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The continuous-time service network design problem (CTSNDP) occurs widely in practice. It aims to

minimize the total operational cost by optimizing the schedules of transportation services and the routes

of shipments for dispatching, which can occur at any time point along a continuous planning horizon. In

order to be cost effective, shipments often wait to be consolidated, which incurs a holding cost. Despite its

importance, the holding cost has not been taken into account in existing exact solution methods for the

CTSNDP, since introducing it significantly complicates the problem and makes the solution development very

challenging. To tackle this challenge, we develop a new dynamic discretization discovery algorithm, which

can solve the CTSNDP with holding cost to exactly optimum. The algorithm is based on a novel relaxation

model and several new optimization techniques. Results from extensive computational experiments validate

the efficiency and effectiveness of the new algorithm, and also demonstrate the benefits that can be gained

by taking into account holding costs in solving the CTSNDP. In particular, we show that the significance

of the benefits depends on the connectivity of the underlying physical network, and on the flexibility of the

shipments’ time requirements.
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1. Introduction

Service network design problems (Crainic 2000) are common and important problems in

transportation, telecommunications, logistics, and production–distribution systems. In the freight

transportation industry, the less-than-truckload (LTL) motor carriers are typical examples of such

systems, where an intensive use of freight consolidation operations are performed to save on

transportation costs (Wieberneit 2008).

The service network design problem considered in this paper, referred to as the SNDP, can be

described as follows. A network D= (N ,A) is given with terminal or node set N and arc set A. Let

K be a set of commodities, each commodity k ∈K has an origin ok ∈N , a destination dk ∈N , and

a transportation demand qk ∈N>0 that must be delivered to the destination from the origin. While
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flowing along an arc (i, j), a commodity consumes some of the arc capacity; the capacity is obtained

by installing on some of the arcs any number of links. In network D, also referred as a flat network,

each arc (i, j) ∈A is associated with the following four attributes: (i) a travel time τij ∈N>0; (ii)

a per-unit-of-flow cost ckij ∈R>0 for each commodity k ∈K; (iii) a fixed cost fij ∈R>0; and (iv) a

capacity uij ∈N>0. Installing one link on arc (i, j) provides a capacity uij at a cost fij. With each

commodity k ∈ K is also associated an earliest available time ek ∈ N≥0 at the origin and a latest

arrival time lk ∈N≥0 at the destination. We consider the unsplittable (or unbifurcated) variant of

the problem, where the flow of each commodity is required to follow one route between the origin

and the destination, as also considered by Boland et al. (2017) and Marshall et al. (2021).

The SNDP consists of minimizing the sum of all costs (both fixed and flow costs), while at the

same time satisfying demand requirements, as well as capacity and time constraints. The SNDP is

known to be strongly NP–hard (Ghamlouche et al. 2003), and various extensions of the SNDP have

been studied in the transportation and telecommunications fields (Gendron et al. 1999, Frangioni

and Gendron 2009).

In the SNDP, the decisions are made as to the schedule of the services, this schedule specifying

timing information for each possible occurrence of a service during a given time period (i.e.,

departure and arrival times at the origins, intermediate stops, and destinations). A common

technique adopted in the literature for modeling the temporal component is discretization (Jarrah

et al. 2009, Andersen et al. 2011, Erera et al. 2013, Crainic et al. 2014), where the planning horizon

is discretized, and the problem is modeled on a time-expanded network. In the network, nodes

represent locations in time and space, while arcs or links represent either physical movements

between locations or just movements in time at one location. More precisely, the arcs on the

network are classified into dispatch or service arcs and holding arcs. A service arc corresponds to

the transportation between two locations, and the difference between the periods of these locations

is the time elapsed during the transportation activity, whereas a holding arc is directed from one

period to another for the same location and represents only time-wise movement. The granularity

of the time discretization has an impact on both the computational tractability and the quality of

the solutions obtained, and studies have been presented that accurately capture the consolidation

opportunities as a Continuous-Time SNDP (CTSNDP) (Boland et al. 2017, Marshall et al. 2021).

1.1. The SNDP with holding costs

For many practical applications of the SNDP, holding costs have a significant impact on the service

and consolidation decisions (Tyan et al. 2003, Bookbinder and Higginson 2002, Rudi et al. 2016,

Hu et al. 2018). These costs are also called consolidation penalty costs (Ülkü 2009b), and can

be facility-specific and/or commodity-specific (Hu et al. 2018, Ulku 2009a, Rudi et al. 2016). In
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Figure 1 Examples of SNDP solutions (Figures (c) and (d): ({commodities}, dep.time,arr.time) on arcs)

the literature, holding costs are classified as in-transit and in-storage, the in-transit holding cost

usually being lower than the in-storage cost. In the context of time-expanded networks, these costs

are generally modeled by properly defining the costs associated with the service and holding arcs

of the network.

Motivated by the importance of the continuous variant of the SNDP and of the holding costs, in

this paper we consider the CTSNDP with both in-transit and in-storage holding costs or simply

holding costs (CTSNDP-HC). In the following, in-transit holding costs are modeled by means of

costs ckij, whereas to model in-storage holding costs, we associate with each commodity k ∈K and

node i∈N a per-unit-of-demand-and-time (holding) cost hk
i ∈R≥0. Hereafter, we also use the term

holding costs to refer to both the in-transit and in-storage holding costs.

To highlight the importance of considering the holding costs in the SNDP, Figure 1 gives a simple

example of a SNDP instance with nonzero holding costs. The example involves three commodities.

Figure 1-(a) depicts the underlying network D where relevant flow and fixed costs and travel times

are reported close to each arc. In the example, arcs (i, j) and (j, i) share the same data. Figure

1-(b) gives the different parameters associated with the three commodities. In addition, each arc

capacity is assumed to be greater than the total demand of the commodities, i.e., to be 100.

Figure 1-(c) illustrates an optimal solution for the SNDP by disregarding the holding costs. The

figure reports on each arc (i, j) the set of commodities consolidated, the departure time from node

i, and the arrival time to node j, represented by a triplet ({commodities}, dep.time,arr.time).

The solution of Figure 1-(c) shows flow and fixed costs equal to 165 (=1 × 40 (c, b) + 1 × 30

(d, b) + 1 × (25+30+40) (b, a)) and 60+ fba (=22 (c, b) + 38 (d, b) + fba), respectively. The three

commodities are consolidated on arc (b, a), where commodities 1 and 3 wait 90 and 50 time units

before being consolidated with commodity 2, which arrives at node b at time 90.

We now assume that the in-storage per-unit-of-demand-and-time holding cost for each

commodity at nodes b, c and d is equal to η (i.e., hk
b = hk

c = hk
d = η, k= 1,2,3) whereas the holding

cost at the destination node a is assumed to be equal to zero. Figure 1-(d) illustrates an alternative
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solution for the SNDP. In the solution, commodity 2 is routed directly from its origin c to the

destination a without consolidation operations whereas commodities 1 and 3 are consolidated on

arc (b, a). Solution 1-(d) shows flow and fixed costs equal to 165 (=1 × 40 (c, a) + 1 × 30 (d, b)

+ 1 × (25+30+40) (b, a)) and 60+2× fba (=22 (c, a) + 38 (d, b)+2× fba(b, a)), respectively. The
holding cost of commodity 1 at node b is equal to 40× η× 25. By considering the holding cost of

solution (c) which is equal to (90×η×25)+(50×η×40), the difference between the total costs of

solutions (c) and (d) is therefore equal to diff= 50× η× 25+ 50× η× 40− fba. If η is set equal to

0.01 and fba < 32.5, diff> 0, i.e., solution (c) is a feasible but not optimal solution for the SNDP

with consideration of the holding costs. If, for example, fba = 10 and η= 0.01, an optimal solution

for the SNDP with consideration of the holding costs is given by solution (d) with a cost equal to

255, showing a saving of about 8% with respect to the cost 277.5 of solution (c).

1.2. Discretized versus continuous-time models

A time-expanded network provides a useful way of modeling the SNDP, but the corresponding

time-index (TI) model (see, for example, Fleischer and Skutella 2007, Groß and Skutella 2012)

requires a discretization of time known to be fine enough to provide a correct model for the

continuous time, i.e., to show that its optimal solution cost is continuous-time optimal. What is

more, choosing an appropriate time discretization can be challenging. On the one hand, a fine

discretization results in good approximations to the continuous-time problem, but at the expense

of a large (and generally intractable) TI model. On the other hand, a coarse discretization is more

computationally practical, but the price of discretization (i.e., the loss of solution quality) can be

very high (Boland et al. 2018).

In this context, it is beneficial to investigate complete TI models based on a complete

discretization of time, i.e., a discretization of time known to be fine enough to provide a correct

model for the continuous time. As shown by Boland and Savelsbergh (2019), the existence of a

complete TI model is not straightforward.

1.3. Contributions of this paper

In this paper, we describe an exact algorithm for the CTSNDP-HC. The method is based on the

Dynamic Discretization Discovery (DDD) solution framework proposed by Boland et al. (2017) to

solve the CTSNDP. The DDD uses successive approximations of a TI model in order to obtain

the optimal continuous-time solution, and its correctness relies on the existence of a complete TI

model for the problem. The main ingredients of a DDD are:

• A valid relaxation of a complete TI model based on a partial discretization.

• A primal heuristic that uses the solution provided by the relaxation to compute a valid upper

bound on the optimal value of the complete TI model. If the cost of the primal solution is equal

to the solution cost of the relaxation, then the primal solution is proved to be optimal.
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• A refinement strategy that, given a solution of the relaxation, refines the current partial

discretization so that a new valid relaxation for the complete TI model is derived, the current

solution of the relaxation is no longer feasible for the new relaxation model, and the convergence

of the algorithm is guaranteed.

The DDD algorithm proposed by Boland et al. (2017) for the CTSNDP relies strongly on the

assumption that freight can be held at a location at no cost, that is, in-storage holding costs are

equal to zero, and cannot be used to solve the CTSNDP-HC. Our distinct contributions in this

paper are as follows:

• We prove the existence of a complete TI model for the CTSNDP-HC.

• We derive a new relaxation of the complete TI model based on a mixed-integer linear

programming (MIP) model.

• Based on the complete TI model and its new relaxation, we develop a new DDD algorithm

with a new upper bound heuristic and a new refinement strategy to solve the CTSNDP-HC.

• We validate the efficiency and effectiveness of the new algorithm via extensive computational

experiments. The computational results also show the benefits that can be gained by incorporating

holding costs. The significance of the benefits turns out to depend upon the connectivity of the

underlying physical network and the flexibility of the shipments’ time requirements.

Our work not only enriches the optimization techniques for the CTSNDP and CTSNDP-HC, but

also enhances the DDD algorithm and extends its applications. It is potentially useful in facilitating

future study on solving various transportation network design problems with holding costs.

The remainder of this paper is organized as follows. After a literature revew in §2, we prove

the existence of a complete TI model for the CTSNDP-HC in §3. We present our newly developed

DDD algorithm for the CTSNDP-HC in §4. In particular, we introduce the new relaxation in §4.1,

and illustrate the algorithm details, including a primal heuristic and a refinement strategy, in §4.3

and §4.4. We then present the computational studies in §5. The paper is concluded in §6 with a

discussion on future research directions.

2. Related works

Service network design problems have been widely studied in the literature since the 1990s (Crainic

and Rousseau 1986, Farvolden and Powell 1994) due to the wide range of applications they cover

(Crainic 2000, Wieberneit 2008). An early classification distinguishes between static and dynamic

service network design problems, where in the dynamic variant the timing aspects of the service

routes are highlighted. For a review of the static variants and associated applications, the reader is

referred to Crainic (2000) and Wieberneit (2008). Below, we focus on the works closely related to

the SNDP and to the solution approaches based on discretization methods (§2.1). Further, we refer
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to the literature on service network design problems with the objective of capturing consolidation

costs such as in-storage holding costs (§2.2).

2.1. Discretization and dynamic discretization discovery methods

The literature shows different discretization methods aimed at deriving relaxations of TI models

for routing and scheduling problems with time constraints. Wang and Regan (2002) and Wang

and Regan (2009) proposed relaxations of TI formulations for a vehicle routing problem and for

the Traveling Salesman Problem with Time Windows (TSPTW), respectively. The relaxations are

obtained by partitioning the time windows into a collection of nonoverlapping intervals and by

defining variables for these intervals. The resulting relaxations are then exploited to devise strong

cutting planes that are embedded in a branch-and-cut framework. A similar relaxation, called time

bucket relaxation, was investigated by Dash et al. (2012) to solve the TSPTW by a branch-and-cut

algorithm that also makes use of valid inequalities derived from the bucket formulation.

Boland et al. (2017) introduced the DDD to solve the CTSNDP. The method solves a sequence of

MIPs defined on a subset of times (i.e., a partial discretization), with variables indexed by times in

the subset, that provides lower bounds on the optimal continuous-time value. At each iteration of

the method, new times are discovered and used to refine the partial discretization. Once the right

subset of times is discovered, the resulting MIP model yields the continuous-time optimal value.

As highlighted by Boland et al. (2017), the refinement strategies of Wang and Regan (2009) and

Dash et al. (2012) employ a DDD as a preprocessing scheme, rather than a dynamic nonuniform

scheme. Further, Boland et al. (2017) also focus on the size of the partially time-expanded network

by keeping the number of time points in the network to a minimum. The recent work of Marshall

et al. (2021) further extends that of Boland et al. (2017) by modeling the discretization in terms of

time intervals instead of time points. This new discretization leads to more effective and efficient

DDD algorithms. The algorithm of Marshall et al. (2021) can handle larger instances involving up

to 30 nodes, 685 arcs, and 400 commodities, and can generate high-quality solutions more quickly

than that of Boland et al. (2017).

Solution methods based on the DDD solution framework for service network design problems

were also investigated by Hewitt (2019) and Medina et al. (2019). Hewitt (2019) considered variants

of the service network design problem encountered in the LTL freight transportation industry.

They proposed multiple enhancements to the DDD algorithmic framework based on inequalities

and symmetry-breaking branching rules. Medina et al. (2019) introduced an optimization problem

that integrates long-haul and local transportation planning decisions. The authors proposed both

a route-based and an arc-based formulation for the problem that are solved by means of a DDD

algorithm. Recently, Hewitt (2022) investigated the scheduled service network design problem that
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can support planning the transportation operations of consolidation carriers given shipment-level

service commitments regarding available and due times. In particular, Hewitt (2022) considered

flexibility on the available and due times to minimize total transportation and handling costs. The

author proposed an adaptation of DDD to solve the problem and studied the savings potential of

leveraging flexibility. Other applications of the DDD solution framework can be found in Vu et al.

(2020), whereas for further perspectives on various aspects of time-dependent models and the DDD

the reader is referred to Boland and Savelsbergh (2019).

All the aforementioned works disregard holding costs. In particular, as we will show later, the

correctness of the DDD approach proposed by Boland et al. (2017) strongly relies on the assumption

that the in-storage holding costs are equal to zero.

2.2. Handling consolidation costs

Several works have highlighted the importance of considering consolidation costs in service network

design. Ülkü (2009b) addressed holding costs as consolidation penalty costs, and presented three

shipment consolidation policies, namely, time, quantity, and hybrid policies. Pedersen et al. (2009)

focused on a generic model for transportation service network design with asset management

considerations. The authors modeled asset positioning and utilization through constraints on asset

availability at terminals, with the consideration of in-storage holding costs. The problem was

formulated by means of an arc-based model, and a tabu search metaheuristic was used for its

solution. Rudi et al. (2016) investigated a capacitated multi-commodity network flow model for the

planning of intermodal transportation services considering carbon emissions and in-transit holding

costs. The application of the model on a set of industry data investigated the interrelations between

the decision criteria regarding greenhouse gas emissions, cost, and time, as well as the influence of

inventory holding costs. Jarrah et al. (2009) and Erera et al. (2013) investigated real-world service

network design problems faced by LTL freight transportation carriers. Both of the works considered

handling costs at intermediate terminals. Jarrah et al. (2009) described an IP formulation capturing

the different LTL requirements that is solved using a slope scaling and load-planning tree generation

method. Erera et al. (2013) presented integer linear programming (IP) models and a matheuristic

solution approach for large-scale instances that result in practical applications. Additional works

analyzing the trade-off between transportation and holding costs can be found in Bookbinder and

Higginson (2002), Tyan et al. (2003), Ulku (2009a) and Hu et al. (2018).

Holding costs for the SNDP and its variants formulated using TI models have been considered

by several works, such as Andersen et al. (2009b,a), Pedersen et al. (2009), and Crainic et al.

(2018). However, due to the approximation introduced by the discretization, the solution methods

proposed in these works cannot guarantee the optimality of the solutions obtained. To the best
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of our knowledge, no exact algorithm has been proposed for the CTSNDP-HC, and the related

literature is quite scarce. A continuous SNDP with vehicle asset management was investigated

by Hosseininasab (2015), where vehicle waiting and holding costs were also considered. Belieres

(2019) considered tactical transportation planning in a multi-product supply chain inspired by the

collaboration between a third-party logistics company and a restaurant chain. The problem was

formulated using a TI model with holding costs, and was solved by means of a hybrid matheuristic

based on the DDD. The author observed that the DDD method proposed by Boland et al. (2017)

cannot be used in the presence of in-storage holding costs. The algorithm was tested on real-world

instances, and the results show that refining the granularity of the time discretization generates

substantial savings in terms of holding costs.

3. Modeling the CTSNDP-HC on a finite time-expanded network

In this section, we first describe the structure of feasible CTSNDP-HC solutions. We then describe

a TI model for the CTSNDP-HC and we show the existence of a complete TI model.

3.1. Representing feasible solutions

A path P k = (vk1 , v
k
2 , ..., v

k
ηk+1

) for a commodity k ∈ K is a not necessarily elementary path in

D starting from node vk1 = ok and ending at node vk
ηk+1

= dk. Associated with path P k is also

the sequence (ak1 , a
k
2 , ..., a

k
ηk
) of arcs traversed by the path such that akn = (vkn, v

k
n+1) ∈ A for n =

1,2, ..., ηk; in the following, the two representations of path P k are used interchangeably. Given a set

of departures times tk = (tk1 , t
k
2 , ..., t

k
ηk
) associated with the nodes of the path, path P k is k-feasible,

and we denote it with the pairWk = (P k, tk), if values tkn, n= 1, . . . , ηk, satisfy the following system

of inequalities:

tkn ≥ ek, n= 1, (1a)

tkn ≥ tkn−1 + τakn−1
, n= 2, . . . , ηk, (1b)

tkn + τakn ≤ l
k, n= ηk. (1c)

Inequalities (1a) and (1c) impose that the departure and arrival times at the origin and destination

are within the required time limits ek and lk, respectively, where the term tkn + τakn coincides also

with the departure time at the destination dk. Inequalities (1b) impose feasible departure times at

the intermediate nodes of the path.

We also associate with each arc akn ∈ P k, n = 1,2, . . . , ηk, a departure time tkn. A feasible

solution W = {Wk}k∈K of the CTSNDP-HC is a collection of |K| paths, one feasible path for each

commodity. We assume that for each commodity k ∈K, the difference (lk− ek) of its latest arrival

time lk at the destination and available time ek at the origin is not smaller than the length of the
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shortest-time path from ok to dk in the flat network D. This assumption is sufficient to ensure the

existence of a feasible solution to the CTSNDP-HC.

Given a k-feasible timed pathWk, the holding plan of the path is defined as the set of the waiting

times δkn, n= 1 . . . , ηk +1, at the different nodes of the path that can be computed as follows:

δkn =


tkn− ek, n= 1,
tkn− (tkn−1 + τakn−1

), n= 2, . . . , ηk,

lk− (tkn−1 + τakn−1
), n= ηk +1.

(2)

Associated with a CTSNDP-HC solutionW is a set of consolidation plans, where each consolidation

plan defines how a subset of commodities are transported together through an arc of the solution.

More precisely, we denote with C = {C1,C2, . . . ,C|C|} a set of consolidation plans. Each Cr = (αr, Jr),

r= 1,2, . . . , |C|, denotes a consolidation plan for arc αr ∈A, with Jr being a set of pairs (k,n) with

akn = αr, indicating that such commodities k are shipped together through arc αr when they are

routed through the n-th arcs of their paths P k in solution W.

For each arc α= (i, j)∈∪k∈KP
k, we define Θ(α) = {tkn : (k,n)∈ Jr,∃ r ∈ {1,2, . . . , |C|} s.t. αr = α}

as the set of departure times associated with the arcs of paths in solutionW. Accordingly, for each

of such departure times t ∈Θ(α), a consolidation plan (α, I(α, t)) can be defined for arc α, where

I(α, t) defined below indicates the set of commodities that are shipped together through α with

departure time t in solution W:

I(α, t) = {(k,n) : k ∈K, akn = α∈ P k and tkn = t}.

With this, a set of consolidation plans C can be defined by solution W as follows:

C = {(α, I(α, t)) : ∀α∈∪k∈KP
k, t∈Θ(α), I(α, t) ̸= ∅}.

The cost z(W) of a CTSNDP-HC solution W can then be computed as a function of the holding

and consolidation plans:

z(W) =
∑
Cr∈C

fαr

⌈∑
(k,n)∈Jr

qk

uαr

⌉
+
∑
k∈K

ηk∑
n=1

ckaknq
k +

∑
k∈K

ηk+1∑
n=1

(hk
vkn
qk)δkn, (3)

where the three terms represent the fixed, flow and holding costs, respectively.

Alternatively, a feasible CTSNDP-HC solution can also be defined by (i) a routing plan P =

{P k}k∈K, (ii) a set of consolidation plans C and (iii) a set of departure times {tk}k∈K which form

the consolidation plans C, and such that for each k ∈K, path P k is k-feasible and the waiting times

δk computed by expressions (2) are non-negative. We define S = (P,C) as a flat solution, and the

flat solution S is implementable if a set of departure times {tk}k∈K satisfying condition (iii) exists.

As an example, Table 1 gives the set of consolidation plans C associated with the example of

Figure 1-(c). For each of the three commodities, the table gives the corresponding path P k. The

set of consolidation plans C shows three consolidations plans associated with arcs (b, a), (d, b), and

(c, b). In particular, all three commodities are consolidated on arc α= (b, a).
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Table 1 Set of consolidation plans for the example of Figure 1-(c)

k P k C
α J

1 (b,a) (b,a) {(1,1), (2,2), (3,2)}
2 (d,b,a) (d,b) {(2,1)}
3 (c,b,a) (c,b) {(3,1)}

3.2. A time-indexed formulation for the CTSNDP-HC

Like many other flow-over-time problems (see, for example, Fleischer and Skutella (2007) and

Skutella (2009)) and network design problems (see, for example, Andersen et al. (2009b), Andersen

et al. (2009a), and Pedersen et al. (2009)), the CTSNDP-HC can be approximated by a

time-expanded network formulation.

We consider a time-expanded network with a discretization level ∆, D∆
T = (N∆

T ,H∆
T ∪A∆

T ) where

T = (Ti)i∈N is a set of time points with Ti = {0,∆,2∆, ...,M∆} for all i∈N and for M ∈N>0 with

M =maxk∈K{
⌈
lk/∆

⌉
}. The node set N∆

T has a node (i, t) for each i∈N and t∈ Ti. The set of arcs

of D∆
T contains two subsets of arcs:

• Holding arcsH∆
T . For every node i∈N , and every t∈ Ti\{M∆}, there is an arc ((i, t), (i, t+∆))

representing a holding time of ∆ time units at node i.

• Dispatch or service arcs A∆
T . For every arc (i, j) ∈A, and every node (i, t) ∈N∆

T , there is an

arc ((i, t), (j, t)) with i ̸= j representing a dispatch from node i at time t arriving at time t at node

j with t= t+∆⌈τij/∆⌉ and t≤M∆, and since τij ≤∆⌈τij/∆⌉, the condition t≥ t+ τij holds, thus

guaranteeing that the feasible solutions of a TI formulation based on graph D∆
T (see below) are

also feasible for the CTSNDP-HC.

Network D∆
T is also known in the literature as a condensed time-expanded network. Below, we

model the CTSNDP-HC using a TI formulation based on graph D∆
T , denoted as SND-HC(D∆

T ).

Let yttij be a nonnegative integer variable representing the number of times that arc (i, j) ∈ A

is used to serve the dispatches from node i at time t arriving at time t in j, and let xktt
ij be 0-1

variable equal to 1 if commodity k ∈ K is routed along arc (i, j) ∈ A departing from i at time t

and arriving at j at time t, 0 otherwise. Moreover, let wk
i be a nonnegative variable denoting the

holding or waiting time of commodity k at node i. Formulation SND-HC(D∆
T ) is as follows:

z(D∆
T ) =min

∑
((i,t),(j,t))∈A∆

T

fijy
tt
ij +

∑
k∈K

∑
((i,t),(j,t))∈A∆

T

(ckijq
k)xktt

ij +
∑
k∈K

∑
i∈N

(hk
i q

k)wk
i (4)

s.t.
∑

((i,t),(j,t))∈A∆
T ∪H∆

T

xktt
ij −

∑
((j,t),(i,t))∈A∆

T ∪H∆
T

xktt
ji =

 1 (i, t) = (ok, ek),
−1 (i, t) = (dk, lk), ∀k ∈K, (i, t)∈N∆

T ,
0 otherwise,

(5)

∑
k∈K

qkxktt
ij ≤ uijy

tt
ij, ∀ ((i, t), (j, t))∈A∆

T , (6)
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wk
i =


∑

((i,t),(j,t))∈A∆
T
txktt

ij − ek, i= ok,

lk−
∑

((j,t),(i,t))∈A∆
T
txktt

ji , i= dk, ∀ i∈N ,∀ k ∈K,∑
((i,t),(j,t))∈A∆

T
txktt

ij −
∑

((j,t),(i,t))∈A∆
T
txktt

ji , otherwise,

(7)

xktt
ij ∈ {0,1}, ∀((i, t), (j, t))∈A∆

T ∪H∆
T , k ∈K, (8)

yttij ∈N≥0, ∀((i, t), (j, t))∈A∆
T , (9)

wk
i ≥ 0, ∀i∈N , k ∈K. (10)

For notation convenience, we assume that the node set N∆
T also contains nodes (ok, ek) and

(dk, lk) for all k ∈ K. Otherwise, the nodes (ok,∆⌈ek/∆⌉) and (dk,∆⌊lk/∆⌋) can be used instead

in Constraints (5). In the above formulation, the objective function (4) aims to minimize the total

cost computed as the sum of the fixed, flow and holding costs, respectively. Constraints (5) are

flow conservation constraints ensuring that each commodity k ∈ K is routed along a single path

starting from its origin and ending at its destination before its due time. Each commodity k ∈ K

departs from ok at time ek and arrives at dk at time lk, and holding arcs allow a commodity to

arrive early at its destination or depart later from its origin. Constraints (6) ensure that the flow

on each service arc does not exceed the capacity installed on the arc. Constraints (7) define the

values of variables wk
i , computed as the difference between the departure and arrival times. Note

that in each summation of the first two expressions involving variables xktt
ij , exactly one variable

x is equal to 1 in any optimal solution, therefore the summation produces the time t defined by

the variable. Regarding the third expression, because we do not rule out non-elementary paths

in the solution to cover more general case, the expression computes the difference between the

sum of the departure times and the sum of the arrival times. Finally, constraints (8), (9) and (10)

state the domains of the decision variables. The above formulation contains as a special case the

TI formulation described by Boland et al. (2017) and used to solve the CTSNDP. Indeed, when

each coefficient hk
i is assumed to be equal to zero, the corresponding decision variables wk

i are not

necessary in the formulation. We denote with SND(D∆
T ) the resulting formulation.

Due to the definition of the time-expanded network D∆
T such that for each arc (i, j) ∈ A we

have ∆⌈τij/∆⌉ ≥ τij, and due to the requirement that for every commodity k, its path starts at

time ek and ends at time lk, any feasible solution of formulation SND-HC(D∆
T ) is also a feasible

solution for the CTSNDP-HC. Nevertheless, an optimal SND-HC(D∆
T ) solution is not necessarily

an optimal CTSNDP-HC solution, due to the discretization factor ∆. Moreover, SND-HC(D∆
T )

may be infeasible even if the original CTSNDP-HC is feasible.

It is not straightforward to prove the existence of a value ∆̂ such that z(D∆̂
T ) provides the optimal

solution cost of the CTSNDP-HC. Indeed, as observed by Boland and Savelsbergh (2019), for some

problems such as the TSPTW, a simple combinatorial argument suffices to show the existence of
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a b

c d

(1, fab,60)

(2,55,100)

(1,3
8,70)

(1
,2
2,
40
)

(a) Network D: (c, f, τ) on

arcs

k ok dk qk ek lk

1 b a 25 0 160
2 d a 30 20 180
3 c a 40 0 180

(b) Instance data

a b

c d

({1,2,3},90,150)

({3
},0
,4
0)

({
2}
,2
0,
90
)

(c) An optimal solution

for the CTSNDP

a b

c d

({1,2,3},90,150)

({3
},5

0,
90
)

({
2}
,2
0,
90
)

(d) Alternative optimal

solution for the CTSNDP
Figure 2 Examples showing that for the CTSNDP-HC the transformation of Boland et al. (2017) cannot be

applied (Figures (c) and (d): ({commodities}, dep.time,arr.time) on arcs)

a complete TI model, whereas for other problems, such as the continuous-time inventory routing

problem (Lagos et al. 2020), such ∆̂ may be smaller than one and is difficult to identify.

3.3. Existence of a finite time-expanded network for the CTSNDP-HC

For the CTSNDP, the existence of a complete TI model has been shown by Boland et al. (2017),

who noted that when the travel times and time window limits are integer-valued, the set of times

points ek, for some commodity k ∈K, or of the form ek +
∑

a∈P τa, for some path P originating at

ok, suffice to compose a complete TI model. The observation is that the dispatch times of a path

P can be shifted to be as early as possible without changing any consolidations so that the total

cost is not changed, and strictly relies on the assumption that in-storage holding costs are equal to

zero. For the CTSNDP-HC, due to the presence of nonzero holding costs in the problem objective,

such an observation is no longer valid.

To illustrate the case, Figure 2 considers the example of Figure 1 where the solution of Figure

2-(c) depicts an optimal solution of the CTSNDP. The alternative CTSNDP optimal solution

represented by Figure 2-(d), where the departure time at the origin of commodity 3 is equal to 50,

can be shifted to be as early as possible, thus obtaining the departure time of the solution of Figure

2-(c) without changing the consolidations on arc (a, b). When considering the CTSNDP-HC, if the

per-unit-of-demand-and-time holding costs for commodity 3 at terminals b and c are equal to 0.01

and 0.005, respectively, commodity 3 incurs a holding cost equal to 0.01× 50× 40 for the solution

of Figure 2-(c), whereas it incurs a lower holding cost equal to 0.005× 50× 40 for the solution of

Figure 2-(d). Therefore, the time point (c,50), which is not part of a complete TI model for the

CTSNDP, must be considered when solving the CTSNDP-HC.

In order to show that a complete TI model exists for the CTSNDP-HC, it is necessary to prove

that, given a flat solution S, a linear program (LP) can be defined to determine optimal departure

times tk for each k ∈K that are integers. This argument suffices to show that a complete TI model

exists. The LP argument was also used by Boland et al. (2015) for a network scheduling problem.
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Consider a flat solution S = (P,C), with a routing plan P and a set of consolidation plans C

associated with P. We denote with zfc(S) the cost of the flat solution S, that is, the sum of its

fixed and flow costs:

zfc(S) =
∑
Cr∈C

fαr

⌈∑
(k,n)∈Jr

qk

uαr

⌉
+
∑
k∈K

ηk∑
n=1

ckaknq
k. (11)

For each k ∈K and each node vkn ∈ P k, n= 1,2, ..., ηk+1, we define nonnegative continuous variables

πk
vn

and tkvn as the arrival and departure times of commodity k at node vkn, respectively. Moreover,

for each Cr = (αr, Jr), r= 1, ..., |C|, we define a nonnegative continuous variable t̂Cr ≥ 0 representing

the consolidation time of the commodities in Jr on arc αr, i.e., the joint departure time of all

commodities (k,n)∈ Jr.

If the flat solution S is implementable, then the following LP formulation, denoted as

implementable model (IM(S)), computes corresponding optimal departure times for flat solution

S of cost zfc(S)+ zw(S):

zw(S) = min
∑
k∈K

ηk+1∑
n=1

hk
vn
qk(tkvn −π

k
vn
) (12a)

s.t. πk
vn+1
− tkvn = τvnvn+1

, ∀ k ∈K, n= 1, ..., ηk, (12b)

tkvn −π
k
vn
≥ 0, ∀k ∈K, n= 1, ..., ηk +1, (12c)

t̂Cr − tkvn = 0, ∀(k,n)∈ Jr, r= 1, ..., |C|, (12d)

πk
ok = ek, ∀k ∈K, (12e)

tkdk = lk, ∀k ∈K, (12f)

πk
vn
≥ 0, ∀ k ∈K, n= 1, ..., ηk +1, (12g)

tkvn ≥ 0, ∀k ∈K, n= 1, ..., ηk +1, (12h)

t̂Cr ≥ 0, ∀r= 1, ..., |C|. (12i)

The objective function (12a) aims to minimize the total holding cost associated with the flat

solution. Constraints (12b), (12c), (12e) and (12f) define the arrival and departure times according

to path P k, respectively. Constraints (12d) impose that the departure times at the intermediate

nodes follow the set of consolidation plans C.

The following proposition implies the existence of a complete TI model for the CTSNDP-HC.

Proposition 1 If ek, lk and τij are integer-valued, and the flat solution S = (P,C) is

implementable, then for formulation IM(S) there is an integral optimal solution.

Proof. The proof is provided in §EC.1.1 in the e-companion to this paper. □
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Algorithm 1: DDD algorithm for the CTSNDP

Input: CTSNDP defined on a flat network D= (N ,A)
Output: Solution W = {Wk}k∈K of cost UB
begin

// Initialization

1 UB←+∞, LB←−∞, gap←+∞, W←∅;
// Initialize the partially time-expanded network

2 DT ← (NT ,HT ∪AT );
// Termination condition

3 while gap > optimality tolerance do
// Solution of the relaxation

4 Solve SND(DT ) and set LB equal to the optimal solution cost of SND(DT );
// Compute a feasible CTSNDP solution

5 Compute a valid upper bound z based on the solution defined by the relaxation;
6 if z <UB then
7 UB← z;
8 Update solution W;
9 end

// Compute the optimality tolerance

10 gap← (UB−LB)/UB;
// Check the optimality condition

11 if gap > optimality tolerance then
// Optimality not reached

12 Based on the solution of SND(DT ), refine the network DT to correct the length of at
least one short arc;

13 end
14 end
15 return Solution W of cost UB;
16 end

Notice that the above proposition does not suggest a specific value of the discretization ∆. It

is easy to see that if ratios τij/∆, ek/∆ and lk/∆ are integer-valued for some ∆ ∈ N>0, z(D∆
T )

corresponds to the optimal solution cost of the CTSNDP-HC, and that in the worst case we have

∆= 1. In practice, the size of the complete TI model can be computationally intractable, but in the

next section we describe an exact algorithm aimed at finding the optimal CTSNDP-HC solution

by solving a set of reduced models of the complete TI model.

4. An exact algorithm for the CTSNDP-HC

A complete TI model for the CTSNDP-HC implies the existence of a discretization ∆̂ and of

the corresponding fully time-expanded network D∆̂
T̂ such that the optimal solution cost z(D∆̂

T̂ ) of

formulation SND-HC(D∆̂
T̂ ) is the optimal solution cost of the CTSNDP-HC. However, the size of

the network D∆̂
T̂ can be prohibitively large, and the resulting TI model impractical to be solved by

conventional techniques.

For the CTSNDP, Boland et al. (2017) proposed a DDD algorithm that dynamically and

iteratively determines the time points that are present in an optimal solution. Let DT = (NT ,HT ∪
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AT ) be a partially time-expanded network such that |NT | ≪ |N ∆̂
T̂ |. As illustrated in Algorithm 1,

the DDD algorithm starts by properly initializing the partial network DT , and at each iteration of

the algorithm, a relaxation model SND(DT ) is solved to compute a valid lower bound LB on the

CTSNDP. An upper bound is also computed using the lower bound solution and the algorithm

iterates until a predefined optimality tolerance is reached. The partially time-expanded network

DT is initialed and modified (or refined) whenever the optimality tolerance is not reached to ensure

the computation of a valid lower bound. The construction of the network DT , together with the

relaxation model SND(DT ), ensures that whenever the lower bound solution is not proved to be

an optimal CTSNDP solution, the network contains at least one arc, say arc ((i, t), (j, t′)) such

that t′ < t+ τij, i.e., the length of the arc is too short and arc ((i, t), (j, t′)) is a short-arc. The

network is therefore refined by correcting the length of arc ((i, t), (j, t′)), adding new time points

and corresponding arcs. The correctness of the algorithm follows on from the validity of bounds

LB and UB. The convergence of the method relies on the refinement strategies, which guarantee

that the final relaxation model will eventually converge to the complete TI model.

In this paper, we adapt the DDD Algorithm 1 in a novel way to solve the more general

CTSNDP-HC as summarized below.

(i) At Step 4, we solve a novel relaxation of formulation SND-HC(D∆̂
T̂ ). The relaxation relies on

both the definition of the network DT and on a formulation obtained by relaxing equations

(7) defining the holding variables wk
i (see §4.1).

(ii) At Step 5, we compute a valid upper bound UB based on the flat solution S defined by the

relaxation using a new heuristic algorithm accounting for the holding costs (see §4.3).

(iii) At Step 12, we extend the refinement strategy used by Boland et al. (2017) to add new time

points based on the definition of variables wk
i (see §4.4).

In the reminder of this section, we give the details of above three main components (i)–(iii) of

the DDD algorithm adapted for the CTSNDP-HC. These three components play a crucial role in

the effectiveness of the DDD algorithm for the CTSNDP-HC, and require substantial changes to

the original components designed for the CTSNDP. We conclude the section by proving that the

exact DDD algorithm solves the CTSNDP-HC to optimality in a finite number of iterations (§4.5).

In what follow, we assume that all time data are integer-valued, and based on Proposition 1, ∆̂

assumes a value equal to 1.

4.1. A relaxation of the CTSNDP-HC

In this section, we describe a valid relaxation for the CTSNDP-HC. We start by a simple observation

that if hk
i = 0, ∀k ∈K, i∈N , then the CTSNDP-HC reduces to the CTSNDP, and any valid lower

bound (including the optimal objective value) for the CTSNDP is also a valid lower bound for the
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CTSNDP-HC. Boland et al. (2017) described a lower bound for the CTSNDP based on a special

case of formulation SND-HC(DT ) where variables wk
i and constraints (7) are disregarded, since

in-storage holding costs hk
i are all equal to zero. They show that the following three properties of

the partial network DT suffice to provide a valid lower bound on z(DT̂ ).

Property 1 For all commodities k ∈K, the nodes (ok, ek) and (dk, lk) are in NT .

Property 2 Every arc ((i, t), (j, t))∈AT has t≤ t+ τij.

Property 3 For every arc a = (i, j) ∈ A in the flat network D, and for every node (i, t) in the

partial network DT , there is an arc a′ = ((i, t), (j, t)) in DT for some t ∈ NT (a′ is defined as a

timed copy of arc a in AT ).

Let (x̄, ȳ) be an optimal solution of formulation SND-HC(DT̂ ) with zero holding costs (i.e.,

an optimal CTSNDP solution) and let A = {((i, t), (j, t + τij)) ∈ AT̂ : y
t,t+τij
ij > 0} be the set of

arcs traversed by the commodities in the solution. For any arc a = ((i, t), (j, t+ τij)) ∈ A, define

ρi(t) = argmax{s ∈ Ti : s ≤ t}. The existence of ρi(t) is ensured by the three properties. Indeed,

denote τ ij as being the length of any shortest-time path from i to j in the flat network D. Then,

for each k ∈ K, and each i ∈ N a node (i, t) ∈ NT exists with t≤ ek + τ ok i. Further, by Property

3 a timed-copy arc ((i, ρi(t)), (j, t
′)) ∈ AT of arc a = ((i, t), (j, t+ τij))∈A exists in DT for some

(j, t′) ∈ NT , and define σ(a) to be any such t′. Based on these, Proposition 2 below shows that

formulation SND-HC(DT ) with zero holding costs defined over a network DT satisfying Properties

1, 2 and 3 is a valid relaxation for formulation SND-HC(DT̂ ).

Proposition 2 (Boland et al. (2017)) If the in-storage holding costs hk
i are all equal to zero,

the mapping of solution (x̄, ȳ) into a solution (x, y) of formulation SND-HC(DT ) defined by µ :

A→AT with µ(a) = ((i, ρi(t)), (j, σ(a))) and computed by the following expressions for each ã =

((i, t̃), (j, t̃′))∈AT :

xkt̃t̃′
ij =

∑
a=((i,t),(j,t+τij))∈A:

µ(a)=ã

x
kt,t+τij
ij and yt̃t̃

′
ij =

∑
a=((i,t),(j,t+τij))∈A:

µ(a)=ã

y
t,t+τij
ij , (13)

corresponds to a feasible solution of formulation SND-HC(DT ) of the same cost of solution (x̄, ȳ).

The proof of the above proposition is based on the observation that, for each commodity k ∈

K, to each path P
k
= (ak1 , . . . , a

k
ηk
), akh ∈ A, h = 1, . . . , ηk, induced by solution (x̄, ȳ) with akh =

((ikh, t
k
h), (i

k
h+1, t

k
h + τik

h
ik
h+1

)) and tkh+1 ≥ tkh + τik
h
ik
h+1

for h = 1, .., ηk − 1, there is a corresponding

feasible path P k = (µ(ak1), . . . , µ(a
k
ηk
)) in DT with appropriate holding arcs. Figure 3 illustrates the
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(a) Solution on the fully time-expanded network

(b) Mapped solution on the partially time-expanded network

service arc
hold-over arc

𝑖ℎ
𝑘  𝑖ℎ+1

𝑘  

𝒯 
𝑖ℎ
𝑘  

𝒯
𝑖ℎ
𝑘  

𝒯
𝑖ℎ+1
𝑘  

𝑡ℎ
𝑘  

𝑡ℎ
𝑘 + 𝜏

𝑖ℎ
𝑘 𝑖ℎ+1

𝑘  𝑡ℎ+1
𝑘  

𝜗(⋅) = 𝜌𝑖ℎ
𝑘(𝑡ℎ

𝑘) 

𝜓(⋅) 𝜗(⋅) = 𝜌𝑖ℎ+1
𝑘 (𝑡ℎ+1

𝑘 ) 

 

holding time
upper bound on holding time

time

𝛿(⋅) 𝜉(⋅) 

lower bound on holding time

𝜎𝑖ℎ
𝑘(𝑎ℎ

𝑘) 

𝜉(⋅) 

+𝜏𝑖ℎ𝑘 𝑖ℎ+1𝑘  
+𝜏𝑖ℎ

𝑘 𝑖ℎ+1
𝑘  

𝒯 
𝑖ℎ+1
𝑘  

Figure 3 Mapping functions and bounds on holding time

mapping for arc akh. The above proposition relies on the fact that adding additional holding arcs

does not result in additional costs. As Figure 3 shows, the holding time wk
ik
h+1

= ρik
h+1

(tkh+1)−σik
h
(akh)

of the partially time-expanded network can be larger than the true holding time wk
ik
h+1

= tkh+1−(tkh+

τik
h
ik
h+1

) of the fully time-expanded network. Therefore, in the presence of a nonzero holding cost,

the holding cost associated with solution (x, y,w) is not always less than or equal to the holding

cost associated with solution (x̄, ȳ, w̄). Thus, even under Properties 1-3, formulation SND-HC(DT )

does not provide a valid relaxation for formulation SND-HC(DT̂ ).

To obtain a valid relaxation for formulation SND-HC(DT̂ ), we derive a relaxation of equations

(7) based on the following observations. Let P k = (ak1 , . . . , a
k
ηk
) with akh = ((ikh, t

k
h), (i

k
h+1, t

k

h+1)),

h= 1, . . . , ηk, k ∈K, be a path in network DT̂ representing a feasible k-path, where we denote with

t
k

h and tkh the arrival and departure times at node ikh, h= 1, .., ηk +1, respectively:

(i) On the partial network DT satisfying Properties 1-3, with each arrival time t
k

h, h= 2, .., ηk+1,

we can associate a lower bound ťarr ≤ t
k

h computed as ťarr =ψk(µ(akh−1)) and an upper bound

t̂arr ≥ t
k

h computed as t̂arr = δk(µ(akh−1)). In addition, with each departure time tkh, we can

associate an upper bound t̂dep ≥ tkh computed as t̂dep = ξk(µ(akh)) and a lower bound ťdep ≤ tkh
computed as ťdep = ϑk(µ(akh)). With these, we can obtain an upper bound on the holding time

at node ih, i.e., t
k
h− t̄kh ≤ t̂arr− ťdep, as well as a lower bound on the holding time at node ih,

i.e., tkh− t̄kh ≥ ťarr− t̂dep.
(ii) Let T (P k) be the total transit time of path P k, computed as T (P k) =

∑ηk

h=1 τakh
. Then, the

total holding time of path P k must be equal to lk − ek −T (P k) since each commodity k ∈K
leaves its origin ok at time ek and arrives at its destination dk at time lk.



Shu, Xu, and Baldacci: CTSNDP with Inventory Holding Cost
18 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

For a commodity k ∈K, let ϕk(i, j) denote the time of the shortest-time path from node i to node

j in the flat network D with the reduced arc set A \ ({(i, ok) ∈ A : i ∈ N} ∪ {(dk, j) ∈ A : j ∈ N})
computed with respect to travel times τij.

Since the true arrival and departure times must be larger than the arrival time along the

shortest-path, the two lower bound functions ψk(a) and ϑk(a) for each k ∈K and a= ((i, t), (j, t))∈
AT can be computed as:

ψk(a) =max{t+ τij, e
k +ϕk(ok, i)+ τij}, (14)

ϑk(a) =max{t, ek +ϕk(ok, i)}. (15)

Further, for i∈N , let t⃗i(t) be the next time point of point t in set Ti computed as

t⃗i(t) =

{
argmin{t′ ∈ Ti : t′ > t}, if t < argmax{t′ ∈ Ti},
maxk∈K(l

k−ϕk(i, dk)), if t= argmax{t′ ∈ Ti},
(16)

where the term lk−ϕk(i, dk) represents the latest departure time from node i for commodity k to

arrive at its destination dk before lk. Function ξk(a) for for each k ∈K and a= ((i, t), (j, t)) ∈AT ,

can be computed as:

ξk(a) =

{
min{t⃗i(t), lk− τij −ϕk(j, dk)}, if t⃗i(t)− t > 1,
min{t, lk− τij −ϕk(j, dk)}, otherwise.

(17)

Based on this, function δk(a) can be computed as:

δk(a) = ξk(a)+ τij. (18)

If the commodity k passes through arc a= ((i, t), (j, t)) ∈AT , functions ψ
k(a) and δk(a) compute

the lower and upper bounds of the true arrival time at terminal j, respectively. In contrast, functions

ϑk(a) and ξk(a) calculate the lower and upper bounds of the true departure time from terminal i,

respectively. Figure 3 gives an example of how these four functions produce valid lower and upper

bounds for the true holding time.

Based on the above observations, we obtain the following relaxation of formulation SND-HC(DT̂ ),

called SND-HC-R(DT ):

zR(DT ) =min
∑

((i,t),(j,t))∈AT

fijy
tt
ij +

∑
k∈K

∑
((i,t),(j,t))∈AT

(ckijq
k)xktt

ij +
∑
k∈K

∑
i∈N

(hk
i q

k)wk
i (19)

s.t. (5), (6), (8), (9), (10) and (20)

wk
i ≤


∑

a=((i,t),(j,t))∈AT
ξk(a)xktt

ij − ek, i= ok,

lk−
∑

a=((j,t),(i,t))∈AT
ψk(a)xktt

ji , i= dk, ∀ i∈N ,∀ k ∈K,∑
a=((i,t),(j,t))∈AT

ξk(a)xktt
ij −

∑
a=((j,t),(i,t))∈AT

ψk(a)xktt
ji , otherwise,

(21)

wk
i ≥


∑

a=((i,t),(j,t))∈AT
ϑk(a)xktt

ij − ek, i= ok,

lk−
∑

a=((j,t),(i,t))∈AT
δk(a)xktt

ji , i= dk, ∀ i∈N ,∀ k ∈K,∑
a=((i,t),(j,t))∈AT

ϑk(a)xktt
ij −

∑
a=((j,t),(i,t))∈AT

δk(a)xktt
ji , otherwise,

(22)

∑
i∈N

wk
i = lk− ek−

∑
((i,t),(j,t))∈AT

τijx
ktt
ij , ∀ k ∈K. (23)
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Inequalities (21) and (22) relax equations (7), whereas constraints (23) impose the total holding

time of each commodity k ∈K. The following Theorem 1 holds. The lower bound LB of the exact

algorithm is thus computed as LB = zR(DT ) where, in the computational results reported in §5,

relaxation SND-HC-R(DT ) is solved to optimality by means of a general MIP solver.

Theorem 1 If the partial time-expanded network DT satisfies Properties 1-3, then zR(DT ) ≤
z(DT̂ ), i.e., SND-HC-R(DT ) is a valid relaxation of SND-HC(DT̂ ).

Proof. The proof is provided in §EC.1.2 in the e-companion to this paper. □

The quality of relaxation SND-HC-R(DT ) strongly affects the effectiveness of the DDD

algorithm for solving the CTSNDP-HC. Here, we further describe ways to strengthen relaxation

SND-HC-R(DT ) in order to obtain tighter lower bounds.

As discussed by Boland et al. (2017), the CTSNDP relaxation can be strengthened by means of

the following additional property, based on which we can establish Theorem 2 below.

Property 4 (Longest-feasible-arc) Network DT satisfies the longest-feasible-arc property if for

each arc ((i, t), (j, t′)) ∈ AT there does not exist a node (j, t′′) ∈ NT with t′ < t′′ ≤ t + τij, i.e.,

t′ = argmax{s : s≤ t+ τij, (j, s)∈NT }.

Theorem 2 For a fixed set of time points NT , among the partial time-expanded networks DT =

(NT ,HT ∪AT ) satisfying Properties 1-3, consider the one DT = (NT ,HT ∪AT ) that also satisfies

Property 4. We have that zR(DT )≥ zR(DT ) for all DT satisfying Properties 1-3.

Proof. The proof is provided in §EC.1.3 in the e-companion to this paper. □

We also include two additional sets of valid inequalities to further strengthen relaxation

SND-HC-R(DT ). We first observe that since variables w are nonnegative, equations (23) thus imply

that ∑
((i,t),(j,t))∈AT

τijx
ktt
ij ≤ lk− ek, ∀ k ∈K, (24)

that is, a path P k for commodity k ∈ K from the origin ok to the destination dk cannot exceed

the maximum transit time computed as lk− ek. Define Kk
ij = {k′ : ek +ϕk(ok, i)+ τij +ϕk′(j, dk

′
)>

lk
′
or ek

′
+ ϕk′(ok

′
, i) + τij + ϕk(j, dk) > lk}. We observe that any commodity k′ ∈ Kk

ij cannot be

consolidated with commodity k on arc (i, j), thus deriving the following valid inequalities:⌈
qk

uij

⌉
uijx

ktt
ij +

∑
k∈Kk

ij

qkxktt
ij ≤ uijy

tt
ij, ∀ ((i, t), (j, t))∈AT , k ∈K. (25)

Inequalities (25) strengthen the following inequalities proposed by Marshall et al. (2021):⌈
qk

uij

⌉
xktt
ij ≤ yttij, ∀ ((i, t), (j, t))∈AT , k ∈K. (26)
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Moreover, some variables could be safely removed to strengthen the relaxation further because

they cannot be part of any optimal SND-HC-R(DT ) solution. Following Marshall et al. (2021),

variables xktt
ij can be safely removed if t+ τij +ϕ

k(j, dk)> lk or there exists a time point t′ ∈ Ti with

t′ > t and t′ ≤ ek + ϕk(ok, i). After removing these variables, for a time point (i, t) ∈ NT , if there

does not exist any variable xktt′
ji for an arc ((j, t), (i, t′)) ∈AT with t′ ∈ Ti and t′ ≤ t, according to

the flow balance constraints, all variables xktt
ij for arcs ((i, t), (j, t))∈AT must take a value of zero

and can be safely removed.

4.2. Initial partially time-expanded network

Without loss of generality, we assume that mink∈K{ek} = 0. The initial partially time-expanded

network DT = (NT ,HT ∪AT ) is defined in order to satisfy Properties 1-4 as follows:

• According to Property 1, for all k ∈K, node (ok, ek) and (dk, lk) are included in NT .

• According to Properties 2 and 3, for each i∈N , a node (i,0) is added to NT . Moreover, based

also on Property 4, for each node (i, t) ∈ NT and for each arc (i, j) ∈ A, arc ((i, t), (j, t′)) with

t′ = argmax{s∈ Tj : s≤ t+ τij} is added to AT .

• For each (i, t)∈NT , arc ((i, t), (i, t
′)) is added to HT where t′ = argmin{s∈ Ti : s > t}, i.e., the

holding arcs between two consecutive time points are added to set HT .

Moreover, functions ψ(.), ϑ(.), δ(.) and ξ(.) are initialized based on the initial partially

time-expanded network and expressions (14), (15), (18), and (17).

4.3. Computing a feasible CTSNDP-HC solution

Our exact algorithm utilizes a heuristic method based on the flat solution S = (P,C) computed

by solving relaxation SND-HC-R(DT ) and the implementable model IM(S) described in §3.3 to

derive a feasible CTSNDP-HC solution.

For a given flat solution S associated with a feasible solution of relaxation SND-HC-R(DT ), due

to inequalities (24), formulation IM(S) without consolidation constraints (12d) can be decomposed

into |K| subproblems, and always admits a feasible solution. Hence, the source of an infeasibility

for formulation IM(S) is related to consolidation constraints (12d). Based on this observation, we

propose a heuristic method which iteratively solves formulation IM(S) and selectively removes

infeasible consolidation constraints (12d) when formulation IM(S) is infeasible.

The heuristic method identifies infeasible consolidation constraints by computing an irreducibly

inconsistent system (IIS) of formulation IM(S), which is a description of the minimal subproblem

that is still infeasible (Van Loon 1981, Chinneck and Dravnieks 1991). An infeasible subproblem

is minimal if, when any of the constraints are removed, the infeasibility vanishes, and algorithms

for identifying IIS have been investigated in Gleeson and Ryan (1990) and Chinneck (1997). As

when an infeasible consolidation constraint (12d) for commodity k on arc (i, j) is removed from
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Algorithm 2: Deriving a primal solution to the CTSNDP-HC

Input: Flat solution S = (P,C)
Output: Upper bound UB
begin

// Initialization

1 J ←{1, . . . , |C|};
// Derive a feasible CTSNDP-HC solution

2 Let LP be model IM(S) without constraints (12d);
3 Solve problem LP with consolidation constraints in J ;
4 while LP is infeasible do

5 Detect an IIS and select from the IIS the set J ′ ⊆J and compute r∗ = argmin{f̂r : r ∈J ′};
6 J ←J \{r∗};
7 Solve problem LP with consolidation constraints in J ;
8 end

// A feasible solution has been identified

9 UB← ẑfc + ẑw;
10 return UB;
11 end

the IM(S), the total fixed cost may increase by f̂ = fij ⌈qk/uij⌉. Based on the latter observation,

the heuristic identifies the infeasible consolidation constraint (12d) that has minimal f̂ . Algorithm

2 gives the steps of the heuristic method. In the algorithm, sets J represents index sets associated

with consolidation constraints (12d). The algorithm iteratively solves an LP model until a feasible

solution is found. The solution of the final LP model provides the arrival and departure times

associated with the final feasible CTSNDP-HC solution of cost UB.

4.4. Refining a partially time-expanded network

This section describes the refinement strategies used to refine a partially time-expanded network.

Our refinement strategies use the same refinement operations proposed by Boland et al. (2017) and

also used by Hewitt (2022) to update the partially time-expanded network once new time points

have been identified. They differ from the refinement strategies of Boland et al. (2017) and Hewitt

(2022) on the methods used to determine the new time points.

Let (x, y,w) be an optimal solution of relaxation SND-HC-R(DT ) with objective value LB,

and let S be the corresponding flat solution. We have LB = zfc(S) + zw(LB), where zw(LB) =∑
k∈K

∑
i∈N (hk

i q
k)wk

i . Algorithm 2 computes an upper bound UB = ẑfc+ ẑw. For the CTSNDP-HC,

due to the presence of the in-storage holding costs and the approximation introduced by relaxation

SND-HC-R(DT ), an implementable solution S can correspond to a feasible solution with cost

UB = zfc(S)+zw(S) greater than the cost of the current lower bound LB, and optimality cannot be

proved. However, clearly, if UB =LB, then an optimal CTSNDP-HC solution has been identified.

The following Lemma 1 gives optimality conditions under which a lower bound solution (x, y,w)

of cost LB represents an optimal solution to the CTSNDP-HC such that LB =UB.
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Lemma 1 Consider an optimal solution (x, y,w) of relaxation SND-HC-R(DT ) with cost LB.

Define a solution θki , i∈N , k ∈K, associated with solution (x, y,w), computed as follows:

θki =


∑

a=((i,t),(j,t))∈AT
txktt

ij − ek, i= ok,

lk−
∑

a=((j,t),(i,t))∈AT
ψk(a)xktt

ji , i= dk, ∀ i∈N , k ∈K,∑
a=((i,t),(j,t))∈AT

txktt
ij −

∑
a=((j,t),(i,t))∈AT

ψk(a)xktt
ji , otherwise.

(27)

If (i) t= t+ τij for each a= ((i, t), (j, t))∈AT with xktt
ij = 1 for some k ∈K and (ii) wk

i = θki for all

i∈N , k ∈K, then solution (x, y,w) is an optimal CTSNDP-HC solution of cost UB =LB.

Proof. The proof is provided in §EC.1.4 in the e-companion to this paper. □

If our exact algorithm (adapted from Algorithm 1 in §4) does not terminate, then the upper

bound UB computed by Algorithm 2 is greater than the current lower bound LB, and the

corresponding gap is greater than the given optimality tolerance. In this case, at least one of the

optimality conditions in Lemma 1 is violated and the algorithm updates the partial time-expanded

network DT with new time points (i, t) based on the following two cases.

(i) Some commodity k ∈K passes through a short-arc ((i, t), (j, t′)) ∈A with t′ < t+ τij. In this

case, the flat solution S may be non-implementable, as there may be at least one commodity

k ∈K routed on a short-arc ((i, t), (j, t′))∈A with t′ < t+τij that enables it to be involved in an

infeasible consolidation. Even though the flat solution S is proven to be implementable, it may

still contain some short-arcs. This implies that different from the case with zero holding costs,

in which short-arcs need to be refined only when the flat solution S is non-implementable,

the algorithm for the CTSNDP-HC needs to lengthen the short-arcs identified by adding new

time points to network DT regardless the flat solution S is implementable or not. To do so,

when the flat solution S is non-implementable, we apply the lengthen-arc procedure presented

in Boland et al. (2017) for all short-arcs ((i, t), (j, t′)) ∈AT with t′ < t+ τij included in each

IIS obtained by Algorithm 2. The lengthen-arc procedure lengthens the short-arc ((i, t), (j, t′))

by invoking the refine and restore procedures presented in Boland et al. (2017) to add the

time point (i, t+ τij) to the node set NT and revise the corresponding arcs to satisfy the

network properties. In addition, we refine an additional set of short-arcs ((i, t), (j, t′)) ∈ AT

with t′ < t+ τij used in the LB solution by also using the lengthen-arc procedure presented

in Boland et al. (2017). We call the resulting refinement strategy refinement strategy 1 .

(ii) There is at least one pair (i, k), i ∈ N , k ∈ K, such that θki ̸= wk
i . We observe that when

no commodity uses a short-arc ((i, t), (j, t′)) with t′ < t+ τij, for each commodity k ∈ K the

following equation holds∑
i∈N

θki = ll− ek−
∑

((i,t),(j,t))∈AT

(t− t)xk t t
ij = ll− ek−

∑
((i,t),(j,t))∈AT

τijx
ktt
ij =

∑
i∈N

wk
i , (28)
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as ψk(a) = t and t− t= τij for each a= ((i, t), (j, t)) ∈ AT with xktt
ij = 1. The equation (28)

illustrates that when the lower bound solution contains no short-arcs ((i, t), (j, t′)) ∈A with

xktt
ij = 1 for some k ∈ K, if θ ̸= w, there is at least one θki with θki ≥ 0 and θki < wk

i . The

corresponding ξk(a) is thus too weak to obtain a tight holding cost relaxation, with wk
i − θki

identifying the degree of the weakness of the value of ξk(a). This implies that the value of t⃗i(t)

should be reduced. Based on this observation, in this case, we only consider refining when

we find a θki ≥ 0 with θki <wk
i as finally all short-arcs will be eliminated by the case (i). For

each a= ((i, t), (j, t))∈AT with xktt
ij = 1, θki ≥ 0 and θki <wk

i , we have t+(wk
i − θki )≤ t⃗i(t) as

wk
i ≤ t⃗i(t)−ψk(a) and θki = t−ψk(a) according to (21) and (27), and t⃗i(t)> t+1 according

to the definition of function t⃗i(t) in (16). We then identify the half-way time point between t

and t+(wk
i − θki ) for node i, i.e., (i, t+max{⌊(wk

i − θki )/2⌋,1}), which must be missing in the

current network DT as t < t+max{⌊(wk
i −θki )/2⌋,1}< t⃗i(t). In this way, we can generate a set

of new time points T new
(i,t) that aim to tighten the value of t⃗i(t) for each time point (i, t)∈NT .

We then add each new time point identified to the network DT by applying the refine and

restore procedures presented in Boland et al. (2017). We call the resulting refinement strategy

refinement strategy 2 .

To summarise, to refine a partial network, we first apply refinement strategy 1 to refine short-arcs

used in the LB solution and then apply refinement strategy 2 to further tighten the relaxation of

holding times. The refine and restore procedures presented in Boland et al. (2017) and used in

each refinement strategy will ensure that after refining, the four properties of the partial network

are maintained. For refinement strategy 1, we found computationally convenient to lengthen the

short-arcs identified by Algorithm 2 and lengthen a subset of the remaining short-arcs for the

additional set. More specifically, after refining all short-arcs identified by Algorithm 2, the remaining

short-arcs are first sorted for increasing order of their dispatch times and then at most |K|/5 arcs

are selected and lengthened. For refinement strategy 2, the time points (i, tnew) in T new
(i,t) are added

to the node set NT for increasing values of the time tnew. A new time point (i, tnew) is added only

if the value tnew is less than the current t⃗i(t), as if t
new ≥ t⃗i(t), the value of t⃗i(t) cannot be further

reduced. It is worth noting that the four functions ψ(.), ϑ(.), δ(.) and ξ(.) change according to the

updated network DT .

4.5. Convergence and optimality

According to Lemma 1, in each iteration of the algorithm, if LB < UB then at least one of

optimality conditions (i) and (ii) is violated. Thus, according to the refinement strategy, at least

one short-arc is lengthened, or at least one missing time point is added to the partial network.

Since there are only a finite number of arcs and time points in the fully time-expanded network DT̂ ,
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after a finite number of iterations, the algorithm converges according to Lemma 1 or the network

DT is equivalent to DT̂ . In both cases, the algorithm will terminate with an optimal solution to

the CTSNDP-HC. We have thus established the following result.

Theorem 3 If the optimality tolerance is set equal to zero, the DDD algorithm for the

CTSNDP-HC converges to optimality after finitely many iterations.

5. Computational experiments

In this section, we present extensive computational analysis based on two sets of experiments.

Through the first set of experiments (see §5.1), we evaluate the performance of the DDD

algorithm for the CTSNDP-HC on instances derived from the literature. Through the second set

of experiments (see §5.2), we examine the quality of the solutions produced on an additional set of

instances to analyze the impact of holding costs on the decisions in CTSNDP. Based on the results

from these two sets of experiments, we evaluate the effectiveness of the proposed DDD algorithm

for the CTSNDP-HC and investigate the importance and benefits of taking holding costs into

account in solving the CTSNDP.

We denote with EXM our DDD algorithm for the CTSNDP-HC. In order to further compare

the performance of EXM, we also implemented the algorithm proposed by Boland et al. (2017) for

the CTSNDP, hereafter denoted as EXM-0. A preliminary experiment can be found in §EC.2.4 of

the e-companion, which confirms the effectiveness of our implementation of the EXM-0 algorithm.

Thus, we take the algorithm EXM-0 as a baseline algorithm to compute heuristic solutions for the

CTSNDP-HC and to analyze the performance of the algorithm EXM. In the following experiments,

we solve each of the considered instances to an optimility gap of 0.01 with a time limit of 2 hours

for both EXM and EXM-0. More implementation details of computational experiments, including

the coding and computational environment, can be found in EC.2.1 of the e-companion.

5.1. Experiments based on CTSNDP-HC instances generated from CTSNDP
benchmark instances

In our first set of experiments, we aimed to test the performance of EXM in solving CTSNDP

benchmark instances used in the literature and CTSNDP-HC instances generated from these

CTSNDP benchmark instances.

5.1.1. Instances We considered the set of 558 CTSNDP instances generated by Boland et al.

(2018) that also contains the 432 instances used by Boland et al. (2017). The 558 instances were

also used by Marshall et al. (2021) to obtain their computational results. These instances were

derived from 31 classes of the “C” instances presented in Crainic et al. (2001) which have been used

as benchmark instances for the capacitated fixed charge network design problem. For each of the 31
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classes of networks, Boland et al. (2018) generated 18 CTSNDP timed instances by first calculating

the travel times for each arc and then by generating the time windows for each commodity by

randomly sampling from a normal distribution. Based on Boland and Savelsbergh (2019) and as

also reported by Marshall et al. (2021), these instances can also be grouped by the flexibility and

cost ratio of the instances, these being a measure of the tractability of the instances. An instance has

(i) low flexibility (LF) if mink∈K{lk− (ek + τ ok dk)}< 227, and high flexibility (HF) otherwise, and

(ii) low cost ratio (LC) if 1
|A|

∑
a∈A

fa
caua

< 0.175, and high cost ratio (HC) otherwise. The instances

are then grouped according to the two measures, resulting in the four groups of instances, namely,

“HC/LF”, “HC/HF”, “LC/LF” and “LC/HF”. For each of the considered CTSNDP instances,

we generated a CTSNDP-HC instance by setting the per-unit-of-demand-and-time holding cost hk
i

(see §EC.2.2 of the e-companion for details).

5.1.2. Results In this section, we analyze the performance of EXM in solving instances of both

CTSNDP (with zero holding costs) and CTSNDP-HC (with nonzero holding costs). We executed

EXM for the corresponding 558 CTSNDP-HC instances and executed EXM-0 for the corresponding

558 CTSNDP instances. To attest to the effectiveness of EXM in solving the CTSNDP instances,

we also used algorithm EXM to solve the set of CTSNDP instances, that is, EXM is used by setting

the holding costs equal to zero.

Table 2 reports the corresponding results based on the categories of the flexibility and cost ratio

of the instances. The following notation is used:

• LB0, UB0: final lower and upper bounds computed by EXM-0, respectively.

• UB1: value of the CTSNDP-HC solution derived from the upper bound UB0 computed by

algorithm EXM-0, calculated based on the flat solution Ŝ of the solution UB0. Upper bound UB1

is computed as cost zfc(Ŝ)+zw(Ŝ) where zw(Ŝ) is the the optimal solution cost of problem IM(Ŝ).

• LB, UB: final lower and upper bounds computed by EXM, respectively.

For each method and group of instances, the table shows the percentage of instances solved to

optimality (“%opt”), the average percentage deviation of lower bound LB with respect to lower

bound LB0 (i.e., %LB0 = 100.0× LB−LB0
LB0

) and the percentage deviations of the different upper

bounds computed as %UB0 = 100.0 × UB0−LB0
UB0

, %UB1 = 100.0 × UB1−UB
UB1

and %UB = 100.0 ×
UB−LB

UB
. For the different percentage deviations, the min and max values are also reported. For

UB0 and UB, the deviations are computed over all instances not solved to optimality, whereas

the deviations of UB1 are computed over all instances. Columns time and iter give the average

computing time and number of iterations, respectively, computed over all instances. Column %tLB

reports the percentage of the total time spent in computing the lower bound, i.e., the percentage

of the total time spent by the MIP solver over the total computing time.
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Table 2 Summary results on the CTSNDP-HC instances

Zero holding costs Nonzero holding costs

EXM-0 EXM EXM

%UB0 %UB %UB %LB0 %UB1
Group %opt min max avg time %tLB iter %opt min max avg time %tLB iter %opt min max avg time %tLB iter avg avg max

HC/LF 96.7 1.1 4.5 3.3 345.3 90.4 10.1 99.5 1.1 1.1 1.1 181.8 86.0 4.2 98.4 1.1 1.9 1.6 279.3 86.6 4.4 4.1 0.8 5.3

HC/HF 71.8 1.0 23.3 7.5 2726.1 96.3 11.6 81.9 1.1 5.0 2.4 1936.0 93.6 6.5 65.5 1.0 6.1 2.9 2902.7 94.4 6.2 10.6 3.9 17.9

LC/LF 100.0 - - - 0.5 66.6 3.5 100.0 - - - 0.6 68.6 1.8 100.0 - - - 0.7 62.3 1.8 0.7 0.0 1.0

LC/HF 100.0 - - - 0.1 52.8 1.6 100.0 - - - 0.1 68.6 1.2 100.0 - - - 0.2 57.0 2.3 0.8 1.1 8.0

Note: “-” represents that all instances in the corresponding instance group are solved to optimal by the

corresponding method.

Table 2 indicates that EXM achieves a better performance than that of EXM-0 when used to

solve the CTSNDP instances with zero holding cost. Algorithm EXM can solve more instances to

optimality and provides better optimality gaps for the unsolved instances. Moreover, on average,

it requires a smaller number of iterations and a shorter computing time to converge to optimality.

This improved performance can be due to the effectiveness of the new valid inequalities (25), as

shown by Table 4 for algorithm EXM.

The results on the CTSNDP-HC instances show that CTSNDP-HC instances of groups LC/LF

and LC/HF can also be easily solved by EXM, as with the CTSNDP case. Conversely, the instances

of groupsHC/LF andHC/HF are more difficult to solve, as shown by the percentages of instances

solved to optimality. In particular, for groups HC/HF that are characterized by a high cost ratio

and high flexibility, a trade-off between fixed, flow, and holding costs is the most difficult to achieve.

The summary results of Table 2 show that, compared with EXM-0, algorithm EXM generates

better lower and upper bounds for the CTSNDP-HC. On the most difficult instances of group

HC/HF, the solutions obtained by EXM improve those derived from the solutions obtained by

EXM-0 significantly. It thus implies that a significant cost saving can be gained in some cases by

taking into account holding costs when solving the CTSNDP. A more significant improvement on

the lower bound is observed for the instances with a high cost ratio. Not surprisingly, for the LC/LF

instances, the upper bound UB1 based on EXM-0 has comparable performance to the solutions

obtained by EXM, as the low cost ratio and low flexibility leave little room for improvement on

the total cost by adjusting the holding plan.

To further analyze the effectiveness of the DDD approach and impact of the holding cost, Figure 4

shows the relative sizes (average percentage values), in terms of the number of variables (“vars”)

and constraints (“cons”) of the final relaxation models (models SND(DT ) and SND-HC-R(DT )

associated with the last iteration of the DDD algorithm) solved by algorithms EXM-0 and EXM

with respect to the models associated with the fully time-expanded networks. The figure also shows

the relative number of time points (“%nds”) of the final partial network DT over the full network.
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Figure 4 Comparison of partially and fully time-expanded networks

The figure clearly shows the advantage of the DDD approach, which is capable of computing optimal

solutions considering only a reduced set of time points of the full network. What is more, the sizes

of the MIP solvers solved at the different iterations are confined to small portions of the model

associated with the fully time-expanded networks, a very relevant feature given the complexity

of solving time-index formulations. A comparison with the results using EXM-0 shows that EXM

requires about twice the number of variables and constraints of EXM-0 for some instances set,

which indicates an increased complexity of the problem after incorporating holding costs.

Table 3 CTSNDP-HC instances: holding costs, holding times and consolidations

HC/LF HC/HF LC/LF LC/HF

%hc %ht %cs %hc %ht %cs %hc %ht %cs %hc %ht %cs

UB1 4.4 7.8 46.9 9.2 9.9 55.4 0.6 3.2 14.7 1.9 2.4 9.5
UB 2.9 6.0 44.1 5.6 7.1 52.2 0.4 2.5 12.6 0.5 1.0 5.7

Table 3 summarizes relevant details of the solutions corresponding to the upper bounds UB1 and

UB for the instances that are solved to optimality by both EXM and EXM-0. More specifically, the

table reports the following average percentage values: (i) %hc, the holding cost over the total cost,

(ii) %ht, the holding time over the total transit time, and (iii) %cs, the number of consolidation

arcs over the total number of arcs used by the solution. The table also shows that the solutions

computed by EXM achieve a marginal reduction in terms of holding times (and corresponding

holding costs) with respect to the solutions derived from EXM-0. This reduction is achieved by a

decrease in the percentages of consolidations (see column %cs). These also reveal the significant

effect of the holding cost on the decisions of holding and consolidation in the CTSNDP.

We conducted additional experiments to verify the effectiveness of each proposed component

of EXM. To evaluate the effectiveness of valid inequalities (22) and (25), we tested the following

variants of algorithm EXM: i) without constraints (22) and (25), ii) without constraints (25), and

iii) replacing constraints (25) with constraints (26) described by Marshall et al. (2021). During

preliminary experiments, we observed that the effectiveness of the valid inequalities is negligible

in the LC class of instances. We, therefore, give the results on the HC class of instances using the
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Table 4 Computational results for EXM variants with different valid inequalities

Group Algorithm %LBfi

%UB
time iter %optmin max avg

HC/LF

EXM - (22) - (25) 0.0 1.3 2.5 1.9 824.1 8.1 95.6
EXM - (25) 1.7 1.1 2.4 1.6 572.2 6.0 95.6
EXM - (25) + (26) 3.0 1.1 1.6 1.3 295.2 4.8 98.4
EXM 5.6 1.1 1.9 1.6 279.3 4.4 98.4

HC/HF

EXM - (22) - (25) 0.0 1.0 13.4 3.9 3444.7 8.6 56.5
EXM - (25) 4.3 1.0 10.0 3.7 3279.0 6.6 60.5
EXM - (25) + (26) 5.1 1.0 9.3 3.2 3055.4 6.5 62.7
EXM 10.2 1.0 6.1 2.9 2902.7 6.2 65.5

same notation introduced in Table 2. Table 4 shows the results obtained where column %LBfi

reports the average percentage deviation of the lower bound LB obtained at the first iteration

of each algorithm with respect to the lower bound obtained at first iteration by algorithm EXM

without constraints (22) and (25). The table shows that constraints (22) and (25) significantly

affect algorithm performance. Indeed, after adding constraints (22), 4% more HC/HF instances

can be solved to optimality, and a tighter lower bound is achieved as shown by the %LBfi values.

The constraints (26) proposed by Marshall et al. (2021) improve the algorithm performance in

terms of both the optimality rate and the computational time. However, using constraints (25),

the algorithm can be further enhanced, as 3% more HC/HF instances are solved to optimality.

In addition, the lower bound LB at the first iteration is tightened further. Section §EC.2.5 of the

e-companion to this paper reports the results of the upper bound heuristic and refinement strategy.

5.2. Experiments on newly generated CTSNDP-HC benchmark instances

For our second set of experiments, we generated a new set of CTSNDP-HC instances with different

levels of connectivity of the underlying physical network (spatial component) and flexibility of

the shipments’ time requirements (temporal component). We thus examine the benefits gained by

incorporating holding costs into the CTSNDP and the impact of the holding cost on the solution

structure in these more differentiated instances.

5.2.1. Instances We generated the new instances with different network connectivity and time

flexibility based on 31 sets of the “C” instances presented in Crainic et al. (2001). We considered

four levels of network connectivity, i.e., D1, D2, D3, D4, and three different time flexibilities drawn

from three different normal contributions, i.e., distribution A, B and C, respectively. As such, we

obtained 12 sets of new instances, for each of which, we randomly generated three instances, so

that a total of 3× (31× 4× 3) = 1116 instances were produced.

Given an instance and the associated network Dx, x ∈ {1,2,3,4}, the minimum ok − dk cut

(denoted as (S,N \ S)k) in Dx, ∀k ∈ K and mink∈K{|(S,N \ S)k|}, i.e., the cardinality of the cut
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Table 5 Connectivity properties of the new

CTSNDP-HC instances

Network Min cut. Avg cut.

D1 7 12

D2 4 8

D3 2 4

D4 1 1

Table 6 Time flexibility of the new

CTSNDP-HC instances

Normal

Distribution
Mean(µ) StdDev(σ)

A 1
2
lavg

1
6
µ

B lavg
1
6
µ

C 3
2
lavg

1
6
µ

having the minimum cardinality among the different ok − dk pair, can be easily computed. For

each type of network, Table 5 summarizes the connectivity properties of the newly generated

CTSNDP-HC instances by reporting the cardinality of the cut having the minimum cardinality

(“Min cut”) and the average cardinality of all the minimum ok − dk cuts (“Avg cut”) computed

over all instances belonging to this particular type of network. Norms and standard deviations of

the three different normal distributions (named distribution A, B and C) are shown in Table 6,

where lavg represents the average length of the shortest-time paths over all commodities. For other

details of the generation of these 1116 instances, see §EC.2.3 of the online companion.

5.2.2. Results For each of the newly generated CTSNDP-HC instances, we execute algorithm

EXM and EXM-0, with the holding costs set to be zero for EXM-0. Table 7 summarizes the results

obtained using the same notation introduced in Table 2. The instances are grouped by distribution

and network types. The average values of time, and iter are computed over all instances. The

deviations relative to UB0 and UB are computed over all instances not solved to optimality,

whereas the deviations relative to LB0 and UB1 are computed over all instances.

EXM significantly outperforms EXM-0 in this set of instances regarding the optimality rate

and computational time. Therefore, the results confirmed the effectiveness of our new relaxation

tightening methods, upper bound heuristic, and refinement strategies. We also note that an

increasing time flexibility corresponds to the ordering of distributions A, B and C, whereas a

decreasing connectivity level is associated with the ordering of networks D1, D2, D3 and D4. The

results shown in the table indicate that, for both EXM-0 (CTSNDP case) and EXM (CTSNDP-HC

case), the instances characterized by high time flexibility and connectivity levels are particularly

difficult. Such difficulty is due to the following reason: Under higher time flexibility and connectivity,

more consolidation opportunities are allowed, as well as more alternative services are available.

These increase the difficulty of the MIP problems to be solved, displaying many equivalent solutions

that significantly blows up the sizes of the branch-and-bound trees. As a consequence, and as also

shown by the percentage of the time spent in solving the relaxation model, the entire solution

process is slowed down.
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Table 7 Summary results on the new CTSNDP-HC instances

Zero holding costs Nonzero holding costs

EXM-0 EXM

%UB0 %UB %LB0 %UB1
Dist. Network %opt min max avg time %tLB iter %opt min max avg time %tLB iter avg avg max

A D1 86.0 1.1 18.0 8.6 1394.2 82.5 7.0 97.8 1.1 2.1 1.6 183.7 86.3 4.0 7.3 4.1 15.7
D2 83.9 1.1 21.2 8.2 1439.5 80.4 5.8 98.9 2.3 2.3 2.3 116.7 84.9 3.8 8.0 4.6 17.6
D3 86.0 1.7 33.0 11.2 1286.8 78.4 5.7 98.9 1.2 1.2 1.2 175.0 80.5 3.8 8.8 5.2 24.4
D4 87.1 2.2 24.5 9.7 1001.9 76.9 5.8 98.9 1.8 1.8 1.8 103.0 78.6 3.8 9.0 5.9 23.4

B D1 58.1 2.8 46.7 19.0 3293.3 90.2 3.8 84.9 1.1 6.8 3.0 1810.4 95.5 4.7 10.0 7.7 36.5
D2 58.1 3.4 49.1 19.1 3316.5 88.7 3.3 90.3 1.3 7.7 4.0 1246.9 94.6 4.8 11.8 9.9 34.8
D3 54.8 1.3 47.5 14.3 3429.4 82.5 2.8 89.2 1.0 6.3 2.7 906.9 89.8 4.9 11.3 10.1 37.1
D4 76.3 2.0 44.0 15.5 1947.9 79.3 4.1 95.7 1.3 2.8 1.9 348.2 85.1 5.1 10.7 10.4 37.1

C D1 47.3 1.5 57.2 22.7 3920.0 93.4 3.3 53.8 1.0 25.4 8.7 3586.5 98.5 4.0 6.9 6.5 44.7
D2 48.4 1.1 56.2 19.3 3838.7 90.6 2.9 59.1 1.0 19.7 4.6 3288.5 97.4 4.7 8.1 8.6 46.1
D3 52.7 3.7 56.1 16.2 3589.4 86.3 2.7 84.9 1.0 19.9 4.6 1650.8 94.0 5.1 11.0 11.8 43.1
D4 68.8 1.6 35.4 12.6 2372.3 81.1 3.4 94.6 3.0 3.0 3.0 452.3 87.5 5.6 10.6 14.1 45.8

In order to analyze the impact of the holding cost on the holding and consolidation decisions

of the CTSNDP, Table 8 reports a comparison between the solution structures of upper bounds

UB and UB1. Since the newly generated CTSNDP-HC instances are also based on the 31 “C”

classes of the CTSNDP benchmark instances, they can also be classified into 31 groups. For a fair

comparison, we only compare the group of instances for which all instances were solved optimally

by both EXM and EXM-0. The table shows the deviations of the upper bound value (%UB1), the

number of consolidations (%cs), and the ratios of the holding costs (%hc) and holding times (%ht).

In addition, the table gives the difference between the timed arcs used in the solutions computed

as da= 1
2
×
(

|A(UB1)|−|A(UB1)∩A(UB)|
|A(UB1)| + |A(UB)|−|A(UB1)∩A(UB)|

|A(UB)|

)
, where A(UB) and A(UB1) are the

sets of timed arcs used in the solutions of UB and UB1, respectively. Table 8 reports the average

of ratio da (%da). Table 8 also presents, for upper bounds UB and UB1, the percentage of the

commodities with different routing or scheduling plans (%dp). In particular, the percentage of the

commodities that use different delivery routes is reported under column %dr, and the percentage

of the commodities that use the same delivery routes but with different departure scheduling plans

is reported under column %ds. Columns “avg” and “max” give average and maximum values of

corresponding ratios.

Table 8 shows significant improvements of the optimal cost UB computed by EXM with

respect to the cost UB1 derived from the optimal CTSNDP solution computed by EXM-0. The

improvements clearly show the impact of the holding cost on the cost of the final solution.

They indicate that solving the CTSNDP and, based on the corresponding solutions, deriving

corresponding CTSNDP-HC solutions is not a valid option. The table also shows that, on average,

the solutions differ for about 23% of the total timed arcs used, and on average, one-third of
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Table 8 Analysis of the difference in terms of timed arcs used between upper bounds UB1 and UB

Dist. Network %UB1 %dp %da
%dr %ds EXM-0 EXM

avg max avg max %hc %ht %cs %hc %ht %cs

A

D1 1.6 22.4 14.1 1.0 7.5 21.4 42.5 3.2 6.7 40.9 1.2 3.9 32.9
D2 2.0 25.7 17.0 1.0 7.0 24.8 38.0 3.7 7.4 43.7 1.2 4.1 35.2
D3 2.4 29.8 19.9 0.4 2.6 29.4 42.5 4.5 8.3 49.1 1.4 4.4 38.0
D4 2.7 34.0 22.8 0.0 0.0 34.0 56.0 4.9 9.2 52.1 1.5 4.8 40.6

B

D1 3.0 25.6 16.8 2.1 7.5 23.5 45.0 5.3 8.7 47.4 1.6 4.3 38.2
D2 4.4 31.5 20.7 1.6 12.5 30.0 50.0 6.8 10.9 52.2 1.5 4.5 39.1
D3 5.2 35.7 25.1 1.2 5.1 34.6 60.0 7.7 12.1 54.4 1.8 5.2 42.6
D4 6.2 41.7 29.0 0.0 1.0 41.7 63.0 8.7 14.1 56.5 1.8 5.4 44.4

C

D1 5.1 31.2 20.9 3.3 11.0 27.9 44.0 7.7 10.3 50.6 1.7 4.1 37.2
D2 5.5 34.9 24.3 3.0 12.5 31.9 50.0 8.1 11.4 54.9 1.7 4.4 40.0
D3 7.3 39.7 26.2 1.6 10.0 38.1 57.5 9.9 15.1 58.0 1.6 5.1 41.5
D4 8.7 47.6 34.0 0.0 0.0 47.6 72.5 11.1 17.9 61.5 1.7 5.8 45.6

commodities take different routing and departure plans. In particular, for the case of distribution C

and network D2, up to 12.5% of the commodities are delivered by different paths. These differences

also show a reduction in the rate of holding times, holding costs, and consolidation arcs of the

solutions of UB with respect to the solutions of UB1. The differences in %UB1, %dp, and %da

are more significant for increasing flexibility level, and for a fixed flexibility level, for decreasing

connectivity level. The results demonstrate the holding costs’ significant impact on the solution

structure.

Figure 5 depicts the ratios of the holding costs and holding times shown in Table 8. Figure

5 shows significant increases in the two measures regarding upper bound UB1, again depending

on the connectivity of the underlying physical network and the flexibility of the shipments’ time

requirements. The values of the two measures are pretty stable concerning UB under different levels

of connectivity and flexibility, thus further highlighting the importance of considering holding costs

in solving the CTSNDP-HC, especially for instances with high flexibility and lower connectivity.

UB1 UB UB1 UB UB1 UB UB1 UB
0

5

10

15

20

25

30

35

6.7

4.1

7.4

4.1

8.3

4.4

9.2

4.8
3.2 1.2

3.7
1.2

4.5
1.4

4.9
1.5

D1 D2 D3 D4

%
va
lu
es

%hc %ht

(a) Distribution A

UB1 UB UB1 UB UB1 UB UB1 UB
0

5

10

15

20

25

30

35

8.7

4.3

10.9

4.5

12.1

5.2

14.1

5.4
5.3

1.6

6.8

1.5

7.3

1.8

8.7

1.8

D1 D2 D3 D4

%
va
lu
es

%hc %ht

(b) Distribution B

UB1 UB UB1 UB UB1 UB UB1 UB
0

5

10

15

20

25

30

35

10.3

4.1

11.4

4.4

15.1

5.1

17.9

5.87.7

1.7

8.1

1.7

9.9

1.6

11.1

1.7

D1 D2 D3 D4

%
va
lu
es

%hc %ht

(c) Distribution C
Figure 5 Ratios of the holding costs and holding times
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Furthermore, we conducted a sensitivity analysis on the unit holding cost. The results show that

the impact is significant for instances under different unit holding cost values. See §EC.2.6 of the

e-companion for details.

6. Conclusions

In this paper, we designed a new exact algorithm for a generalization of the continuous-time service

network design problem (CTSNDP), first studied by Boland et al. (2017), where in addition to

fixed and flow costs, holding costs are also considered (CTSNDP-HC). The exact algorithm uses

the same dynamic discretization discovery (DDD) solution framework proposed by Boland et al.

(2017) for the CTSNDP, but it extends the DDD framework in a number of non-trivial ways by

exploiting a new relaxation of a complete time-index model, a new upper bound heuristic, and

a new refinement strategy. The new algorithm was extensively tested both on instances derived

from the literature and on newly generated instances, with the aim of benchmarking the essential

factors of the CTSNDP-HC. In particular, to assess the impact of the holding costs, we designed

experiments by varying the connectivity of the underlying physical network and the flexibility of

the shipments’ time requirements. The results obtained not only show the effectiveness of the new

exact algorithm in solving challenging CTSNDP-HC instances involving up to 400 commodities,

but also indicate that ignoring the holding costs leads to poor quality solutions. The impact of

holding costs is significant particularly when the network is characterized by high flexibility and

low connectivity levels. Compared with the heuristic solution obtained by the method ignoring the

holding cost, the maximum cost saving percentage of the minimal total cost achieved by our exact

method can be up to 46.1%.

Finally, it is worth mentioning that the DDD algorithm for the CTSNDP proposed by Boland

et al. (2017) has been recently improved by Marshall et al. (2021) by considering time-expanded

networks based on time intervals instead of time points, and that the algorithm proposed in this

paper can be tailored to consider time intervals, together with the holding costs. In addition,

real-world service network design problems pose several challenging extensions, such as asset

management, terminal capacities and compatibility of commodities, which are characterized by

many shipments (and corresponding commodities). Our future work will therefore go in the

direction of considering these extensions and other important features of this class of problems.
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Proofs of statements and additional details about the
computational experiments

EC.1. Proof of statements
EC.1.1. Proof of Proposition 1

The matrix associated with constraints (12b), (12c) and (12d) has coefficients in {0,1,−1} and

each column of its transpose has exactly two nonzero elements of a different sign. Hence, it is

totally unimodular and, together with the bound constraints (12e)-(12i), ensures that the extreme

points of (12b)-(12i) are integral (see, for example Bertsimas and Weismantel 2005).□

EC.1.2. Proof of Theorem 1

Let (x̄, ȳ, w̄) be an optimal solution of formulation SND-HC(DT̂ ) (i.e., an optimal CTSNDP-HC

solution) of cost z, and let A= {((i, t), (j, t+τij))∈AT̂ : y
t,t+τij
ij > 0} be the set of arcs traversed by

the commodities. Below we show that to solution (x̄, ȳ, w̄) corresponds a feasible, but not necessarily

optimal, solution (x, y,w) of formulation SND-HC-R(DT ) of cost z = z.

By means of the mapping described by expressions (13), we can associate with vectors x̄ and

ȳ and corresponding paths {P k}k∈K, solution vectors x and y. As shown by Boland et al. (2017),

to solution vector x̄ corresponds a set {P k}k∈K of feasible paths in network DT , one path for each

commodity, with the same total fixed and flow cost of paths {P k}k∈K. More precisely, for each

commodity k ∈ K and path P
k
= (ak1 , . . . , a

k
ηk
), akh ∈A, h= 1, . . . , ηk, with akh = ((ikh, t

k
h), (i

k
h+1, t

k
h +

τik
h
ik
h+1

)) and tkh+1 ≥ tkh + τik
h
ik
h+1

for h = 1, .., ηk − 1 induced by solution vector x̄, corresponds a

feasible path P k = (µ(ak1), . . . , µ(a
k
ηk
)) in DT with appropriate holding arcs. For each k ∈K we have

that the total transit time T (P k) of path P k can be computed as

T (P k) = T (P
k
) =

ηk∑
h=1

τak
h
=

∑
((i,t),(j,t))∈A

τijx
ktt
ij =

∑
((i,t),(j,t))∈AT

τijx
ktt
ij . (EC.1)

The holding times w̄ of solution (x̄, ȳ, w̄) can be computed as:

wk
i =


tk1 − ek, i= ok,
lk− (tk

ηk
+ τik

ηk
dk), i= dk,

tkh− (tkh−1 + τik
h−1

ik
h
), i= ikh, h= 2, ..., ηk,

0, otherwise,

,∀ i∈N ,∀ k ∈K.

It is easy to see that for each k ∈K we have∑
i∈N

wk
i = lk− ek−T (P k

). (EC.2)

We now show that solution wk
i = wk

i , ∀i ∈ N , k ∈ K, satisfies constraints (21)-(23), thus showing

that to solution (x̄, ȳ, w̄) corresponds a feasible solution (x, y,w) of SND-HC-R(DT ) of the same
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total fixed, flow and holding cost. For each path P k, k ∈ K, we have that equation (23) follows

from expression (EC.1) and (EC.2). Constraints (21) and (22) for the values wk
i and path P k are

as follows:

wk
i ≤


ξk(µ(ak1))− ek, i= ok,
lk−ψk(µ(ak

ηk
)), i= dk,

ξk(µ(akh))−ψk(µ(akh−1)), i= ikh, h= 2, ..., ηk,
0, otherwise,

∀ i∈N , (EC.3)

wk
i ≥


ϑk(µ(ak1))− ek, i= ok,
lk− δk(µ(ak

ηk
)), i= dk,

ϑk(µ(akh))− δk(µ(akh−1)), i= ikh, h= 2, ..., ηk,
0, otherwise,

∀ i∈N , (EC.4)

where for each akh, h= 1, ..., ηk,

ϑk(µ(akh)) =max{ρik
h
(tkh), e

k +ϕk(ok, ikh)}, (EC.5)

ξk(µ(akh)) =

{
min{t⃗ik

h
(ρik

h
(tkh)), l

k− τik
h
ik
h+1
−ϕk(ikh+1, d

k)}, if t⃗ik
h
(ρik

h
(tkh))− ρik

h
(tkh)> 1,

min{ρik
h
(tkh), l

k− τik
h
ik
h+1
−ϕk(ikh+1, d

k)}, otherwise,
(EC.6)

ψk(µ(akh)) =max{ρik
h
(tkh)+ τik

h
ik
h+1

, ek +ϕk(ok, ikh)+ τik
h
ik
h+1
}, (EC.7)

δk(µ(akh)) = ξk(µ(akh))+ τik
h
ik
h+1

. (EC.8)

Based on the mapping functions ρ(.), σ(.) and with the fact that ek+ϕk(ok, ikh)≤ tkh ≤ lk−τik
h
ik
h+1
−

ϕk(ikh+1, d
k), h= 1, ..., ηk, we have that:

(i) for each akh, h= 1, ..., ηk− 1, ϑk(µ(akh))≤ tkh and ξk(µ(akh))≥ tkh;

(ii) for each akh, h= 2, ..., ηk, ψk(µ(akh))≤ tkh + τik
h
ik
h+1

and δk(µ(akh))≥ tkh + τik
h
ik
h+1

.

Thus, we can show that:

(i) ξk(µ(ak1))− ek ≥ tk1 − ek ≥ ϑk(µ(ak1))− ek;

(ii) lk−ψk(µ(ak
ηk
))≥ lk− (tk

ηk
+ τik

ηk
dk)≥ lk− δk(µ(akηk));

(iii) ξk(µ(akh))−ψk(µ(akh−1))≥ tkh− (tkh−1 + τik
h−1

ik
h
)≥ ϑk(µ(akh))− δk(µ(akh−1)), h= 2, ..., ηk;

(iv) For each i /∈ P k, we have wk
i ≤ 0 for constraint (EC.3) and wk

i ≥ 0 for constraint (EC.4), hence

wk
i = 0.

Solution (x, y,w) is then proved to be a feasible SND-HC-R(DT ) solution of the same cost as

solution (x̄, ȳ, w̄).

EC.1.3. Proof of Theorem 2

Let (x, y,w) be a feasible solution of formulation SND-HC-R(DT ) of cost z. We show that to solution

(x, y,w) corresponds a feasible, but not necessarily optimal, solution (x, y,w) of SND-HC-R(DT ),

of cost z such that z = z.

Let A= {((i, t), (j, t′))∈AT : ytt
′

ij > 0} be the set of arcs traversed by solution (x, y,w).
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Consider an arc ((i, t), (j, t′))∈A such that all arcs of the form ((i, t), (j, t′′)) belong to AT with

t′′ < t′. If no such arc ((i, t), (j, t′)) exists, solution vectors x= x and y = y are clearly feasible for

constraints (5), (6), (8), and (9). If such arc ((i, t), (j, t′)) exists, since networks DT and DT are

defined on the same set of time points NT , a path from (j, t′′) and (j, t′) exists in DT .

Initialize x= 0 and y= 0 and define xktt
ij = xktt

ij , k ∈K, and yttij = yttij for all arcs in ((i, t), (j, t))∈

(HT ∪AT )∩ (HT ∪AT ). We can adapt the solution (x, y,w) with regard to the arc ((i, t), (j, t′))

to the solution (x, y,w) concerning the arc ((i, t), (j, t′′)), with the addition of the holding arcs

joining (j, t′′) to (j, t′)), by setting ytt
′′

ij = ytt
′

ij and xktt′′
ij = xkt′′t′

jj = xktt′
ij . The resulting (x, y,w)

solution is also feasible for constraints (5), (6), (8), and (9), and the process can be repeated

for every arc ((i, t), (j, t′)) ∈ AT with t′′ < t′ for all ((i, t), (j, t′′)) ∈ AT . For each commodity

k ∈ K, let P k
= (ak1 , . . . , a

k
ηk), a

k
h ∈ A, h = 1, . . . , ηk, be the path induced by solution (x̄, ȳ) with

akh = ((ikh, t
k

h), (i
k
h+1, π

k
h+1)), h= 1, . . . , ηk, where t

k

h is the departure time at node ikh and πk
h is the

corresponding arrival time. Due to the definition of solution vectors (x, y) based on solution vectors

(x, y), in graph DT for commodity k we have a path P k = (ak1 , . . . , a
k
ηk
), akh ∈ AT , with departure

time tkh = t
k

h, h= 1, . . . , ηk, and arrival times πk
h ≤ πk

h, h= 2, . . . , ηk +1.

We now show that solution vector w = w satisfies constraints (21)-(23) of formulation

SND-HC-R(DT ), thus showing that (x, y,w) is a feasible SND-HC-R(DT ) solution having the same

cost of solution (x, y,w). First, for each k ∈K, T (P k
) = T (P k), hence equations (23) are satisfied.

Then, we have that solution vector w is defined as:

wk
i ≤


ξk(ak1)− ek, i= ok,
lk−ψk(akηk), i= dk,

ξk(akh)−ψk(akh−1), i= ikh, h= 2, ..., ηk,
0, otherwise,

∀ i∈N , (EC.9)

wk
i ≥


ϑk(ak1)− ek, i= ok,
lk− δk(akηk), i= dk,

ϑk(akh)− δk(akh−1), i= ikh, h= 2, ..., ηk,
0, otherwise,

∀ i∈N , (EC.10)

where for each akh, h= 1, ..., ηk,

ϑk(akh) =max{tkh, ek +ϕk(ok, ikh)}, (EC.11)

ξk(akh) =

{
min{t⃗ik

h
(t

k

h), l
k− τik

h
ik
h+1
−ϕk(ikh+1, d

k)}, if t⃗ik
h
(t

k

h)− t
k

h > 1 ,

min{tkh, lk− τik
h
ik
h+1
−ϕk(ikh+1, d

k)}, otherwise,
(EC.12)

ψk(akh) =max{tkh + τik
h
ik
h+1

, ek +ϕk(ok, ikh)+ τik
h
ik
h+1
}, (EC.13)

δk(akh) = ξk(akh)+ τik
h
ik
h+1

, (EC.14)
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and for inequalities (21) and (22) we have

wk
i ≤


ξk(ak1)− ek, i= ok,
lk−ψk(ak

ηk
), i= dk,

ξk(akh)−ψk(akh−1), i= ikh, h= 2, ..., ηk,
0, otherwise,

∀ i∈N , (EC.15)

wk
i ≥


ϑk(ak1)− ek, i= ok,
lk− δk(ak

ηk
), i= dk,

ϑk(akh)− δk(akh−1), i= ikh, h= 2, ..., ηk,
0, otherwise,

∀ i∈N , (EC.16)

where for each akh, h= 1, ..., ηk,

ϑk(akh) =max{tkh, ek +ϕk(ok, ikh)}, (EC.17)

ξk(akh) =

{
min{t⃗ik

h
(tkh), l

k− τik
h
ik
h+1
−ϕk(ikh+1, d

k)}, if t⃗ik
h
(tkh)− tkh > 1,

min{tkh, lk− τik
h
ik
h+1
−ϕk(ikh+1, d

k)}, otherwise,
(EC.18)

ψk(akh) =max{tkh + τik
h
ik
h+1

, ek +ϕk(ok, ikh)+ τik
h
ik
h+1
}, (EC.19)

δk(akh) = ξk(akh)+ τik
h
ik
h+1

, (EC.20)

since networks DT and DT are defined on the same set of time points NT and tkh = t
k

h,h= 1, . . . , ηk,

we have that ϑk(akh) = ϑk(akh), ξ
k(akh) = ξk(akh), ψ

k(akh) = ψk(akh) and δk(akh) = δk(akh) for all h =

1, . . . , ηk. Constraints (EC.15) and (EC.16) thus have the same right-hand side as constraints (EC.9)

and (EC.10), respectively. Hence, w = w is proved to be a feasible solution for inequalities (21)

and (22).□

EC.1.4. Proof of Lemma 1

Based on the optimality condition (i), we have that ψk(a) = t for all a = ((i, t), (j, t)) ∈ AT with

xktt
ij = 1 for some k ∈K. The flat solution S associated with solution (x, y,w) must be implementable

because t and t associated with xktt
ij = 1 are feasible arrival and departure times to commodity k in

solution S. Each θki is therefore the corresponding holding time for commodity k at terminal i. This

implies that (x, y,w) with wk
i = θki for all i ∈N , k ∈K, is a feasible solution to the CTSNDP-HC.

Since (x, y,w) is an optimal solution of relaxation SND-HC-R(DT ), (x, y,w) is therefore proved to

be an optimal CTSNDP-HC solution of cost LB. Note that Algorithm 2 computes UB = ẑfc + ẑw

and we have that LB = zfc(S) + zw(LB). Because the flat solution S associated with solution

(x, y,w) is implementable, we have that ẑfc = zfc(S). Moreover, since Algorithm 2 solves model

IM(S) minimizing the total holding cost associated with the flat solution, we also have that

ẑw = zw(LB), hence LB =UB.□
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EC.2. Additional details about the computational experiments
EC.2.1. Implementation details

It is worth noting that DDD-based methods rely on two (relative) optimality tolerances: (i) the

optimality tolerance used by the DDD algorithm (see parameter optimality tolerance of the exact

algorithm described in §4), and (ii) the optimality tolerance used by the MIP solver. For the sake

of the notation, we denote by tolDDD and tolMIP the two optimality tolerances, respectively. For

all considered instances in the two sets of experiments in Section 5, we used tolDDD = 0.01 for

both EXM and EXM-0, tolMIP = 0.01 for EXM-0. For algorithm EXM, based on our preliminary

experiments and as reported by Marshall et al. (2021), we also found to be computationally

convenient to dynamically change parameter tolMIP , that starts with 0.04 and is computed as

max{gap×0.25,0.098} for each later iteration, where gap is the final gap of the previous iteration.

Also, in these experiments, a time limit of two hours is conducted for both EXM and EXM-0. The

time limit is imposed over all the iterations, meaning that at each iteration the time limit imposed

on the MIP solver is the remaining time. Given tolerance tolMIP applied to the MIP solver and in

order to compute safe lower bounds, the lower bound value LB is set equal to the best known bound

on the optimal objective given by the Gurobi solver at termination through parameter ObjBound.

The algorithms EXM and EXM-0 were implemented in Java language, and Gurobi (v.8.1.1)

(Gurobi Optimization 2021) was used as the LP solver to solve model IM(S), and as the MIP

solver to solve relaxation SND-HC-R(DT ). The Gurobi function Model.computeIIS() was used to

compute IISs in Algorithm 2. The experiments were performed on an Intel(R) Core(TM) i7-8700

(3.20 GHz) Desktop PC equipped with 64 GB RAM running under Windows 10 64-bit operating

system.

EC.2.2. Generating instances based on CTSNDP benchmark instances

Table EC.1 gives the details of the 31 classes of networks D= (N ,A) considered by Crainic et al.

(2001). In the table, the column “Cost ratio” computed as 1
|A|

∑
a∈A

fa
caua

measures the ratio between

fixed and variable costs, “Cap ratio” computed as
∑

k∈K q
k/ 1

|A|

∑
a∈A ua indicates whether the arcs

are loosely or tightly capacitated, and “Avg length” computed as 1
|K|

∑
k∈K τ ok dk , where τ ok dk is

the length of the least total travel time path from ok to dk, is the average length of the least

total travel time paths. For each of the 31 classes of networks reported in the table, Boland et al.

(2018) generated 18 CTSNDP timed instances by first calculating the travel times for each arc and

then by generating the time windows for each commodity by randomly sampling from a normal

distribution.

For each of the 558 CTSNDP instances, we generated a CTSNDP-HC instance by setting the

per-unit-of-demand-and-time holding cost hk
i for each commodity k ∈K at each terminal i∈N as

follows. We set the holding cost using the scheme proposed by Lai et al. (2022), in which fixed,
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Table EC.1 Instances from Crainic et al. (2001)

Class |N | |A| |K| Cost ratio Cap ratio Avg length

c33 20 228 39 0.02 5.8 2407.9
c35 20 230 40 0.02 16.0 767.9
c36 20 230 40 0.08 16.0 3705.8
c37 20 228 200 0.51 16.0 1871.4
c38 20 230 200 0.97 16.0 4381.0
c39 20 229 200 0.47 20.0 1691.3
c40 20 228 200 0.94 22.0 3522.1
c41 20 288 40 0.02 8.0 1622.0
c42 20 294 40 0.08 10.0 5675.8
c43 20 294 40 0.02 16.0 776.5
c44 20 294 40 0.08 16.0 3517.9
c45 20 294 200 0.48 25.0 1124.2
c46 20 292 200 1.01 25.0 2632.0
c47 20 291 200 0.46 28.0 996.6
c48 20 291 200 0.95 28.0 2271.6
c49 30 518 100 0.10 20.0 341.1
c50 30 516 100 0.51 20.0 1586.5
c51 30 519 100 0.09 29.9 206.6
c52 30 517 100 0.49 29.9 1161.5
c53 30 520 400 0.18 40.0 612.1
c54 30 520 400 0.36 40.0 1061.8
c55 30 516 400 0.18 49.9 479.4
c56 30 518 400 0.35 49.9 966.9
c57 30 680 100 0.09 20.0 307.6
c58 30 680 100 0.20 20.0 592.8
c59 30 687 100 0.10 29.9 187.1
c60 30 686 100 0.20 29.9 394.7
c61 30 685 400 0.19 40.0 503.8
c62 30 679 400 0.36 40.0 1056.5
c63 30 678 400 0.18 49.9 381.4
c64 30 683 400 0.34 49.9 780.0

flow, and holding costs were defined for the LTL shipment case. We observe that the average

per-unit-of-demand-and-time transportation cost for the 558 CTSNDP instances, calculated as∑
a∈A((ca+fa/ua)/τa)

|A| , is nearly 0.02. The value obtained is comparable with the transportation cost

per hundred weights per unit of Euclidean distance, nearly 0.03, used in Lai et al. (2022). Note

that Lai et al. (2022) utilized a discount cost function for the flow cost expressed in dollars per

hundred weights. The transportation cost per hundred weight per unit of Euclidean distance can

be approximated as
∑

a∈A((cmax
a +(100fa)/ua)/da)

|A| , where cmax
a represents the maximum unit charge and

da represents the Euclidean distance of the arc. In Lai et al. (2022), the holding cost per weight

per time period is randomly sampled in the interval [0.025, 0.1], with a holding cost per hundred

weights per unit of Euclidean distance ranging from 0.0025 to 0.02. In addition, the arc travel

times are computed as a function of the Euclidean distances associated with the arcs. Therefore,

we set the per-unit-of-demand-and-time holding cost as follows. For each commodity k ∈ K, we

randomly sample value hk from the interval [0.0025, 0.02], then for each terminal i ∈ N , the

per-unit-of-demand-and-time holding cost hk
i is randomly sampled from [0.8×hk,1.2×hk]. Since,
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in practice, a commodity does not incur any holding costs after it reaches the destination, for each

commodity k ∈K we set hk
dk

= 0. We, therefore, generated 558 CTSNDP-HC instances.

EC.2.3. Newly generated CTSNDP-HC instances

The procedure used to generate the new instances follows two main steps.

(1) Varying the connectivity level. For each instance of Table EC.1 and the corresponding

network D = (N ,A), we first derive a timed instance using the method proposed by

Boland et al. (2018), i.e., we compute the travel times τij. We then generate the

per-unit-of-demand-and-time cost hk
i using the method explained in §EC.2.2. Let Γ be the time

of the path in D having maximum time among the least time ok − dk paths associated with

the vertices ok, dk, ∀k ∈K. Then, we reduce the number of arcs of the network D= (N ,A) by

an arc reduction procedure that at each iteration performs the following steps:

(i) Randomly select an arc a by means of a uniform distribution from the set of arcs A.

(ii) Check the connectivity of the network (N ,A\{a}), i.e., check if for every pair of vertices

ok, dk, k ∈K, there exists a path connecting ok to dk.

(iii) If the graph is connected, set A=A\{a} and begin a new iteration.

If the removal of an arc a results in a disconnected network, a new arc is randomly selected

and the procedure terminates after 1
10
x unsuccessful removal attempts, where x is the initial

number of arcs. After termination, each remaining arc in the resulting graph D is in turn

selected and tested for removal.

Let NR be the total number of arcs removed. We consider four final networks corresponding

to the networks obtained after the removal of ⌊xNR⌋ arcs where x ∈ { 1
4
, 1
2
, 3
4
,1}, denoted as

D1, D2, D3 and D4, respectively.

(2) Varying the flexibility level. Given a network Dx, x= 1,2,3,4, let τ ij, i, j ∈N , i ̸= j be the

length of the least total travel time path from i to j, and let B= {(i, j) : τ ij ≤ Γ}.

If, for a commodity k ∈K, we have τ ok dk > Γ, we assign to the commodity new origin and

destination nodes by randomly sampling with a uniform distribution a new pair from set B,

and we recompute the new value τ ok dk .

We then generate earliest and latest times also based on the method proposed by Boland

et al. (2018) as follows:

(a) We compute the average length computed as lavg =
1
|K|

∑
k∈K τ ok dk .

(b) For generating values ek, we create a normal distribution with mean lavg and standard

deviation 1
6
lavg.

(c) For generating values lk, we create three normal distributions (denoted as A, B and C,

respectively) from which we drawn values lk, all of which are defined by a standard
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deviation 1
6
µ but where we consider the values for the mean µ, 1

2
lavg, lavg and 3

2
lavg. A

value lk is set equal to ek + τ ok dk +α where α is the value drawn from a distribution.

Based on the above two steps, for each of the instances in Table EC.1, we generate four different

networks Dx, x= 1,2,3,4, and three instances based on the three different distributions for values

ek and lk. These steps are repeated three times to finally obtain a total of 3× (31× 4× 3) = 1116

instances.

EC.2.4. Preliminary results for EXM-0

Here we summarize the results obtained by the baseline algorithm EXM-0 in solving the 558

CTSNDP instances, and we then compare its performance with the results of BHMS17 and

MBSH21 reported in Marshall et al. (2021). A time limit of one hour was imposed to EXM-0, as

done for both BHMS17 and MBSH21.

In the comparison reported by Marshall et al. (2021), for method BHMS17, tolDDD and tolMIP

were set equal to 0.01 and 0.0001 (i.e., the CPLEX default setting), respectively. For method

MBSH21, tolDDD was also set equal to 0.01, whereas tolerance tolMIP was dynamically changed

during the different iterations. More precisely, the initial tolerance is set equal to 0.04, and then

for each iteration tolMIP is computed as max{gap× 0.25, tolDDD × 0.98}, where gap is the final

gap of the previous iteration. Note that EXM-0 applies the same adaptive optimality tolerance.

For the set of CTSNDP instances, our comparison is based on the results reported by Marshall

et al. (2021) which were obtained on a single core machine using CPLEX 12.6 as the MIP solver

(for both BHMS17 and MBSH21, with no specific machine type being reported). Because the

computational environment of BHMS17 and MBSH21 was different from that of our algorithms,

a direct comparison is therefore not possible. However, in what follows we give a clear overall

picture of the relative performance, especially when the total number of instances solved to proven

optimality is compared.

Table EC.2 gives the comparison of the three algorithms. For each group of instances, the

table shows the number of instances in the group and, for each algorithm, the average percentage

deviation of the final upper bound UB computed with respect to the final lower bound LB

(“%UB”), i.e., 100.0× UB−LB
UB

, the average computing time in seconds (“time”), the average number

of iterations (“iter”), and the percentage of the instances solved to optimality (“%opt”) (within the

given optimality tolerance). The average values over all instances are computed. For each method,

the upper bound UB corresponds to the cost of the best solution found by the method over the

different algorithm iterations and the lower bound LB is computed as the maximum among the

lower bounds computed at the different iterations.

The table shows that our implementation of the algorithm of Boland et al. (2017) compares well

with both algorithms BHMS17 and MBSH21, and also shows similar performance on the different
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Table EC.2 Summary results on the CTSNDP instances

Group Algorithm %UB time iter %opt

HC/LF BHMS17 0.08 1391.1 5.3 77.1
183 MBSH21 0.12 677.8 14.8 85.8

EXM-0 1.00 236.3 10.0 96.7

HC/HF BHMS17 0.56 1966.7 6.0 53.7
177 MBSH21 0.84 1693.8 17.5 56.5

EXM-0 3.18 1555.5 11.0 65.0

LC/LF BHMS17 0.00 28.6 3.7 100.0
94 MBSH21 0.00 0.6 6.5 100.0

EXM-0 0.70 0.5 3.5 100.0

LC/HF BHMS17 0.00 1.5 2.5 100.0
104 MBSH21 0.00 0.1 3.2 100.0

EXM-0 0.55 0.1 1.6 100.0

groups of instances. We note that the computational environment of EXM-0 is different from the

one used by the other methods. However, the comparison over the total number of instances solved

to proven optimality gives a clear global picture of the relative performance.

In groups LC/LF and LC/HF, EXM-0 was capable of solving to optimality all the instances

within the imposed optimality tolerance. In these groups, with respect to BHMS17 and MBSH21,

EXM-0 shows higher percentage deviations of the final upper bound UB. This can be due to the

fact that different MIP solvers are used, and that EXM-0 computes a safe lower bound based on

the best-known bound given by the Gurobi MIP solver. Based on the results of Table EC.2, we

adopted algorithm EXM-0 as a baseline algorithm for comparison purposes with EXM.

EC.2.5. Additional results on the effect of the algorithm components

The heuristic method described by Algorithm 2 removes at each iteration the infeasible

consolidation constraint (12d) having the minimum increase of the fixed cost. To illustrate the

effectiveness of our choice, below, we compare alternative methods to handle infeasible consolidation

constraints (12d). More specifically, we consider alternative upper bounds, namely UBM1 and

UBM2, where the infeasible constraint during Algorithm 2 is removed based on the following

rules: (i) UBM1: the infeasible constraint with the earliest departure time. (ii) UBM2: the

infeasible constraint with the tightest time flexibility on the selected consolidation arc (i, j), i.e.,

(lk−ϕk(j, dk)− τij)− (ek +ϕk(ok, i)). In addition, we also consider upper bound UB1 described in

Section 5.1.2. Table EC.3 gives the comparison, where %UBx= 100.0× UBx−UB
UBx

, x∈ {M1,M2,1},

is the percentage deviations of upper bound UBx with respect to the upper bound UB computed

by Algorithm 2. The comparison concerns the different upper bounds UBM1, UBM2, and UB

computed at the first iteration of algorithm EXM and upper bound UB1 computed at the first
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iteration of algorithm EXM-0. The table shows that the different upper bounds show similar results

in the LC instances. In contrast, the upper bound UB is significantly better than the other upper

bounds in the HC instances, thus attesting to the effectiveness of our choice.

Table EC.3 Computational results for EXM variants with different refinement strategies

%UBM1 %UBM2$ %UB1

HC/LF 0.9 1.1 0.9
HC/HF 2.5 2.9 2.0
LC/LF 0.1 0.1 0.1
LC/HF 0.1 0.1 0.1

To attest the effectiveness of the refinement strategies, we executed algorithm EXM with refining

different sets of short-arcs. More preciously, we conducted algorithm EXM without refining the

short-arcs identified by Algorithm 2 in refinement strategy 1, referred to as EXM R1 and by

selecting at most |K|/10 short-arcs for the additional set in refinement strategy 1, referred to

as EXM R2. In the case of EXM R2, we select fewer arcs than the limit of |K|/5 arcs used by

EXM. The results are shown in Table EC.4 using the same notation introduced in Table 2. The

results show that the algorithm EXM benefits from a slightly aggressive refinement strategy 1 that

refines all short-arcs identified by Algorithm 2 and refines more short-arcs for the additional set.

Indeed, EXM shows a better optimality rate and optimality gap for unsolved instances compared

to EXM R1 and EXM R2.

Table EC.4 Computational results for EXM variants with different refinement strategies

Group Algorithm
%UB

time iter %optmin max avg

HC/LF

EXM R1 1.17 1.9 1.7 277.2 4.4 98.4
EXM R2 1.10 2.0 1.6 372.2 6.1 97.8
EXM 1.08 1.9 1.6 279.3 4.4 98.4

HC/HF
EXM R1 1.01 8.9 3.4 3107.7 8.7 60.5
EXM R2 1.00 9.9 3.4 3118.0 8.9 62.7
EXM 1.01 6.1 2.9 2902.7 6.2 65.5

LC/LF
EXM R1 - - - 0.7 1.8 100.0
EXM R2 - - - 0.6 1.7 100.0
EXM - - - 0.7 1.8 100.0

LC/HF

EXM R1 - - - 0.1 2.3 100.0
EXM R2 - - - 0.2 3.3 100.0
EXM - - - 0.2 2.3 100.0
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EC.2.6. Sensitive analysis on the holding costs

To analyze the effect of varying the per-unit-of-demand-and-time cost hk
i on the CTSNDP-HC

we compare the results obtained by EXM for the case with different per-unit-of-demand-and-time

cost hk
i , i.e., h

k
i ∈ {0.0025,0.05,0.01,0.02}. For the experiments, we considered a restricted set of

instances composed of the instances of networks D2 and D3 under the three different distributions

A, B, and C.

0.25 0.50 1.00 2.00

·10−2

2.00

3.00

4.00

5.00

3.00

5.00

hk
i

V
al
u
es
%

(a) %hc

0.25 0.50 1.00 2.00

·10−2

4.00

5.00

6.00

7.00

8.00

9.00

5.00

7.00

hk
i

V
al
u
es
%

(b) %ht

0.25 0.50 1.00 2.00

·10−2

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

hk
i

V
al
u
es
%

(c) %UB1avg
Figure EC.1 Sensitive analysis on the per-unit-of-demand-and-time cost hk

i

Figure EC.1 summarizes the results obtained. For each per-unit-of-demand-and-time cost hk
i

(x axis), the figure shows the following average percentage values: (i) %hc, the holding cost over

the total solution cost, (ii) %ht, the holding time over the total transit time, and (iii) %UB1avg,

the average percentage deviation of upper bound UB1 with respect to upper bound UB. The

percentage values were computed over all instances solved to optimality with all the considered unit

holding values. The figure shows that when unit holding cost increases, both %UB1avg and %hc

increase. This implies that although a higher per-unit-of-demand-and-time holding cost induces a

larger percentage of the holding cost, it induces a more significant cost saving achieved by UB over

UB1. From the figure, we can also observe that when unit holding cost increases, %ht decreases.

This implies that a higher per-unit-of-demand-and-time holding cost also induces a significant

reduction in holding time. Hence, as per-unit-of-demand-and-time holding cost increases, it is more

beneficial to take into account holding costs for solving the CTSNDP-HC. We notice that, with

a per-unit-of-demand-and-time holding cost of 0.0025, the percentage deviation of upper bound

UB1 is less than 1%, thus on average, a per-unit-of-demand-and-time holding cost around or below

0.0025 will make a negligible difference between UB and UB1 on the considered instances. However,

the final holding cost also depends on other cost ratios, time flexibility, and network connectivity.

Thus, the exact cut-off value for per-unit-of-demand-and-time holding costs differs for different

instances.
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