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1. Introduction

Robust Optimization (RO) has emerged as a solution approach to deal
with uncertainty in optimization problems. Contrary to stochastic optimiza-
tion, another popular appraoch, robust optimization does not rely on proba-
bility distributions. Indeed, RO considers an uncertainty set for the unknown
parameters, against which the taken decision should be immune. In that
sense, constraints have to be respected in every possible realization of the
parameters and the objective function evaluated in the least advantageous
case. The concept was first introduced in Soyster (1973) and received con-
siderable attention in the scientific literature. Recent advances in RO can be
found in Bertsimas et al (2010), Hassene et al (2009), Ben-Tal et al (2009),
Leyffer et al (2020) and Yanıkoğlu et al (2019), among others.

More formally, a basic (one-stage) robust optimization problem can be
cast as follows

inf
zzz

sup
ξξξ∈Ξ

f(ξξξ, zzz)

subject to ggg(ξξξ, zzz) ≤ 0 ∀ξξξ ∈ Ξ
zzz ∈ Z.

(1SR-P)

Here, the unknown data is represented by variables ξξξ that belong to the so-
called uncertainty set Ξ. As mentioned above, decision zzz has to be feasible
in every possible occurrence of the uncertainty, hence robust solutions tend
to be overly conservative. To tackle this drawback, Ben-Tal et al (2004)
introduced the so-called adjustable robust optimization, also known as two-
stage robust optimization. As its name suggests, in a two-stage context,
part of the decisions are made in a first stage (i.e., here-and-now, before
uncertainty reveals), while recourse decisions can be taken in a second stage
(i.e., once the actual values of the uncertain data are known) as an attempt to
react to the outcome of the uncertain process. Typically, the feasible region
of (1SR-P) can, indeed, be recast to embed a two-stage decision process by
splitting variables zzz in (xxx,yyy). Here, xxx ∈ X are decisions to be made here
and now, while yyy ∈ Y may be taken at a later instant. Accordingly, set
Z is defined as X × Y . With the convention that the minimum objective
function value for an infeasible problem is +∞, a two-stage robust problem
can be formulated as follows

inf
xxx∈X

sup
ξξξ∈Ξ

inf
yyy∈Y(xxx,ξξξ)

f(ξξξ,xxx,yyy), (2SR-P)
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where Y(xxx,ξξξ) = {yyy : yyy ∈ Y , ggg(ξξξ,xxx,yyy) ≤ 0}, and ggg(ξξξ,xxx,yyy) ≤ 0 are the so-
called linking constraints. Set X is now referred to as the first-stage feasible
region. Given xxx ∈ X and ξξξ ∈ Ξ, the resulting second-stage feasible region
is Y(xxx,ξξξ), and the second-stage problem is inf{f(ξξξ,xxx,yyy) : yyy ∈ Y(xxx,ξξξ)}. It
is known (see, Ben-Tal et al (2004)) that most of the problems which can
be cast as two-stage robust problems are at least NP-hard. This result even
holds for cases where first and second-stage variables are continuous and all
the involved functions are linear. Several approaches have been developed to
tackle this class of problems. Assuming that the second stage is continuous
and exhibits strong duality, it can be replaced by its dual. This way, the
inner maximization problem can be reformulated using its epigraph, leading
to a constraint-generation algorithm in the spirit of Benders’ decomposition
(see, e.g., Terry et al (2009), Bertsimas et al (2013), Jiang et al (2014) and
Gabrel et al (2011)). A column-and-constraint-generation scheme has been
proposed in Zeng and Zhao (2013), which consists in adding one set of second-
stage decision variables and constraints associated with each realization of
the uncertainty. These realizations are dynamically generated by solving
a so-called adversarial problem which identifies the worst-case scenario for
a current estimate of the first-stage decisions. The algorithm stops when
no such scenario can be found. Later, the same approach was used in Ay-
oub and Poss (2016), where the authors model the adversarial problem as a
mixed integer program, derived using Farkas’ lemma and standard lineariza-
tion techniques. Note that the column-and-constraint generation approach
can handle mixed-integer second-stage decisions, which is not the case for
classical Benders-type approaches. Unfortunately, this method seems to be
of practical relevance only when a small number of variables has to be added
for reaching optimality.

The inherent difficulty of this class of problems motivated the develop-
ment of approximate solution methods. In the affine decision rule approach
(Ben-Tal et al (2004)), the second-stage decisions are expressed as affine
functions of the uncertainty. Another relevant approach, introduced in Bert-
simas and Caramanis (2010), is the finite adaptability (also known as K-
adaptability) in which the number of second-stage decisions is restricted to
some finite number. An MILP formulation for the case of binary second-stage
decisions and objective uncertainty was proposed in Hanasusanto et al (2015)
and a branch-and-bound algorithm was later proposed in Subramanyam et al
(2019) to address cases with uncertain linear constraints.

An important special case of (2SR-P) arises when uncertainty affects the
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objective function only, i.e., Y(xxx,ξξξ) = Y(xxx),∀ξξξ ∈ Ξ. For this specific case,
Kämmerling and Kurtz (2020) proposed an oracle-based algorithm relying
on a hull relaxation combining the first- and second-stage feasible regions
embedded within a branch-and-bound framework. However, this approach
applies to first-stage binary variables and linear constraints only. On the
other hand, Arslan and Detienne (2022) proposed an exact MILP reformu-
lation of the problem in case of linear linking constraints that involve binary
variables only. Besides solving the problem by means of a branch-and-price
algorithm, a further contribution of Arslan and Detienne (2022) is proving
the NP-completeness of the problem in this setting.

Our analysis shows that, in the setting where uncertainty affects the ob-
jective function only, no contribution has been presented in the literature for
tackling problems where linking constraints are defined by nonlinear func-
tions or involve both integer and continuous variables. Similarly, to the
best of our knowledge, the case in which the objective function is nonlinear
has not been considered yet. This paper contributes in filling this gap, as
we consider two-stage robust problems with objective uncertainty, convex
constraints and mixed-integer first and second stage. By extending in a non-
trivial way some recent results from the two-stage stochastic optimization
literature (see Sherali and Fraticelli (2002), Sherali and Zhu (2006) and Li
and Grossmann (2019)), we obtain a relaxation of the problem, and analyze
its tightness for different special cases. This relaxation can be embedded
within an enumerative scheme thus producing an exact solution approach,
for which we prove asymptotic convergence in the general case, and finite
convergence in the integer case. Besides the theoretical analysis, we also
show that, from a computational viewpoint, the proposed algorithm is able
to solve instances of practical relevance arising from the logistic field . We
also point out that the class of problems which can be addressed by our so-
lution approach is quite large since we only require mild assumptions on the
nature of the involved optimization problem.

The article is organized as follows. In Section 2 we formally introduce the
considered class of problems, whereas in Section 3 we present a relaxation
of the problem. We then derive sufficient conditions for the relaxation to
coincide with the original problem in a mixed-integer context. So as to close
the optimality gap, we introduce an enumerative algorithm which embeds a
spatial branching mechanism on continuous first-stage variables. We prove
asymptotic convergence of the overall algorithm in presence of continuous
first-stage decisions and finite ε-convergence in case of integer first-stage de-
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cisions. In Section 3.4, we propose a column-generation algorithm to solve
the relaxation problem. Finally, Section 4 applies the proposed method to a
capacitated facility location problem with congestion.

Notations Throughout this paper, matrices and vectors are written in
bold case, e.g., xxx ∈ Rn or AAA ∈ Rn×m, while components are written in
normal font, e.g., xi or aij. Columns of AAA are written in bold case with
exponent indexing, e.g., aaai. Let f : Rn → R be a given function with
dom(f) = {xxx ∈ Rn : f(xxx) < +∞}; its convex conjugate is denoted by
f ∗ : Rn → R and is given by

f ∗(πππ) = sup
xxx∈dom(f)

{πππTxxx− f(xxx)}.

Similarly, we denote by f∗ the concave conjugate of f . Let X ⊆ Rn × Zn−p

be a given set, described in terms of constraints and integer restrictions. We
denote by X its continuous relaxation and by conv (X) its convex hull, i.e.,
the smallest convex set C satisfying X ⊆ C.

The indicator function ofX is noted δ(·|X) and equals zero if its argument
belongs to X and +∞ otherwise. Its convex conjugate is therefore given by
δ∗(πππ|X) = sup{πππTxxx : xxx ∈ X}. Basic results on conjugate calculus are
summarized in Appendix A. If X is a convex polytope, we note vert (X) the
set of its extreme points. Finally, for a logical proposition E , function 111(E)
equals one if E is true and zero otherwise.

2. Problem description

2.1. General setting

As anticipated, our goal is to solve problem (2SR-P) with objective un-
certainty, convex constraints and mixed-integer first and second stages.

For the sake of clarity, let us first introduce several sets. Set I = {1, . . . , n1}
denotes the set of indices for the first-stage variables, partitioned into two
sets II and IC . Variables whose index belongs to II are required to take in-
teger values, while those whose index belongs to IC are continuous variables,
i.e., wlog, X ⊂ R|IC | × Z|II |. Similarly, we introduce set J = {1, . . . , n2} as
the indices for the second-stage variables and partition this set into JI and
JC , i.e., wlog, Y ⊂ R|JC |×Z|JI |. Finally, we introduce set U = {1, . . . , n3} as
the index set for the uncertain variables, i.e., Ξ ⊂ Rn3 .

We now explicit some assumptions on the problem.
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Assumption 1 (Objective uncertainty). For all ξξξ ∈ Ξ and xxx ∈ X , Y(ξξξ,xxx) =
Y(xxx).

Assumption 2 (Convexity).

1. X is compact and convex;
2. The uncertainty set Ξ is a finite-dimensional, bounded convex set;
3. For all xxx ∈ X , Y(xxx) is a finite-dimensional, bounded convex set;
4. The objective function f is a concave function of the uncertainty and a

convex function of the first- and second-stage decisions, i.e., fxxx,yyy : ξξξ 7→
f(ξξξ,xxx,yyy) is a concave function for all fixed xxx ∈ X and yyy ∈ Y(xxx), and
fξξξ : (xxx,yyy) 7→ f(ξξξ,xxx,yyy) is a convex function for all fixed ξξξ ∈ Ξ.

Assumption 3 (Complete recourse). For every (relaxed) first-stage decision,
there exists at least one feasible second-stage decision, i.e., for every xxx ∈ X ,
Y(xxx) is a non-empty set.

Assumption 4 (Boundedness).

1. The objective function f is bounded over the first- and second-stage
feasible region, i.e., for all fixed ξξξ ∈ Ξ, {(xxx,yyy) : xxx ∈ X , yyy ∈ Y(xxx)} ⊆
dom (fξξξ);

2. For all (xxx,yyy) : xxx ∈ X and yyy ∈ Y(xxx), relint(Ξ) ∩ dom (fxxx,yyy) ̸= ∅.

Assumption 5 (Separability). Let Q = {1, . . . , q}.
1. The objective function f can be expressed as a sum of q functions, i.e.,

there exist q functions (ψi : R|U |+|I|+|J | → R)i∈Q such that f(ξξξ,xxx,yyy) =∑
i∈Q ψi(ξξξ,xxx,yyy) for all xxx ∈ X , yyy ∈ Y(xxx) and all ξξξ ∈ Ξ;

2. For all i ∈ Q, ψi is separable in ξξξ and (xxx,yyy) meaning that there ex-
ists functions (wi : R|U | → R)i∈Q and (φi : R|I|+|J | → R)i∈Q such
that ψi(ξξξ,xxx,yyy) = wi(ξξξ)φi(xxx,yyy). In addition, we assume that wi(·) is a
concave function and φi(·) is a convex function.

A few remarks regarding these assumptions are necessary. First, note that
Assumptions 1 and 2 are here to define what we refer to as convex mixed-
integer robust problems with objective uncertainty. We highlight that the
word “convex” is here to suggest that all involved functions are convex with
respect to the first- and second-stage variables. Yet, in general, even under
these assumptions, problem (2SR-P) may fail to have a straightforward con-
vex MINLP formulation. Indeed, function h : xxx 7→ maxξξξ∈Ξ minyyy∈Y(xxx) f(ξξξ,xxx,yyy)
is not necessarily a convex function over the continuous relaxation of X . We
give here a small example.
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Example 1 (nonconvex MINLP). Consider the following first- and second-
stage feasible regions.

X = [0, 1] and Y(x) =

{
yyy ∈ {0, 1}2

∣∣∣∣ y1 + y2 ≤ 1
y1 ≤ 1 − x

}
.

By inspection, we have that (y1, y2) = (0, 0) and (y1, y2) = (0, 1) are always
feasible second-stage solutions, while (y1, y2) = (1, 0) is feasible only when
x = 0. Fixing the uncertainty set Ξ = [0, 1], we take interest in the following
convex mixed-integer two-stage robust problem

min
x∈[0,1]

h(x) with h : x 7→ max
ξ∈[0,1]

min
(y1,y2)∈Y(x)

ξ(−2y1 + y2 + 1).

Though every involved functions are convex (in fact, affine) with respect to
ξξξ,xxx and yyy, we have that

h(x) =

max
ξ∈[0,1]

min {ξ; 2ξ;−ξ} = 0 if x = 0

max
ξ∈[0,1]

min {ξ; 2ξ} = 1 if x > 0
= 111(x > 0).

Clearly, h fails to be convex over [0, 1] which ends our example.

Assumption 3 is a standard assumption in the two-stage optimization
literature, and is known to be easy to enforce as soon as the considered
problem is bounded, which is implied by Assumption 4.1. Assumption 4.2 is
not restrictive in practice, and will be used in the proof of Lemma 2.

Finally, Assumption 5 is structural to our work, and implies the following
remarks.

Remark 1. The assumption that φi(·) is a convex function (at most affine)
for all i ∈ Q is without loss of generality.

Proof. Let i ∈ Q such that φi(·) is concave, then, to fulfill Assumption 2.4,
wi(ξξξ) must be negative forall ξξξ ∈ Ξ. Thus, one may equivalently replace wi(·)
by −wi(·) and φi(·) by −φi(·).

Remark 2. For all i ∈ Q such that φi(·) (resp. wi(·)) is not single-signed,
then wi(·) (resp. φi(·)) is affine.

Remark 3. For all i ∈ Q such that φi(·) (resp. wi(·)) is not affine, then
wi(·) (resp. φi(·)) is a non-negative function.
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Note that Assumption 5 could be relaxed to address situations in which,
for i ∈ Q such that φi(·) (resp. wi(·)) is affine, there is no restriction on the
concavity (resp. convexity) of the associated wi(·) (resp. φi(·)).

Example 2 (Fulfilling Assumption 5). We give here some examples of func-
tions which satisfy Assumption 5. For simplicity, we denote zzz = (xxx,yyy).

• Uncertain linear functions of the form (ξξξ, zzz) 7→ ξξξAAAzzz where AAA is a given
real matrix;

• Diagonal uncertain convex quadratic form (ξξξ, zzz) 7→ zzzTdiag(ξξξ)zzz where
ξξξ ≥ 0;

• Uncertain positively weighted sum of convex functions of the form (ξξξ, zzz) 7→∑
i∈Q ξiφi(zzz) with Ξ ⊂ R|U |

+ , e.g., (ξξξ,xxx,yyy) 7→
∑

i∈Q ξix
2
i /yi with yyy ≥ 0.

Example 3 (Violating Assumption 5). We give here some examples of func-
tions which do not satisfy Assumption 5.

• Non-concave functions of the uncertainty, e.g., (ξξξ, zzz) 7→ ||zzz − ξξξ|| for
any given norm;

• General uncertain quadratic form (ΣΣΣ, zzz) 7→ zzzTΣΣΣzzz even with ΣΣΣ ⪰ 0

(unless Ξ ∩ R|U |
− = ∅).

In the following lemma, we finally state the class of problems we consider.

Lemma 1. Under Assumptions 1-5, there exists [lll,uuu] ⊂ R|I|+|J | such that
(2SR-P) is equivalent to the following two-stage optimization problem with
convex objective function and objective uncertainty

inf
xxx∈X∩[lll,uuu]

sup
ξξξ∈Ξ

inf
(ttt,yyy)∈Y ′(xxx)

∑
i∈Q

wi(ξξξ)ti (2SRO-P)

with Y ′(xxx) such that Y(xxx) = projyyy(Y ′(xxx)) and Y ′
(xxx) is a convex and finite-

dimensional set.

Proof. The existence of the hyper-rectangle [lll,uuu] is trivial as X is assumed
to be bounded (Assumption 2.1). Moreover, the following equality holds.

inf
yyy

{∑
i∈Q

wi(ξξξ)φi(xxx,yyy) : yyy ∈ Y(xxx)

}
= inf

yyy,ttt

{∑
i∈Q

wi(ξξξ)ti : yyy ∈ Y(xxx), ti = φi(xxx,yyy), ∀i ∈ Q

}

8



However, the optimization problem on the right side of the equality may fail
to be convex if there exists i ∈ Q such that φi is not affine. Let QA ⊆ Q be
the set of indices for which φi is affine. By Assumption 5, for all i ∈ Q\QA,
we have wi(·) ≥ 0 and thus constraint ”ti = φi(xxx,yyy)” may be equivalently
replaced by ”ti ≥ φi(xxx,yyy)”, which is convex. We therefore can choose

Y ′(xxx) =

(ttt, yyy) :
yyy ∈ Y(xxx)
ti = φi(xxx,yyy) ∀i ∈ QA

ti ≥ φi(xxx,yyy) ∀i ∈ Q\QA

 .

For every xxx ∈ X , the continuous relaxation of Y ′(xxx) is convex and non-empty
(Assumption 3); by construction, it is also finite dimensional.

In what remains, we will assume to know a hyper-rectangle [lll,uuu] as de-
scribed in Lemma 1.

2.2. Special case: linear and binary setting

We complete the introduction by discussing the special case of (2SRO-P)
under the following additional assumptions:

1. X ,Ξ and xxx 7→ Y(xxx) are defined by linear constraints;

2. there exists a matrix AAA ∈ R|U |×|Q| such that ∀i ∈ Q,wi(ξξξ) = ξξξTaaai; and

3. linking constraints are defined by functions g(xxx,yyy) that do not depend
on first-stage variables in Ic.

In a recent paper Arslan and Detienne (2022), the authors observed that,
for this variant of the problem, the inner minimization minyyy∈Y(xxx) ξξξ

TAAAyyy can be
equivalently replaced by minyyy∈conv(Y(xxx)) ξξξ

TAAAyyy, i.e., the second-stage feasible
region can be substituted by its convex hull. This allows to transform the
min-max-min problem into a min-max problem by the well known minimax
theorem. Assuming that Ξ is expressed as {ξξξ ∈ R|U |

+ : FFFξξξ ≤ ddd}, the inner
maximization problem is dualized so as to obtain the following equivalent
problem

min
xxx,yyy,λλλ

dddTλλλ (1)

subject to xxx ∈ X (2)

yyy ∈ conv (Y(xxx)) (3)

FFF Tλλλ ≥ AAAyyy (4)

λλλ ≥ 0, (5)
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where λλλ are the dual variables associated to the inner maximization problem.
Note that, besides the integrality requirements on the variables, the only
nonconvex constraint is (3). By exploiting a reformulation already used in
Sherali and Fraticelli (2002), Sherali and Zhu (2006) and Li and Grossmann
(2019) for two-stage stochastic optimization problems with mixed-integer
first and second stage, Arslan and Detienne (2022) showed that, for each
fixed x̄xx ∈ X , {x̄xx} × conv (Y(x̄xx)) = conv (S) ∩ {(xxx, ttt, yyy) : xxx = x̄xx} where S =
{(xxx,yyy) : xxx ∈ {0, 1}, yyy ∈ Y(xxx)}. Hence, constraint (3) may be equivalently
enforced as

(xxx,yyy) ∈ conv (S) . (6)

The obtained reformulation is then solved by means of a branch-and-price
algorithm where branching is performed on the first-stage variables only.

3. A hull-relaxation-based branch-and-price algorithm

In this section we present our main contribution and its theoretical foun-
dations. We first turn problem (2SRO-P) from a min-max-min problem to
a min-max problem in our mixed-integer and convex context. Then, since
linear duality does not apply in our setting, we resort to Fenchel duality to
obtain a reformulation of the problem. Similarly to the linear and binary
case, we then replace the counterpart of (3) by constraints which play the
same role as (6). This only provides a relaxation of the problem in the gen-
eral setting. This relaxation is thus embedded into an enumerative scheme
to obtain an optimal solution of (2SRO-P).

3.1. Problem reformulation

The following lemma extends the result given in Arslan and Detienne
(2022) to the mixed-integer and convex context.

Lemma 2 (Single-stage reformulation). Problem (2SRO-P) is equivalent to
the following problem

inf
(xxx,ttt,yyy)∈F

sup
ξξξ∈Ξ

∑
i∈Q

wi(ξξξ)ti (7)

with F = {(xxx, ttt, yyy) : xxx ∈ X ∩ [lll,uuu], (ttt, yyy) ∈ conv (Y ′(xxx))}.

Proof. This lemma relies on the same arguments as those employed in Arslan
and Detienne (2022): first, the feasible region of the inner minimization
problem is replaced by its convex hull. This is valid by linearity of the
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objective function and convexity of the feasible region. By Assumption 2.2
and Lemma 2, both Ξ and conv (Y ′(xxx)) (for all xxx ∈ X ) are convex and finite
dimensional sets. Thus, the minmax theorem in Perchet and Vigeral (2015)
can be used to turn the inner sup− inf into an inf − sup problem. This
achieves the proof.

The inner maximization problem may be turned into a minimization prob-
lem by use of Fenchel duality, as done in Ben-Tal et al (2009). In the following
proposition, we therefore derive a general convex reformulation of problem
(2SRO-P).

Proposition 1 (Deterministic reformulation). Problem (2SRO-P) is equiv-
alent to the following problem

inf
xxx,yyy,ttt,(vvvi)i∈Q,ξξξ

δ∗(ξξξ|Ξ) −
∑
i∈Q

(tiwi)∗
(
vvvi
)

(8)

subject to xxx ∈ X ∩ [lll,uuu] (9)

(ttt, yyy) ∈ conv (Y ′(xxx)) (10)∑
i∈Q

vvvi = ξξξ (11)

vvvi ∈ R|U | ∀i ∈ Q. (12)

Proof. By a direct application of Fenchel duality and some conjugate calculus
results, the following holds.

sup
ξξξ∈Ξ

∑
i∈Q

tiwi(ξξξ) = sup
ξξξ∈R|U|

∑
i∈Q

tiwi(ξξξ)− δ(ξξξ|Ξ)

 = inf
ξξξ∈R|U|

δ∗(ξξξ|Ξ)−

∑
i∈Q

tiwi(ξξξ)


∗


= inf

ξξξ∈R|U|

δ∗(ξξξ|Ξ)− sup
vvvi∈R|U|,i∈Q

∑
i∈Q

(tiwi)∗
(
vvvi
)
:
∑
i∈Q

vvvi = ξξξ




= inf

δ∗(ξξξ|Ξ)−
∑
i∈Q

(tiwi)∗
(
vvvi
)
:
∑
i∈Q

vvvi = ξξξ,vvvi ∈ R|U |, i ∈ Q,ξξξ ∈ R|U |

 .

See also Appendix A for more details on conjugate calculus.

The following results show that, although the reformulation for the gen-
eral case adds |Q| × |U | continuous variables, these additional variables can
be omitted for some relevant cases. In particular this is true in case all the
wi(·) functions are either separable or affine.
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Remark 4. Assume wlog that |Q| = |U |. If, for all i ∈ Q, wi(ξξξ) = wi(ξi),
then problem (2SRO-P) is equivalent to

inf
(xxx,ttt,yyy)∈F

{
δ∗(ξξξ|Ξ) −

∑
i∈Q

(tiwi)∗ (ξξξ)

}
. (13)

Proof. By assumption, we have (tiwi)∗(vvv
i) = (tiwi)∗(vii). In addition, (11) is

as follows ∑
i∈Q

vij = ξj j = 1, ..., |U |, (14)

and vij, i ̸= j, does not appear in the objective function. Thus, there always
exists an optimal solution such that ξj = vjj, j = 1, ..., |U |.

Remark 5. Let i ∈ Q such that wi(·) is affine, i.e., wi(ξξξ) = (rrri)Tξξξ + ri0.
Problem (2SRO-P) is equivalent to

inf
(xxx,ttt,yyy)∈F

{
δ∗(RRRttt|Ξ) + rrrT0 ttt

}
. (15)

Proof. Indeed, we have

(tiwi)∗(vvv) = inf
ξξξ∈R|U|

{vvvTξξξ − ti((rrr
i)Tξξξ + ri0)} =

{
−tiri0 if vvv = tirrr

i

−∞ otherwise.

3.2. Relaxation

Note that the deterministic reformulation presented above still is not,
in general, a convex MINLP. Indeed, Y ′(xxx) in constraints (10) depends on
variables xxx. Since no tractable compact form is known in the general case, we
replace constraint (ttt, yyy) ∈ conv (Y ′(xxx)) by the following relaxed requirement.

(xxx, ttt, yyy) ∈ conv (S) with S =

(xxx, ttt, yyy) :
lj ≤ xj ≤ uj ∀j ∈ I
xj ∈ Z ∀j ∈ II
(ttt, yyy) ∈ Y ′(xxx)

 . (16)
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The substitution yields the following problem, which is a relaxation of
(8)–(12)

min
xxx,yyy,(vvvi)i∈Q,ξξξ

δ∗(ξξξ|Ξ) −
∑
i∈Q

(tiwi)∗
(
vvvi
)

subject to xxx ∈ X ∩ [lll,uuu]
(xxx, ttt, yyy) ∈ conv (S)∑
i∈Q

vvvi = ξξξ

vvvi ∈ R|U | ∀i ∈ Q
ξξξ ∈ R|U |.

(P)

It is clear that, for any fixed x̄xx ∈ X , we have {x̄xx}×Y ′(x̄xx) = S ∩{(xxx, ttt, yyy) :
xxx = x̄xx}, and that the same holds even for x̄xx ∈ X . However, as shown, e.g.,
in Sherali and Zhu (2006), the convexified counterpart does not hold, in the
sense that the inclusion ”{x̄xx} × conv (Y(x̄xx)) ⊆ conv (S) ∩ {(xxx, ttt, yyy) : xxx = x̄xx}”
may be strict. Example 4 below illustrates this case.

Example 4 (Hull relaxation). We consider the first- and second-stage fea-
sible sets introduced in Example 1. In Figure (1a), we represent the convex
hull of S. For a fixed first-stage decision x̄ (here, x̄ = 0.4), Figure (1b)
reports the feasible points for constraint (16), whereas Figure (1c) describes
the exact shape of conv (Y(x̄)). The figure shows an example in which in-
clusion is strict. In addition, note that, whenever x̄ attains its bounds (i.e.,
x̄ ∈ {0, 1}), {x̄} × conv (Y(x̄)) = conv (S) ∩ {(x,yyy) : x = x̄} holds.

y1

y2

x

(a) conv (S)

y1

y2

x

(b) conv (S) ∩ {x = x̄}

y1

y2

x

(c) {x̄} × conv (Y(x̄))

Figure 1: Graphical representation of different sets from example 1

The following Lemma follows from the considerations above.

Lemma 3 (Lower-bounding property). Denoting by v(•) the optimal objec-
tive value of problem •, we have

v(P) ≤ v(2SRO-P).
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In other words, (P) is a relaxation of (2SRO-P). In the next proposition,
we introduce a condition under which a feasible solution for problem (P) is
feasible for problem (2SRO-P) as well.

Proposition 2. If x̄xx ∈ vert ([lll,uuu]), then

{x̄xx} × conv (Y ′(x̄xx)) = conv (S) ∩ {(xxx, ttt, yyy) : xxx = x̄xx}.

Proof. Let x̄xx ∈ vert ([lll,uuu]) and let (x̂xx, t̂tt, ŷyy) ∈ conv (S) ∩ {(xxx, ttt, yyy) : xxx = x̄xx}.
Then, (x̂xx, t̂tt, ŷyy) can be expressed as a (finite) convex combination of points of
conv (S) (Carathéodory’s theorem), i.e.,

(x̂xx, t̂tt, ŷyy) =
∑
e∈E

(x̄e, t̄e, ȳe)αe,

where E is a given index list of such elements of conv (S). Assume that there
exists j ∈ I and i ∈ E such that x̄i

j ̸= x̄j. If x̄i
j > x̄j, condition x̄i ∈ conv (S)

implies that x̄j = lj. Hence, αi = 0 since x̄k
j ≥ lj ∀k ∈ E. The same

argument shows that x̄i
j < x̄j implies αi = 0. Thus, for each e ∈ E such that

αe > 0, we must have x̄e = x̄xx. This implies that (t̄e, ȳe) ∈ Y ′(x̄xx) and thus∑
e∈E(t̄e, ȳe)αe ∈ conv (Y ′(x̄xx)).

Corollary 1 (Tightness condition). Let X∗ be the set of optimal first-stage
decisions of problem (P). Then

X∗ ∩ vert ([lll,uuu]) ̸= ∅ ⇒ v(P) = v(2SRO-P).

Proof. Let (xxx∗, ttt∗, yyy∗) be an optimal solution of (P) with xxx∗ ∈ vert ([lll,uuu]).
From Proposition 2, it is also feasible for problem (2SRO-P). Thus, Lemma
3 implies optimality for problem (2SRO-P).

This result directly implies Corollary 2 which states that, in the special
case where the first-stage variables are all binary, problem (P) is always an
exact reformulation of (2SRO-P).

Corollary 2 (Tightness condition/binary case). If the first-stage decisions
are all binary, i.e., IC = ∅ and ∀j ∈ II , lj = 0, uj = 1, then

v(P) = v(2SRO-P).

Proof. In this case, [lll,uuu] = [0,1], hence any optimal first-stage solution xxx∗

satisfies xxx∗ ∈ {0, 1}|II | = vert ([lll,uuu]) which, by Corollary 1, proves the result.
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3.3. Enumerative algorithm
We now present an exact method for solving problem (2SRO-P) which

works as follows:

• we exploit the deterministic reformulation (8)–(12) of the problem;

• we relax the integrality of the xxx, and impose that xxx ∈ X ;

• we relax requirement (10), i.e., (ttt, yyy) ∈ conv (Y ′(xxx)), and replace it by
constraint (16) imposing that (xxx, ttt, yyy) ∈ conv (S);

• we solve this relaxation, which requires to provide a description of the
convex hull of set S, by means of column generation techniques;

• as the resulting solution may violate the relaxed requirements, the col-
umn generation scheme is embedded within an enumerative algorithm
which branches on first-stage variables only;

• our algorithm first branches on integer xxx variables having a fractional
value, and then possibly resorts to spatial branching on continuous
xxx variables, until each continuous variable attains either its lower or
upper bound;

• when this is the case, according to Corollary 1, the current solution is
optimal for the actual subproblem.

The resulting branch-and-price algorithm stores the best feasible solution
found (the incumbent solution) which is returned when the method stops.

3.3.1. Node solution

Let p denote a generic node of the branching tree, associated with bounds
lllp and uuup on first-stage variables.

A lower bound on the optimal solution value of node p can be computed
solving the following problem

min
xxx,ttt,yyy,(vvvi)i∈Q,ξξξ

δ∗(ξξξ|Ξ) −
∑
i∈Q

(tiwi)∗
(
vvvi
)

subject to xxx ∈ X ∩ [lllp,uuup]
(xxx, ttt, yyy) ∈ conv (Sp)∑
i∈Q

vvvi = ξξξ

vvvi ∈ R|U | ∀i ∈ Q
ξξξ ∈ R|U |,

(LBp)
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where Sp = {(xxx, ttt, yyy) : lllp ≤ xxx ≤ uuup, xj ∈ Z,∀j ∈ II , (ttt, yyy) ∈ Y ′(xxx)}. This prob-
lem is exactly the continuous relaxation of problem (P) where the bounds lll
and uuu have been replaced by lllp and uuup. Note that at the root node we have
lll0 = lll and uuu0 = uuu.

Let (xxxp∗, tttp∗, yyyp∗, (vvvi
p∗

)i∈Q, ξξξ
p∗) be an optimal solution of problem LBp. If

v(LBp) is greater than or equal to the cost of the incumbent, the node is
fathomed by bounding. Otherwise, we distinguish three cases:

• if xxxp∗ ∈ vert ([lllp,uuup]), by Proposition 2, this solution is optimal for
the current node. Hence, the node is fathomed by optimality and the
incumbent is updated;

• if xxxp∗ ∈ X \ vert ([lllp,uuup]), we compute a feasible solution for (2SRO-P)
by solving the following model

min
ttt,yyy,(vvvi)i∈Q,ξξξ

δ∗(ξξξ|Ξ) −
∑
i∈Q

(tiwi)∗
(
vvvi
)

subject to (ttt, yyy) ∈ conv (Y ′(xxxp∗))∑
i∈Q

vvvi = ξξξ

vvvi ∈ R|U | ∀i ∈ Q
ξξξ ∈ R|U |,

(UBp)

in which the first-stage variables are fixed to xxxp∗. Note that, in this
case, xxxp∗ is a feasible first-stage solution; hence, by Assumption 3,
problem UBp is always feasible, and possibly the incumbent is updated.
If v(LBp) = v(UBp) then node p is solved; otherwise, we perform a
branching;

• if xxxp∗ ∈ X \ X , we branch.

In the last case, before branching, one can try to round xxxp∗; if the resulting
point is in X , a feasible solution for (2SRO-P) can be computed.

3.3.2. Branching

We now describe how to select the branching variable at node p. For each
first-stage variable, say with index j ∈ I, we compute the minimum distance
of xp∗j from one of its bounds at the node, i.e., we evaluate

θpj =

{
min{xp∗j − ⌊xp∗j ⌋; ⌈xp∗j ⌉ − xp∗j } if j ∈ II

min{xp∗j − lpj ;u
p
j − xp∗j } otherwise.
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y1

y2

x

(a) Left child (x ≤ β)

y1

y2

x

(b) Right child (x ≥ β)

Figure 2: Branching on continuous variable x from example 1

For branching, we give priority to integer variables that do not attain their
bound. Otherwise, we resort to spatial branching on continuous variables.
In both cases, we select the variable with maximum θpj value, i.e., we select
variable xj such that

j ∈

{
argmax{θpj : j ∈ II} if ∃j ∈ II : θj > 0

argmax{θpj : j ∈ IC} otherwise.

If j ∈ II , then a standard integer branching is executed. Otherwise,
spatial branching generates two descendant nodes by imposing xj ≤ xp∗

j
for

the left node and xj ≥ xp∗
j

for the right one. We associate to each node

the lower bound value of the current node v(LBp) and insert them in a list
of open nodes. At each iteration, we extract from the list one node with
minimum lower bound value, halting the algorithm when the list is empty.

Example 5. Figure 2 illustrates the feasible region of the left and right child
obtained by spatial branching on x ≤ β and x ≥ β, respectively, from example
1 (here, β = 0.4). Clearly, the right child allows the same second-stage
decisions as in Y(x) for all x ≥ β. The left child, however, still allows second-
stage decisions that could end up being infeasible in the original problem. In
particular, (xxx,yyy) = (ε, 1 − ε, 0) with ε ∈ (0, β] is feasible for (LBp) but not
for (2SRO-P).

3.3.3. Convergence

In the following, we analyze the convergence of the branch-and-price al-
gorithm. While finite convergence is ensured if all first-stage variables are
integer, this may not be the case when the first-stage includes continuous
variables. We now consider the case where our algorithm has an infinite
number of nodes. Note that, in this case, there exists at least one infinite
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branch to the branching tree since the number of variables which can be
selected for branching is finite. We consider one such branch and denote it
by P . For each node p ∈ P , we denote by (lllp,uuup) the associated bounds
for the xxx variables and by (xxxp∗, tttp∗, yyyp∗,VVV p∗, ξξξp∗) an optimal solution to the
lower-bounding problem. Additionally, we introduce the following function

fLB(ttt,VVV ,ξξξ) := δ∗(ξξξ|Ξ) −
∑
i∈Q

(tiwi)∗
(
vvvi
)
, (17)

which gives the value of the lower bounding problem (P) as a function of its
arguments. Similarly, from Lemma 2, function

fST (ttt) := sup
ξξξ∈Ξ

∑
i∈Q

wi(ξξξ)ti. (18)

gives the value of the single stage reformulation as a function of argument
ttt.

Remark 6. For each node p ∈ P it holds fLB(tttp∗,VVV p∗, ξξξp∗) = fST (tttp∗).

Proof. This directly follows from the definition of (xxxp∗, tttp∗, yyyp∗,VVV p∗, ξξξp∗) and
Proposition (1).

Lemma 4. Let P be a sequence of nodes of any infinite branch of the branch-
ing tree. Then,

(i) The sequence {(lllp,uuup)}p∈P has a unique accumulation point, which we
denote by (lll∗,uuu∗);

(ii) The sequence {(xxxp∗, tttp∗, yyyp∗)}p∈P has at least one accumulation point;
(iii) Let xxx∗ be any accumulation point of {xxxp∗}p∈P , then, for each j ∈ IC

which is infinitely selected for branching, there exists a sub-sequence
P j ⊆ P such that either {upj}p∈P j → x∗j or {lpj}p∈P j → x∗j ;

(iv) Every accumulation point xxx∗ of {xxxp∗}p∈P satisfies xxx∗ ∈ vert ([lll∗,uuu∗]).

Proof.

(i) This follows from the fact that lllp (resp. uuup) is a bounded, non-decreasing
(resp. non-increasing) sequence.

(ii) This follows from the Bolzano-Weierstrass theorem since the sequence
{xxxp∗}p∈P is generically bounded by [lll,uuu], X is compact and conv(S) is
closed and bounded, thus compact (indeed, for all i ∈ Q, tpi is triv-
ially bounded by sup{φi(xxx,yyy) : xxx ∈ X , yyy ∈ Y(xxx)} which is finite by
Assumption 4.1).
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(iii) Consider any accumulation point xxx∗ of {xxxp∗}p∈P with its associated
convergent sub-sequence P ′ ⊆ P , i.e., {xxxp∗}p∈P ′ → xxx∗. Let j ∈ IC be
as described in the lemma, and consider the sub-sequence P uj ⊆ P ′

such that, for all p ∈ P uj , up+1
j = xp∗j . Assume P uj is not finite.

Then, we have that {xp∗j }p∈Puj → x∗j since P uj ⊆ P ′. And thus, by

definition of P uj , we have that {up+1
j }p∈Puj → x∗j . We therefore chose

P j = {p+1 : p ∈ P uj} and have {upj}p∈P j → x∗j . If instead P uj is finite,

the sub-sequence P lj ⊆ P ′ defined by nodes p for which lp+1
j = xp∗j is

infinite; therefore, the similar argument can be applied.

(iv) We have just shown that, for any accumulation point xxx∗ of {xxxp∗}p∈P ,
with its associated convergent sub-sequence P ′ ⊆ P , and any infinitely
branched index j ∈ IC , there exists P j ⊆ P ′ such that either {upj}p∈P j →
x∗j or {lpj}p∈P j → x∗j . Assume {lpj}p∈P j → x∗j holds. Then, we have that
P j ⊆ P ′ and {lpj}p∈P ′ → l∗j . Thus, x∗j = l∗j holds, since any sub-
sequence of a converging sequence converges to the same point. The
same argument can be applied when {upj}p∈P j → x∗j .

Theorem 1. Let P be a sequence of nodes of any infinite branch of the
branching tree. Then, every accumulation point of {(xxxp, tttp, yyyp)}p∈P , say (xxx∗, ttt∗, yyy∗),
is an optimal solution of problem (7), and, thus, xxx∗ is an optimal solution of
(2SRO-P).

Proof. By Lemma 4 (ii), there exists a sub-sequence P ′ ⊆ P such that
{(xxxp∗, tttp∗, yyyp∗)}p∈P ′ → (xxx∗, ttt∗, yyy∗). Note that X and conv (S) are compact
sets, hence we have that (xxx∗, ttt∗, yyy∗) ∈ X × conv (S). Moreover, by Lemma 4
(iv), we know that xxx∗ ∈ vert ([lll∗,uuu∗]) which, by Proposition 2, ensures that
(ttt∗, yyy∗) ∈ conv (Y ′(xxx∗)). Hence, (xxx∗, ttt∗, yyy∗) is feasible for (7). Note that fST
is a continuous function since it is the point-wise supremum of continuous
(affine) functions. Thus, by Remark 6, we have {fLB(tttp∗,VVV p∗, ξξξp∗)}p∈P ′ →
fST (ttt∗). In other words, the objective value of the feasible solution (xxx∗, ttt∗, yyy∗)
to (7) is fST (ttt∗). Yet, by Lemma 2, we know that (7) and (2SRO-P) have
the same objective value. This makes xxx∗ a feasible solution to (2SRO-P) of
value fST (ttt∗). Since our node selection strategy always picks a node with
minimum lower bound, for each node p ∈ P , we have fLB(tttp∗,VVV p∗, ξξξp∗) =
v(LBp) ≤ v(2SRO-P) ≤ fST (ttt∗). As v(LBp) converges to fST (ttt∗), we also
have fLB(tttp∗,VVV p∗, ξξξp∗) = fST (ttt∗) = v(2SRO-P).
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We conclude this section by observing that, at each node of the branch-
and-price algorithm, the lower bounding problem can be solved with ε-
tolerance in a finite number of operations. Indeed, as shown in Ceria and
Soares (1999) and Grossmann and Ruiz (2012), one can reformulate a convex
disjunctive program as a convex MINLP by introducing an exponential num-
ber of auxiliary variables that model the disjunctions

⋃
k∈Z∩[lj ,uj ]

{xj = k}
for each j ∈ II . The resulting model can thus be solved in finite number of
steps by using any algorithm designed for convex optimization.

3.4. A convexification scheme based on column-generation

In this section, we propose a nonlinear column-generation algorithm to
be used, at each node p, to solve problem (LBp) to ε-optimality in a finite
number of iterations. According to this scheme, we approximate conv (Sp)
by the convex hull of a finite set of points belonging to Sp.
Restricted Master Problem: To determine this set, we use an iterative
approach. At each iteration k, let K = {1, . . . , k} and denote by Hpk =
{(x̄pj, t̄pj, ȳpj) : j ∈ K} the current set of points in the restricted master.
As Hpk ⊆ Sp, we have conv

(
Hpk

)
⊆ conv (Sp), thus the optimal solution

of the problem obtained by substituting conv (Sp) with conv
(
Hpk

)
in (LBp)

gives an upper bound of (LBp). The resulting problem, denoted as (L̂B
pk

),
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is called the Restricted Master, and is formulated as follows.

min
xxx,ttt,yyy,VVV ,ξξξ,ααα

δ∗(ξξξ|Ξ) −
∑
i∈Q

(tiwi)∗
(
vvvi
)

(20)

subject to xxx ∈ X ∩ [lllp,uuup] (21)

xxx =
∑
j∈K

αjx̄
pj (22)

ttt =
∑
j∈K

αj t̄
pj (23)

yyy =
∑
j∈K

αjȳ
pj (24)∑

j∈K

αj = 1 (25)∑
i∈Q

vvvi = ξξξ (26)

vvvi ∈ R|U | ∀i ∈ Q (27)

ξξξ ∈ R|U | (28)

αj ≥ 0 ∀j ∈ K. (29)

(L̂B
pk

)

Following the classical column-generation framework, the current approx-
imation can be improved by means of a so-called Pricing Problem, aimed at
identifying new points to be added to the Restricted Master, and defined as
follows.
Pricing Problem: Let λλλpk∗,µµµpk∗,πππpk∗ and ηpk∗ be the values of the dual
variables associated with constraints (22), (23), (24), and (25) in an optimal

solution of problem (L̂B
pk

).
Pricing asks to solve the following problem

(x̄p,k+1, t̄p,k+1, ȳp,k+1) ∈ argmin
(xxx,ttt,yyy)∈Sp

− λλλpk∗
T

xxx− µµµpkT ttt− πππpk∗Tyyy − ηpk∗
T

(PPpk)

and generates a new point (x̄p,k+1, t̄p,k+1, ȳp,k+1) belonging to Sp. If v(PPpk) ≥
−ε, we have an ε-optimal solution to (LBp), and hence the algorithm termi-
nates. Otherwise, we set Hk+1 = Hk ∪ {(x̄p,k+1, t̄p,k+1, ȳp,k+1)}, k = k + 1
and iterate. Note that, at each iteration k, a lower bound on the optimal
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solution value of (LBp) is given by v(L̂B
pk

) − v(PPpk). This lower bound,
combined with an upper bound, can allow us to early terminate the solution
of problem (LBp).

4. Computational experiments

In this section, we report computational results of our solution algorithm
when applied to an uncertain Capacitated Facility Location Problem with
congestion.

4.1. Problem definition

We consider a variant of the Facility Location Problem, in which we are
given a set V1 of candidate sites for opening facilities, as well as a set V2 of
clients to be served with some product. Each client j ∈ V2 has a demand dj
representing the quantity of product that she/he wants to receive. Each site
i ∈ V1 can be activated at a given fixed cost fi > 0. In this case, one has
to decide the capacity to be installed, at cost ui per unit of capacity. Each
site i has an upper bound q̄i on the maximum capacity that can be installed.
Each connection (i, j) ∈ V1 × V2 is associated with a fixed cost cij, and a
variable cost tij per unit of product which is transported. In our setting,
we explicitly model congestion at each site i by means of an additional cost
which depends on the total amount of product, say oi, leaving the facility.
As in the congested Facility Location Problem considered in Desrochers et al
(1995) and in Fischetti et al (2016), the congestion cost for site i is given by

Fi(oi) = (αi + βio
γi
i )oi, (29)

where αi ≥ 0, βi > 0 and γi ≥ 1 are input parameters. Note that each
function Fi is convex for non-negative arguments oi. The problem asks to
determine the facilities to be opened, the capacity to be installed at each
facility and the flow of product from facilities to clients, so as to serve all
clients at minimum cost. This problem can be reduced to the one addressed
in Desrochers et al (1995) in case there are no capacity constraints at the
sites (i.e., q̄i = ∞ and ui = 0 for each i ∈ V1) and transportation costs only
include a variable component (i.e., cij = 0 for each (i, j) ∈ V1 × V2).

In our context, connection costs are not known when deciding the capac-
ities to be installed. Formally, for each connection (i, j) ∈ V1×V2, we denote
by c̄ij and t̄ij the nominal fixed and variable costs from i to j, and by c̃ij
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and t̃ij their maximal deviations. Without loss of generality, we assume that,
for each connection (i, j) ∈ V1 × V2, the actual realizations for the costs are
determined by the same variable ξij. In other words, we have cij = c̄ij +ξij c̃ij
and tij = t̄ij + ξij t̃ij, with ξξξ ∈ Ξ and Ξ ⊆ [0, 1]|V1|×|V2| is a given uncertainty
set (see Section 4.2).

We consider the adjustable robust version of this uncertain problem,
where capacity installation is determined at the first stage whereas prod-
uct flows are determined after uncertainty reveals. We denote the resulting
problem as ARCCFLP (for Adjustable Robust Congested Capacitated Fa-
cility Location Problem).

4.2. Mathematical formulation

To model ARCCFLP, we introduce, for each site i ∈ V1, first-stage vari-
ables xi and qi; the former takes the value 1 if site i is activated, whereas
the latter denotes the actual capacity installed. The feasible set X for the
first-stage variables is defined as

X = {(xxx,qqq) : xi ∈ {0, 1} and 0 ≤ qi ≤ q̄ixi ∀i ∈ V1} . (30)

Once the actual realization of uncertainty ξξξ ∈ Ξ is known, thus defin-
ing the transportation costs, the remaining decisions concerning the flow of
product from opened sites to clients must be taken. To this aim we intro-
duce, for each connection (i, j) ∈ V1×V2, variables bij and yij denoting if the
connection is activated and the fraction of request of client j that is served
by site i, respectively. For each site i, we also denote by oi the total amount
of product leaving the site. Accordingly, the feasible set Y (xxx,qqq) associated
with a given pair (xxx,qqq) is defined by the following constraints.

oi =
∑
j∈V2

djyij ≤ qi ∀i ∈ V1 (31)∑
i∈V1

yij = 1 ∀j ∈ V2 (32)

yij ≤ bij ∀i ∈ V1,∀j ∈ V2 (33)

yij ≥ 0 ∀i ∈ V1,∀j ∈ V2 (34)

bij ∈ {0, 1} ∀i ∈ V1,∀j ∈ V2. (35)

Constraints (31) enforce that the total demand oi leaving each site i does not
exceed the installed capacity, while constraints (32) impose that, for each
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client, all the demand is served. Constraints (33) activate connections with
a positive flow. Finally, (34) and (35) give the domain of the variables.

In order to ensure complete recourse, we introduce a dummy facility k
with fk = uk = 0, q̄k =

∑
j∈V2

dj, and with very large values for c̄kj and t̄kj
for each j ∈ V2. By adding constraints xk = 1 and qk = q̄k in the definition
of set X, we force facility k to be opened at maximum capacity. This choice
has zero cost in the first stage, and allows a feasible solution with very large
cost in the second stage regardless the values of the remaining first-stage
variables.

Then, ARCCFLP is formulated as

min
(xxx,qqq)∈X

∑
i∈V1

(fixi + uiqi)

+max
ξξξ∈Ξ

min
(bbb,yyy,ooo)∈Y (xxx,qqq)

∑
i∈V1

Fi(oi) +
∑
j∈V2

(
(c̄ij + ξij c̃ij)bij + (t̄ij + ξij t̃ij)djyij

) .

(36)

By applying the methodology introduced in this paper, the resulting
lower-bounding problem is given as follows

min
∑
i∈V1

fixi + uiqi + ri +
∑
j∈V2

(c̄ijbij + t̄ijdjyij)



+max
ξξξ∈Ξ

∑
i∈V1

∑
j∈V2

ξij(c̃ijbij + t̃ijdjyij) (37)

subject to (xxx,qqq) ∈ X (38)

(qqq, rrr,ooo,yyy, bbb) ∈ conv

(qqq, rrr,ooo,yyy, bbb) :
0 ≤ qi ≤ q̄i ∀i ∈ V1

ri ≥ Fi(oi) ∀i ∈ V1

(31)− (35)


 . (39)

The inner maximization problem can then be expressed by using Fenchel
duality, and the resulting formulation depends on the uncertain set. In our
experiments, we consider two widely used uncertainty sets, namely, the Γ-
uncertainty set and the ellipsoidal uncertainty set.

Γ-uncertainty is a paradigm introduced in Bertsimas and Sim (2004) to
model uncertain situations in which the robustness of the solution can be
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controlled by an input parameter Γ > 0. By using this uncertainty set in our
context, we obtain

Ξ▷
Γ =

{
ξξξ ∈ [0, 1]|V1|×|V2| :

∑
i∈V1

∑
j∈V2

ξij ≤ Γ

}
. (40)

In this case, Fenchel duality reduces to LP duality as follows.

max
ξξξ∈Ξ▷

Γ

∑
i∈V1

∑
j∈V2

ξij(c̃ijbij + t̃ijdjyij) = min Γλ+
∑
i∈V1

∑
j∈V2

πij (41)

subject to λ+ πij ≥ c̃ijbij + t̃ijdjyij ∀i ∈ V1, ∀j ∈ V2

(42)

λ ≥ 0 (43)

πij ≥ 0 ∀i ∈ V1,∀j ∈ V2.
(44)

The Ellipsoidal uncertainty set is defined as

Ξ◦
Γ =

ξξξ ∈ [0, 1]|V1|×|V2| :

√∑
i∈V1

∑
j∈V2

ξ2ij ≤ Γ

 , (45)

where again Γ is a control parameter. In this case, one obtains the following
formulation.

max
ξξξ∈Ξ◦

Γ

∑
i∈V1

∑
j∈V2

ξij(c̃ijbij + t̃ijdjyij) = min Γλ+
∑
i∈V1

∑
j∈V2

πij (46)

subject to νij + πij ≥ c̃ijbij + t̃ijdjyij ∀i ∈ V1,∀j ∈ V2

(47)√∑
i∈V1

∑
j∈V2

ν2ij ≤ λ (48)

λ ≥ 0 (49)

πij ≥ 0 ∀i ∈ V1,∀j ∈ V2

(50)

νij ≥ 0 ∀i ∈ V1,∀j ∈ V2.
(51)

An interested reader may refer to Li et al (2011) for associated theoretical
properties of both uncertainty sets, including their robust counterparts and
probabilistic guarantees for linear constraints.

25



4.3. Test bed

Instance generation. We tested our solution method on random instances,
that were generated by following the guidelines of the extensive computa-
tional study by Cornuejols et al (1991). Accordingly, for each facility i ∈ V1,
the maximum capacity q̄i and the fixed opening cost fi follow uniform distri-
butions in [10, 160] and [0, 180], respectively, whereas the variable coefficient
ui was generated in [200/

√
q̄i, 220/

√
q̄i]. Moreover, locations for each facility

i ∈ V1 and each client j ∈ V2 were generated in the unit square, and nominal
transportation costs were set to the Euclidean distance multiplied by 10 and
rounded up. The demands were uniformly generated between 0 and 1 and
scaled so that

∑
i∈V1

q̄i/
∑

j∈V2
dj = ν where ν is a parameter taking value in

{1.1, 1.2, 1.3}. In addition, following Desrochers et al (1995), for each i ∈ V1,
we used γi = 1 and αi = βi = 0.75, i.e., each function Fi is quadratic with
respect to the amount of product leaving site i. Concerning the parameters
affected by uncertainty, the maximum deviation t̃ij was set to 0.50× t̄ij, thus
allowing a maximum of 50% deviation. As to the opening cost of each arc,
we randomly generated the nominal value between 50 and 100, allowing a
maximum of 50% deviation with respect to this value.

Finally, the number of sites and clients take values (4, 8), (5, 10) and
(6, 12). For each combination of |V1|, |V2|, and ν, we generated 5 test-cases.
Each test-case was solved for Γ = 1, 2, 3, 4, both in the Γ-uncertainty and in
the Ellipsoidal uncertainty settings, thus producing 360 instances.

4.4. Implementation details

We implemented our branch-and-price algorithm with spatial branching
in C++ and run all the experiments on an AMD Ryzen 5 PRO 4650GE at
3.3 GHz, with a time limit equal to 10,800 CPU seconds per run (3 hours).

At the root node, an initial upper bound is computed by solving the
single-stage version of ARCCFLP where all decisions are taken here and now.
This bound is obtained by solving (37)-(39) without convexifying the second-
stage feasible region in constraint (39). At each node of the algorithm, we
solve the restricted master problem by using Mosek 10.0.36, and the pricing
problem by means of Gurobi 10.0. This combination of solvers turned out
to be the most numerically stable on our instances. Our code and instances
are publicly available on GitHub1.

1https://github.com/hlefebvr/AB_AdjustableRobustOptimizationWithObjectiveUncertainty
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The column-generation procedure includes stabilization by dual price
smoothing, as described in Pessoa et al (2013); and at most one column
is added to the restricted master problem at each iteration.

For the branching strategy of continuous variables, we used a tolerance
of ε = 10−3 for comparing real numbers in finite precision. At each node,
local bounds derived from branching decisions are applied to the column
generation sub-problem. The restricted master inherits all columns from
the father node. For each column, we compare the value of the first-stage
variables in the colum with the actual bound at the node, and possibly remove
it from the master when locally infeasible.

At a given node, to check the optimality of a first-stage decision and
possibly fathom the node, we use the sufficient condition from Proposition 2.
If the latter does not hold, we check if all active columns at optimality are
built on the same values for the continuous variables; in this case, Proposition
2 can be exploited to ensure local optimality of the solution. If the first-stage
solution is not feasible, an upper bound is computed as follows. We detect the
variable with largest value in the RMP current solution, recover the values
of variables (xxx,qqq) that were used for generating this column and fix variables
(xxx,qqq) to those values, possibly rounding up integer variables.

Finally, observe that branching may induce infeasibility in the second
stage. To early detect this situation, we consider a problem-specific im-
provement: at a given node of the branching tree, we check if

∑
i∈V1

xui q
u
i <∑

j∈V2
dj holds, where xui and qui denote the local upper bound of variable xi

and qi, respectively. In this case the node is declared infeasible.

4.5. General results

Table 1 reports our computational results on ARCCFLP. The upper
part relates to experiments done with the Γ-uncertainty set (Γ-unc.), while
the lower part addresses those with the ellipsoidal uncertainty set (Ellips.).
Columns |V1|, |V2| and Γ give the number of sites, the number of clients and
the value for the uncertainty parameter Γ, respectively. Column “solved”
reports the number of instances (out of 15) which could be solved to proven
optimality within the given time limit. Into brackets we report the number
of instances for which the computation was stopped due to numerical issues
of the used solvers. For the sake of consistency, all remaining columns but
the last one are relative to instances which could be solved within the time
limit. In particular, columns “time” report, from left to right, the average
time needed to prove optimality (“total”), the average time spent solving
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the RMP (“RMP”) and the average time spent solving the pricing prob-
lem (“PP”) during the execution of our branch-and-price algorithm. All
times are expressed in seconds. Column “nodes” reports the average number
of explored nodes, while “columns” gives the average number of generated
columns throughout the entire execution of our algorithm. Finally, we report
the average gap of the root node lower bound with respect to the optimal so-
lution value (“root”) and the average optimality gap at time limit (“end”) (or
when the algorithm was stopped for numerical troubles). Optimality gap is
computed only over those instances which could not be solved to optimality.

Time (s) Gap (%)
|V1| |V2| Γ solved total RMP PP nodes columns root end

Γ-unc.

4 8 1 15 2.45 0.12 2.04 4.73 42.60 0.21
2 15 3.19 0.14 2.68 5.00 56.53 0.21
3 15 4.75 0.26 4.03 5.27 84.60 0.22
4 15 4.74 0.22 4.10 5.27 78.60 0.23

5 10 1 15 44.83 0.78 42.35 5.80 110.00 0.29
2 15 21.83 0.47 20.27 6.60 82.20 0.31
3 15 36.59 0.64 34.70 7.53 125.87 0.33
4 15 38.33 0.80 36.16 9.40 166.80 0.34

6 12 1 11 319.17 1.92 313.31 4.82 139.55 0.17 0.24
2 13 572.80 1.64 562.48 5.46 102.69 0.19 0.30
3 13 1117.35 2.35 1110.73 6.23 162.92 0.22 0.23
4 11 1261.83 4.63 1249.46 6.45 239.00 0.22 0.26

Ellips.

4 8 1 13 (2) 6.64 0.35 5.70 5.00 67.92 0.22 0.11
2 14 (1) 7.46 0.52 6.25 5.00 88.79 0.22 0.30
3 14 (1) 12.47 0.67 10.90 5.29 121.07 0.20 0.46
4 13 (2) 11.16 0.40 10.08 4.54 86.77 0.21 0.09

5 10 1 12 (3) 26.96 1.27 24.59 6.00 117.58 0.26 0.44
2 12 (3) 83.59 2.34 79.28 7.17 206.75 0.32 0.38
3 15 82.47 3.19 76.72 8.73 278.80 0.34
4 15 151.89 2.17 147.62 6.33 195.27 0.31

6 12 1 14 (1) 324.66 3.45 315.11 5.29 169.57 0.18 0.21
2 14 (1) 420.62 4.01 412.94 5.86 202.21 0.22 0.21
3 13 859.62 5.66 847.91 7.00 280.08 0.24 0.10
4 13 (2) 1574.26 10.83 1551.17 10.69 526.38 0.22 0.15

Table 1: Computational experiments on ARCCFLP instances. Each row refers to 15
instances.
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The table shows that our method is able to solve a large fraction of the
instances, namely 168 in the Γ-uncertainty setting and 162 in the Ellipsoidal
uncertainty setting. In most cases, the solution time required by the algo-
rithm is quite small and solving the RMP is very fast in practice (below 7% of
the total time, on average). Indeed, the most challenging subproblem solved
is the pricing problem; when increasing the size of the instances the number of
columns that are needed increases and each execution of the pricing problem
is more time consuming. However, the solved relaxation allows to compute
a very tight approximation, as the gap between lower and upper bounds at
the root that is always below 0.35%, and producing small enumeration trees,
in which the number of generated nodes is always below 11. Moreover, the
performance of the algorithm is satisfactory also for the instances that were
not solved to proven optimality, as the average residual gap at the end of
the enumeration is always quite small (below 0.5%). Finally, observe that
numerical issues arise only when uncertainty belongs to the Ellipsoidal un-
certainty set, a nonlinear setting in which Mosek may encounter numerical
instability on some instances.

4.5.1. Linearized costs

As an alternative approach for both uncertainty sets described in Section
4.2, we considered solving a linearized approximation of ARCCFLP obtained
by replacing each function Fi (i ∈ V1) by a piecewise linear approximation.
By introducing L approximation points {ōil}l=1,...,L, function Fi is underesti-
mated by the following one:

F̃i(oi) = max
l=1,...,L

{Fi(ōil) + F ′
i (ōil)(oi − ōil)} . (52)

In our experiments, we chose L = 10 and, for all i ∈ V1, defined the
approximation points to be equally distributed in the interval [0, q̄i], i.e.,
ōil = q̄i(l − 1)/(L− 1) for l = 1, ..., L.

Table 2 reports the results obtained by using the linearized approach.
For each combination of |V1| and |V2|, we give for both the exact and the lin-
earized approaches, the number of instances solved to optimality. Moreover,
for the latter we report the average and maximum percentage error intro-
duced by the linearization, computed as z∗−zL

z∗
, where z∗ and zL denote the

optimal values of an ARCCFLP instance and of its linearized counterpart,
respectively. These figures are computed with respect to instances solved by
both approaches only.
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exact linearized

|V1| |V2| solved solved avg. err. max. err.

Γ-unc.
4 8 60 60 0.37 0.61
5 10 60 60 0.38 0.63
6 12 48 42 0.39 0.56

Ellips.
4 8 54 58 0.36 0.59
5 10 54 59 0.39 0.58
6 12 54 59 0.40 0.56

Table 2: Comparison of exact and linearized approaches

The table shows that the linearized approach turns out to be computa-
tionally harder in the Γ-uncertainty setting, while it gives some improvement
when the Ellipsoidal setting is considered; this is mainly due to the reduced
number of instances for which we encountered numerical troubles. However,
in both settings, linearization introduces a nonneglibile error when underes-
timating the true cost of a solution. The average percentage error, over all
instances, is 0.38% and can be as large as 0.63%.

5. Conclusion

In this work, we studied optimization problems where part of the cost
parameters are not known at decision time, and the decision flow is modeled
as a two-stage process. In particular, we addressed general problems in which
all constraints (including those linking the first and the second stages) are
defined by convex functions and involve mixed-integer variables. To the best
of our knowledge, this is the first attempt to extend the existing literature
to tackle this wide class of problems.

To this aim, we derive a relaxation of the problem which can be formu-
lated as a convex optimization problem, and embed it within an enumerative
algorithm where branching occurs on integer and continuous variables. By
combining enumeration and on-the-fly generation of the variables, we obtain
a branch-and-price scheme, for which we prove asymptotic convergence in
the general mixed-integer case and give sufficient conditions for finite con-
vergence.

In addition to the theoretical analysis, we applied our method to an op-
timization problem affected by objective uncertainty arising in the logistic
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field, namely a variant of the congested Capacitated Facility Location prob-
lem with uncertain transportation costs. Our computational experiments
showed that the proposed method is able to solve non-trivial instances for
this problems. In addition, we provide a comparison with a natural ap-
proach based on linearization of the congestion function, showing that this
alternative solution method would give marginal improvements in terms of
performances though introducing a nonneglibile error in terms of cost of the
provided solution.
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Appendix A. Recalls of convex and concave conjugate

In this appendix we review some basic results on conjugate functions and
Fenchel duality. For a detailed treatment we refer to Rockafellar (1970).

Let f : Rn → R be a given function, its convex conjugate is denoted by
f ∗ : Rn → R and is given by

f ∗(πππ) = sup
xxx∈dom(f)

{
πππTxxx− f(xxx)

}
.

Similarly, we denote by g∗ the concave conjugate of a given function g : Rn →
R, given by

g∗(πππ) = inf
xxx∈dom(g)

{
πππTxxx− ggg(xxx)

}
.

Note that, if f is a proper convex function and g a proper concave function,
we have that f ∗∗ = f and g∗∗ = g. We now state the following Fenchel
duality theorem.

Theorem 2. Let f : Rn → R be a proper convex function and g : Rn → R
be a proper concave function, then

inf
xxx∈dom(f)∩dom(g)

{f(xxx) − g(xxx)} = sup
πππ∈dom(f∗)∩dom(g∗)

{g∗(πππ) − f ∗(πππ)}

or equivalently,

sup
xxx∈dom(f)∩dom(g)

{g(xxx) − f(xxx)} = inf
πππ∈dom(g∗)∩dom(f∗)

{f ∗(πππ) − g∗(πππ)} .
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Corollary 3 (Maximizing a concave function over a convex set). Let X ⊆ Rn

be a non-empty convex set, g : Rn → R be a proper concave function, then

sup
xxx∈X

g(xxx) = inf
πππ

{δ∗(πππ|X ) − g∗(πππ)} ,

where δ(xxx|X ) =

{
0 if xxx ∈ X
+∞ otherwise.

Proof. The result holds from the fact that sup{g(xxx) : xxx ∈ X} = sup{g(xxx) −
δ(xxx|X )} and by application of Fenchel duality. More precisely, δ(xxx|X ) is
convex and, by non-emptiness of X , is proper.

Notice that Fenchel duality allows the reformulation of an optimization
problem which consists in maximizing a concave function over a convex set
as an unconstrained convex problem since δ∗(·|X ) and (−g∗)(·) are convex
functions and positively weighted sums preserve convexity.

Proposition 3. Let f be a convex function, we have (−f)∗(πππ) = −f ∗(−πππ).

Proof.

(−f)∗(πππ) = inf
xxx

{
πππTxxx− (−f)(xxx)

}
= − sup

xxx

{
−πππTxxx− f(xxx)

}
= −f ∗(−πππ).

Table A.3 reports some calculus rules regarding convex conjugates. The
extension to concave conjugates is straightforward.
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h(xxx) h∗(πππ)

Separable sums
h(xxx1,xxx2) = f1(xxx

1) + f2(xxx
2) h∗(πππ1,πππ2) = f ∗

1 (πππ1) + f ∗
2 (πππ2)

Scalar multiplications (α > 0)
h(xxx) = αf(xxx) h∗(πππ) = αf ∗(πππ/α)

Affine mapping composition (detAAA ̸= 0)
h(xxx) = f(AAAxxx+ bbb) h∗(πππ) = f ∗(AAA−Tπππ) − bbbTAAA−Tπππ

Sum with affine functions
h(xxx) = f(xxx) + aaaTxxx+ bbb h∗(πππ) = f ∗(πππ − aaa) − bbb

Sum of functions

h(xxx) =
m∑
i=1

fi(xxx) h∗(πππ) = inf
vvvi,i=1,...,m

{
m∑
i=1

f ∗
i (vvvi)

∣∣∣∣∣
m∑
i=1

vvvi = πππ

}

Table A.3: Some convex conjugate calculus rules
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