 𝜙
(
𝑓𝜃∗ (𝜁, 𝑥)

)
+ 𝜖, (4)

where 𝜙 : ℝ → ℝ is a link function; 𝑓𝜃∗ : ℝ
𝑑Ω+𝑑X → Y ⊂ ℝ and 𝜙( 𝑓𝜃∗ (𝜁, 𝑥)) = 𝔼ℙ𝜉 |𝜁 [Ψ(𝑥, 𝜉)]; and 𝜖 denotes

the noise. Unlike PTO, the ETO approach does not estimate the conditional mean of 𝜉 but instead estimates
the conditional mean 𝔼ℙ𝜉 |𝜁 [Ψ(𝑥, 𝜉)] directly. This approach offers three benefits: first, it circumvents the
need for a separate estimation of 𝜉 followed by optimization over 𝑥, potentially reducing the impact of
statistical errors for downstream optimization. Second, it is well-suited for nonlinear objective functions
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Ψ(𝑥, ·), as it avoids the need to estimate the noise distribution in (2). Third, it retains its applicability across
scenarios where the explicit functional form of Ψ is unknown or when 𝜉 is not directly observable.

Setting 𝑦𝑖 = Ψ(𝑥, 𝜉𝑖) to be the objective value associated with the 𝑖-th observation. Given 𝑛 historical
observations, let �̂�𝑛 be the estimator of the model parameter. With �̂�𝑛, the ETO approach solves the
optimization

min
𝑥∈X

𝜙
(
𝑓
𝜃𝑛
(𝜁, 𝑥)

)
. (5)

We exemplify this approach in the following newsvendor problem with pricing.

Example 2 Consider a retailer who faces the dual challenge of deciding the ordering quantity 𝑞 and setting
a selling price 𝑝 for a product. Its random demand 𝜉 is affected by the selling price 𝑝, the inventory quantity
𝑞, and other external factors such as market trends, seasonality, or promotional activities. The objective
Ψ((𝑞, 𝑝), 𝜉) is the newsvendor cost:

Ψ((𝑞, 𝑝), 𝜉) = −𝑝min(𝜉, 𝑞) + 𝑐𝑞 − 𝑠(𝑞 −min(𝜉, 𝑞)),

where 𝑐 is the unit ordering cost and 𝑠 is the unit salvage value of unsold inventory. The retailer’s objective
is to find the optimal inventory quantity and selling price to minimize the expected cost

min
𝑝,𝑞≥0

𝔼ℙ𝜉 |𝜁 [Ψ((𝑞, 𝑝), 𝜉)] .

Let the link function 𝜙 be the identity map and thereby 𝔼ℙ𝜉 |𝜁 [Ψ((𝑞, 𝑝), 𝜉)] = 𝑓𝜃∗ (𝑞, 𝑝, 𝜁). ♣

3 Statistical Estimation

As previously noted, the historical observations are typically correlated due to endogeneity. We model these
observations as a time series

𝜁1 { 𝑋1 { 𝜉1 { 𝜁2 { 𝑋2 { 𝜉2 { · · · { 𝜁𝑛 { 𝑋𝑛 { 𝜉𝑛,

allowing for an arbitrary dependence structure. Note that we use a capital letter 𝑋 to indicate that the
decision can be history-dependent and thus random. For instance, consider the pricing example where a seller
dynamically adjusts its pricing strategy. The 𝑖-th price 𝑋𝑖 may depend on all historical prices and demands,
and other historical and current contexts like inventory levels, consumer preferences, competitor pricing, etc.
In our model, the 𝑖-th context 𝜁𝑖 can depend on history {(𝜁 𝑗 , 𝑋 𝑗 , 𝜉 𝑗 )}𝑖−1𝑗=1 in any arbitrary manner; and the 𝑖-th
demand 𝜉𝑖 can depend on (𝜁𝑖 , 𝑋𝑖) without restriction. On the other hand, the 𝑖-th observation (𝜁𝑖 , 𝑋𝑖 , 𝜉𝑖) does
not depend on the subsequent observations {(𝜁 𝑗 , 𝑋 𝑗 , 𝜉 𝑗 )}𝑛𝑗=𝑖+1. To formalize our data-generating mechanism,
we introduce the 𝜎-algebra

H𝑖 := 𝜎(𝜁1, 𝑋1, 𝜉1, · · · , 𝜁𝑖−1, 𝑋𝑖−1, 𝜉𝑖−1, 𝜁𝑖 , 𝑋𝑖),

which summarizes all information available just before the 𝑖-th random outcome 𝜉𝑖 is observed.
We impose the following assumption on the noise in our regression models (2) and (4). Let 𝜖𝑖 be the

noise associated with the 𝑖-th observation.

Assumption 1 There exists 𝜎 > 0 such that for every 𝑖 = 1, . . . , 𝑛, every 𝜆 > 0 and every unit vector 𝑢, it
holds that 𝔼[exp(𝜆𝑢⊤𝜖𝑖) | H𝑖] ≤ exp(𝜆2𝜎2/2).
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This assumption states that the noise 𝜖𝑖 associated with the 𝑖-th demand 𝜉𝑖 is sub-Gaussian, conditional
on the historical information. Importantly, this assumption can accommodate scenarios where the noise
component in the regression model is correlated not only with the current context but also with all historical
decisions and contexts.

To accommodate the setups in both the PTO approach and the ETO approach, we set 𝑦𝑖 = 𝜉𝑖 in the
PTO approach. Suppose �̂�𝑛 can be solved from the following equation

𝑛∑︁
𝑖=1

∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤
(
𝑦𝑖 − 𝜙( 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖))

)
= 0, (6)

where ∇ 𝑓𝜃 denotes the Jacobian matrix of the vector-valued function 𝑓 with respect to 𝜃. This is a type of
M-estimator based on the first derivative. When 𝜙 is the identity map, this corresponds to the least square
estimate; when 𝑓𝜃 (𝜁) = 𝜃⊤𝜁 and 𝜙 is the link function in the generalized linear model, this corresponds to
the maximum quasi-likelihood estimate.

Example 3 Consider the revenue management problem in Example 1. Equation (6) corresponds to the
first-order condition associated with the maximum quasi-likelihood estimation

𝑛∑︁
𝑖=1

(
𝑦𝑖 −

1

1 + exp(−𝜃⊤ [1; 𝜁𝑖; 𝑋𝑖])

)
[1; 𝜁𝑖; 𝑋𝑖] = 0,

and �̂�𝑛 is the maximum quasi-likelihood estimator. ♣

Equation (6) includes a broad family of estimators for nonlinear models. In what follows, we construct a
confidence region for the estimator under general structures between the random outcome, contexts, and
decisions.

4 Confidence Region of the Estimated Parameters

In this section, we study the construction of confidence regions for the estimated parameter �̂�𝑛. The result in
this section will be the building block for our main results on the performance guarantees for the PTO and
ETO approaches. We aim to establish a high-probability bound on ∥�̂�𝑛 − 𝜃∗∥2. To this end, we will extend
the techniques, in a non-trivial way, from contextual linear bandit theory [29] to our broader parametric
framework.

We begin by introducing several boundedness assumptions. Let ∇ 𝑓𝜃 (𝜁, 𝑥) ∈ ℝ𝑑Y×𝑑 denote the Jacobian
matrix of 𝑓 with respect to 𝜃.

Assumption 2 The following holds:

(i) 𝜅 𝑓 := sup𝑥∈X ,𝜁 ∈Ω, 𝜃∈Θ ∥∇ 𝑓𝜃 (𝜁, 𝑥)∥𝐹 < ∞;
(ii) ℏ 𝑓 := sup𝑥∈X ,𝜁 ∈Ω, 𝜃∈Θ ∥∇2 𝑓𝜃 (𝜁, 𝑥)∥𝐹 < ∞;
(iii) 𝜅

𝜙
:= inf 𝑥∈X ,𝜁 ∈Ω, 𝜃∈Θ 𝜙′ ( 𝑓𝜃 (𝜁, 𝑥)) > 0;

(iv) 𝛽Θ := sup𝜃∈Θ ∥𝜃∥2 < ∞;
(v) 𝛽𝜓 := sup𝑥∈X ∥𝜓(𝑥)∥2 < ∞;

where ∥ · ∥𝐹 denotes the Frobenius norm of a tensor, computed as the norm of the vectorization of the tensor.
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To deal with non-i.i.d. data, our analysis of the concentration bound extends the self-normalized processes
[37, 38] developed for generalized linear regression with adapted data [1]. Specifically, let us define

𝑍𝑛 (𝜃) :=
𝑛∑︁

𝑖=1

∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤𝜖𝑖 , 𝑍𝑛 := 𝑍𝑛 (�̂�𝑛),

𝑉𝑛 (𝜃) :=
𝑛∑︁

𝑖=1

∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖), 𝑉𝑛 := 𝑉𝑛 (�̂�𝑛).

Note that when 𝑓𝜃 (·) is linear, 𝑉𝑛 is related to the design matrix in linear regression.
The roadmap of our analysis is as follows. Detailed proofs will be postponed to Section 6.

(I) To establish a high-probability bound on ∥�̂�𝑛 − 𝜃∗∥2, we focus on analyzing the bound on ∥�̂�𝑛 − 𝜃∗∥
𝑉𝑛

,

where the matrix norm ∥𝑎∥
𝑉𝑛

:=

√︃
𝑎⊤𝑉𝑛𝑎. We will construct an exponential super-martingale as

𝑛∏
𝑖=1

exp

(
𝑢𝜈⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤𝜖𝑖 −

𝑢2

2
· 2𝜎2 · ∥𝜈⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)∥22

)
,

where 𝜈 ∈ ℝ𝑑 and 𝑢 ∈ ℝ are fixed. The concentration of this super-martingale renders a high-probability
bound for 𝜈⊤𝑍𝑛 (𝜃). Taking 𝜈 = 𝑉𝑛 (𝜃)−1/2𝑒 𝑗 , 𝑗 = 1, . . . , 𝑑 and using union bound yields a high-confidence
bound for ∥𝑍𝑛 (𝜃)∥2𝑉𝑛 (𝜃 )−1

. This will be established in Lemma 1(I).

(II) To take into account the randomness of �̂�𝑛, we adopt a covering number argument, using the fact that
∥𝑍𝑛 (𝜃)∥2𝑉𝑛 (𝜃 )−1

is a Lipschitz function of 𝜃. This will establish a bound for ∥𝑍𝑛∥𝑉−1
𝑛

; see Lemma 1(II).

(III) Finally, we show that ∥𝑍𝑛∥𝑉−1
𝑛

serves as an upper bound on a multiple of ∥�̂�𝑛 − 𝜃∗∥
𝑉𝑛

under proper
conditions. The 2-norm distance ∥�̂�𝑛 − 𝜃∗∥2 can be further upper bounded based on the eigenvalues of
𝑉𝑛. See Theorem 1.

For the subsequent discussion, we assume that

Λ𝑛 := inf
𝜃∈Θ

𝜆min (𝑉𝑛 (𝜃)) > 0.

The results for the first two steps are established in Lemma 1.

Lemma 1 Assume Assumptions 1 and 2(i) are in force. Let 𝛿 ∈ (0, 1/2).

(I) For every 𝜃 ∈ Θ, with probability at least 1 − 𝛿, it holds that

∥𝑍𝑛 (𝜃)∥2𝑉𝑛 (𝜃 )−1 ≤ 16𝑑𝜂2𝜎2 log(𝑛) log(𝑑/𝛿),

where 𝜂 =
√︃
3 + 2 log(1 + 2𝜅2

𝑓
/𝜆min (𝑉𝑛 (𝜃))).

(II) Assume additionally that Assumptions 2(ii)-(iv) are in force. Then with probability at least 1 − 3𝛿, it
holds that

∥𝑍𝑛∥2
𝑉−1
𝑛

≤ 16𝑑𝜂2𝜎2 log(𝑛)ℭF ,

where ℭF = log(𝑑/𝛿) when F =
{
𝜙(𝜃⊤ [𝜁 ; 𝑥]) : 𝜃 ∈ Θ

}
and

ℭF = 4𝑑 log
(
𝑛3𝑑3𝑑2Y log(1/𝛿)𝜍/(𝛿Λ𝑛)

)
,

when F is a general class
{
𝜙( 𝑓𝜃 (·)) : 𝜃 ∈ Θ

}
, where 𝜍 = 96𝜎2𝜅 𝑓 (ℏ 𝑓 + 1)𝛽Θ

(
1 +

ℏ2
𝑓

Λ𝑛

)
.
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Note that for the (generalized) linear class, we can immediately get the result of part (II) from part (I),
using the property ∥𝑍𝑛 (𝜃1)∥𝑉𝑛 (𝜃1 )−1 = ∥𝑍𝑛 (𝜃2)∥𝑉𝑛 (𝜃2 )−1 for all 𝜃1 and 𝜃2. For a general class, this property
no longer holds. As such, we have to deal with the randomness of the quantity ∥𝑍𝑛 (�̂�𝑛)∥𝑉𝑛 (𝜃𝑛 )−1 , through a
more involved super-martingale argument combined with a covering number argument as described above.
This introduces an extra

√
𝑑 factor, resulting from the Lipschitz constant of the function 𝜃 ↦→ ∥𝑍𝑛 (𝜃)∥𝑉𝑛 (𝜃 )−1 .

According to the roadmap, it remains to relate ∥𝑍𝑛∥𝑉−1
𝑛

to ∥�̂�𝑛 − 𝜃∗∥
𝑉𝑛

. Utilizing the mean value theorem,
we linearize the difference in function evaluations between parameters �̂�𝑛 and 𝜃∗ as

𝜙( 𝑓
𝜃𝑛
(𝜁, 𝑥)) − 𝜙( 𝑓𝜃∗ (𝜁, 𝑥)) = 𝑔𝜃 (𝜁, 𝑥) (�̂�𝑛 − 𝜃∗),

where 𝑔𝜃 (𝜁, 𝑥) := ∇𝜃 (𝜙( 𝑓𝜃 (𝜁, 𝑥))) |𝜃=𝜃 and 𝜃 is a convex combination of �̂�𝑛 and 𝜃∗. The term 𝑍𝑛 is then given
by

𝑍𝑛 =
𝑛∑︁

𝑖=1

∇ 𝑓
𝜃𝑛
(𝜁𝑖 , 𝑋𝑖)⊤𝑔𝜃𝑖 (𝜁𝑖 , 𝑋𝑖) (�̂�𝑛 − 𝜃∗), (7)

where 𝑔𝜃 (𝜁, 𝑥) := ∇𝜃𝜙( 𝑓𝜃 (𝜁, 𝑥)) |𝜃=𝜃 and 𝜃 is a convex combination of �̂�𝑛 and 𝜃∗. Thus

∥𝑍𝑛∥𝑉−1
𝑛

≃ ∥(�̂�𝑛 − 𝜃∗)⊤
𝑛∑︁

𝑖=1

𝑔
𝜃𝑛
(𝜁𝑖 , 𝑋𝑖)∇ 𝑓

𝜃𝑛
(𝜁𝑖 , 𝑋𝑖)⊤∥𝑉𝑛

.

To relate this with ∥𝜃∗ − �̂�𝑛∥𝑉𝑛
, we impose the following assumption, which is closely related to the notion

of one-point convexity in non-convex optimization [26], which indicates that proximity in function values
implies proximity in parameters.

Assumption 3 There exists 𝛼 > 0 such that for every 𝑥 ∈ X , 𝜁 ∈ Ω and 𝜃 ∈ Θ,(
∇ 𝑓𝜃 (𝜁, 𝑥)⊤

(
𝜙( 𝑓𝜃 (𝜁, 𝑥)) − 𝜙( 𝑓𝜃∗ (𝜁, 𝑥))

) )⊤ (𝜃 − 𝜃∗) ≥ 𝛼∥∇ 𝑓𝜃 (𝜁, 𝑥) (𝜃 − 𝜃∗)∥22.

This assumption generalizes strong convexity to non-convex functions. Consider minimizing a statistical
loss function ℓ(𝑦, 𝜙( 𝑓𝜃 (𝜁, 𝑥))). Then it can be verified that (6) holds when ℓ is the square loss, negative
log-likelihood, or the cross-entropy loss. Note that a function ℎ : Θ → ℝ is said to satisfy restricted secant
inequality [50] at 𝜃∗ if ∇ℎ(𝜃)⊤ (𝜃 − 𝜃∗) ≥ �̃�∥𝜃 − 𝜃∗∥ for all 𝜃 ∈ 𝜃, where �̃� > 0. If for every 𝜁 ∈ Ω and 𝑦 ∈ Y,
ℓ(𝑦, 𝜙( 𝑓𝜃 (𝜁, 𝑥))) satisfies the restricted secant inequality at 𝜃∗, then Assumption 3 holds. See Appendix 6.3
for details. This can occur even when ℓ(𝑦, 𝜙( 𝑓𝜃 (𝜁, 𝑥))) is nonconvex in 𝜃. From an algorithmic point of view,
this condition ensures the global optimality of gradient-based algorithms for non-convex optimization.

We are now ready to present the main result in this section.

Theorem 1 Let 𝛿 ∈ (0, 1/2). Assume Assumptions 1, 2, 3 are in force. Then with probability at least 1− 3𝛿,

∥𝜃∗ − �̂�𝑛∥2 ≤ 𝜌𝑛 :=
4
√
𝑑𝜂𝜎

√︁
log(𝑛)ℭF

min(𝜅
𝜙
, 𝛼)

√
Λ𝑛

,

where ℭF is defined in Lemma 1.

According to Theorem 1, replacing 𝛿 with 𝛿/3, we can ensure that with probability at least 1 − 𝛿,
∥𝜃∗ − �̂�𝑛∥2 ≤ 𝜌𝑛. This expression demonstrates that the precision of parameter estimates in our framework
improves with increasing sample size, and the confidence interval for the error shrinks at a rate of 𝑂 (1/

√
Λ𝑛).

When the observations are i.i.d., for linear regression, the least square method yields an optimal rate
𝑂 (

√︁
𝑑/𝑛), which is consistent with the rate established in Theorem 1 with Λ𝑛 = 𝑂 (𝑛) and ℭF = log(𝑑/𝛿).

When the data is not i.i.d., the convergence rate depends on Λ𝑛, which reflects the informativeness of the
data. The following example illustrates that the decision can be arbitrarily bad when Λ𝑛 = 0.
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Example 4 Consider the problem in Example 1. If there is no variation in the pricing decision observations
𝑥𝑖, then Λ𝑛 = 0 and it would be impossible to learn the price sensitivity. In this case, the resulting pricing
decision could be arbitrarily bad even with an infinite amount of data. ♣

Let us revisit Example 3 to illustrate the specific bound.

Example 5 In the setting of Example 3, with simple calculations, we obtain that 𝜅 𝑓 =
√︁
1 + 𝜁2 + 𝑥2 and ℏ 𝑓 = 0,

where 𝜁 = sup𝜁 ∈Ω ∥𝜁 ∥2 and 𝑥 = sup𝑥∈X ∥𝑥∥2. Note that 𝜙′ (𝑧) = 𝑒−𝑧

(1+𝑒−𝑧 )2 and 𝜃⊤ [1; 𝜁 ; 𝑥] ≤ ∥𝜃∥2∥ [1; 𝜁 ; 𝑥] ∥2 ≤√︁
1 + 𝜁2 + 𝑥2𝛽Θ. Thus, we have 𝜅

𝜙
= 𝑒−

√
1+𝜁2+𝑥2𝛽Θ

(1+𝑒−
√
1+𝜁2+𝑥2𝛽Θ )2

. Assumption 3 holds with 𝛼 = 𝜅
𝜙
. With the above values

of parameters, we have 𝜍 = 96𝜎2
√︁
1 + 𝜁2 + 𝑥2𝛽Θ and then set

𝜌𝑛 = 4
√
𝑑𝜂𝜎

√︁
log(𝑛)ℭF 𝑒

√
1+𝜁 2+�̄�2𝛽Θ (1 + 𝑒−

√
1+𝜁 2+�̄�2𝛽Θ )2/

√︁
Λ𝑛,

where ℭF = log(𝑑/𝛿). Then it holds with probability at least 1 − 𝛿 that ∥𝜃∗ − �̂�𝑛∥2 ≤ 𝜌𝑛. In this example, the
upper bound of the 2-norm distance depends on the range of model parameters, and it shrinks in the order
of 𝑂 (

√︁
𝑑/Λ𝑛). ♣

5 Performance Guarantees

In this section, we establish performance guarantees for the PTO and the ETO approaches, based on the
confidence region developed in the previous section. We consider two performance criteria defined as follows.

Let Φ(𝑥; 𝜃) be the objective value of a decision 𝑥 when the model is parameterized by 𝜃. More specifically,
Φ(𝑥; 𝜃) = 𝜓(𝑥)⊤𝜙( 𝑓𝜃 (𝜁, 𝑥)) in PTO, and Φ(𝑥; 𝜃) = 𝜙

(
𝑓𝜃 (𝜁, 𝑥)

)
in ETO. Let

Φ∗ (𝑥) = Φ(𝑥; 𝜃∗) = 𝔼ℙ𝜉 |𝜁

[
Ψ(𝑥, 𝜉)

]
,

which represents the objective value of a decision 𝑥 under the ground truth model (1), parameterized by 𝜃∗,
and let 𝑥∗ be the corresponding optimal solution. Let Φ𝑛 be the optimal value of (3) or (5),

Φ𝑛 = min
𝑥∈X

Φ(𝑥; �̂�𝑛),

which represents the optimal objective value under the estimated model, parameterized by �̂�𝑛, and let �̂�𝑛 be
the corresponding optimal solution. We define the approximation error as

Φ𝑛 −Φ∗ (𝑥∗),

which measures the difference between the optimal value of the estimated problem (3) or (5) and the ground
truth model (1). This quantity is often studied in the context of consistency in stochastic programming.
Moreover, we define the regret as

Φ∗ (�̂�𝑛) −Φ∗ (𝑥∗),

which measures the difference under true objective value between the estimated solution �̂�𝑛 and the ground
truth solution 𝑥∗. This quantity is often studied in learning theory.

Recalling 𝜌𝑛 defined in Theorem 1. Below, we develop an 𝑂 (𝜌𝑛)-convergence rate in Section 5.1 under
standard smoothness conditions, and an improved 𝑂 (𝜌2𝑛)-regret bound in Section 5.2 with additional strong
convexity assumptions.
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5.1 Slow Rate

The following Lipschitz assumption allows us to quantify how small changes in the parameter estimates
translate to changes in the decision outcomes.

Assumption 4 Suppose that there exists 𝐿 > 0 such that for all 𝜃1, 𝜃2 ∈ Θ,

∥𝜙( 𝑓𝜃1 (𝜁, 𝑥)) − 𝜙( 𝑓𝜃2 (𝜁, 𝑥))∥2 ≤ 𝐿∥𝜃1 − 𝜃2∥2, ∀𝜁 ∈ Ω, ∀𝑥 ∈ X .

Theorem 2 (Performance of PTO) Under Assumptions 1-4, with probability at least 1− 3𝛿, the approxi-
mation error of the PTO solution is bounded by

|Φ𝑛 −Φ∗ (𝑥∗) | ≤ 𝛽𝜓𝐿𝜌𝑛 .

Moreover, with probability at least 1 − 3𝛿, the regret of the PTO solution is bounded by

0 ≤ Φ∗ (�̂�𝑛) −Φ∗ (𝑥∗) ≤ 2𝛽𝜓𝐿𝜌𝑛 .

Proof First, we can bound the approximation error by

Φ𝑛 −Φ∗ (𝑥∗) = Φ𝑛 −Φ(𝑥∗; �̂�𝑛) +Φ(𝑥∗; �̂�𝑛) −Φ∗ (𝑥∗).

Since �̂�𝑛 optimizes (5), we have
Φ𝑛 −Φ(𝑥∗; �̂�𝑛) ≤ 0.

By Theorem 1 and Assumption 4, it follows that the second part

0 ≤ Φ(𝑥∗; �̂�𝑛) −Φ∗ (𝑥∗)
≤ ∥𝜓(𝑥∗)∥2∥𝜙( 𝑓𝜃𝑛 (𝜁, 𝑥

∗)) − 𝜙( 𝑓𝜃∗ (𝜁, 𝑥∗))∥2
≤ 𝛽𝜓 · 𝐿∥�̂�𝑛 − 𝜃∗∥2
≤ 𝛽𝜓𝐿𝜌𝑛 .

On the other hand, to bound the approximation error from below, we similarly have

Φ𝑛 −Φ∗ (𝑥∗) =Φ𝑛 −Φ(�̂�𝑛; 𝜃∗) +Φ(�̂�𝑛; 𝜃∗) −Φ∗ (𝑥∗)
≥ − sup

𝑥
∥𝜓(𝑥)∥2 · 𝐿𝜌𝑛

= − 𝛽𝜓𝐿𝜌𝑛,

where the inequality holds because Φ(�̂�𝑛; 𝜃∗) −Φ∗ (𝑥∗) ≥ 0 due to the optimality of 𝑥∗. Thus, we conclude that

|Φ𝑛 −Φ∗ (𝑥∗) | ≤ 𝛽𝜓𝐿𝜌𝑛 .

Next, we bound the regret similarly by

Φ∗ (�̂�𝑛) −Φ∗ (𝑥∗)
=Φ∗ (�̂�𝑛) −Φ(�̂�𝑛; �̂�𝑛) +Φ(�̂�𝑛; �̂�𝑛) −Φ(𝑥∗; �̂�𝑛) +Φ(𝑥∗; �̂�𝑛) −Φ∗ (𝑥∗)
≤Φ∗ (�̂�𝑛) −Φ(�̂�𝑛; �̂�𝑛) +Φ(𝑥∗; �̂�𝑛) −Φ∗ (𝑥∗)
≤2𝛽𝜓𝐿𝜌𝑛,

which gives the desired result. □
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Theorem 3 (Performance of ETO) Under Assumptions 1-4, with probability at least 1 − 3𝛿, the approxi-
mation error of ETO solution is bounded by

|Φ𝑛 −Φ∗ (𝑥∗) | ≤ 𝐿𝜌𝑛 .

Moreover, with probability at least 1 − 3𝛿, the regret of the ETO solution is bounded by

0 ≤ Φ∗ (�̂�𝑛) −Φ∗ (𝑥∗) ≤ 2𝐿𝜌𝑛 .

Proof Similarly to the proof of Theorem 2, we first bound the approximation error by

Φ𝑛 −Φ∗ (𝑥∗) = Φ𝑛 −Φ(𝑥∗; �̂�𝑛) +Φ(𝑥∗; �̂�𝑛) −Φ∗ (𝑥∗) ≤ Φ(𝑥∗; �̂�𝑛) −Φ∗ (𝑥∗).

By Theorem 1 and Assumption 4, it follows that

|Φ(𝑥∗; �̂�𝑛) −Φ∗ (𝑥∗) | ≤ 𝐿𝜌𝑛,

so we have
Φ𝑛 −Φ∗ (𝑥∗) ≤ 𝐿𝜌𝑛 .

On the other hand, to bound the approximation error from below, we similarly have

Φ𝑛 −Φ∗ (𝑥∗) = Φ𝑛 −Φ(�̂�𝑛; 𝜃∗) +Φ(�̂�𝑛; 𝜃∗) −Φ∗ (𝑥∗) ≥ −𝐿𝜌𝑛 .

Next, we bound the regret by

Φ∗ (�̂�𝑛) −Φ∗ (𝑥∗)
=Φ∗ (�̂�𝑛) −Φ(�̂�𝑛; �̂�𝑛) +Φ(�̂�𝑛; �̂�𝑛) −Φ(𝑥∗; �̂�𝑛) +Φ(𝑥∗; �̂�𝑛) −Φ∗ (𝑥∗)
≤2𝐿𝜌𝑛,

which completes the proof. □

Under the additional assumption on the Lipschitz continuity of the objective with respect to the
parameter, both Theorem 2 and Theorem 3 demonstrate that the approximate error and the regret of the
PTO and the ETO approaches are 𝑂 (𝜌𝑛), which is 𝑂 (

√︁
𝑑ℭF/Λ𝑛).

5.2 Fast rate

In this subsection, we show that much faster rates of PTO and ETO can be achieved under certain strong
convexity conditions.

The following theorem provides a faster convergence rate of both methods when Φ(𝑥; 𝜃) exhibits certain
nice structures.

Theorem 4 Assume Φ(·; 𝜃∗) is 𝛼Φ-strongly convex and ℏΦ-smooth in 𝑥, and Φ(𝑥; 𝜃) has 𝐿1-Lipschitz gradient
with respect to 𝑥 for all 𝜃 ∈ Θ. Suppose �̂�𝑛 is an interior point of X . Then, under the same setting of Theorem
1, for both PTO and ETO, we have the following regret bound

Φ∗ (�̂�𝑛) −Φ∗ (𝑥∗) ≤
2ℏΦ𝐿

2
1

𝛼2
Φ

𝜌2𝑛 .
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Proof The first order optimality of �̂�𝑛 and 𝑥∗ under parameter �̂�𝑛 and 𝜃∗, respectively, reads

∇𝑥Φ(�̂�𝑛; �̂�𝑛) = 0, and ∇𝑥Φ(𝑥∗; 𝜃∗) = 0.

By the 𝛼Φ-strong convexity of Φ(𝑥; 𝜃∗) with respect to 𝑥, we have that

𝛼Φ

2
∥�̂�𝑛 − 𝑥∗∥2 ≤

∇𝑥Φ(�̂�𝑛; 𝜃∗) − ∇𝑥Φ(𝑥∗; 𝜃∗)

2

=
∇𝑥Φ(�̂�𝑛; 𝜃∗)


2
.

Since Φ(𝑥; 𝜃) has Lipschitz gradient with respect to 𝑥, we have that

∥∇𝑥Φ(�̂�𝑛; 𝜃∗)∥2 = ∥∇𝑥Φ(�̂�𝑛; 𝜃∗) − ∇𝑥Φ(�̂�𝑛; �̂�𝑛)∥2 ≤ 𝐿1∥𝜃∗ − �̂�𝑛∥2.

It follows that

∥�̂�𝑛 − 𝑥∗∥2 ≤ 2𝐿1

𝛼Φ

∥�̂�𝑛 − 𝜃∗∥2.

Using the smoothness of Φ(·; 𝜃∗), we conclude that

Φ∗ (�̂�𝑛) −Φ∗ (𝑥∗) ≤
ℏΦ

2
∥�̂�𝑛 − 𝑥∗∥22 ≤

2ℏΦ𝐿
2
1

𝛼2
Φ

∥�̂�𝑛 − 𝜃∗∥22 ≤
2ℏΦ𝐿

2
1

𝛼2
Φ

𝜌2𝑛 .

□

Theorem 4 demonstrates a faster 𝑂 (𝜌2𝑛) convergence rate for both PTO and ETO, given additional conditions
involving strong convexity of the objective function in decisions and the Lipschitz continuity of its gradient.
The intuition is that these additional conditions ensure the smoothness of the optimal solution with respect
to the parameters. We demonstrate this result in the next example.

Example 6 Consider the linear demand model in Example 1. The objective function, representing the negative
revenue, is given by Φ(𝑥; 𝜃) = −𝑥𝜃⊤ [1; 𝜁 ; 𝑥] = −(𝜃0 + 𝜃⊤1 𝜁)𝑥− 𝜃2𝑥

2, where the price sensitivity 𝜃2 ∈ [𝜃min, 𝜃max]
with 𝜃min, 𝜃max < 0. Suppose 𝜃, 𝜁 , 𝑥 are all bounded. Let us verify the conditions in Theorem 4. Since
∇2
𝑥Φ(𝑥; 𝜃∗) = −2𝜃∗2, the true objective function is strongly convex and smooth in 𝑥. Furthermore, since

∇𝑥Φ(𝑥; 𝜃) = −(𝜃0 + 𝜃⊤1 𝜁) − 2𝜃2𝑥, Φ(𝑥; 𝜃) is 𝐿1-Lipschitz where 𝐿1 = sup𝑥∈X ,𝜁 ∈Ω, 𝜃∈Θ |𝜃0 + 𝜃⊤1 𝜁 + 2𝜃2𝑥 |. For an
estimator �̂�, the best price is �̂� = −(�̂�0 + �̂�⊤1 𝜁)/(2�̂�2). Suppose the possible price range is sufficiently large,
i.e., sup𝑥∈X 𝑥 < sup𝜃∈Θ −(𝜃0 + 𝜃⊤1 𝜁)/(2𝜃2), then �̂� is always an interior point of X . ♣

In [22], it is shown that in a decision-independent i.i.d. setting with a linear objective and a polytope
feasible region for the decision, the PTO approach can achieve a faster convergence rate if the problem
instances do not exhibit arbitrarily bad near-dual-degeneracy. In their setting, the objective function is
linear in the decision, and their assumption of non-degeneracy implies a superlinear dependence of the
regret on the parameter estimation error. Comparatively, in our decision-dependent setting, the objective
function is no longer linear in the decision; for instance, in Example 6, the revenue function is quadratic
in the pricing decision. Instead, the strong convexity and Lipschitz gradient conditions imply a quadratic
dependence of the regret on the parameter estimation error. Nevertheless, the underlying insights are similar
and this insight also applies to our described PTO and ETO approaches.
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6 Proofs for Section 4

6.1 Proof of Lemma 1(I)

This proof relies on the following result for self-normalized random variables.

Lemma 2 (Corollary 2.2 in [37]) Suppose random variables 𝑊1 and 𝑊2 satisfies for all 𝑢 ∈ ℝ,

𝔼

[
exp

(
𝑢𝑊1 − 𝑢2

2
𝑊2

2

)]
≤ 1.

Then for any 𝑐 ≥
√
2 and 𝜖 > 0,

ℙ

{
|𝑊1 | ≥ 𝑐

√︂
(𝑊2

2 + 𝜖)
(
1 + 1

2
log

(𝑊2
2
𝜖

+ 1
) )}

≤ exp(−𝑐2/2).

Equipped with the above concentration inequality, let us start the proof by introducing some notations.
Fix 𝜃. Let 𝜈 ∈ ℝ𝑑 whose value will be specified later. Define

𝑊1 := 𝜈⊤𝑍𝑛 (𝜃),

𝑊2 :=
√
2𝜎∥𝜈∥𝑉𝑛 (𝜃 ) .

Recall 𝑍𝑛 (𝜃) =
∑𝑛

𝑖=1 ∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤𝜖𝑖 and 𝑉𝑛 (𝜃) =
∑𝑛

𝑖=1 ∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖). For any 𝑢 ≥ 0, we have

𝑢𝑊1 − 𝑢2

2
𝑊2

2 =𝑢𝜈⊤𝑍𝑛 (𝜃) −
𝑢2𝜈⊤𝑉𝑛 (𝜃)𝜈

2

=
𝑛∑︁

𝑖=1

(
𝑢𝜈⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤𝜖𝑖 −

𝑢2

2
· 2𝜎2 · 𝜈⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)𝜈

)
.

Define 𝐷𝑖 = 𝑢𝜈⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤𝜖𝑖 − 𝑢2

2 · 2𝜎2 · 𝜈⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)𝜈. Note that conditioning on H𝑖−1 and 𝜃,
the randomness of 𝐷𝑖 comes from 𝜖𝑖 only. Thus,

𝔼

[
exp

(
𝑢𝜈⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑥𝑖)⊤𝜖𝑖 −

𝑢2

2
· 2𝜎2 · 𝜈⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑥𝑖)⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑥𝑖)𝑤

)
| H𝑖

]
≤ 𝔼

[
exp

(
𝑢𝜈⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑥𝑖)⊤𝜖𝑖

)
| H𝑖

]
exp

(
−𝑢2𝜎2𝜈⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)𝜈

)
≤ exp

(
−1

2
𝑢2𝜎2𝜈⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)𝜈 − 𝑢2𝜎2𝜈⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)𝜈

)
≤ 1.

It follows that
𝔼[exp(𝐷𝑖) | H𝑖] ≤ 1.

Using the tower property of conditional expectations and the inequality above, we obtain that

𝔼
[ 𝑛∏
𝑖=1

exp(𝐷𝑖)
]
= 𝔼

[ 𝑛−1∏
𝑖=1

exp(𝐷𝑖)𝔼[exp(𝐷𝑛 | H𝑛]
]
≤ 𝔼

[ 𝑛∏
𝑖=1

exp(𝐷𝑖)
]
.

Applying this inequality recursively yields

𝔼
[
exp(𝑢𝑊1 − 𝑢2

2
𝑊2

2 )
]
≤ 𝔼

[ 𝑛∏
𝑖=1

exp(𝐷𝑖)
]
≤ · · · ≤ 𝔼[exp(𝐷1)] ≤ 1.
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The derivation above verifies the condition required by Lemma 2. Set 𝜖 = 2𝜎2𝜆min (𝑉𝑛 (𝜃))∥𝜈∥22 in Lemma 2,
then for any 0 < 𝛿 ≤ 1/𝑒 and 𝑛 ≥ 1, with probability 1 − 𝛿,

|𝜈⊤𝑍𝑛 (𝜃) |

≤
√
2

√︂
(2𝜎2∥𝜈∥2

𝑉𝑛 (𝜃 ) + 2𝜎2𝜆min (𝑉𝑛 (𝜃))∥𝜈∥22)
(
1 + 1

2 log
(
1 +

∥𝜈 ∥2
𝑉𝑛 (𝜃 )

𝜆min (𝑉𝑛 (𝜃 ) ) ∥𝜈 ∥22

) )
·
√︁
2 log(1/𝛿).

(8)

Note that for 𝑛 ≥ max(𝑑, 2), 𝜆min (𝑉𝑛 (𝜃))∥𝜈∥22 ≤ ∥𝜈∥2
𝑉𝑛 (𝜃 ) ≤ 𝑛∥𝜈∥22𝜅2𝑓 , we have ∥𝜈∥2

𝑉𝑛 (𝜃 ) + 𝜆min (𝑉𝑛 (𝜃))∥𝜈∥22 ≤

2∥𝜈∥2
𝑉𝑛 (𝜃 ) and 1+1

2 log

(
1 +

∥𝜈 ∥2
𝑉𝑛 (𝜃 )

𝜆min (𝑉𝑛 (𝜃 ) )

)
≤ 1+1

2 log(1+
𝑛𝜅2

𝑓

𝜆min (𝑉𝑛 (𝜃 ) ) ) ≤ 𝜂2 log(𝑛)/2 where 𝜂 =
√︃
3 + 2 log(1 + 2𝜅2

𝑓
/𝜆min (𝑉𝑛 (𝜃))).

Therefore,

|𝜈⊤𝑍𝑛 (𝜃) | ≤ 2𝜎

√︂
2 log(1/𝛿) · 2∥𝜈∥2

𝑉𝑛 (𝜃 )

(
1 + 1

2 log
(
1 +

𝑛𝜅2
𝑓

𝜆min (𝑉𝑛 (𝜃 ) )
) )

≤ 4𝜎𝜂∥𝜈∥𝑉𝑛 (𝜃 )

√︃
log 1

𝛿
log 𝑛.

(9)

Now we specify the value of 𝜈. Let 𝜈 = 𝑉𝑛 (𝜃)−1/2𝑒 𝑗 . Observe that

∥𝑍𝑛 (𝜃)∥2𝑉𝑛 (𝜃 )−1 = 𝑍𝑛 (𝜃)⊤𝑉𝑛 (𝜃)−1𝑍𝑛 (𝜃) = 𝑍𝑛 (𝜃)⊤𝑉𝑛 (𝜃)−1/2𝐼𝑉𝑛 (𝜃)−1/2𝑍𝑛 (𝜃)

=
𝑑∑︁
𝑗=1

𝑍𝑛 (𝜃)⊤𝑉𝑛 (𝜃)−1/2𝑒 𝑗𝑒
⊤
𝑗 𝑉𝑛 (𝜃)−1/2𝑍𝑛 (𝜃),

where {𝑒 𝑗 }𝑑𝑗=1 denotes the standard orthonormal basis in ℝ𝑑. Thus, for any constant 𝑐 > 0 it holds that

ℙ
{
∥𝑍𝑛 (𝜃)∥2𝑉𝑛 (𝜃 )−1 ≥ 𝑑𝑐2

}
= ℙ

{
𝑑∑︁
𝑗=1

𝑍𝑛 (𝜃)⊤𝑉𝑛 (𝜃)−1/2𝑒 𝑗𝑒
⊤
𝑗 𝑉𝑛 (𝜃)−1/2𝑍𝑛 (𝜃) ≥ 𝑑𝑐2

}
≤

𝑑∑︁
𝑗=1

ℙ
{
𝑍𝑛 (𝜃)⊤𝑉𝑛 (𝜃)−1/2𝑒 𝑗𝑒

⊤
𝑗 𝑉𝑛 (𝜃)−1/2𝑍𝑛 (𝜃) ≥ 𝑐2

}
≤

𝑑∑︁
𝑗=1

ℙ
{
∥𝑍𝑛 (𝜃)⊤𝑉𝑛 (𝜃)−1/2𝑒 𝑗 ∥2 ≥ 𝑐

}
.

Set 𝑐 = 4𝜂𝜎
√︁
log 𝑛 log(𝑑/𝛿), 𝑗 = 1, . . . , 𝑑, in the above inequality, we conclude that

ℙ
{
∥𝑍𝑛 (𝜃)∥2𝑉𝑛 (𝜃 )−1 ≥ 𝑑𝑐2

}
= ℙ

{
∥𝑍𝑛 (𝜃)∥2𝑉𝑛 (𝜃 )−1 ≥ 16𝑑𝜂2𝜎2 log(𝑛) log(𝑑/𝛿)

}
≤ 𝔼[1(∥𝑍𝑛 (𝜃)∥2𝑉𝑛 (𝜃 )−1 ≥ 16𝑑𝜂2𝜎2 log(𝑛) log(𝑑/𝛿))]

≤
𝑑∑︁
𝑗=1

𝔼
[
1
(
|𝑍𝑛 (𝜃)⊤𝑉𝑛 (𝜃)−1/2𝑒 𝑗 | ≥ 𝑐

)]
=

𝑑∑︁
𝑗=1

ℙ
{
|𝑍𝑛 (𝜃)⊤𝑉𝑛 (𝜃)−1/2𝑒 𝑗 | ≥ 𝑐

}
≤ 𝛿.

The proof is completed. □
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6.2 Proof of Lemma 1(II)

Before the proof, we introduce the following tail bounds for the maximum of sub-Gaussian random vector
variables.

Lemma 3 (Maximum of sub-Gaussian variables) Let {𝜀𝑖}1≤𝑖≤𝑛 be a sequence of zero-mean sub-
Gaussian random vector variables with parameter 𝜎. Then for every 𝛿 > 0, it holds with probability 1 − 𝛿

that
max
1≤𝑖≤𝑛

∥𝜀𝑖 ∥2 ≤ 2
√
2𝜎

√︁
log(1/𝛿) + 𝑑Y log 6 + log 𝑛.

Proof Let 𝔹
𝑑Y
1 be a ball with radius 1. Let N be a 1/2-net of 𝔹𝑑Y

1 with respect to the Euclidean norm that
satisfies |N | ≤ 6𝑑Y . Next, observe that for every 𝑦 ∈ 𝔹

𝑑Y
1 , there exists 𝑎 ∈ N and 𝑏 such that ∥𝑣∥2 ≤ 1/2 and

𝑦 = 𝑎 + 𝑏. Therefore,
max
𝑦∈𝔹𝑑Y

1

𝑦⊤𝜀 ≤ max
𝑎∈N

𝑎⊤𝜀 + max
𝑏∈ 1

2𝔹
𝑑Y
1

𝑏⊤𝜀.

By the equality

max
𝑏∈ 1

2𝔹
𝑑Y
1

𝑏⊤𝜀 =
1

2
max

𝑐∈ 1
2𝔹

𝑑Y
1

𝑐⊤𝜀,

we have
max
𝑧∈𝔹𝑑Y

1

𝑦⊤𝜀 ≤ 2max
𝑧′∈N

𝑧′⊤𝜀.

Therefore, by maximal inequality of sub-Gaussian variables [7, Theorem 5.2], we get

𝔼

[
max
𝑦∈𝔹𝑑Y

1

𝑦⊤𝜀

]
≤ 2𝔼

[
max
𝑦′∈N

𝑦′⊤𝜀

]
≤ 2𝔼

[
max
𝑦′∈N

𝑦′⊤𝜀

∥𝑦′∥2

]
. (10)

The bound with high probability follows because

ℙ

(
max
𝑦∈𝔹𝑑Y

1

𝑦⊤𝜀 > 𝑡

)
≤ ℙ

(
2 max
𝑦′∈N

𝑦′⊤𝜀 > 𝑡

)
≤

∑︁
𝑦′∈N

ℙ

(
𝑦′⊤𝜀

∥𝑦′∥2
>

𝑡

2

)
≤ |N |𝑒−

𝑡2

8𝜎2

≤ 6𝑑Y 𝑒
− 𝑡2

8𝜎2 .

Now we have 𝑛 Gaussian random variables in total. Since 𝜀𝑖’s are sub-Gaussian, for each 𝑖 = 1, 2, . . . , 𝑛,

we have max
𝑧∈𝔹𝑑Y

1

𝑧⊤𝜀𝑖 = ∥𝜀𝑖 ∥2. Then, due to that for any 𝑦 ∈ 𝔹
𝑑Y
1 , 𝑦⊤𝜀𝑖 is a sub-Gaussian variable with the

parameter 𝜎, it follows that

ℙ
{
max
1≤𝑖≤𝑛

∥𝜀𝑖 ∥2 ≥ 𝑡

}
≤

𝑛−1∑︁
𝑖=1

ℙ
{
max
𝑧∈𝔹𝑑Y

1

𝑦⊤𝜀𝑖 ≥ 𝑡

}
≤ 𝑛6𝑑Y 𝑒

− 𝑡2

8𝜎2 .

Taking 𝑡 = 2
√
2𝜎

√︁
log(1/𝛿) + 𝑑Y log 6 + log 𝑛, it holds with probability 1 − 𝛿 that

max
1≤𝑖≤𝑛

∥𝜀𝑖 ∥2 ≤ 2
√
2𝜎

√︁
log(1/𝛿) + 𝑑Y log 6 + log 𝑛.

This completes the proof. □
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With Lemma 3, we now prove Lemma 1, using a covering number argument. Define 𝐻 (𝜃) = ∥𝑍𝑛 (𝜃)∥2𝑉𝑛 (𝜃 )−1
,

set 𝜖 = 2
√
2𝜎

√︁
log(1/𝛿) + 𝑑Y log 6 + log 𝑛, and define events B𝑛 =

{
{𝜖𝑖}𝑛𝑖=1 : max1≤𝑖≤𝑛 ∥𝜖𝑖 ∥2 ≤ 𝜖

}
. Lemma 3

states that event B𝑛 holds with probability at least 1 − 𝛿. We first construct 𝜔−net where 𝜔 = log 𝑛. For any
𝜃1 and 𝜃2,

|𝐻 (𝜃1) − 𝐻 (𝜃2) |

=

���∥𝑍𝑛 (𝜃1)∥2𝑉𝑛 (𝜃1 )−1 − ∥𝑍𝑛 (𝜃2)∥2𝑉𝑛 (𝜃2 )−1

���
=

���∥𝑍𝑛 (𝜃1)∥2𝑉𝑛 (𝜃1 )−1 − ∥𝑍𝑛 (𝜃1)∥2𝑉𝑛 (𝜃2 )−1 + ∥𝑍𝑛 (𝜃1)∥2𝑉𝑛 (𝜃2 )−1 − ∥𝑍𝑛 (𝜃2)∥2𝑉𝑛 (𝜃2 )−1

���
≤

���∥𝑍𝑛 (𝜃1)∥2𝑉𝑛 (𝜃1 )−1 − ∥𝑍𝑛 (𝜃1)∥2𝑉𝑛 (𝜃2 )−1

��� + ���∥𝑍𝑛 (𝜃1)∥2𝑉𝑛 (𝜃2 )−1 − ∥𝑍𝑛 (𝜃2)∥2𝑉𝑛 (𝜃2 )−1

��� .
For ease of notation, let 𝑢1 = 𝑍𝑛 (𝜃1), 𝑢2 = 𝑍𝑛 (𝜃2), 𝑉1 = 𝑉𝑛 (𝜃1), and 𝑉2 = 𝑉𝑛 (𝜃2). We first note that���∥𝑢1∥2𝑉−1

2
− ∥𝑢2∥2𝑉−1

2

��� 1(B𝑛)

=(𝑢1 − 𝑢2)⊤𝑉−1
2 (𝑢1 + 𝑢2)1(B𝑛)

≤∥𝑢1 − 𝑢2∥21(B𝑛)max
𝜃∈Θ

2∥𝑉−1
2 𝑍𝑛 (𝜃)∥2

=∥
𝑛∑︁

𝑖=1

∇ 𝑓𝜃1 (𝜁𝑖 , 𝑋𝑖)⊤𝜖𝑖 −
𝑛∑︁

𝑖=1

∇ 𝑓𝜃2 (𝜁𝑖 , 𝑋𝑖)⊤𝜖𝑖 ∥21(B𝑛)max
𝜃∈Θ

2∥𝑉−1
2 𝑍𝑛 (𝜃)∥2

≤
𝑛∑︁

𝑖=1

∥∇ 𝑓𝜃1 (𝜁𝑖 , 𝑋𝑖)⊤𝜖𝑖 − ∇ 𝑓𝜃2 (𝜁𝑖 , 𝑋𝑖)⊤∥2∥𝜖𝑖 ∥21(B𝑛)max
𝜃∈Θ

2∥𝑉−1
2 𝑍𝑛 (𝜃)∥2

≤
𝑛∑︁

𝑖=1

∥∇ 𝑓𝜃1 (𝜁𝑖 , 𝑋𝑖) − ∇ 𝑓𝜃2 (𝜁𝑖 , 𝑋𝑖)∥𝐹𝜖1(B𝑛)max
𝜃∈Θ

2∥𝑉−1
2 𝑍𝑛 (𝜃)∥2

≤
𝑛∑︁

𝑖=1

∥∇ 𝑓𝜃1 (𝜁𝑖 , 𝑋𝑖) − ∇ 𝑓𝜃2 (𝜁𝑖 , 𝑋𝑖)∥𝐹𝜖 ·
2𝑛𝜅 𝑓 𝜖

Λ𝑛

,

where the last inequality holds because ∥𝑍𝑛 (𝜃)∥1(B𝑛) ≤ 𝑛𝜅 𝑓 𝜖 .
Note that ∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖) is a matrix with the dimension 𝑑Y×𝑑. Define ∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖) = [∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖) 𝑗𝑘]1≤ 𝑗≤𝑑Y ,1≤𝑘≤𝑑.

For 𝑗 = 1, · · · , 𝑑Y and 𝑘 = 1, · · · , 𝑑, by Mean Value Theorem, there exists a 𝜃 𝑗𝑘 which is a convex combination
of 𝜃1 and 𝜃2 such that

|∇ 𝑓𝜃1 (𝜁𝑖 , 𝑋𝑖) 𝑗𝑘 − ∇ 𝑓𝜃2 (𝜁𝑖 , 𝑋𝑖) 𝑗𝑘 | = | (∇(∇ 𝑓𝜃 𝑗𝑘
(𝜁𝑖 , 𝑋𝑖) 𝑗𝑘)⊤ (𝜃1 − 𝜃2) | ≤ ℏ 𝑓 ∥𝜃1 − 𝜃2∥2.

Then, we have
∥∇ 𝑓𝜃1 (𝜁𝑖 , 𝑋𝑖) − ∇ 𝑓𝜃2 (𝜁𝑖 , 𝑋𝑖)∥𝐹 ≤ ℏ 𝑓

√︁
𝑑𝑑Y ∥𝜃1 − 𝜃2∥2,

for 𝑗 = 1, · · · , 𝑑Y and 𝑘 = 1, · · · , 𝑑. Hence, it follows that���∥𝑢1∥2𝑉−1
2

− ∥𝑢2∥2𝑉−1
2

��� 1(B𝑛)

≤
𝑛∑︁

𝑖=1

∥∇ 𝑓𝜃1 (𝜁𝑖 , 𝑋𝑖) − ∇ 𝑓𝜃2 (𝜁𝑖 , 𝑋𝑖)∥𝐹𝜖 ·
2𝑛𝜅 𝑓 𝜖

Λ𝑛

≤𝑛ℏ 𝑓

√︁
𝑑𝑑Y ∥𝜃1 − 𝜃2∥2𝜖 ·

2𝑛𝜅 𝑓 𝜖

Λ𝑛

=
2𝜅 𝑓 ℏ 𝑓 (𝑛𝜖)2

√︁
𝑑𝑑Y

Λ𝑛

∥𝜃1 − 𝜃2∥2,
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Now we analyze
���∥𝑢1∥2

𝑉−1
1

− ∥𝑢1∥2
𝑉−1
2

���. Let 𝑊 = 𝑉𝑛 (𝜃)−1. By chain rule, we have

𝜕𝜃 𝑗
(∥𝑢1∥2𝑉𝑛 (𝜃 )−1 )1(B𝑛) = tr

(
∇𝑊 (∥𝑢1∥2𝑊 ) |𝑊=𝑉𝑛 (𝜃 )−1 ·𝜕𝜃 𝑗

(𝑉𝑛 (𝜃)−1)
)
1(B𝑛)

= tr
(
𝑢1𝑢

⊤
1𝜕𝜃 𝑗

(𝑉𝑛 (𝜃)−1)
)
1(B𝑛),

where the first equality holds due to Equation (137) in [39]. According to Equation (59) in [39] that

𝜕𝜃 𝑗
𝑉𝑛 (𝜃)−1 = −𝑉𝑛 (𝜃)−1𝜕𝜃 𝑗

𝑉𝑛 (𝜃)𝑉𝑛 (𝜃)−1, 𝑗 = 1, . . . , 𝑑,

we have ���𝜕𝜃 𝑗
(∥𝑢1∥2𝑉𝑛 (𝜃 )−1 )

��� 1(B𝑛)

=

���tr (
𝑢1𝑢

⊤
1𝜕𝜃 𝑗

(𝑉𝑛 (𝜃)−1)
)��� 1(B𝑛)

=

���tr (
𝑢1𝑢

⊤
1𝑉𝑛 (𝜃)−1𝜕𝜃 𝑗

𝑉𝑛 (𝜃)𝑉𝑛 (𝜃)−1
)��� 1(B𝑛)

≤∥𝑢1∥22∥|𝑉𝑛 (𝜃)−1∥22

𝜕𝜃 𝑗

( 𝑛∑︁
𝑖=1

∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)
)

2

1(B𝑛)

≤
∥𝑢1∥22

𝜆min (𝑉𝑛 (𝜃))2

𝜕𝜃 𝑗

( 𝑛∑︁
𝑖=1

∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)
)

2

.

It implies that

∥∇𝜃 (∥𝑢1∥2𝑉𝑛 (𝜃 )−1 )∥21(B𝑛) ≤
∥𝑢1∥22

𝜆min (𝑉𝑛 (𝜃))2
·
∇𝜃

(
(

𝑛∑︁
𝑖=1

∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤)
)

2

,

where ∇𝜃 (𝑉𝑛 (𝜃)−1) is a 𝑑×𝑑×𝑑 tensor and the expansion along the last dimension has the form ∇𝜃 (𝑉𝑛 (𝜃)−1) =
(𝜕𝜃1 (𝑉𝑛 (𝜃)−1), . . . , 𝜕𝜃𝑑 (𝑉𝑛 (𝜃)−1)). Let ∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖) = [∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖) 𝑗𝑘]1≤ 𝑗≤𝑑Y ,1≤𝑘≤𝑑. Note that

∇𝜃 (∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖))𝑘,𝑙 = ∇𝜃 (
𝑑Y∑︁
ℓ=1

∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)ℓ 𝑗∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)ℓ𝑘)

=

𝑑Y∑︁
ℓ=1

(
∇2 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)ℓ 𝑗∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)ℓ𝑘 + ∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)ℓ 𝑗∇2 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)ℓ𝑘

)
,

which implies that ∇𝜃

(
(

𝑛∑︁
𝑖=1

∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖))
)

2

≤ 2𝑛𝑑2𝑑Y 𝜅 𝑓 ℏ 𝑓 .

Thus, we can bound
∇𝜃 (∥𝑢1∥2𝑉𝑛 (𝜃 )−1

)

2

by

∇𝜃 (∥𝑢1∥2𝑉𝑛 (𝜃 )−1 )

2
1(B𝑛) ≤ 2

(𝑛𝜖𝜅 𝑓 )2 · 𝑛𝑑2𝑑Y 𝜅 𝑓 ℏ 𝑓

Λ2
𝑛

=
2𝜖2𝜅3

𝑓
ℏ 𝑓 𝑛

3𝑑2𝑑Y

Λ2
𝑛

.

Then,

|𝐻 (𝜃1) − 𝐻 (𝜃2) |1(B𝑛) ≤
(
2𝜅 𝑓 ℏ 𝑓 𝑛

2𝜖2
√︁
𝑑𝑑Y

Λ𝑛

+
2𝜖2ℏ3

𝑓
𝜅 𝑓 𝑛

3𝑑2𝑑Y

Λ2
𝑛

)
∥𝜃1 − 𝜃2∥2

= 𝐿0∥𝜃1 − 𝜃2∥2,



18 Junyu Cao et al.

where 𝐿0 =
2𝜅 𝑓 ℏ 𝑓 𝑛

2 𝜖 2
√
𝑑𝑑Y

Λ𝑛
+

2ℏ3
𝑓
𝜅 𝑓 𝜖

2𝑛3𝑑2𝑑Y

Λ2
𝑛

=
2𝜅 𝑓 ℏ 𝑓 𝑛

2 𝜖 2
√
𝑑𝑑Y

Λ𝑛

(
1 +

ℏ2
𝑓
𝑑
√
𝑑𝑑Y𝑛

Λ𝑛

)
.

From Lemma 1(I), we conclude that for any 𝛾 > 0,

ℙ{𝐻 (𝜃)1(B𝑛) > 𝑑𝑐𝛾} ≤ 𝑑 exp(−𝛾),

where 𝑐 = 16𝜂2𝜎2 log(𝑛). Define 𝛾 = 2𝑑 log(𝐿0𝛽Θ/𝜔) + log(𝑑/𝛿). Let Θ𝜔 be the 𝜔−covering set for Θ regarding
function 𝐻 (·), i.e., for any 𝜃 ∈ Θ, there exists 𝜃′ ∈ Θ𝜔 such that ∥𝐻 (𝜃) − 𝐻 (𝜃′)∥2 ≤ 𝜔. Define 𝑁 (𝜔;𝐻, ∥ · ∥2)
as the 𝜔−covering number. Therefore,

ℙ{𝐻 (�̂�𝑛)1(B𝑛) > 2𝑑𝑐𝛾} ≤ ℙ(∃𝜃, 𝐻 (𝜃)1(B𝑛) > 2𝑑𝑐𝛾)
≤ ℙ(∃𝜃 ∈ Θ𝜔 , 𝐻 (𝜃)1(B𝑛) > 𝑑𝑐𝛾)
≤ 2𝑁 (𝜔;𝐻, ∥ · ∥2)𝑑 exp(−𝛾)

≤ 2

(
𝐿0𝛽Θ

𝜔

)𝑑
𝑑 exp(−𝛾)

= 2 exp(𝑑 log(𝐿0𝛽Θ/𝜔) + log 𝑑 − 𝛾)
≤ 2 exp(− log(1/𝛿)) ≤ 2𝛿,

where the second inequality comes from the fact 𝜔 ≤ 𝑑𝑐𝛾 since 𝑛 ≥ 1/4𝜂𝜎
√︁
𝑑𝛾.

Due to that B𝑛 holds with probability at least 1 − 𝛿, by the union bound, we conclude that

ℙ{𝐻 (�̂�𝑛) > 2𝑑𝑐𝛾}
=ℙ{𝐻 (�̂�𝑛) > 2𝑑𝑐𝛾 and 1(B𝑛) = 1} + ℙ{𝐻 (�̂�𝑛) > 2𝑑𝑐𝛾 and 1(B𝑛) = 0} ≤ 3𝛿.

It implies that

3𝛿

≥ℙ(𝐻 (�̂�𝑛) > 2𝑑𝑐𝛾)

=ℙ
{
𝐻 (�̂�𝑛) > 2𝑑𝑐

(
2𝑑 log

( 2𝜅 𝑓 ℏ 𝑓 𝑛
2 𝜖 2

√
𝑑𝑑Y 𝛽Θ

𝜔Λ𝑛
·
(
1 +

ℏ2
𝑓
𝑑
√
𝑑𝑑Y𝑛

Λ𝑛

) )
+ log(𝑑/𝛿)

)}
≥ℙ

{
𝐻 (�̂�𝑛) > 2𝑑𝑐

(
2𝑑 log

( 2𝜅 𝑓 ℏ 𝑓 𝑛
3 𝜖 2𝑑2𝑑Y 𝛽Θ

log(𝑛)Λ𝑛
·
(
1 +

ℏ2
𝑓
𝑑
√
𝑑𝑑Y

Λ𝑛

) )
+ log(𝑑/𝛿)

)}
=ℙ

{
𝐻 (�̂�𝑛) > 4𝑑2𝑐

(
log

( 16𝜎2
(
log(1/𝛿 )+𝑑Y log 6+log(𝑛)

)
𝜅 𝑓 ℏ 𝑓 𝑛

3𝑑2𝑑Y 𝛽Θ

log(𝑛)Λ𝑛

(
1 +

ℏ2
𝑓

Λ𝑛

) )
+ log(𝑑/𝛿)

)}
≥ℙ

{
𝐻 (�̂�𝑛) > 4𝑑2𝑐

(
log

( 16𝜎2
(
6 log(1/𝛿 )

)
𝜅 𝑓 ℏ 𝑓 log(𝑛)𝑛3𝑑2𝑑2

Y 𝛽Θ

log(𝑛)Λ𝑛

(
1 +

ℏ2
𝑓

Λ𝑛

) )
+ log(𝑑/𝛿)

)}
=ℙ

{
𝐻 (�̂�𝑛) > 4𝑑2𝑐

(
log

( 16𝜎2
(
6 log(1/𝛿 )

)
𝜅 𝑓 ℏ 𝑓 𝑛

3𝑑3𝑑2
Y 𝛽Θ

Λ𝑛 𝛿

(
1 +

ℏ2
𝑓

Λ𝑛

) ) )}
≥ℙ

{
𝐻 (�̂�𝑛) > 64𝜂2𝜎2𝑑2 log(𝑛) log(𝑛3𝑑3𝑑2Y log(1/𝛿)𝜍/(𝛿Λ𝑛))

}
,

where 𝜍 = 96𝜎2𝜅 𝑓 (ℏ 𝑓 + 1)𝛽Θ
(
1 +

ℏ2
𝑓

Λ𝑛

) )
and the third last inequality comes from the fact that log(1/𝛿) +

𝑑Y log 6 + log(𝑛) ≤ 6 log(1/𝛿)𝑑Y log(𝑛) when 𝛿 ≤ 1/2 and 𝑛 > 1.
In the special scenario where the function class is linear or generalized linear, 𝑓𝜃 (𝜁, 𝑥) = 𝜃⊤ (𝜁, 𝑥).

Then, 𝑍𝑛 (𝜃) =
∑𝑛

𝑖=1 (𝜁𝑖 , 𝑋𝑖) and 𝑉𝑛 (𝜃) =
∑𝑛

𝑖=1 (𝜁𝑖 , 𝑋𝑖) (𝜁𝑖 , 𝑋𝑖)⊤, so 𝐻 (𝜃1) = 𝐻 (𝜃2) for any 𝜃1 and 𝜃2. Thus, we
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immediately conclude from Lemma 1(I) that

ℙ
(
∥𝑍𝑛∥2

𝑉−1
𝑛

≥ 𝑑𝑐2
)

=ℙ
{
∥𝑍𝑛 (𝜃)∥2𝑉𝑛 (𝜃 )−1 ≥ 𝑑𝑐2

}
=ℙ

{
∥𝑍𝑛 (𝜃)∥2𝑉𝑛 (𝜃 )−1 ≥ 16𝑑𝜂2𝜎2 log(𝑛) log(𝑑/𝛿)

}
≤ 𝛿.

Define ℭF = log(𝑑/𝛿) when the function class is linear or generalized linear. For the general function class,

ℭF = 4𝑑 log(𝑛3 log(𝑛)𝑑3𝑑2Y log(1/𝛿)𝜍/(𝛿Λ𝑛)).

By combining the above analysis, we can conclude that

ℙ
(
∥𝑍𝑛∥2

𝑉−1
𝑛

≥ 16𝑑𝜂2𝜎2 log(𝑛)ℭF
)
≤ 3𝛿.

□

6.3 Verification of Assumption 3

Lemma 4 Consider the statistical loss function ℓ to be the square loss, the negative log-likelihood or the
cross entropy. If for every 𝜁 ∈ Ω, 𝑥 ∈ X and 𝑦 ∈ Y, ℓ satisfies the restricted secant inequality at 𝜃∗, then
Assumption 3 holds.

Proof Let us first verify that

∇ℓ(𝑦, 𝜙( 𝑓𝜃 (𝜁, 𝑥))) = ∇ 𝑓𝜃 (𝜁, 𝑥)⊤ (𝜙( 𝑓𝜃 (𝜁, 𝑥)) − 𝑦).

For the square loss ℓ(𝑦, 𝜙( 𝑓𝜃 (𝜁, 𝑥))) = 1
2 ∥𝑦−𝜙( 𝑓𝜃 (𝜁, 𝑥))∥

2
2 with 𝜙 being the identity map, we have ∇ℓ(𝑦, 𝜙( 𝑓𝜃 (𝜁, 𝑥))) =

∇ 𝑓𝜃 (𝜁, 𝑥)⊤ (𝜙( 𝑓𝜃 (𝜁, 𝑥)) − 𝑦).
For the log-likelihood, when 𝑑Y = 1, ℓ(𝑦, 𝜙( 𝑓𝜃 (𝜁, 𝑥))) = −𝑦 log(𝜙( 𝑓𝜃 (𝜁, 𝑥))) − (1 − 𝑦) log(1 − 𝜙( 𝑓𝜃 (𝜁, 𝑥))),

where 𝜙(𝑦) = exp(𝑦)
1+exp(𝑦) , we have

∇ℓ(𝑦, 𝜙( 𝑓𝜃 (𝜁, 𝑥))) = − 𝑦𝜙′∇ 𝑓𝜃 (𝜁, 𝑥)
𝜙( 𝑓𝜃 (𝜁, 𝑥))

+ (1 − 𝑦)𝜙′∇ 𝑓𝜃 (𝜁, 𝑥)
1 − 𝜙( 𝑓𝜃 (𝜁, 𝑥))

.

Since

− 𝑦𝜙′

𝜙
+ (1 − 𝑦)𝜙′

1 − 𝜙
=
−𝑦𝜙(1 − 𝜙)

𝜙
+ (1 − 𝑦)𝜙(1 − 𝜙)

1 − 𝜙
= −𝑦 + 𝜙( 𝑓𝜃 (𝜁, 𝑥)),

we calculate that ∇ℓ(𝑦, 𝑓𝜃 (𝜁, 𝑥)) = ∇ 𝑓𝜃 (𝜁, 𝑥)⊤ (𝜙( 𝑓𝜃 (𝜁, 𝑥)) − 𝑦).
On the other hand, when 𝑑Y ≥ 2, ℓ(𝑦, 𝜙( 𝑓𝜃 )) =

∑𝑑Y
𝑖=1 −𝑦𝑖 log(𝜙( 𝑓𝜃 (𝜁, 𝑥)𝑖)), where 𝜙(𝑦)𝑖 = exp(𝑦𝑖 )

1+∑𝑑Y
𝑖=1 exp(𝑦𝑖 )

.

Let 𝑧𝜃 := 𝑓𝜃 (𝜁, 𝑥). Thus,

𝜕ℓ(𝑦, 𝜙( 𝑓𝜃 ))
𝜕𝑧𝜃,𝑘

=
𝜕

𝜕𝑧𝜃,𝑘

𝑑Y∑︁
𝑖=1

−𝑦𝑖 log(𝜙( 𝑓𝜃 (𝜁, 𝑥)𝑖)) = −𝑦𝑘 + 𝜙( 𝑓𝜃 (𝜁, 𝑥)𝑘).

Then, it follows from the chain rule that

∇ℓ(𝑦, 𝜙( 𝑓𝜃 (𝜁, 𝑥))) = ∇ 𝑓𝜃 (𝜁, 𝑥)⊤ (𝜙( 𝑓𝜃 (𝜁, 𝑥)) − 𝑦).
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When ℓ satisfies the restricted secant inequality with parameter �̃�, we have(
∇ 𝑓𝜃 (𝜁, 𝑥)⊤

(
𝜙( 𝑓𝜃 (𝜁, 𝑥)) − 𝜙( 𝑓𝜃∗ (𝜁, 𝑥))

) )⊤ (𝜃 − 𝜃∗)
=∇ℓ(𝑦, 𝜙( 𝑓𝜃 ))⊤ (𝜃 − 𝜃∗) |𝑦=𝜙 ( 𝑓 ∗

𝜃
(𝜁 ,𝑥 ) )

≥�̃�∥𝜃 − 𝜃∗∥22
≥�̃�/𝜅2𝑓 (𝜃 − 𝜃∗)⊤∇ 𝑓𝜃 (𝜁, 𝑥)⊤∇ 𝑓𝜃 (𝜁, 𝑥) (𝜃 − 𝜃∗).

The proof is finalized by setting 𝛼 = �̃�/𝜅2
𝑓
. □

6.4 Proof of Theorem 1

Define Δ𝑛 = �̂�𝑛 − 𝜃∗. It suffices to show that ∥𝑍𝑛∥2
𝑉−1
𝑛

≥ 𝐶∥Δ𝑛∥2
𝑉𝑛

for some properly chosen constant 𝐶.

Using the mean value theorem, for 𝑖 = 1, · · · , 𝑛, and 𝑘 = 1, · · · , 𝑑Y , there exists 𝜃𝑖,𝑘 which is a convex
combination of �̂�𝑛 and 𝜃∗ such that

𝜙( 𝑓
𝑘, 𝜃𝑛

(𝜁𝑖 , 𝑋𝑖)) − 𝜙( 𝑓𝑘, 𝜃∗ (𝜁𝑖 , 𝑋𝑖)) = 𝑔𝑘, 𝜃𝑖,𝑘 (𝜁𝑖 , 𝑋𝑖) (�̂�𝑛 − 𝜃∗),

where 𝑔 is defined in (7). For each 𝑖 = 1, · · · , 𝑑Y , a compact form is given by

𝜙( 𝑓
𝜃𝑛
(𝜁𝑖 , 𝑋𝑖)) − 𝜙( 𝑓𝜃∗ (𝜁𝑖 , 𝑋𝑖)) = 𝑔𝜃𝑖 (𝜁𝑖 , 𝑋𝑖) (�̂�𝑛 − 𝜃∗)

where 𝑔𝜃𝑖 (𝜁𝑖 , 𝑋𝑖) :=
©«

𝑔1, 𝜃𝑖,1 (𝜁𝑖 , 𝑋𝑖)
...

𝑔𝑑Y , 𝜃𝑖,𝑑Y
(𝜁𝑖 , 𝑋𝑖)

ª®®®¬.
Using the definition of 𝑍𝑛 and the (6) that �̂�𝑛 satisfies, it follows that

𝑍𝑛 =
𝑛∑︁

𝑖=1

∇ 𝑓
𝜃𝑛
(𝜁𝑖 , 𝑋𝑖)⊤𝜖𝑖

=
𝑛∑︁

𝑖=1

∇ 𝑓
𝜃𝑛
(𝜁𝑖 , 𝑋𝑖)⊤ (𝑌𝑖 − 𝜙( 𝑓𝜃∗ (𝜁𝑖 , 𝑋𝑖)))

=
𝑛∑︁

𝑖=1

∇ 𝑓
𝜃𝑛
(𝜁𝑖 , 𝑋𝑖)⊤ (𝜙( 𝑓𝜃𝑛 (𝜁𝑖 , 𝑋𝑖)) − 𝜙( 𝑓𝜃∗ (𝜁𝑖 , 𝑋𝑖)))

=
𝑛∑︁

𝑖=1

∇ 𝑓
𝜃𝑛
(𝜁𝑖 , 𝑋𝑖)⊤𝑔𝜃𝑖 (𝜁𝑖 , 𝑋𝑖) (�̂�𝑛 − 𝜃∗).

Define a matrix 𝐵 as

𝐵 :=
𝑛∑︁

𝑖=1

𝑔𝜃𝑖 (𝜁𝑖 , 𝑋𝑖)⊤∇ 𝑓
𝜃𝑛
(𝜁𝑖 , 𝑋𝑖) −

𝑛∑︁
𝑖=1

𝜅
𝜙
∇ 𝑓

𝜃𝑛
(𝜁𝑖 , 𝑋𝑖)⊤∇ 𝑓

𝜃𝑛
(𝜁𝑖 , 𝑋𝑖).

It follows that

∥𝑍𝑛∥2
𝑉−1
𝑛

= Δ⊤
𝑛

(
𝜅
𝜙

𝑛∑︁
𝑖=1

∇ 𝑓
𝜃𝑛
(𝜁𝑖 , 𝑋𝑖)⊤∇ 𝑓

𝜃𝑛
(𝜁𝑖 , 𝑋𝑖) + 𝐵

)
𝑉−1
𝑛 ·(

𝜅
𝜙

𝑛∑︁
𝑖=1

∇ 𝑓
𝜃𝑛
(𝜁𝑖 , 𝑋𝑖)⊤∇ 𝑓

𝜃𝑛
(𝜁𝑖 , 𝑋𝑖) + 𝐵⊤

)
Δ𝑛

= 𝜅2
𝜙
∥Δ𝑛∥2

𝑉𝑛

+ 2𝜅
𝜙
Δ⊤
𝑛𝐵Δ𝑛 + Δ⊤

𝑛𝐵𝑉
−1
𝑛 𝐵⊤Δ𝑛 .

(11)
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If Δ⊤
𝑛𝐵Δ𝑛 ≥ 0, since Δ⊤

𝑛𝐵𝑉
−1
𝑛 𝐵⊤Δ𝑛 ≥ 0, we conclude that

∥𝑍𝑛∥2
𝑉−1
𝑛

≥ 𝜅2
𝜙
∥Δ𝑛∥2

𝑉𝑛

,

thus we reach the conclusion.
Otherwise if Δ⊤

𝑛𝐵Δ𝑛 < 0, using Assumption 3 we have(
∇ 𝑓

𝜃𝑛
(𝜁𝑖 , 𝑋𝑖)⊤ (𝜙( 𝑓𝜃𝑛 (𝜁𝑖 , 𝑋𝑖)) − 𝜙( 𝑓𝜃∗ (𝜁𝑖 , 𝑋𝑖)))

)⊤
Δ𝑛

≥𝛼Δ⊤
𝑛∇ 𝑓𝜃 (𝑤, 𝑥)⊤∇ 𝑓𝜃 (𝑤, 𝑥)Δ𝑛 .

Summing 𝑠 from 1 to 𝑛 yields
𝑛∑︁

𝑖=1

(
∇ 𝑓

𝜃𝑛
(𝜁𝑖 , 𝑋𝑖)⊤ (𝜙( 𝑓𝜃𝑛 (𝜁𝑖 , 𝑋𝑖)) − 𝜙( 𝑓𝜃∗ (𝜁𝑖 , 𝑋𝑖)))

)⊤
Δ𝑛

≥ 𝛼
𝑛∑︁

𝑖=1

Δ⊤
𝑛∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)⊤∇ 𝑓𝜃 (𝜁𝑖 , 𝑋𝑖)Δ𝑛 .

It follows that

Δ⊤
𝑛𝐵Δ𝑛 =

𝑛∑︁
𝑖=1

(𝜙( 𝑓
𝜃𝑛
(𝜁𝑖 , 𝑋𝑖)) − 𝜙( 𝑓𝜃∗ (𝜁𝑖 , 𝑋𝑖)))⊤∇ 𝑓

𝜃𝑛
Δ𝑛 − 𝜅

𝜙
∥Δ𝑛∥2

𝑉𝑛

≥ (𝛼 − 𝜅
𝜙
)∥Δ𝑛∥2

𝑉𝑛

.

By Cauchy-Schwarz inequality, we have that

(Δ⊤
𝑛𝐵𝑉

−1
𝑛 𝐵⊤Δ𝑛)

1
2 = ∥𝐵Δ𝑛∥𝑉−1

𝑛
≥ |Δ⊤

𝑛𝐵Δ𝑛 |
∥Δ𝑛∥𝑉𝑛

≥ (𝛼 − 𝜅
𝜙
)∥Δ𝑛∥𝑉𝑛

.

Combined with (11), we conclude that

∥𝑍𝑛∥2
𝑉−1
𝑛

≥ 𝜅2
𝜙
∥Δ𝑛∥2

𝑉𝑛

+ 2𝜅
𝜙
Δ⊤
𝑛𝐵Δ𝑛 +

(Δ⊤
𝑛𝐵Δ𝑛)2

∥Δ𝑛∥2
𝑉𝑛

=

(
𝜅
𝜙
∥Δ𝑛∥𝑉𝑛

+ Δ⊤
𝑛𝐵Δ𝑛

∥Δ𝑛∥𝑉𝑛

)2
≥ 𝛼2∥Δ𝑛∥2

𝑉𝑛

.

Thus by Lemma 1, it holds with probability at least 1 − 3𝛿 that

Λ𝑛∥Δ𝑛∥22 ≤ ∥Δ𝑛∥2
𝑉𝑛

≤ 1

min(𝜅2
𝜙
, 𝛼2)

∥𝑍𝑛∥2
𝑉−1
𝑛

≤ 16𝑑𝜂2𝜎2 log(𝑛)ℭF

min(𝜅2
𝜙
, 𝛼2)

.

Hence the proof is completed. □

7 Conclusion

In this paper, we establish non-asymptotic performance guarantees of PTO and ETO approaches for
contextual stochastic optimization with endogenous uncertainty, providing bounds on approximation error
and regret. Several potential extensions to our work are worth investigating. While we develop statistical
inference for a general parametric function class, exploring how our framework could extend to nonparametric
function classes presents an interesting direction for future research. Moreover, evaluating the performance
of other frameworks such as ILO and decision-rule optimization under endogenous uncertainty are left for
future work.
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