Do

16

10

42
43
44

15

46

DISTRIBUTIONALLY FAVORABLE OPTIMIZATION: A FRAMEWORK FOR
DATA-DRIVEN DECISION-MAKING WITH ENDOGENOUS OUTLIERS

NAN JIANG* AND WEILJUN XIE'

Abstract. A typical data-driven stochastic program seeks the best decision that minimizes the sum of a deterministic
cost function and an expected recourse function under a given distribution. Recently, much success has been witnessed in
the development of Distributionally Robust Optimization (DRO), which considers the worst-case expected recourse function
under the least favorable probability distribution from a distributional family. However, in the presence of endogenous outliers
such that their corresponding recourse function values are very large or even infinite, the commonly-used DRO framework
alone tends to over-emphasize these endogenous outliers and cause undesirable or even infeasible decisions. On the contrary,
Distributionally Favorable Optimization (DFO), concerning the best-case expected recourse function under the most favorable
distribution from the distributional family, can serve as a proper measure of the stochastic recourse function and mitigate
the effect of endogenous outliers. We show that DFO recovers many robust statistics, suggesting that the DFO framework
might be appropriate for the stochastic recourse function in the presence of endogenous outliers. A notion of decision outlier
robustness is proposed for selecting a DFO framework for data-driven optimization with outliers. We also provide a unified way
to integrate DRO with DFO, where DRO addresses the out-of-sample performance, and DFO properly handles the stochastic
recourse function under endogenous outliers. We further extend the proposed DFO framework to solve two-stage stochastic
programs without relatively complete recourse. The numerical study demonstrates the framework is promising.

Key words. Distributionally Favorable Optimization; Distributionally Robust Optimization; Robust Statistics

1 Introduction. In many stochastic programs, their underlying probability distribution P may not
be precisely characterized, whereas empirical data or historical information is often available. Therefore,
to hedge against distributional uncertainty, instead of committing to a particular probability distribution,
the decision-makers can find their best decisions by first figuring out a family of probability distributions,
termed “ambiguity set” (denoted as set P), then optimizing the sum of a deterministic function ¢’ and
the worst-case expected recourse function Ep[Q(a, £)] with respect to the least favorable distribution P € P.
This type of model is known as Distributionally Robust Optimization (DRO) of the form

(1.1) min {cTaH—supE]p [Q(az,é)}},
TeEX PeP

where X C R” is a deterministic set and P C {P: P{€ € U} = 1} with support 4 C R™ (also known as
“uncertainty set” throughout this paper). The DRO model (1.1) has successfully addressed many decision-
making problems under uncertainty to achieve decision robustness, and better out-of-sample performance
guarantees (see the discussions in [20, 47, 62, 68]). The inherent assumption in DRO is that the expectation
of the recourse function is finite for any distribution P from the ambiguity set P. This assumption may not
hold when the data used to construct the ambiguity set are contaminated, i.e., in the presence of outliers.
We first introduce two notions of outliers, which are formally defined below:

e For a given ball IB%(E 6) around a scenario E with radius § > 0, the scenario § is an “exogenous

outlier” when ]P’O{S €€ IBS(E, 9)} = 0 for a given probability distribution Py;
e For a given large number M;, a scenario § is an “endogenous outlier” when the recourse function
value Q(x, &) > M, for some x € X.

Notice that exogenous outliers are independent from the decision variable x € X'| i.e., exogenous outliers
are caused by abnormal data measurement or intentional data distortion. The definition of exogenous
outliers dates back to the work [5] and we rephrase the definition based on the statistical properties. The
endogenous outliers are from the intrinsic property of the problem itself and are latently dependent on the
decision variable & € X, i.e., the recourse function value may be very large or even unbounded under some
extreme scenarios for certain decisions. Since exogenous outliers can be easily detected by preprocessing
via a properly-selected robust statistic, in this regard, this work mainly focuses on endogenous outliers.
Under such circumstances, the DRO model (1.1) tends to over-emphasize the endogenous outliers and causes
undesirable or infeasible decisions. In light of this issue, this paper studies the following Distributionally
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Favorable Optimization (DFO) by providing a proper measure to mitigate the effect of endogenous outliers
* . T . e

(1.2) v" = mig {c T+ ]Pl)g;ijp [Q(w,&)} } ,
which instead seeks the best decision under the most favorable distribution. We formally define a notion of
decision outlier robustness for selecting a proper DFO in Section 3. It is worthy of mentioning that since
DRO can achieve better out-of-sample performance guarantees, Section 4 studies the worst-case DFO which
integrates DRO with DFO.

Note that if there is only support information U available (i.e., P = {P: P{€ € U} = 1}), then the DFO
(1.2) degenerates to a regular one (rDFO), i.e.,

(1.3) v* = min {ch + gg{{Q(w,g)} .

The special cases of the rDFO (1.3) have been successfully applied in bandit and reinforcement learning
literature such as Upper Confidence Bound (UCB) algorithm (see, e.g., [4]), where the DFO framework has
been demonstrated to be useful as a tool for uncertainty exploration. However, a thorough study of DFO is
missing, in particular, for the decision-making problems under uncertainty. More importantly, our results in
Section 2 show that DFO, especially, rDFO, naturally recovers many robust statistics, evidencing that DFO
might be desirable for stochastic programming under endogenous outliers. As illustrated in Figure 1, in the
presence of endogenous outliers, i.e., Q(x, &) =~ co, DRO may over-emphasize the endogenous outliers, while
DFO can mitigate the effect of endogenous outliers.

. DFO (1.2), '+ bro
'DRO (1.1) < 2 proO

pdf of &

Qx, &) ~
R
Value of Q(z, &)

Fig. 1: Hlustration of DFO vs. DRO in the Presence of Endogenous Outliers. In region A, due to the effect
of endogenous outliers, the recourse function value can be very large or even infinite, where we denote it as
“Q(x,€) ~ 00.”

As mentioned above, the study of DFO is motivated by optimization problems highly affected by en-
dogenous outliers. Throughout the paper, we make the following assumptions for DFO (1.2).

ASSUMPTION 1. (i) Set X is convex, compact, and has a non-empty interior; and
(ii) The recourse function Q(x, &) is bounded below by a constant —M for allx € X and € € U.

Both parts in Assumption 1 are standard in literature (see, e.g., section 5 in [7] and chapter 12 in [53]).
Part (i) in Assumption 1 is useful to derive big-M coefficients. Part (ii) in Assumption 1 ensures that any
expectation of the recourse function is bounded from below, which is particularly useful for the notion of
decision outlier robustness in Section 3.

1.1 Motivating Examples. In this subsection, we provide two examples to illustrate the importance
of the DFO framework. The first example uses the DFO framework to explain the connection between chance
constrained programming and robust optimization.

ExaMpPLE 1. Chance Constrained Programming. Some endogenous outliers can make the problem
infeasible in the robust optimization, thus causing the decisions to be practically meaningless (see more
discussions in [6]). However, since some extreme scenarios are highly unlikely to occur, to avoid such over-
conservatism in robust optimization, the authors in [6] mentioned that “there is no need to care about
such highly improbable scenarios” and suggested using the chance constrained programming as a better
alternative, which can be well justified through the lens of DFO. In the DFO (1.2), if the objective of the
recourse function is 0 with the uncertain inequalities G(x, €) < 0, where G(-,-) : R” xR™ — R is a continuous
function, i.e., Q(m,é) = min{0: G(:B,é) < 0} and £ follows distribution Py, then the corresponding DFO
(1.2) resorts to

(1.4a) gélg {c"z: G(z, &) <0,VEcU} = rznelg {ch: Ep, []I (G(az,é) > O)} < O} :

where support U := supp(Py). This is indeed a conventional robust optimization problem. Applying the
2
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following interval ambiguity set, i.e., Py = {P: P(UU) = 1,0 X P <X Py/(1 — &)} with ¢ € (0,1), the DFO
counterpart of the robust optimization (1.4a) can be written as

1.4b “=mindeT@: inf Bp [1(G@.€)>0)] <0y,

( ) VT aeR {c * PlélPI i (@,¢) -

and can be further reduced to a regular chance constrained program. The formal derivations can be found
in Proposition A.1 of Appendix A. o

The link between chance constrained programming and robust optimization shows that applying the DFO
framework reduces the over-conservatism of robust optimization and explains why a chance constrained
program can be less conservative.

The second example focuses on a two-stage stochastic program without relatively complete recourse,
where endogenous outliers can cause the underlying problem to be infeasible. The condition of relatively
complete recourse states that given a reference distribution Py, the finiteness of recourse function Q(x, é ) < 00
holds for every x € X and Py-almost every é € U. This condition guarantees the feasibility of the second-stage
problem, and this concept has been elaborated in [56, 65]. However, many problems in practice genuinely
fail to have relatively complete recourse, i.e., warehouses may not fulfill the demand due to the disruptions
of extreme scenarios. When the second-stage problem can be infeasible, i.e., for the two-stage stochastic
program without relatively complete recourse, the optimal objective value of that two-stage problem does
not exist. In this case, we adopt the convention that Ep, [Q(w,é)] = oo for a given reference distribution
Py. We show that DFO serves as a proper measure to address infeasibility, reduces the effect of endogenous
outliers, and delivers desirable decisions. It is worth mentioning that our DFO framework does not remove
the endogenous outliers, but we change the corresponding probability measures of the endogenous outliers
to ensure that the corresponding objective value is finite.

ExAMPLE 2. Endogenous Outliers in Two-stage Stochastic Programs without Relatively
Complete Recourse. Consider the following two-stage stochastic program:

15121111 {x + Ep, {Q(%g) = ryrg}l {y: |£|y > x}] } ,

where the set Y = {y : 0 < y < 10} and & follows the standard Gaussian distribution Py, i.e., £ ~ N(0,1)
(see, e.g., Figure 2). Under this setting, due to the lack of relatively complete recourse, the two-stage
stochastic program is infeasible, and so is its DRO counterpart. If the machine learning techniques were
employed to preprocess the data & to resolve the infeasibility, one may simply relegate the region A or region
C or both as outliers since they belong to light-tail parts. However, the problem remains infeasible, and the
actual endogenous outliers (i.e., region B) may not be detected unless exploring the optimization problem
structure. On the other hand, applying DFO can properly mitigate the effect of the endogenous outliers and
address the infeasibility issue using the similar interval ambiguity set in Example 1, i.e., Py = {P : P(U) =
1,0 P <Py/(2—2%(0.1))} and P(-) denotes the cumulative distribution function of the standard normal
distribution. Thus, let us consider the following DFO:

~ ~ 1 <1 1 &2
i inf E ,€) == mi { : > } =1 72/ ———e 2 d¢| = 3.049.
g?{“ﬁ?p, v [Q(m §)=minyy: [y =@ ]} T 2a0.0) { L eVt ®
Thus, the resulting favorable two-stage problem is feasible and mitigates the effect of endogenous outliers.

We provide more detailed discussions in Section 2.3. o

B,[-0.1,0.1]

~ T 1

Realization of &

Fig. 2: Illustration of Example 2.

1.2 Literature Review. In literature, in contrast to DRO (see more details in [54]), researchers tend
to use optimistic optimization (i.e., special cases of DFO) to tackle learning problems in various areas such
as reinforcement learning [1, 67], Bayesian optimization [49-51], classification [10], image reconstruction
[26], machine learning [52], etc. For instance, the authors in [67] applied the optimistic DRO approach
to the trust-region constrained optimization problem in reinforcement learning and obtained the globally

3



131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

optimal policy in each iteration. The trade-off between exploration and exploitation in reinforcement learning
has been discussed using optimistic optimization in [1]. In [50], the authors found that when using the
Wasserstein distance, the optimistic likelihood problem can be interpreted as solving a linear program using
a greedy heuristic, where the decay pattern is an exponential kernel approximation. They also provided
the theoretical guarantees for the variational posterior inference problems under the KL divergence and
the Wasserstein distance. The work [51] introduced a novel moment-based divergence ambiguity set and
proposed a Bayesian contextual classification model using an optimistic score ratio. The researchers in [49]
developed the optimistic likelihood, which can be reduced to a one-dimensional convex optimization problem.
In [26], the authors investigated the favorable chance constrained problem, derived the conic reformulation,
demonstrated the limits of tractability, and showed its effectiveness in image reconstruction. However, all
of these works lack evidence to connect robust statistics and DFO, where a robust statistic aims to yield a
good performance when the data are contaminated, as discussed in the literature for decades [34, 45].

There are also a few works focusing on special classes of the rDFO problems (see, e.g., [10, 52]). The
work [10] proposed a novel formulation of support vector classification and derived a geometric interpretation
of the proposed formulation to handle the uncertainty in classification. In [52], the authors argued that the
optimistic assumption could be easier to realize regarding real-world economic resources compared with the
pessimistic or worst-case one. However, the literature lacks a framework for DFO or optimistic optimization,
and the connection to robust statistics is also missing. This paper fills the gap.

While this paper was prepared to submit, we became aware of the independent works from [12, 21], which
discussed the class of distributionally optimistic optimization problems and their applications to contextual
bandit problems. The fundamental difference between this work and theirs is that we focus on data-driven
optimization with endogenous outliers, connecting to and motivating from robust statistics.

1.3 Summary of Contributions. In this paper, we study DFO (1.2) via various perspectives from
statistics, machine learning, and optimization. Each perspective justifies and extends DFO. Particularly, we
show the following two fundamental aspects of DFO: framework and unification.

e For the framework aspect, we show that DFO can recover many robust statistics. We also show
that in the presence of endogenous outliers, DFO can be a proper framework for decision-making.
We introduce a new notion of decision outlier robustness that is easy to check and is useful to
characterize whether a DFO model is indeed decision outlier robust.

e For the unification aspect, we integrate DRO with DFO, termed “worst-case DFO,” since DRO
improves the out-of-sample performance given that the sample size is finite. We show a proper way
to integrate both. In particular, we focus on the data-driven ambiguity set for DRO and decision
outlier robust ambiguity set for DFO. The convergence analysis shows that the error of the worst-case
DFO decreases proportionally to the square root of the sample size. On the other hand, the decision
outlier robustness notion also suggests that while the same rate of convergence can be guaranteed,
the ambiguity set of DRO should not be too large (i.e., never be overly pessimistic).

The roadmap of contributions in our paper is shown in Figure 3.

Organization. The remainder of the paper is organized as follows. Section 2 shows the equivalence between
DFO and many robust statistics and introduces the DFO framework for data-driven optimization with
endogenous outliers. Section 3 introduces the notion of decision outlier robustness and Section 4 integrates
distributional robustness with DFO to achieve better out-of-sample performance guarantees. Section 5
numerically illustrates the proposed methods. Section 6 concludes the paper.

Notation. The following notation is used throughout the paper. We use bold letters (e.g., x, A) to denote
vectors and matrices and use corresponding non-bold letters to denote their components. We let ||- ||, denote

the dual norm of a general norm ||-||. We let e be the vector or matrix of all ones, and let e; be the ith standard
basis vector. Given an integer n, we let [n] := {1,2,...,n}, and use R"} := {x € R" : z; > 0,Vi € [n]}.
Given a real number ¢, we let (¢); := max{¢,0} and (¢)— := min{¢,0}. Given a finite set I, we let |I|

denote its cardinality. We let £ denote a random vector and denote its realizations by £. Given a vector
x € R", let supp(x) be its support, i.e., supp(x) := {i € [n] : ; # 0}. Given a probability distribution
P defined on support U with sigma-algebra F and a P-measurable function g(£€), we use P{A} to denote
P{€ : condition A(€) holds} when A(£) is a condition on &, and to denote P{£: £ € A} when A € F is
P-measurable, and we let ess.supp(g(€)) denote the essential supremum of the deterministic function g(&).
We define a nonnegative measure g as g = 0 when p(A) > 0 for any A € F, and further define po = pq

4
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Fig. 3: A Roadmap of the Main Results in This Paper.

if o — 1 = 0 for any two measures w1, po. We use ® to denote the Kronecker product. Given a set R,
the characteristic function xg(x) = 0 if * € R, and oo, otherwise; the indicator function I(x € R) = 1 if
x € R, and 0, otherwise. We let d,, denote for the Dirac distribution that places unit mass on the realization
w. We use |z] to denote the largest integer y satisfying y < z, for any « € R. Additional notations will be
introduced as needed.

2 DFO: A Framework to Handle Data-driven Stochastic Programs with Endogenous Out-
liers. Different from DRO, in this section, we show that DFO can be useful in mitigating the effect of
endogenous outliers. We first show that DFO, especially, rDFO, recovers many robust statistics, which can
be more desirable for decision-making under uncertainty in the presence of endogenous outliers.

2.1 DFO Recovers Many Robust Statistics. In the literature, robust statistical approaches can
effectively provide stable portfolio strategies [19, 74]. For example, the authors in [74] introduced several
robust statistical methods to reduce the influence of outliers. Coincidently, DFO can recover many robust
statistics, which are detailed in this subsection.

Case I. Least Trimmed Squares. The least trimmed squares (LTS) is a robust regression method that
learns from a subset of data not being affected by endogenous outliers (see, e.g., [58]). Given N data points
{Zi, i tien) C R? x R, LTS aims to find an estimator 3 that minimizes the sum of squared residuals over
the most favorable size-k subset with an integer k € [N], i.e., suppose the squared residuals r2(3), defined
as 72(B) := (7; — ®, B)? for each i € [N], are sorted in ascending order T(Ql)(ﬂ) = () — ia),@)Q < r(22)(,@) <

- < T(QN)(,@) = (U — :EE'—N)B)Q, where {(i)},c;n) denotes a permutation of set [N]. Then the LTS is
equivalent to

1
min > 1 (B).

i€[k]
We can apply the following DFO to recover the LTS, that is,
2.1 * = min mi 2 (8),
(2.1) v* = min min Z[;v]p r(8)

where the interval ambiguity set Py is written as P; = {p € RY : ZiE[N] pi = 1,0 < p; <1/k}. A simple
calculation shows that the corresponding DFO indeed returns the LTS, that is,
" S 1
v =min min Z piri(B) = min Z r(Qi) (B).
1€[N] i€[k]
We remark that in the above formulation, the DFO recovers LTS by selecting k favorable scenarios and
increasing their probability from 1/N to 1/k. Motivated by this case, we show in Section 3 that DFO with

interval ambiguity set is equivalent to favorable conditional value-at-risk (FCVaR).
Case II. Winsorized Regression. Winsorized regression (see, e.g., [78]), an effective alternative to the
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ordinary least-square regression, can reduce the effect of outliers. It involves the calculation of the residual
values by replacing the extremal residual values that are beyond an interval with the nearest boundary values.
For a fixed 3 and N data points {Z;, ¥ }ic(n) € R? X R, let the squared residuals r2(8) := (3 — @] 8)?
for each i € [N] and let T(Qk)(ﬁ) be the kth smallest squared residual with an integer number k € [N]. The
Winsorized regression can be formulated as

min% Z min {7“1»2(,3)7 ) (,3)} :

The following DFO recovers the Winsorized regression:

v* = min min Ep[¢],
B PeP(B)

where the decision-dependent ambiguity set P(3) is defined as

)1 P =B+ Pis € E =10, (B)p =1,Vi € [N],
POI= W 2 B Pi(g)l,we[;f] { }

with support &/ = R;. The result can also be extended to recover the Ramp loss support vector machine,
where the latter was studied in work [33].

Case III. Huber-skip Estimator [34]. Given N data points {&;, ¥ }icin) € R? x R, suppose the residual
7:(B) = (g:i—2; B) for each i € [N]. The Huber-skip estimator truncates the observations with large residuals
to mitigate the influence of endogenous outliers, which admits the following formulation

min - > min{r2(8), 1},

i€[N]

i€[N]

where H > 0 is the given threshold.
We can apply the following DFO to recover the Huber-skip estimator
v* = min min Epl¢],
A o2t
where the decision-dependent ambiguity set P(3) is defined as

E:6=r}(B); +Piq&:E=H[=1VYie[N],
ZGZU:VP ,({) Vi [}] { } :

with support U = R,..

We conclude this section by remarking that DFO can recover many other robust statistics and some
machine learning problems. Due to page limit and in agreement with the editor, we relegate additional
examples to this extended online technical report version [38], i.e., median in Appendix B.1, Huber estimator
and Tukey’s bisquare estimator in Appendix B.3, quantile regression in Appendix B.4, and other machine
learning examples in Appendix B.5 of [38]. As far as the authors are concerned, there is no prior work
on recovering robust statistics using DFO or optimistic optimization. The connections between the DFO
framework and robust statistics further show that DFO can be a proper way to handle decision-making
under uncertainty in the presence of endogenous outliers, which is illustrated below in detail.

2.2 From Robust Statistics to Decision-making under Uncertainty: DFO Mitigates the
Effect of Endogenous Outliers for Stochastic Programming. For a stochastic program with endoge-
nous outliers, motivated by robust statistics, this subsection focuses on a special family of DFO with the
interval ambiguity set-the Favorable Conditional Value-at-Risk (FCVaR) as a demonstration and briefly
introduces its alternatives. For a given random variable X with probability distribution Py, cumulative
distribution function Fp,(-), and risk level € € (0, 1), the VaR of X is defined as

Po-VaR; _o(X) := min {s : Fp,(s) > 1 —¢},

L[5 ]}

Roughly speaking, FCVaR (2.2) can be interpreted as the average of the values no larger than Po-VaR; _.(X).
6

the corresponding FCVaR of X is defined as

(2.2) Py-FCVaR; (X)) := max { B+
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PROPOSITION 2.1. (i) Given an interval ambiguity set Pr = {P: P(U) = 1,0 X P <X Py/(1 — &)}
with support U = supp(Py), we have

(2.3a) Pien7£, Ep [X} = max {B +

_Ey, [(X - ,3)} } — Py-FCVaR,_. (X)

(ii) An optimal solution of the right-hand side optimization problem (2.2) is f* = Po-VaR,_.(X); and
(iii) The Po-FCVaRi_o(X) can be bounded by two conditional expectations:

(23b) Ep |X|X <Po-VaRi . (X)| < Py-FCVaR; . (X) < Ep [X|X <Po-VaR, . (X)].
Proof. See Appendix A.1. O

Notice that FCVaR can be viewed as a special case of In-CVaR from work [41] or Range VaR from work
[18] (i.e., Po-FCVaR;_.(X) = In- CVaR{§ (X)) and a special case of an optimized certainty equivalent from
work [8] (i.e., Po-FCVaR; _.(X) = man[ﬁ+E]p0[ (X — B)]] with u(t) = —[~t]1 /(1 —€)). We can also apply
DFO to recover the In-CVaR from [41]. That is, for 0 < a < 8 <1,

In-CVaR{,(X) = inf Er [X} :

and the ambiguity set P is defined as

{ PU)=1,0<P <Py/(3—
P=<P: = .

IP{X Po-VaRa (X )} —1 }

The equivalence (2.3a) shows that FCVaR (2.2) can be a special case of DFO (1.2). That is, letting
X = Q(x, 5) ¢ = 0 and choosing the same interval ambiguity set as Proposition 2.1, DFO (1.2) reduces
to the following FCVaR optimization
(2.4) vt = glelgplengl Ep [Q(m,&)} = min Py-FCVaR;_, [Q(m,{)] .

We remark that the LTS introduced in Section 2.1 can be viewed as a special case of FCVaR (2.4).
That is, suppose that the random vector £~ has an equiprobable distribution over a finite support Y =
{€}ieiv = {®i, Ui tiev) € R? x R. Let & = (N — k)/N with an integer k € [N] and the recourse function
be Q(z, &%) = (§; — & x)? for each i € [N]. Then the interval ambiguity set in Proposition 2.1 reduces to
Pr={pe Rf : Zie[N] p; =1,0 < p; <1/k} and DFO (2.4) reduces to LTS (2.1).

Interestingly, if one replaces the inner infimum operator with the supremum operator on the left-hand
side of (2.4), then the left-hand side reduces to the CVaR minimization problem, a well-known DRO model,
ie.,

sup & [Q(a,6)] = Py-OVaR, . (Q(a, ): = min {ﬁ + 15, [(Q(m, & - 5)+] } |

PEP;
Compared with FCVaR, CVaR takes the conditional expectation of unfavorable scenarios. This further
demonstrates the non-robustness of DRO models in the existence of outliers. On the other hand, applying
the DFO framework can circumvent these outliers. Thus, we remark that FCVaR can be more meaningful
and ideal than CVaR in the presence of outliers.

Note that the connection between FCVaR and LTS motivates us to consider the other two alternatives
based on the robust statistics in Section 2.1. For example, instead of using LTS, we can use Winsorized
approach, e.g., replacing the recourse function values of unfavorable scenarios with the (1 — ¢)-quantile
VaRj_c(-). Similarly, we can also consider the Huber-skip method. That is, we can specify an allowable
upper bound for the recourse function value and replace the recourse function value with this bound if going
beyond.

Alternative I. Winsorized CVaR. Winsorized CVaR, denoted as WCVaR, is the weighted average be-
tween FCVaR and VaR, providing a reasonable estimate of the central tendency of the objective value.
Notably, the WCVaR admits the following form:

(2.5) Po-WCVaR,_.(X): = (1 —&)Po-FCVaR,_.(X) + ePo-VaR,_.(X),
for a given random variable X. As explained in Section 2, the WCVaR admits a DFO interpretation. An

interesting side product is that if we choose a penalty function to be Po-VaR;_.(X), then WCVaR recovers
the two-stage chance constrained program studied in [42].

7
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Alternative II. Huber-skip CVaR. The Huber-skip CVaR, denoted as HCVaR, is to compute the ex-
pectation of the minimum of the recourse function value and a given upper bound H, i.e.,

(2.6) Po-HCVaR(X, H): = Es, {min {X HH .

As explained in Section 2, the HCVaR admits a DFO interpretation. Notice that a proper choice of the value
H decides the quality of Huber-skip CVaR (see, e.g., [29]). We also remark that if we let H be Pp-VaRq_.(),
then HCVaR (2.6) and WCVaR (2.5) coincide.

The following Example 3 and Example 4 illustrate the differences among VaR, CVaR, FCVaR, WCVaR,
HCVaR, and the conventional expectation. We see that compared with CVaR, the proposed methods based
on DFO (i.e., FCVaR, WCVaR, and HCVaR) can serve as better alternatives to the expectation, especially
when the stochastic recourse function may not be integrable.

EXAMPLE 3. Let us assume X to be a truncated Cauchy distribution Py with a probability density
function f(x) :=2/(m(1+ 2?)),x > 0. For the demonstration purpose, we let € = 0.1. Then, we are able to
compute the values of Pp-FCVaR;_., Po-WCVaR,_., Pp-VaR,_., and Pp-HCVaR(:, H) with H = 3, while
the expectation and Py-CVaR,_. do not exist. Please see Figure 4 for an illustration. o

CVaRi-.

f WCVaR; .
HCVaR(-, 3)

pdf of X

CVaRi_: = >

Expectation = oo

Realization of X

Fig. 4: Illustration of Expectation, FCVaR, WCVaR, HCVaR, VaR, and CVaR with Truncated Cauchy
Distribution.

EXAMPLE 4. Let us assume X to be a truncated Gaussian distribution Py with a probability density
function f(x) := /2/mexp(—2?/2),z > 0. For the demonstration purpose, we let ¢ = 0.10. Then, we
are able to find the value of expectation, Py-CVaRi_., Py-FCVaR;_., Po-WCVaR,_., Py-VaR;_., and
Py-HCVaR (-, H) with H = 2, which are illustrated in Figure 5. o

T ~FCVaR/1—5

Expectation
HCVaR(-,2)

pdf of X

Valeg

/CV&R] —e

| | A

0 1 2 3 4 5

Realization of X

Fig. 5: Tllustration of Expectation (solid line), FCVaR, WCVaR, HCVaR, VaR, and CVaR with Truncated
Gaussian Distribution.

Next, we apply DFO (i.e., FCVaR, WCVaR, and HCVaR) in the two-stage stochastic programs without
relatively complete recourse.

Y

2.3 Two-stage Stochastic Programs without Relatively Complete Recourse. Motivated from
the examples in Section 1.1, this subsection focuses on a two-stage stochastic program, which, in general, is
defined as

. T g
(2.7a) min ¢’ + Bz, [Q(x.€)]
where for a realization & of €, the recourse function Q(x, &) is defined as
(2.7b) Q(x.€) = inl [(Q¢ +q) y: T(@)ér +&wy > h(2)],

where y denotes the wait-and-see decisions in the second-stage problem, Q : R™2*™1 T : R™ — R¢*™2 and
h : R® — R’ represent the technology affine mapping and the right-hand-side affine mapping, separately,
and & = (&g, &, &w) € R™ x R™ x R>"2 g € R™. Set J) C R™ denotes the constraints for y, e.g., the
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boundary constraints of the wait-and-see decisions. In this section, we assume that the set ) is compact
and nonempty, which ensures that infycy[(Q€, + q)Ty] > —oco almost surely. Following the discussions in
Section 2.2, we apply DFO to select favorable scenarios, where the distributionally favorable counterpart of
the two-stage programs is defined in (1.2) and Q(z, €) is defined in (2.7b).

__ Suppose that the empirical distribution P of the second-stage problem consists of N i.i.d. samples
{£i}ie[N] and assume Ne¢ is an integer, we apply FCVaR to the second-stage problem to focus on some
favorable scenarios. This leads to the following favorable two-stage stochastic problem, which can be written
as

1 ~
2. * = mi T R ; ") i =N—N 1N
(2.8) vt = min Qe "'HNng_Z ZQ(x, &) Y e,z€{0,1}" 5,
where we assume that co x 0 = 0. In problem (2.8), for each i € [N], the product ziQ(sc,gi) can be
represented as the following MILP

(2.9) zQ(x,€') = mm [(Qf +a)"y' — Li(1 - 2): T(x)&r + &py’ > h(z) — M'(1 - Zz)} :
Above, M is a vector of large numbers for each ¢ € [IV], and can be computed as

Mz s (@)~ (T@)E + &y,
for each j € [¢] and ¢ € [N], and L; is the value of the trivial second-stage problem L; := infyiey[(Qé\(iI +
q)"y'] > —oo for each i € [N].

The purpose of using z variables in the constraints of the second-stage problem (2.8) is to resolve the
infeasibility issue and to ensure that the second-stage problem is solvable. For example, when the second-
stage problem is infeasible, then z; = 0, and the only non-trivial constraint is the boundary constraint, i.e.,
y® € V. However, the big-M coefficients { M i}ie[N] are not easy to derive and can be very large. Thus, we
further explore the structure of the problem and discuss sufficient conditions under which we can obtain the
big-M free formulations. That is, we show that under some conditions, we can represent the bilinear terms
{z:Q(z, )}16[ ~] in problem (2.8) using the big-M free formulations.

THEOREM 2.2. Suppose that the setY :={y: Dy > d,y > 0} and T(x) = flcc®e+f2, h(x) = ft[\a:Jr?L,
Ty € RO", Ty ¢ RO>m2 H € R, b € RY, vector O is contained in the polyhedron {y*: Tz ® eé\} +
g@vyi —Hz > 0} for each x € X and i € [N], and ngl—i—q > 0 for alli € [N]. Then, the favorable two-stage
stochastic problem (2.8) is equivalent to

* : T N
(2.10) vt = min §c N Z Q(z, 2, & Z zi > N —Ne, ze€{0,1}" },
i€[N] i€[N]

where @(m,zi,g) = z;Q(zx, é}) and
Qw, zi,€") = min 1{(Q€ +9) Ty Tiw 9 & +&lyy' — Ha > |h—To&r| . Dy’ > dzi |

Proof In problem (2 10) we first consider z; = 0. Since the vector 0 is contained in the polyhedron
{y': Tz ® eST + E'Wy —Hz > 0} for each & € X and i € [N], then the optimal value of the second- stage
problem Q(w zl,ﬁ ') is 0, which is as the same as the value of z;Q(zx, ﬁi). If z; = 1, then Q(:c zl,ﬁi) is
identical to Q(z, 51) |

Notice that there is no big-M coefficient in the formulation (2.10) and we use the following example to
illustrate Theorem 2.2.

EXAMPLE 5. Let us consider a two-stage resource planning (TRP) problem, which consists of a set
of resources (e.g., server types), denoted by s € [n], that can be used to meet the demand of a set of
customer types, denoted by j € [n;]. Note that similar problems have been studied in many works (see, e.g.,
[14, 42, 43]). Following the notation, the TRP problem can be formulated as

1 ~
. i T - . Y. S _ N
(2.11a) wrgglz c'x+ N Ne ‘%J z:Q(x, &) .g\]] z; > N —Ne,ze€ {0,1} ,
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where for a random {Al = (¢*, p',u’, \),

(211b)  Q(z,€) = = min SN duls D0 vl < piaa Vs € n], Y ulyl; > MLV € [na]
v s€[n] j€[n1] j€[n4] s€[n]

In this model, ¢, represents the unit cost of resource s € [n]. For each s € [n], variable x4 denotes the
amount of resource s to purchase and for s € [n] and j € [n;], variable y,; represents the allocation amount
of resource s to customer type j. Parameters q, p, u, X are random, where g ; represents the random cost of
allocating resource s € [n] to customer type j € [n1], ps represents the random utilization rate of resource
5 € [n], @s; represents the random service rate of resource s € [n] for customer type j € [n1] and \; is the
random demand of customer type j € [nq].

Note that the TRP (2.11a) is a two-stage stochastic program without relatively complete recourse.
Besides, when \i = \tz; with z; = 0 for each j € [n1] and i € [N], for any > 0, y* = 0 is always feasible
o (2.11b) for each i € [N]. Hence, we can apply the result in Theorem 2.2. Using the binary variables z,
we can rewrite the bilinear term as

(2.11¢) 2Q(x, &) = ;rgn Z Z quysj plr, — Z ysj >0,Vs € Z uS]yS] >\ 52i,Vj € [n]
[n] j€[n1] j€[na] s€(n]
Thus, we arrive at a big-M free formulation for (2.11a). ©

As a direct corollary of Theorem 2.2, we can provide big-M free formulations for the Winsorized CVaR and
the Huber-skip CVaR type of the two-stage problem.

COROLLARY 2.3. Under the same assumptions as in Theorem 2.2:
(i) favorable two-stage stochastic program (2.8) with WCVaR admits the following formulation

-~

. 1 o~ > 2iQ(x, &) + (1 — 2)L;, Vi € [N]
T 1 ) i .n Zi 5 7 79 ’
(2.12a) min (et o E 2iQ(w, &) +ne: e % = N = Ne )
2e{0,1}V €[]

where L; denotes the value of the trivial second-stage problem L; := infyiey[(Qé\é +9) Ty’ > —o0
for each i € [N];
(i) favorable two-stage stochastic program (2.8) with HCVaR admits the following formulation

. T 1 G
(2.12b) mzo,ggﬁm}fv c x+ N Z (ZZQ($,€ )+ (11— zZ)H) ,
i1€[N]
where H denotes the preset upper bound of the second-stage problem.
Notzce that the bilinear terms {z;Q(x, & Ve in (2.12a) and (2.12b) can be linearized by applying the result
n (2.9) or using Theorem 2.2.

We remark that we show the strength of these big-M free formulations in the numerical study section.

3 Decision Outlier Robustness. To provide an effective means of evaluating the performance of
DFO models, we first review the definition of “outlier robust” in the statistical robustness. In light of its
drawbacks, we propose the notion of “decision outlier robust” to address these limitations in evaluating DFO
models.

3.1 Counterexamples that Some Well-known Robust Statistics May Not Have Bounded
Influence Curve. In statistical robustness (see the details in [24, 45]), if the influence curve of a statistic
estimator is bounded, then that estimator is called “outlier robust.” Let Py denote the reference probability
measure of £ and dgo is the Dirac measure for the perturbation data £° € supp(Py). For any decision z € X
with corresponding function values Q(zx, é), the statistic estimator Pp-T'(+) is “outlier robust” if the following
condition is satisfied:

(3.1) tim ~ [1(1 )P + 160617 (@(2.6)) ~ Bo-T (Q(2,8)) | < oo

¥—0 7y

Then, based on condition (3.1), we first illustrate that Po-VaR,_.{Q(z,£)} (i.e., a quantile) may not be
outlier robust.
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EXAMPLE 6. Suppose Po{€ : € = £'} = 1/N for each i € [N] and the perturbation Q(zx, £°), )
Po-VaR;_.{Q(x,&)} is “outlier robust” if the condition (3.1) is satisfied. Suppose ¢ = 0.1, N = 10N,
N =10, and Q(z,&7) =i for each j € [10(i — 1) + 1,10i] and i € [N] and Q(=,£°) = N + 1. When v — 0,

[(1 = 7)Po +~d¢o]-VaRi_{Q(x, £)} = N,
and Py-VaR;_.{Q(x,€)} = N — 1. Then, condition (3.1) is simplified as
R e =
’IY%;[N—(N—I)] = 00,
which shows that Po-VaRi_.{Q(z, £)} may not be outlier robust. o

Under the similar setting of Example 6, we can show that IPO—FCVaRl_s{Q(a:,é)} (i.e., LTS) may not be
outlier robust.

EXAMPLE 7. Suppose Po{€: £ = ¢} = 1/N for each i € [N] and the perturbation Q(zx, £°), -
Po-FCVaR;_{Q(x,§)} is “outlier robust” if the condition (3.1) is satisfied. Suppose ¢ = 0.1, N = 10N,
N =10, and Q(=,&7) = i for each j € [10(i — 1) + 1,10i] and i € [N] and Q(=,£°) = N + 1. Then, when
~v — 0, condition (3.1) is simplified as
1 1 [N(N+1) NN-1)

lim — = = 00,
S0yl —¢e| 2N IN
which demonstrates that Po-FCVaRi_.{Q(z, £)} may not be outlier robust. o

The notion of the influence curve has the following two major drawbacks: (i) it focuses on the smoothness
of a favorable measure (i.e., a robust statistic), which is quite restrictive; for instance, neither quantiles
nor LTS can be well explained due to their nonsmooth nature under a discrete reference distribution (e.g.,
Example 6). However, in many decision-making problems, the objective function may not be necessarily
smooth (e.g., two-stage stochastic integer programming studied in [2]); and (ii) it requires a known reference
distribution, which may not be a case in the ambiguity set P (e.g., a moment ambiguity set). Thus, the
influence curve is not appropriate to analyze the outlier robustness of DFO.

3.2 Decision Outlier Robustness. To remedy the issues mentioned in the previous subsection,
this subsection proposes a generic way to properly evaluate the decision outlier robustness of a DFO model,
motivated by the influence curve from robust statistics. We first define the notion of an unamenable decision.

DEFINITION 3.1. For a reference distribution Py, a decision x € X is an “unamenable decision” when
there exists an outlier £° € supp(Py) such that the recourse function Q(x,£&°) = +oo. The collection of such

unamenable decisions is denoted by set X.

Note that the set of unamenable decisions X is associated with a reference distribution Py. Now we are
ready to introduce the notion of “decision outlier robust,” which mainly focuses on unamenable decisions
with the reference distribution Py. In this section, we mainly focus on stochastic programs with unamenable
decisions.

DEFINITION 3.2. The DFO (1.2) is called “decision outlier robust” when the following condition is sat-
isfied:
(3.22) inf [(1-7)Es |Q(x,€)] +1Q(w, €)1(6° € supp(P)) | < ox,

PeP

for each unamenable decision x € /’?, each outlier £€° € supp(Py), and for any v € [0,1]. Here, we let
oo x 0=0.

Note that condition (3.2a) can also be equivalently written as
(3.2b) inf [(1-7)Ez [Q(@.§)] +yess.supe {Q(@,6) }] < o,

which implies that by adjusting the probability measure P, a DFO model is decision outlier robust if there
exists one probability measure P such that the left-hand side of condition (3.2b) is bounded. We make the
following remarks about Definition 3.2.
(i) In Definition 3.2, for the DFO (1.2) to be decision outlier robust, there exists a probability measure
P € P such that an unamenable decision for any mixture distribution of P and a Dirac measure on an
outlier £€° € supp(P) yields a bounded objective function value. This should hold for any unamenable
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decision z € X.

(ii) The purpose of introducing the decision outlier robustness concept is to resolve all issues from the
influence curve in the theoretical perspective.

(iii) Although it may require the unamenable decision set beforehand, in practice, one can simply check all
the decisions. Besides, the results in Proposition 3.3 can further help simplify the verification process.

PRropPOSITION 3.3. The following statements hold: R
(i) The DFO (1.2) is decision outlier robust if for any unamenable decision x € X, there exists a probability
measure P € P such that Bp[Q(z, £)] < co; and
(ii) The DFO (1.2) is not decision outlier robust if there exists an unamenable decision x € X with its

outlier £€° such that Q(x,£&°) = oo and for any probability measure P € P, we have £° € supp(P).

The proof of Proposition 3.3 follows directly from Definition 3.2 and thus is omitted.
Using Proposition 3.3, we can immediately demonstrate that the expectation operator with a singleton
ambiguity set P is not decision outlier robust.

COROLLARY 3.4. Suppose P is a singleton, and there exists an unamenable decision x € X. Then, the
corresponding DFO, i.e., a reqular stochastic program without relatively complete recourse, is not decision
outlier robust.

Proof. Suppose that P = {Pp}. Since there exists an unamenable decision & € X, according to Defi-
nition 3.1, there exists an outlier £° € supp(Pg) with Q(x,£°) = co. Using part (ii) of Proposition 3.3, we
know that the corresponding DFO is not decision outlier robust. ]

Therefore, without relatively complete recourse, simply taking the expectation with respect to a par-
ticular distribution (i.e., sticking to a singleton ambiguity set) may not be ideal (see the discussions in
Example 2). A richer and nontrivial ambiguity set is more desirable and is demonstrated in the following
subsections.

Moreover, we show that the DFO framework (1.4b) (i.e., the corresponding chance constrained program)
is decision outlier robust. In contrast, the robust optimization framework (1.4a) may not be when there are
unamenable decisions.

THEOREM 3.5. Suppose that the unamenable decision set X is non-empty and for any T € )/(\, we have
Po{& : G(z, &) > 0} < e, where Py denotes the reference distribution and function G(x,&) is measurable for
any x € X. Then, the DFO (1.4b) is decision outlier robust, while the robust optimization (1.4a) is not.

Proof. We split the proof into two parts by checking the DFO (1.4b) and the robust optimization
framework (1.4a) separately.

Part I. According to Proposition 3.3, for the DFO framework (1.4b), it is sufficient to show that for any
unamenable decision x € X, there exists a probability measure P* € P; such that Ep- [1(G(z,€) > 0)] <0
and P*{£ : G(z,€) > 0} = 0.

Let us denote set Uy = {&€ : G(x,&) < 0}, which is measurable (see, e.g., proposition 1 in section 3.1
of [59]). According to our presumption, we know that P{U;} > 1 —e. Now let us construct P*(d€) =
Po(d€)/Po{th} for each & € Uy, 0, otherwise. Note that by our construction, we have P*(U;) = 1,0 <
P* < Py/(1 —¢). Hence, P* € P; and P*{£ : £ = £°} = 0, where the recourse function can be written as
Q(x,£°) = min{0: G(x,£°) > 0}. On the other hand, we have

Ep- [I(G(x, &) > 0)} =1 - PBo{th}/Bo{th} =0, P* {é: G(z, €) > o} ~0.

This proves that P* is a desirable probability measure.

Part II. For the robust optimization (1.4a), we have P = {Pp}. According to Proposition 3.3, it is sufficient
to show that G(x,£°) > 0 for some x € X and €° € supp(PPp), which holds due to our preassumption in
Proposition 3.3. This proves that the robust optimization framework (1.4a) may not be decision outlier

robust. 0

We make the following remarks on Theorem 3.5:
(i) The result of Theorem 3.5 implies that the value-of-risk (VaR) can also be decision outlier robust.
Moreover, letting e = 1/2 in (A.1) shows that the median is also decision outlier robust;
(ii) For general quantiles, the notion of “outlier robust” based on the influence curve from statistical
robustness may not work, as implied in Example 6.

12
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Decision Outlier Robustness of FCVaR and Its Alternatives. Next, we prove the decision outlier
robustness of the proposed FCVaR and its alternatives.

THEOREM 3.6. Suppose that the unamenable decision set X is non-empty and for any x € 56\, there exists
an M € R such that Po{& : Q(x,§) > M} < e, where Py denotes the reference distribution and € € (0,1)
and function Q(x, &) is measurable for any x € X. Then mingex Po-FCVaR,_{Q(x, &)} is decision outlier
robust.

Proof. Based on Proposition 3.3, for Po-FCVaR; _.{Q(x, £)} defined in (2.3a), it is sufficient to show that
for any unamenable decision = € X, there exists a probability measure P* € P; such that Ep-[Q(x, £)] < oo
and P*{§: Q(x,§) = o0} =0.

Denote set Uy = {€ : Q(x,&) < M}, which is Pyp-measurable (see, e.g., proposition 1 in section 3.1 of
[59]). Given the presumption, we have Po{lf;} > 1 — . Let us construct P*(d€) = Po(d€)/Po{U1} for each
&€ € Uy, 0, otherwise. Note that by our construction, we have P*(U;) = 1,0 < P* < Py/(1 — ) and hence
P* € Pr. On the other hand, we also have

Ep- [Q(%é)] <M<oo, P* {é; Qlz, €) = oo} —0.

This proves that P* is a desirable probability measure. Hence, minge x Po-FCVaR;_.{Q(x, €)} is decision
outlier robust. O

We make the following remarks about Theorem 3.6:
(i) The assumption that Po{é : Q(m,é) > M} < e is crucial to our analysis, which ensures that
Ep-[Q(x, £)] < oo for some P* € Pr.
(ii) Similar to the chance constrained program (A.1), when the reference distribution is discrete, outlier
robustness using the influence curve may not work based on the explanation in Example 7.
We conclude this section by remarking that the result in Theorem 3.6 can be extended to Winsorized CVaR
and Huber-skip CVaR. The proofs are similar and thus are omitted.

COROLLARY 3.7. Suppose that the unamenable decision set X is non-empty. For the reference distribu-
tion Py and € € (0,1), we have
(i) the mingey Po-WCVaR,_.{Q(x, &)} is decision outlier robust if for any @ € X, there exists an
M € R such that Po{€ : Q(x,€) > M} < ¢; and
(ii) the mingey Po-HCVaR{Q(x, &), H} is decision outlier robust.

The detailed comparisons among FCVaR, WCVaR, and HCVaR can be found in the numerical study section.

4 Achieving Out-of-Sample Performance Guarantees: Worst-case DFO. To effectively use
i.i.d. samples to approximate the DFO models and achieve better out-of-sample performance guarantees,
in this section, we propose applying data-driven distributional robustness (e.g., type—oco Wasserstein am-
biguity set) to the corresponding DFO models. For the first special case of DFO in Section 1.1 (i.e.,
a chance constrained program), its worst-case counterpart, known as distributionally robust chance con-
strained programs (DRCCPs), has previously been investigated in the literature, aiming to attain better
out-of-sample performance guarantees under conditions of limited available samples (see more discussions
in [15, 25, 26, 28, 37, 66, 76]). It is worthy of mentioning that a DRCCP can be viewed as the combina-
tion of DFO and DRO, where the underlying chance constrained program aims to reduce the undesirable
endogenous outliers and the distributional robustness improves the out-of-sample performances. Hence, to
complement the existing results, this section focuses on the other special case of DFO-FCVaR, and studies
its worst-case counterpart under the Wasserstein ambiguity set. While, at first glance, the DFO and DRO
may seem to behave in opposite directions, in fact, they can be complementary. In an integrated model (the
worst-case DFO), DFO and DRO can work together to improve both decision outlier robustness (reduce
the effect of endogenous outliers) and out-of-sample performance. By doing so, the integrated model can
coordinate the two approaches to achieve better overall performance. Particularly, we study the minimum
of the worst-case FCVaR of the form

(4.1) vy = min {cTw + sup P-FCVaRy_. [Q(m,f)} } ,
zEX PEPY
where we focus on type—oo Wasserstein ambiguity set
PV — (P: P{€ c U} =1, W (P, P) < 6}.
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Recall that P is a discrete empirical reference distribution of random parameters é generated by N i.i.d. sam-
ples with support U such that P{¢ = ¢'} = 1/N, i.e., P=1/N Zie[N] (5@- and (5@, is the Dirac function that

places unit mass on the realization £ = @ for each ¢ € [N], § > 0 is the Wasserstein radius, and the
oco—Wasserstein distance between two probability distributions IP1, Py with £, norm is defined as

. Q is a joint distribution of &' and 52
Weo (P1,P2) = inf { ess.supg ||§1 — 52” s i ] .
P with marginals P; and Py, respectively

Le PT be the true distribution of random parameters é and let £* denote an optimal solution of the minimum
of the worst-case FCVaR (4.1). Motivated by [20], the out-of-sample probability, which is often small, is
defined as

(4.2) pT {é cvly < ¢ @ +PT-FCVaR,_. [Q(i*,é)} } .
That is, it ensures that the probability that the optimal value from the minimum of the worst-case FCVaR

(4.1) is smaller than the true objective is small. In the numerical study, we let the probability (4.2) be no
larger than 5%.

4.1 Worst-case FCVaR is Equivalent to DRO with Favorable Sample-selection. We first
show that the minimum of the worst-case FCVaR (4.1) admits a neat representation.

THEOREM 4.1. The minimum of the worst-case FCVaR (4.1) is equivalent to
(4.3) vy = mig {CT:B +P-FCVaR;_. [Q(:& E)] } ,
e

where the robustified recourse function is defined as Q(x, &) := maxe{Q(x, €) : |€ — EHP < 6}.

Proof. According to the definition of FCVaR;_. (2.2), the minimum of the worst-case FCVaR (4.1) is
equivalent to

min {CT:E + sup P-FCVaR;_. {Q(m,é)} } = min {ch + sup max {B + T igE]P’ [(Q(w,é) - ﬁ)] }} .

xrcX PePW reX PEPW

Interchanging the supremum operator and the maximum operator, we have

min {cTa: + sup P-FCVaR;_. [Q(w,é)} } = Imnelg {CT;L- + mgxx sup {ﬂ + 1 1 €EIP|:(Q(CU,£) - 5)_] }} .

xeX PePY PePY

Recall the following equivalent representation in type—oo Wasserstein ambiguity set with discrete empirical
reference distribution P and its corresponding random vector £ (see, e.g., proposition 3 in [9]):

sup e [Q(2.€)] = B [max {0, € - €l < 0} = 5 [0(2.8).

PePY
which implies that

vy = miy {ch + sup P-FCVaR;_. [Q(;c,é)] } = min {cT:c + max {ﬂ + 1%51@@ [(Q(x,f) - 6)_] }} .

PePl z€ J¢]
Plugging back the definition of FCVaR;_. (2.2), we have the desired formulation. O

It turns out that when Ne is an integer (this can always be done in practice by carefully choosing the
sample size or using bootstrapping), the minimum of the worst-case FCVaR (4.1) in fact can be interpreted
as the minimum of the a DRO model with sample-selection Wasserstein ambiguity set, i.e., it both selects the
most favorable scenarios and guarantees the out-of-sample performance. The key idea of the sample-selection
Wasserstein ambiguity set is to optimally select the most favorable k := N — N¢e out of IV empirical samples
and then construct the corresponding Wasserstein ambiguity set based on selected k empirical samples. For
example, given a collection S of k samples, we denote its corresponding type—oo Wasserstein ambiguity set
as P (S), which is defined as

PY(S) = {P: P{€ c U} =1, W (P,P(S)) < 6}.
Here, I@(S’ ) denotes an equiprobable discrete probability distribution supported on a size-k subset of samples
{€'}iescin) such that P{€ = &'} = 1/k for i € S. Intuitively, the DRO with sample-selection Wasserstein
14
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ambiguity set can be written as

(4.4) vp = mi)l(l {cTaz + sup Ep [Q(x,é)} },
€x,
ol et
where S denotes all the size-k subsets of samples.

Letting the binary variable z; indicate whether the ith sample is selected or not, according to the result
in [9, 75], under type—oo Wasserstein ambiguity set, problem (4.4) can be represented as

- 1 o
09 =iy {Tos mp Befow @]} = mp Jme{} Y w06 Tk
ses > ze{0,1}¥ i€[N] i€[N]

which is exactly the minimum of the worst-case FCVaR. This result is summarized below.

PROPOSITION 4.2. Given that type—oo Wasserstein ambiguity set is considered and Ne is an integer,
the minimum of the worst-case FCVaR (4.1) is equivalent to the DRO with a favorable sample-selection
Wasserstein ambiguity set (4.4), i.e., vy, = vg.

This result shows that applying distributional robustness essentially selects favorable samples optimally,
consistent with the findings in the previous sections that are beyond the simple preprocessing and are
important to eliminate endogenous outliers.

We note that, because of the translation invariance property, we can shift the first-stage objective
function ¢« to the second stage, that is,

(4.6) ¢z + P-FCVaR,_. [Q(a:, é‘)} — P-FCVaR,_. [c% +Q(x,6)] .

For ease of notation in the following discussions within this section, we absorb the linear objective function

¢’ x into the recourse function Q(x,€), i.e., we redefine Q(z, ) := Q(x, €) + ¢ x.

4.2 Confidence Bounds and Decision Outlier Robustness of the Worst-case FCVaR. Given
a discrete empirical reference distribution P generated by N i.i.d. samples of random parameters é , we proceed
in this subsection by comparing the objective value of (4.3) with the optimal value obtained from the true
distribution. This analysis further motivates us on how to select the Wasserstein radius 6. Before deriving
the confidence bounds, we define the following important quantities. We let v denote the minimum FCVaR

under the true distribution P7, that is,
1 .
——Epr [(Q(w,@ - B)_] } :

and for any decision & € X', we let 3*(x) denote an optimal solution of inner maximization, i.e., according
to Proposition 2.1, we have 5*(x) = PT-VaR;_.{Q(=, £)}.
We make the following additional assumptions, which are quite standard in the literature.

v? = min max {5 +
zeX f

ASSUMPTION 2. (i) (Truncated Concentration Bound) There exists a positive o such that

Epr [exp(([(Q(x, €) — f*(x))_] — Epr [(Q(z, €) — B*(x))_])%/02)] < e a.s. for each x € X;

(ii) (Lipschitz Continuity of Recourse Function within a Truncated Support) There exists a
positive parameter Ay > 0 such that within a PT-measurable set U(A1) == {& : Q(z, &) < B*(x) +
A1}, the function Q(x,€&) is Lipschitz continuous with respect to both x and €, i.e., |Q(x, &) —
Qy,&)| < L||(w,&") — (y,€?)llp for all m,y € X,£,&* € U(Ay); and

(iii) (Local Smoothness of True Cumulative Distribution Function (CDF) around Quantile
B*(x)) There exist Ay > 0 and £ > 0 such that |[PT{¢ : Q(z,&) < B*(x) + A} — PT{¢ : Q(=,&) <
B*(x)} > LIA| for any A € [—Ag, As] and for all x € X.

Note that in Assumption 2, Part (i) is standard in the concentration inequality literature (see, e.g., chapter
2 of [72]). Part (ii) is a common way of addressing the Lipschitz continuity of functions that are smooth
within a smaller sub-domain (see more details in [27]). Part (iii) follows from the existing literature on the
sample size estimation of the chance constrained programs (see, e.g., [31, 44]), which guarantees that the
true underlying distribution has a positive probability density around a neighborhood of the (1 —¢)-quantile.

We then develop the non-asymptotic confidence bounds of the minimum of the worst-case FCVaR under
type—oco Wasserstein ambiguity set.
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THEOREM 4.3. (Confidence Bounds) Suppose that Assumption 2 holds. Then for any given ¥ € (0,1), we
have: (i) PT{v};, < vT+2L0} > 1-7; and (ii) PT{v}y, > vT' —LO} > 1-7, where § = O(1)N~1/2,/nlog(7 1)
for a discrete compact set X, and 0 = O(1)N~1/2/nlog(nN)log(3—1) for a general compact set X.

Proof. The proof of Part (ii) is similar to that of Part (i) and thus is omitted. We split the proof into
five steps.
Step I. Let us use v3*4 to denote the sampling average approximation (SAA) counterpart of the FCVaR

with N i.i.d. samples {Ei}ie[N], which admits the following form
~ ~ 1 ~
SAA _ . T . N
v = min BFOVaR, . [Q(w.8)] = minmax § Ay + - .e% [(Q(M ) ﬁN)}
7
Under the true distribution P7, let us define the FCVaR with the decision = € X as

o (&) = BECVAR [Q(2. )] = max { 8@ + 11-Eer | (0(2.6) - 5(@) |}

B(z 1—¢

Recall that an optimal 8*(x) = F~!(1—¢), where we let F(-) denote the CDF of random parameter Q(z, £)
with respect to true distribution P7. We also denote the SAA counterpart as

Bn () N — Ne i€ [N]

0344 () = P-FCVaR; _. [Q(w,é)] = max < On(x) + ! Z [(Q(:&@) — ﬁN(w))_] ,

~

with an optimal 8% (x) = Fy'(1 — ¢), where Fx(-) denotes the CDF of random parameter Q(z,&) with

respect to empirical distribution PP. B R
According to Hoeffding’s inequality (see, e.g., [30]), for a small A > 0 and 0 < Ay < Ay, we have

(4.72) pT {FN (ﬂ*(m) + AN) _F (5*(33) + AN) > fA} > 1 — exp{—2NA2}.
According to Part (iii) of Assumption 2, for some ¢ > 0, we have
F (8" (@) +An) — F(8*(x)) > (A,
Using this result, inequality (4.7a) implies that
pT {FN (5*(@ + AN) >1—c+ Ay - A} > 1 — exp{—2NA2}.
By letting EAN = A, we have
pT {FN (6*(:1:) v EN) <1- e} < exp{—2N(fAx)?).

On the other hand, we have PT{Fy (8*(x) — Ay) > 1 —¢} < exp{—2N(¢Ax)?2}. Then, recall the definitions
of By (x) and *(x), by simple calculations, we have

P7{|B3 (@) - 8(2)| < An} =T {Fy (8"(®) + A) 2 1 — ¢, Fy (8*(2) - &) < 1 ¢}
(4.7b)

>1 P {Fy (8"(2) + Ay) < 1-e} — " {Fy (8"(@) - Ax) > 12} > 1—2exp { 2N (¢Ay)?}.

Step II. According to Part (ii) of Assumption 2, we have

vy < mipmax 3 By + Py [(Q(w,?) +max {Llg &+ ¢ - &1, <0} - ﬁNM

SAA
N

Optimizing over £ and invoking the definition of v , we have

* . 1 -~
vy < i max BN + ]V_ngiez[]:\[] [(Q(%& ) —|—L9—ﬂN>J < v+ L.

Then, it is sufficient to prove
PT {o3A4 <o + Lo} >1-7.
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723 Step III. Given that the quantile is close to the true quantile (i.e., the inequalities from Step I hold), we
724  derive the bounds of the difference of the objective functions.

725 There are two subcases to consider: whether 8% () — 5*(x) is negative or not.
726 Case (a). When 0 < g4 (z) — f*(x) < Ay, we have

1 ~ -
o7 Br(e) - @)+ g O || (@) - 55@) | -5 (0w - 57@) ||

1€[N]
1 5 . A

o <o X [(ew8r-s@) |-5r (08 -p@) ]|+ 22
729 v
730 where the inequality is due to the conditions 83 (x) — f*(x) < Ay and e € (0,1).
731 Case (b). When —Ay < By (x) — p*(x) < 0, we have

1 ~ -
- fr(e) - @)+ e X |[(@@8) - @) | -Ber (@8- @) ||

i€[N]
Y 1 i * e * 3N
- W X |(@8)-r@) | -Bnr |(Q@d-5@) ||+ 2%
734 v
735 where the inequality is due to the conditions 5% (x) — 8*(x) < 0, An/(1 =€) >0, and By (x) >
736 B*(z) — An.
737 Therefore, when |8} (&) — 5*(z)] < Ay, we have
738 Ba(x) — B (x) + N —1Nz-: Z H(Q(%@) - ﬁz*v(w))_] — Epr {(Q(%é) - 5*(93))_”
i€[N]

_ X A
739 (4.7¢) SN —1Ns Z |:|:(Q(w’£l) — 3*(;,;))_} — Epr [(Q(a;,g) _ 3*(3;))_” + . 7N€.
740 i€[N]
741 Now, we are going to apply lemma A.1 in [22] to provide the probability bound for ]P)T{’UN(IB)—)\QO'/\/(N <

742 vT(x)} for any Ay > 0. Given a positive parameter A\; > 0, let us define Ay = 2X\;/(1 —¢) and Ay
713 Mo /VN < min{A;, Ay}, that is,

3N Ao Ao
744 (4.7d = = .
745 (7 l—e (1-¢VN 2VN
746 According to equation (4.7d), we have
Aoo Ao An
747 (4.7e P {w w—<va}=]P’T un(x) — — <ol(x)p.
;43 o {N() VN @) V@ (1-e)VN 1—-e7 (@)

719 Invoking the definition of vT (x) and vy (x), we can rewrite (4.7¢) as

754 By the law of total probability (see, e.g., appendix A of [70]), we have

s BT {UN(;E) - %’ < UT(:B)}
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Ao ~
1:5); < W BN () — B (2)] < AN}~
759 According to inequality (4.7c), we have
760 PT {UN<CL‘) - i\;% < vT(w)}
" (A 3 (@8- @) | -me | (0w - @) ||
i€[N]
70 < T ()~ () < B
- r) 1 &i * = " Ao
- =SSP (ewd)-s@) | -5 [(0@o- @) || <22
164 +P7 {18y (@) - 8" (@) < Ay} - 1,

766 where the second equality is due to the union bound (see, e.g., [11]).
767 Defining ¢! = [Q(x, £') — 8*(x)]- and ¢! = Epr[Q(x, €) — B*(x)]_ and applying lemma A.1 in [22] with
768 d; = ¢ — ¢! for each i € [N], together with inequalities (4.7b), for any « € X, we have
A ~
769 PT {UN(w) - 229 < vT(ac)} > [1—exp{A}/3}] + [1 - 2eXp{—2N(£AN)2}} -1
VN
779 >1 —exp{—M\}/3} — 2exp{—£*(1 — £)*\]0?/2}.
772 Step I'V. When set X is discrete, then applying the union bound, we have

A
773 PT {U}S\}AA - 229 < UT} > 1 — |X]exp{—)\}/3} — 2|X|exp{—L*(1 — &)?N]0?/2},
774 VN
775 with sample size N at least to be log(2/7)/(2(¢Ax)?).
776 Assume that | X| < 7" and let /3 = 7™ max {exp{—A}/3}, exp{—1?(1 — €)®A}0?/2} }, which implies that
% > 1™ exp{—A2/3}, % > 1 exp{—2(1 — £)2\202/2}.

779 By simple calculation, we have

780 M = max {mmogm ~3l08(3/3), \/ e } ~

782 We can choose 0 := 2\ L' N=Y2(1 —¢)~1 = O(1)N~'/2/nlog(7~1) and we have the conclusion.

783 Step V. We are going to analyze the more general setting, i.e., when set X is not discrete. Suppose
784 X C [-M, M]™, by discretization, where for any € X, there exists gy € X¥, such that || — Y||oc < v and
785 |A&¥| <|2M/v|™. For notational convenience, we let

786 vfM(v) = min P-FOVaR, . [Q(m,g)], o"(v) = min PT-FCVaR, . [Q(m,é)}.

788 According to Part (iii) of Assumption 2, when Lv/n < min{A;, Ay}, we have

759 8"(&) — B~ (Y)| < Lv/n.

791 We then bound the difference between objective functions. There are two subcases to consider: whether
792 [*(y) — B*(Z) is negative or not.

793 Case (a). When —Lvy/n < 5*(y) — 5*(Z) < 0, we have

794 B (y) =57 (@) + 15 :EPT (Q (9.€ ))_] ~ Epr {(Q@’ &- '6*@))—“
. <) (@) + E (Q )+ LG — @l @)” ~Epr [(Q@v &~ ﬂ*@)ﬂ
N <5 @) - @) + :EPT (Q@.&+Lv—p (g))} ~ Epr [(Q(a, & - 5*(@)”
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1
<

L B[ (0@ + i+ v - @) | B[ (0@8 - @) ]
1
Sli_g [Lv(1+ /n)],
where the first inequality is due to Part (ii) of Assumption 2, the second one is based on the
discretization, the third one is due to the presumption in this case, the last one is due to subadditivity
of the concave function h(t) = min{t,0}.

Case (b). When 0 < 5*(y) — 5*(Z) < Lv/n, we have
56 -5 @+ [B (6.0 - 5@) | -Er| (088 -5 @) ||

< G) ~ B @) + []E [(Q@ €)+Lv— 5*@))] — Epr [(Q@é) - ﬁ*@))”

SLv(¥/n) + 5 i Ly < 1—16 [Lv(1+ §/n)],

where the first inequality is due to Part (ii) of Assumption 2, discretization, and 3*(Z) < 8*(y), the
second one is due to subadditivity of concave function h(t) = min{¢,0}, and the last one is due to
e € (0,1).
Therefore, when |3*(Z) — *(y)| < Lv/n, we have
* [ * [ 1 ~ K[ ~ Z * [
5@ - 5@+ 1 B[ (0.6 -5 @) | -Br| (0@ -5@) || <
which implies that vT (v) < v + [Lv(1 + ¢/n)]/(1 — €) holds a.s..
Together with the fact that the inequality v3*4 < v3A4(v) holds a.s. and the inequality v (v) <
vT (V) + A\yo/V/'N with probability 1 — exp{—\?/3} — 2exp{—¢?(1 — £)2)\?02/2} from Step III, we have
A 1
PT {UJ%AA(I/) - \/2—% ~1—: [Lv(1+ ¢/n)] < ’UT(I/)} > 1— [exp{—A}/3} + 2exp{—(*(1 — )®A\]0?/2}] .

Then, the confidence bound can be written as
A 1
PT {v;%“f“ _ 29 T [Lv(1+ ¥/n)| < UT}

>1-(C2M/v)" [exp{—)\%/?)} + 2exp{—£*(1 — 8)2)\%02/2}] .
Letting 7/3 = |2M/v|" max {exp{—A}/3}, exp{—{?(1 — £)?Ai5?/2} }, which implies that
2l gl

12 2M/v[ exp{-N/3}, 5= [2M/v]" exp{~£2(1 - £)*X}0? /2,

1
1—¢

[Lv(1+ /)],

and we have

A= max{\/?m log(2M/v) — 3log(7/3), \/Qn log(ié\(fl/l/_) 8)220120g(§/3) } '

Letting oo /vV/N = Lv(1 4+ ¢/n)(1 — ¢) and setting
6:=4\oL N2 (1 —e)7 = O(1)N~/2y/nlog(nN) log(~1),

we arrive at the conclusion. O

We make the following remarks on Theorem 4.3:

(i) Parts (i) and (ii) together show that with high probability, the value of the minimum of the worst-
case FCVaR is at most L@ less than the true value v7 and 2L larger than vT, implying that the
Wasserstein radius 6 in O(N~12,/log(N)) or O(N~'/?) suffices;

(ii) Due to the discretization error, the non-asymptotic Wasserstein radius for the general compact
support is in the order of O(N~1/2,/log(N)), which is slightly larger than the one with the discrete
compact support one (i.e., O(N~1/2));

(iii) In our numerical study, we numerically verify the order magnitude of the proposed confidence bound.
We observe that the appropriate Wasserstein radius @ is nearly proportional to 1/v/N, where N
denotes the sample size.
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We then demonstrate that the worst-case FCVaR can also be decision outlier robust when Part (ii) of
Assumption 2 holds. To begin with, let us define the following two constants. For a given a; € (0,¢) and a
set U(Aq) defined in Part (ii) of Assumption 2, we define

AL = inf{A1: pT {z)(Al) >1 —5+a1}}, AV zsup{Alz pT {z)(Al) >1 —5+a1}},

which represent the smallest and largest perturbations, respectively, that preserve the Lipschitz continuity
property in Part (ii) of Assumption 2.

THEOREM 4.4. (Decision Outlier Robustness) Suppose that for any unamenable decision x € A?, there
ezists a Ay € (AF, AU such that Part (i) of Assumption 2 holds and PT{U(A)} > 1 — & + oy for some
ay € (0,e]. Then, if Ay + LO < AY and sample size N > log(A~1)/(2a2), then with probability 1 — 7, the
worst-case FCVaR is decision outlier robust.

Proof. We split the proof into two steps.
Step I. First of all, we need to ensure that with probability at least 1 —7, the number of N i.i.d. empirical
samples {£i}i€[ N is large enough, such that the number of the samples which fall outside the set ¢/(A;) is
at most |Ne|. Since oy € (0,¢], by applying Hoeffding’s inequality (see, e.g., [30]), we have

PT i;\ﬂﬂ(g ¢ﬁ(A1)) < [Ne <exp{—2N <a1 +% —g>2} ~exp {—2Naj}.

Letting exp { —2Naj } <7, the sample size is at least N > log(77')/(2a1).

Step II. Note that AX < Ay + L < AV and the function Q(z, £) is defined as

— ~

Q(,&) = max { Q. €): [l¢ — €], < 0}
According to the definition of set Z/A{(Al), we conclude that if Q(z, SA) is finite and &€ € Z](Al), then Q(:ug)

~

must also be finite by the Lipschitz continuity and is bounded by Q(x, &) + L. According to the definition
of set U(AY), Ay + LO < AV, and the result in Step I, with probability at least 1 — 7, we have

n=P{Q@.8 < oo} > P{Q@.) < pr(@) + A+ L0} > 1-c.

Step III. For the worst-case distribution P € PY according to [9], it can be represented as

P=)_ dee)/N
i€[N]
with & € argmax {Q(z,€): [|€ — E‘iﬂp < 6} for each i € [N].
Next, we construct the favorable distribution P* such that IE’*{é = ¢ = ]I{Q(a:,@) < oo} /(Nn) for
each i € [N]. By our construction, we have P*{U/} = 1,0 < P* <P/(1 —¢). On the other hand, we have

Bp- [Q(@,8)] <00, P*{&: Q=€) =0} =0.

This proves that P* is a desirable probability measure, such that the condition in Proposition 3.3 is satisfied.
Hence, we conclude that with probability 1 — 7, the worst-case FCVaR is decision outlier robust. O

According to Theorem 4.4, to preserve the decision outlier robustness, we need to guarantee that the radius
of type—oo Wasserstein ambiguity set 6 is small, i.e., 0 < 8 < (AY — AL)/L. In fact, to simultaneously
achieve out-of-sample performance guarantees and decision outlier robustness, since 8 o< 1/y/N according to
Theorem 4.3, it is expected that the sample size should not be too small.

We conclude this section by remarking that the results in Theorem 4.3 and Theorem 4.4 can be extended
to Winsorized CVaR and Huber-skip CVaR. The proofs are similar and thus are omitted.

4.3 Achieving Out-of-Sample Performance Guarantees in Favorable Two-stage Stochastic
Programs. In this subsection, to achieve the out-of-sample performance, we provide one robustified favor-
able two-stage stochastic program by applying type—oo Wasserstein ambiguity set. First of all, if we apply
the worst-case FCVaR to a two-stage stochastic program, we have

;21)1(1 {cTa: + sup {]E]P’ |:Q(m7£~):| }} )
ses FePse (9)
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which can be written as

1 —~

: T %

. +{ — ; : — < —

(4.8) ;21{{} c'x sE zzm?X{Q(:c,ﬁ) 1€ —&'lp 0} E 2zi=N — Nep,
ze{0,1}N i€[N] i€[N]

Notice that in general, for a given z, the optimization problem above is NP-hard (see the details in [75]).
Therefore, instead of focusing on (4.8), by exploring the structure of the problem, we consider the following
special case of the worst-case favorable two-stage stochastic program. For example, if the recourse function
Q(x, &) is monotone in & for any « € X and the norm is Lo, then (4.8) is equivalent to

1
. T ci _
(4.9) :}:Teu/‘g c'x+ 7N—N6§ ziQ(x, & + be): E zi=N—Ne |
ze{0,1}V i€[N] i€[N]

where we choose —6 if the recourse function is monotone non-decreasing over a particular parameter, and
46 if the recourse function is monotone non-increasing over a parameter. Then, we can apply the result
in Theorem 2.2 or the MILP (2.9) to derive a proper formulation. Notice that this monotonicity structure
has been studied in several recent works (see, e.g., [16, 75, 77]). In order to illustrate the formulation (4.8),
we use the two-stage recourse planning problem in Example 5 and apply the worst-case DFO under type-oco
Wasserstein ambiguity set.

ExaMPLE 8. Consider Example 5 under type—oo Wasserstein ambiguity set equipped with weighted
Lo norm (ie., [|€]loo = max{quqHOO’}\UuHuHOO’w;DHpHooaw)\”)‘Hoo} with positive weights wq’wuawp’w)\)
constructed based on N i.i.d. samples {£i}ie[N] on the nonnegative support /. Then, the minimum of the
worst-case FCVaR, (4.9) is equivalent to

1 N

) : T - . i . o> _ N

(4.10a) Zin, c'x+ N Ne Z 2:Q(x, &' + fe) Z zi > N — Ne,z € {0,1} ,
i€[N] ic[N]

where for each ¢ € [N], we have

(4.10b)

>yl < 0L — 8/wp) s, Vs € [0,
i £ £ fe) = jelm) |
Z. Q(m 5 98 ;n;% Z Z qb] yé] Z ( 1 z (

n] j€[n1] Ugj — e/wu)+ysg 2
s€n]

Similarly, the minimum of the worst-case WCVaR in this example can be formulated as follows:

N+ 0/wy )z, Y € [m]

1 ~ ; gl — 2L, Vi
(4.100) min CT$+N Z ziQ(w,Elj:Ge)—&—nE: 772le(3’3,€ iae)+(1 ZZ)L“VZG [N],

. i > N — N, )
zew{%,%f\’ i€[N] ZlE[N] Zi Z €
where, for each ¢ € [N], the scalar L; is defined in Corollary 2.3 and the product ziQ(m,é\i + fe) is defined
n (4.10b). 5

The comprehensive process for selecting € in Example 8 can be found in the numerical study section. We
remark that interested readers are referred to [75] for many reformulation results in the two-stage stochastic
program with type—oo Wasserstein ambiguity set, which can be useful to derive the reformulation of the
worst-case DFO.

5 Numerical Study. This section presents the numerical results to compare the strengths of FCVaR
and its alternatives based on Example 5 in Section 2.3, where the relatively complete recourse assumption
may not be satisfied.

We generate random instances with varying sample sizes N for the numerical experiments. All the
random variables (i.e., the customer demands 5\, random costs ¢, random utilization rates p, and random
service rates ) are truncated to be nonnegative. Particularly, for each instance, we suppose that the
components of the cost vector ¢ are i.i.d. truncated Gaussian ones with means 1 and variances 0.2, the
components of random utilization rate p are independent truncated Gaussian ones with means uniformly
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distributed in (0.9,1) and variance being 0.05, and we let ¢; = pi for all s € [n], j € [n1], and i € [N]
to let the reliable servers are more expensive in the second-stage cost. The components of the nominal
customer demand A are i.i.d. truncated Gaussian ones with means 10 and variances 0.2 and the random
service rates w are i.i.d. truncated Gaussian ones with means 1 and variances 0.2. We also assume that there
exist some outliers in the customer demand information and service rate information, denoted by X° and u’,
respectively. We assume the components of random vector A° are i.i.d. truncated Gaussian distributed with
mean 30 and variance 5 and the components of random vector w° are i.i.d. truncated Gaussian distributed
with means 0.02 and variances 0.01, which may cause the underlying two-stage problem infeasible. The
observed demand vector follows the following distribution 0.85A 4+ 0.15A°, and the observed service rate
vector follows 0.95uz + 0.05%°. We let the number of resources n = 20 and the number of customers n; = 20.

In the numerical implementation, since the original SAA problem (2.7a) may be infeasible, we resolve the
infeasibility issue from the original SAA by removing the infeasible scenarios until the remaining problem
is solvable. This procedure is known as “Trimmed SAA” (see more discussions in chapter 7 of [17] and
chapter 2.3 of [23]). After solving the corresponding Trimmed SAA, FCVaR, WCVaR, and HCVaR models,
we generate additional 50 random testing cases to evaluate the solution performances, i.e., to assess the
performance of the first-stage decision in each method. For the worst-case models, we follow Example 8 and
focus on type—oo Wasserstein ambiguity set equipped with weighted infinity norm. All the instances in this
section are coded in Python 3.9 with calls to solver Gurobi (version 9.1.1 with default settings) on a personal
PC with an Apple M1 Pro processor and 16G of memory. We set the time limit of each instance to be 3600s.
Experiment 1. Model Comparisons When the Testing Distribution is the Same as Training.
For each method (i.e., Trimmed SAA, FCVaR, WCVaR, HCVaR, and In-CVaR models), when evaluating the
first-stage decision using 50 random generated test instances, i.e., the components of the random utilization
rate vector p are i.i.d. truncated Gaussian ones with means sampled uniformly from (0.9,1) and variances
all being 0.05. we record all the 50%, 60%, 70%, 80%, 90% quantiles of the second-stage values, respectively.
We then report the 95% confidence interval (C.I.) of each quantile among these 50 testing instances. We
set € = 0.10 in both FCVaR (2.11a) and WCVaR (2.12a) and consider the sample size with N € {100, 200}.
To avoid any trivial solution in HCVaR (i.e., * = 0,z = 0 may be a trivial optimal solution in (2.12b)
when H is relatively small), we solve the trimmed SAA model first and then select its (1 — €)-quantile as
the value of H. We use In-CVaR? from [41] with o = 0.1, 3 = 0.9 for comparisons. Notice that based on
Example 5 in Section 2.3, we may not provide a big-M free formulation for In-CVaR model and therefore,
we may not be able to solve all the instances of In-CVaR model to optimality within the time limit. We
use “GAP” to denote its optimality gap as GAP(%) = (JlUB — LB|)/|LB| x 100, where “UB” and “LB”
denote the best upper bound and the best lower bound found by the In-CVaR model, respectively. For each
testing instance, we assume the components of customer demand X are i.i.d. truncated Gaussian ones with
means 10 and variance 0.2, the components of service rate w are i.i.d. truncated Gaussian ones with means
1 and variances 0.2, and the remaining parameters follow the same assumptions described in the training
procedure. The result is shown in Table 1. It is seen that, in a reasonable time, FCVaR, WCVaR, and
In-CVaR can consistently provide a favorable solution with a lower cost than the trimmed SAA. However,
In-CVaR takes much longer than the other methods and HCVaR performs worst among the four models.
Additionally, it is worth noting that when we set the parameter H in the HCVaR to be the (1 —¢)-quantile of
the trimmed SAA model, we observe that the performances of HCVaR and trimmed SAA are quite similar.
We continue to discuss the performance of HCVaR in the next experiment.

Table 1: Quantile Comparisons among Trimmed SAA, FCVaR, WCVaR, HCVaR, and In-CVaR in Experi-

ment 1.

. ) Quantile
N Model | Time (s)|  Ap 0% CT. 60% CT. 70% C.L. 80% CT. 90% CT.
Trimmed SAA 5.58(0.00%[532.04,535.40]([535.60,538.94][[539.16,542.54]|[543.21,546.72][[549.31,552.89
FOVaR (2.114) S.05/0.00% [473.75.477.56]|[473.41.432.40] [ 183 07 487 03] [[490. 13.494.00][498.34.502.26
100[WCVaR (2.12a)|  11.05[0.00%|[474.33.477.99][[478.79.482.69] |[484.10.487.95] ||489.84.493.60][497.46.50 .31
HCVaR (2.125)|  2.44]0.00%|[532.05,535.40][[535.61,538.04][[539.14.542.53][[543.20,546.71] [549.28.552.86

In-CVaR [41] | 1740.39[0.00%([473.97,477.68]|[478.52,482.45]|[483.88,487.77]|[489.75,493.59]|[497.66,501.52
Trimmed SAA 16.93[0.00%([575.99,579.47]([579.40,582.74]|[583.24,586.55]|[587.25,590.59][593.10,596.41
FCVaR (2.11a) 41.36/0.00%([492.34,495.64][[495.90,499.15]([499.92,503.21][[504.47,507.74]|[510.37,513.74
200[WCVaR (2.12a) 47.10[0.00%([492.78,496.11][[496.21,499.55]|[500.31,503.62]|[504.95,508.28][[511.03,514.46
HCVaR (2.12Db) 5.06[0.00%|[575.99,579.29][[579.40,582.68][[583.24,586.51]|[587.25,590.58][[593.10,596.41

In-CVaR [41] 3600[0.91%][492.42,495.71]([495.96,499.24][[500.03,503.34][[504.49,507.79][[510.59,514.02

S
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Experiment 2. Model Comparisons When the Testing Distribution is Different From the
Training one. We follow the same procedure described in Experiment 1, i.e., we record all the 50%,
60%, 70%, 80%, 90% quantiles in the second-stage scenarios for each method (e.g., Trimmed SAA, FCVaR,
WCVaR, and HCVaR) in each testing instance, respectively, and report the average of each quantile among
these 50 random generated testing instances. The testing setting is the same as that of Experiment 1, except
that we assume that the utilization rates have been perturbed, i.e., the components of the random utilization
rate vector p are i.i.d. truncated Gaussian ones with means being 0.6 and variances being 0.3. The result is
shown in Table 2. As expected, both FCVaR and WCVaR can consistently provide a favorable solution with
a lower cost than the trimmed SAA. On the other hand, HCVaR surprisingly performs worse than FCVaR,
WCVaR, and In-CVaR. This may be because that HCVaR is very sensitive to its trimmed parameter H. In
this experiment, we let the parameter H in HCVaR be (1 — ¢)-quantile of trimmed SAA model to avoid any
trivial solution; that is, when H is small, e.g., H is less than the first-stage cost, it provides a trivial solution
isz =0,z =0in (2.12b) . In the following discussions, we focus on FCVaR and WCVaR that have small
differences and may not be comparable. Therefore, to measure their relative performances, we report the
running time of FCVaR and WCVaR in the following discussions.

Table 2: Quantile Comparisons among Trimmed SAA, FCVaR, WCVaR, HCVaR, and In-CVaR in Experi-

ment 2.

. ) Quantile
N Model Time (s)| o Ap 0% CT. 60% CT. 70% C.L. 80% CT. 90% CT.
Trimmed SAA 5.58]0.00%|[578.05,582.25]([582.72,586.87]|[587.70,591.98]|[593.75,598.15]([[601.53,605.97
FOVaR (2.112) 8.05]0.007%|[540.41,545.57][547.32.552.56] | [554.86.560.01]||563.72.569.06][577.85.583.22
100[WCOVaR (2.12a)]  11.05[0.00%|[537.08.542.16][[543.62.548.53][[550.62.555.61][558.62.563 52| [[571.84.576.99
HCVaR (2.125)|  2.44]0.00%|[577.96,582.16] [[582.61,586.76][[587.56.591.84][[593.55,507.05] [[601.37,605.82

In-CVaR [41] | 1740.39]0.00%([538.27,543.37]|[544.88,550.01][[552.17,557.15]|[560.47,565.57][[574.09,579.40
Trimmed SAA 16.93/0.00%[621.98,626.08]([626.28,630.41]([631.40,635.46][[637.22,641.33]|[645.12,649.30
FCVaR (2.11a) 41.36/0.00%([543.94,548.07][[549.06,553.12]([554.58,558.74]([560.62,564.77]|[569.90,574.13
200[WCVaR (2.12a) 47.10[0.00%|[544.62,548.82][[549.41,553.53]|[554.76,558.82]|[561.22,565.40][[570.29,574.54
HCVaR (2.12Db) 5.06[0.00%|[621.88,625.95][[626.24,630.36]|[631.33,635.37]|[637.17,641.28]|[644.95,649.15

InCVaR [41] 3600[0.91%][544.29,548.45]([549.24,553.33]|[554.73,558.84][[560.93,565,13][[570.30,574.55

Experiment 3. Comparisons in the Worst-case FCVaR and WCVaR and Finding a Proper
Wasserstein Radius. Since HCVaR is quite sensitive to the parameter H and does not work well in
general, we focus on FCVaR and WCVaR for the remaining experiments. We follow the same setting and
derivation of Example 8 in Section 4.3 for both worst-case FCVaR and worst-case WCVaR models and adopt
the same training parameter setting as that in Experiment 1 for training and testing in this experiment. We
also let the risk parameter ¢ = 0.10 and sample size N = 200. To choose a proper Wasserstein radius 6, based
on out-of-sample probability (4.2), we suggest selecting the smallest  such that its corresponding training
costs of FCVaR and WCVaR are beyond the 95% one-sided testing confidence interval (similar procedure
for the out-of-sample performances can be found in section 7.3 of [68]). In the numerical study, we choose
the weight of each random vector used in the weighted L., norm to be proportional to the inverse of the
average of all the samples of the corresponding random vector, i.e., we let w, in Example 8 as 8/g, where g is
the average of g in that particular instance. Then, following the same procedure as described in Experiment
2, the result is shown in Table 3. The optimal Wasserstein radius is # = 0.10 for FCVaR and 6 = 0.01 for
WCVaR, and we observe that the running time of FCVaR is slightly less than that of WCVaR.
Experiment 4. Value of Confidence Bound. In this experiment, we test the order magnitude of
the proposed confidence bound presented in Section 4.2. Since Example 8 lacks a fixed recourse structure,
the computation of the required Lipschitz coefficient for Assumption 2 (ii) of Theorem 4.3 is not possible.
Instead, we present the asymptotic trend of the optimal 6. In this experiment, we follow the same setting as
that in Experiment 3. Then, we follow the same procedure described in Experiment 3 to choose a proper 6
for each sample size. We repeat this process 10 times and the result is shown in Figure 6, where we observe
that the optimal Wasserstein radius 6 decreases when sample size N increases. The curve can well fit the
results in the order of 1/v/N, which validates our discussions in Section 4.2.

Experiment 5. Value of Big-M Free Formulations. In this experiment, we follow the same setting
as Experiment 1 and compare the Big-M and Big-M free formulations between FCVaR and WCVaR, with
different choices of 8. The big-M free formulations can be found in Section 2.3. We let the risk parameter
¢ = 0.10 and generate instances with the varying sample sizes N € {200, 300, 400, 500}. The proposed big-M
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Table 3: Comparisons in the Worst-case of FCVaR (2.11a) and WCVaR (2.12a) and 6 Selection in Experiment

3.
0 FCVaR (2.11a) WCVaR (2.12a) Testing

Opt. Val.[Time (s)[Opt. Val.][Time (s)[FCVaR (2.11a) C.IJWCVaR (2.12a) C.I.
0.00 508.78 41.36 545.81 47.11 540.49.543.33 544.01,546.85
0.01 519.43 44.68 559.43 52.91 546.81,550.95 550.28,5654.42
0.02 530.39 49.69 569.32 54.82 553.71,557.86 557.18,561.34
0.03 541.55 52.87 579.48 55.28 560.88,565.04 564.31,568.48
0.04 552.96 56.18 589.94 58.75 576.07,580.65 574.38,578.60
0.05 564.63 57.76 600.71 60.88 583.33,687.92 582.05,5686.28
0.06 576.62 63.25 611.78 64.29 590.34,594.93 589.91,5694.15
0.07 588.93 66.21 623.16 69.38 597.82,602.40 598.05,602.31
0.08 601.59 68.48 634.89 80.39 605.69,610.27 606.50,610.76
0.09 614.59 71.36 646.96 81.72 613.83,618.41 615.15,619.43
0.10 627.97 73.33 659.41 83.68 622.07,626.64 624.05,628.33
0.11 641.73 74.71 672.24 86.25 630.71,635.25 633.32,637.60
0.12 655.90 77.86 685.49 92.26 639.90,644.45 642.99,647.28

§ Optimal 0
- = Approximation Curve

50 100 150 200 250 300 350 400
Sa N

Fig. 6: Optimal 6 vs. Sample Size N in Experiment 4.

free formulations can effectively identify better feasible solutions than the exact Big-M model with a much
shorter solution time. Recall that we let “UB” and “LB” denote the best upper bound and the best lower
bound found by the Big-M model. Since we cannot solve the Big-M model to optimality within the time
limit, we use “GAP” to denote its optimality gap as GAP(%) = ([UB—LB|)/|LB| x 100. In the corresponding
big-M formulations, to select a proper value of the big-M coefficient, we first run the trimmed SAA model
and then let the value of the big-M coefficient be the feasible scenario with the largest recourse value. We
repeat this process for 10 times, and the average performance can be found in Table 4. Notably, we show
that big-M free formulation can improve the running time. We anticipate that the differences will be more
striking for larger-scale instances.

6 Conclusion. This paper studied distributionally favorable optimization (DFO) for data-driven op-
timization with endogenous outliers, where the conventional data-driven stochastic programs may fail. No-
tably, we showed its connection to robust statistics, established decision outlier robustness concept, and
integrated distributional robustness to achieve out-of-sample performance guarantees. Exploring the con-
textual information in DFO or studying the worst-case regret bound of the FCVaR can be promising future
research directions.
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Appendix A. Formal Proof of the Connections Between Chance Constrained
Programming and Robust Optimization Using DFO (1.2).

PROPOSITION A.1. Suppose the interval ambiguity set is Pr = {p: p(UU) = 1,0 2 p < Py/(1—¢)}, then

the DFO counterpart of a robust optimization (1.4a) is equivalent to a chance constrained program

(A1) v* = min {CT:BZ Ep, [I[ (G(a:,é) > O)} < 5} .

reX

Proof. According to the duality result in [64], we have

inf E, [11 (G(m,é)>0)} - max{F(a:,)\o) = o+ 7 ! gy, [(11 (G(m,é) > 0) _ /\0>] }

Since

MEPT Ao — &
Ao, if \g <0,
F(@,do) = { Ao+ F2E, [[(G@,6 >0)], ifo<r <1,
—2o 4 LRy []1 (G(:c,é) > o)} LA > 1,

by optimizing over Ay, we further have

max F(x, M) = max {ngéF(m, o), omax F(x, M), max F(zx, )\0)}

Ao

= max {O, —e + Ep, {H (G(:L',é) > O)} } .

Therefore, the conclusion follows by substituting the last equality into the left-hand side of the constraint in
DFO (1.4Db). O

A.1 Proof of Proposition 2.1

PROPOSITION A.2. (i) Given an interval ambiguity set Pr = {P : P(U) = 1,0 < P <X Py/(1 — &)}
28



1205
1206
1207
1208

1228
1229
1230

1231

1232
1233
1234
1235

1236

1237

1238
1239

with support U = supp(Py), we have

. 5 1
(2.3a) IP>1€n7£I Ep [X] = max {5 +

1—¢

Ep, [(X - 5)} } — Py-FCVaRi . (X);

(i) An optimal solution of the right-hand side optimization problem (2.2) is f* = Po-VaRi_.(X); and

(iii) The Po-FCVaRi_.(X) can be bounded by two conditional expectations:
(2.3b) Ep {X{X < Py-VaR,_. (X)} < Py-FCVaR,_. (X) <Ep {X\X < Py-VaR;_. (X)] .

Proof. We split the proof into three parts by checking these three statements separately.

(i) The proof of the first statement is similar to that of Proposition A.1 and thus is omitted.

(ii) Since the right-hand side optimization problem (2.2) is an unconstrained concave minimization, let
us consider the first-order condition of FCVaR (2.2) for an optimal solution 5*, that is,

OPy-FCVaR,_.(X) B 1 ~
0e e ‘525**”71_53/3 Ep, (Xfﬂ)i i

According to the continuity of function f(¢) = min(¢,0) and theorem 1 in [57], we can interchange
the subdifferential operator and expectation, that is,

(A2) 0= 14— E, {aﬁ[(fcﬂ)} \5_[3*}1 ! PO{X<B*}71W P {X =5},

1—¢ 1—-¢ —€
for some w € [0, 1]. Letting w = 0 and 1, we have the following inequalities
1752P0{X<ﬂ*}, 175§IP’0{X§[3*}.
Above, the second inequality implies that 5* > IP’O—VaRl,E(X). Suppose that 3* > IP’O—VaRl,E(X).
Then the first inequality together and the definition of Pyp-VaR;_.(X) implies that
1—e>P, {X < 5*} > P, {X < IP’O-VaRl_E(X)} >1—e.
Thus, all inequalities become equalities. Letting w = 1 in the optimality condition (A.2), we have

1 = - 1 - -

— P, {X < IP’O-VaRl_E(X)} - 1P {X - IP’O-VaRl_s(X)} ,
which implies that 5* = IP’O—VaRl,E(X ) is another optimal solution.

(iii) Let us first prove the lower bound. According to the definition of conditional expectation, we have

Ep, [X|X < Po-VaRy o(X)]

=1-
0 1

Ep, [(X - PO-VaRl,E(X)) X < ]P’O-VaRl,E(X')}}

=Po-VaR,_.(X) + - .
P, {X < IP’O-VaRl_E(X)}

Since Po{X < Po-VaR;_.(X)} < 1 — ¢ and Ep, [(X — Po-VaR;_.(X))[{X < Po-VaR;_.(X)}] =
Ep, [min{X — Py-VaR;_.(X),0}] < 0, we have

B, [X|X < Bo-VaRy _o(X)]

_En {min {X ~ Py-VaRy_.(X), OH

— 4 Py-VaR,_. (X) — P,-FCVaR,_. (X) .

Thus, the lower bound is valid.
Similarly, we can write the upper bound as

Ep, [X|X < Po-VaRy .(X)]

_ Ep, [(X - PO-VaRl,E(X)) I{X < ]P’O-VaRl,E(X)}}
:Po—VaRl_E(X) + — — .
P, {X < IPO-VaRl_E(X)}
Since Po{X < Pp-VaR;_.(X)} > 1 — ¢ and Ep,[(X — Pp-VaR;_.(X))[{X < Py-VaR;_.(X)}] =
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Ep, [min{ X — Py-VaR;_.(X),0}], we have

Ep, {X\X < IP’O-VaRl,a(X')} > Py-VaR,_.(X) + Ep, [min {X — Po-VaR;_.(X), OH

1—¢
— Po-FCVaR, _. (X) .
This completes the proof. ]

We remark that existing works (see, e.g., [55] and [61]) focus on CVaR, while our result in the proof above
holds for a distinct notion FCVaR. Our proof is also different from the CVaR literature.

Appendix B. More Robust Statistics that DFO Can Recover and Beyond

B.1 DFO Recovers Median It is well-known that the median of a dataset is much less sensitive to
outliers than the mean (see more discussions in [35]). For example, one or two outlier data points with large
values may change the mean dramatically, while the median may not even change. By choosing a proper
uncertainty set, we observe that the rDFO (1.3) can recover the median of a dataset. That is, given m
data points {s;}icim) € R, it is well known that the mean of {s;};c|;s) is achieved by solving the following
least-square optimization:

(B.1a) mean({s; }ie[m]) € arg min Z Ea — 5%,

iepm)
which places equal weight £ = 1/m on each data point for all i € [m]. If we consider the weight uncertainty
set U = {€ € R} : Zie[m] 1/¢" = m?}, applying rDFO to the problem (B.1a) can recover the median of data

points {si}iE[nz] .

PROPOSITION B.1. The median of data points {s;}icim) € R can be found by
(B.1b) median({s;}icim)) € arg min rgnelbr{l Z &l — 542,

i€[m]

where U ={§ €RTY : 37, ) 1/€ = m?}.

Proof. From the definition of the weight uncertainty set U, we can rewrite problem (B.1b) as

1 1 ;
(B.2a) min min — Z & Z £z — 5|2
] ]

z geU m2

i€[m i€[m

According to Cauchy-Schwarz inequality (see, e.g., thereon 1.37 in [60]), we have

2
1 i
> LY ez (S ea)
1€[m] 1€[m] 1€[m]
and the equality can be achieved when ¢ = ¢/|z — s;| for each i € [m] and ¢ = 3
Thus, problem (B.2a) can be written as

j€lm] |z — Sj|/m2'

2 2

. 1 1
(B.2b) V" =min —5 Z |z —si| | = min — Z |z —si| |
i€[m] i€m]
and the solution of the right-hand problem in (B.2b) can be interpreted as the median of {s;};c[m). This
completes the proof. 0

This result shows that in the presence of endogenous outliers, the DFO framework, weighing more on
the favorable data points, can be more desirable than its risk-neutral counterpart.

B.2 DFO Recovers More Robust Statistics Based on Proposition B.1 Using the same weight
uncertainty set U and following the similar derivation as Proposition B.1, we are able to recover more similar
robust statistics, such as median absolute deviation (MAD), least absolute deviation (LAD), and least median
of squares (LMS).

(i) Median absolute deviation (MAD), a robust measure of the variability of the data (see, e.g., [32]),

can be represented as the median of the absolute deviations from the median of the data. That is,
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given data points {s;};c[m € R and their median s, the MAD can be interpreted as
2
o ; A2 1
min min Z Ex—|si—3) = min — Z |z —|s; — 5|

voLeU i€[m] i€[m]

Here, applying DFO converts the less reliable average absolute deviation (i.e., & = 1/m in the above
left-hand problem) to the desirable MAD;

(ii) Least absolute deviation (LAD), a special case of robust regression (see, e.g., [40]), minimizes the Ly
norm of the residuals. That is, given m data points {&;, ¥; }ic[m) € R? x R, suppose that the residual
function is defined as r;(8) = (y; — ®; 3), for each i € [m]. Then, applying the DFO converts the

least-square regression problem to the LAD regression problem
2

v* = min min Z E(ri(B)? = rrgn% Z lri(B)] | ;
; i€[m]

(iii) Least median of squares (LMS) is another known robust regression (see, e.g., [46]), which minimizes
the median of the squared residuals. Given m data points {Z;, y; }iepm] C R? x R, suppose the
residual r;(8) = (y; — &, B) for each i € [m]. Then LMS can be interpreted as applying DFO to the

average squared residuals:
2

. 1
wipin Y €l =2 @F = (mip = Y - 2@ |
i€[m] i€[m]
(iv) Least Absolute Error Estimation (LAEE) is an alternative to LAD when the size of the relative
error is a severe concern (see, e.g., [73]). Given m data points {Z;, y; }ie[m] R? x R, suppose that
the residual r;(8) = (y; — & B3) for each i € [m]. Then LAEE can be interpreted as applying DFO

to the average squared relative residuals:

2
[ —Hllsll’llglelgllv ]S ( > = Irgn

Yi i€[m]

2

v
Yi

B.3 DFO Recovers More M-Estimators We use DFO to recover the Huber estimator [34] and

Tukey’s bisquare estimator [71].
Huber Estimator [34]. The Huber loss function is defined as

1

51'2, x| <6
L(;(x) = 1 .
) (|x - 25) , otherwise

The following DFO can recover the Huber estimator:

where the ambiguity set P is decision-dependent as below

D ST R L R ) o R R (MCIEE D J S

€[N

with support U = {{i}ie[N] ={Zi,Yi bic[N)-
Tukey’s Bisquare Estimator [71]. Similarly, we can use the DFO to recover the Tukey’s bisquare
estimator, where Tukey’s bisquare loss function is defined as

22 2t 20
———t —, |2/ <6
2 202 664
Ls(z) = 52
5 otherwise
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The Tukey’s bisquare estimator can be recovered as
v* = mﬁln min Ep {E(B,E)}
where the ambiguity set P is decision-dependent as below
1 ; 5 ri(B) riB)  ri(B) 3 5 02
=< = P, : P, : = S i P, . 20 _
Pl E fecwo - -mB i ar e -5 -1,

with support U = {ﬁi}ie[N] = {Z4, Yi tie[ny-

B.4 DFO Recovers Quantile Regression Quantile regression can be used to estimate and conduct
inference on the conditional quantile functions, which is more robust against outliers in the response mea-
surements (see, e.g., [39, 79]). Given n data points {&;, ;i }icpm) € R? x R, the quantile regression problem
can be modeled as

(B.3a) min g 7 >0 (i =@ B)y +(1=7) 3 @ B-wi)s ¢

1€[m] i€[m]
where 7 € (0,1) is the given quantile. Similarly, we can recover the quantile regression problem with the
following DFO:

(B.3b) v* = min min Z 'y — =] B) + Z ly; — &, B,
i€[m] i€[m]
where the “interval uncertainty set” U; is defined as
U={(eR™:7-1<¢ <7Vie[m]}.
Note that in (B.3b), letting & = 0 for all i € [m], it reduces to LAD.

B.5 DFO Can Recover Many Machine Learning Examples Phase Retrieval [36, 48]. Consid-
ering the least-square criterion, the task of recovering the signal from the measurements vector in phase
retrieval admits the following form

. .1 T N2
v =min — Z (yi — la; z|)",
i€[n]
where A € R"*? is the sensing matrix with a; denoting its ith row, x is the task of recovering the signal of
interest, and y € R”} is the measurement.
Using the uncertainty & = {—1,1}", we can rewrite the phase retrieval problem as an equivalent DFO
1 ; 2
* 3 3 - L 3 .
v* = minmin - Z (yi — E'aiz)”,
1€[n]
which can be formulated as a mixed-integer program.
Clusterwise Linear Regression [3]. For a given dataset with N data points and d features {&;, yi}ie[N] -
R? x R, for an integer k € [N], clusterwise linear regression (CLR) aims to find the partition of the data into
k disjoint clusters such that each cluster subjects to a linear model and the overall sum of squared errors of
linear regression models within each cluster is minimized. That is, CLR is equivalent to

mind > "y~ @/ 8i) "+ Uiew Ci = [N, Cin Gy = 0,3 #

B,Ci
ielk] J€C;
We can recast CLR problem as a DFO one. That is, suppose we choose the most favorable clusters, each
with the least sum of squares. That is, we can rewrite the problem as the following DFO

v =g 3 35 3 €7 (- 2] )"
i€[k] FE€[N]
where U = {£: 3, €9 =1,£9 €[0,1],Vi € [k],7 € [N]}.
The Upper Confidence Bound (UCB) Algorithm [4]. The UCB algorithm has been widely used in
online learning [13, 63, 69]. The UCB algorithm aims to explore the most favorable action when facing
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uncertainty, i.e., choose the most plausibly possible payoffs. The essence of the UCB algorithm is coincident
with what we propose in DFO, that is,

ay = argmax,c 4 géﬁ%) Q(a) +&,

where Ur(a) = {€ : —+/(2logt)/(nta) < & < /(2logt)/(nta)} denotes the action-dependent interval uncer-
tainty set with n; being the number of the action a that has been selected at time epoch ¢, Q(a) is the
expected reward with decision a, and A is the action set.

We conclude this section by remarking that DFO can recover many other robust statistics.
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