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We propose robust optimization models and their tractable approximations that cater for ambiguity-

averse decision makers whose underlying risk preferences are consistent with constant absolute risk aversion

(CARA). Specifically, we focus on maximizing the worst-case expected exponential utility where the under-

lying uncertainty is generated from a set of stochastically independent factors with ambiguous marginals.

To obtain computationally tractable formulations, we propose a hierarchy of approximations, starting from

formulating the objective function as tractable concave functions in affinely perturbed cases, developing

approximations in concave piecewise affinely perturbed cases, and proposing new multi-deflected linear

decision rules for adaptive optimization models. We also extend the framework to address a multi-period

consumption model. The resultant models would take the form of an exponential conic optimization problem

(ECOP), which can be practicably solved using current off-the-shelf solvers. We present numerical examples

including project management and multi-period inventory management with financing to illustrate how our

approach can be applied to obtain high-quality solutions that could outperform current stochastic optimiza-

tion approaches, especially in situations with high risk aversion levels.
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1. Introduction

Optimization under uncertainty is a fundamental problem in operations research that can have

significant practical impact. Unlike a deterministic optimization problem, the objective function in

a decision model facing uncertainty is contingent on the preference of the decision maker. Indeed,

decision preference concerning uncertainty can be associated with risk and ambiguity. In this paper,

we refer to risk in situations where the true probability distribution, also known as physical prob-

abilities (Anscombe and Aumann 1963), of the underlying random variables is known, while in

ambiguity or Knightian uncertainty (Knight 1921), the true distribution would be unknown. For a

random payoff with known distribution, risk aversion relates to the preference of a more predictable,

but possibly lower payoff, over a highly unpredictable, but possibly higher payoff. However, if the
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true distribution is unknown, the actual payoff risk would also be unknown. Ambiguity aversion

relates to the cautious behavior of evaluating the payoff risk using the worst distribution among an

acceptable set of uncertain probabilities. Both risk and ambiguity aversion are sensible and relevant

in decision making, not only for individuals or firms, but also for some government agencies where

their policies could impact public health or safety.

In articulating the risk preference of the decision maker, we focus on the paradigm of expected

utility introduced by Von Neumann and Morgenstern (1947). This framework has been widely

accepted as the normative standard for rational agents in assessing uncertain payoffs, despite being

contradicted by numerous experimental outcomes (e.g. Allais 1953). Various modifications are

developed to explain the deficiencies, including rank dependent expected utility theory (Quiggin

1982), prospect theory (Kahneman and Tversky 1979), and bounded rationality (Simon 1955). In

the expected utility framework, risk aversion is associated with an increasing and concave utility

function. In particular, we will focus on the exponential utility function, which is uniquely asso-

ciated with decision makers whose preferences are consistent with constant absolute risk aversion

(CARA) (Arrow 1965, Pratt 1964). In such preferences, the risk tolerance level, which is defined by

the magnitude of the ratio of the first to the second derivative of the utility function, is a constant

and does not depend on the payoff amount. The risk tolerance level can also be interpreted as

the payoff amount for which the decision maker would be roughly indifferent between accepting or

rejecting a gamble involving a 50-50 chance of winning that amount and losing half that amount

(see, e.g., Delquié 2008). Because decision models with an exponential utility function are often

analytically tractable, it is used as an adequate approximation of general utility functions (see

Kirkwood 2004, for more details). For instance, the exponential utility preference preserves the

structural properties of Markov decision process (Howard and Matheson 1972). In addition, if the

distribution of the random payoffs is Gaussian, then the CARA preferences would be consistent

with the mean-variance preferences (Markowitz 1952); this property has been used to reveal the

high risk aversion of investors in the well-known equity premium puzzle of Mehra and Prescott

(1985). As such, CARA preferences are commonly assumed in the literature of economics, finance

and operations research (see, e.g., Abbas and Howard 2015, Holmstrom and Milgrom 1991, Bouakiz

and Sobel 1992, Veronesi 1999, Feng and Xiao 2008, Hall et al. 2015). In the literature review on

the application of risk aversion, Corner and Corner (1995) note that the CARA utility function is

about five times more commonly adopted than other types of utility functions combined.

Dantzig (1955) proposes the stochastic linear optimization model as a computational framework

for optimization under uncertainty. A stochastic linear optimization model is typically a linear

optimization problem; it has a risk-neutral objective function and the random variable is limited

to discrete probability distribution with a modest number of scenarios. However, if the number
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of scenarios is infinite or exponential, solving the stochastic optimization model would be com-

putationally intractable (Dyer and Stougie 2006, Hanasusanto et al. 2016). Nevertheless, we can

still obtain approximate solutions via sample average approximation (SAA) approach, which is a

popular randomized approximation technique that improves with the number of samples (see, e.g.

Shapiro et al. 2014). For large sample size, many large-scale linear optimization techniques have

also been developed for solving the stochastic optimization problem more efficiently (see, e.g., Kall

et al. 1994, Birge and Louveaux 2011, Prékopa 2013). Although we can extend this framework to an

objective function based on the expected exponential utility, it would result in a nonlinear convex

exponential conic optimization problem (ECOP), whose formulation size depends on the number

of scenarios (see, e.g., Dowson et al. 2020). Unlike the linear optimization models, such problems

may not scale as well computationally with the number of samples; moreover, the quality of the

approximation may depend on the risk tolerance level. Consequently, because of the computational

limit on the number of samples, solutions obtained via SAA may suffer from the optimizer’s curse

and result in poor out-of-sample performance (Smith and Winkler 2006). Hence, apart from SAA

approximation, there is a need to also consider other approximation approaches that would scale

well computationally.

There is also a need to address ambiguity because in real world optimization problems under

uncertainty, the true probability distribution of the underlying random variable is often unavailable.

Gilboa and Schmeidler (1989) axiomatize the preference of an ambiguity-averse decision maker and

propose the decision criterion that evaluates the worst-case expected utility over an ambiguity set

of prior distributions, though the earliest application of such decision preference may be traced

to Scarf (1957). Similar decision criteria have also been proposed in the distributionally robust

optimization (DRO) within the operations research community (see, e.g., Popescu 2007, Delage

and Ye 2010, Esfahani and Kuhn 2018, Chen et al. 2020). While there are tractable distributionally

robust optimization frameworks for piecewise linear utility functions (see, e.g., Bertsimas et al.

2010, Wiesemann et al. 2014), they have yet been extended to exponential utility.

Summary of contributions

In this paper, we propose a tractable robust CARA optimization framework to address distri-

butionally robust optimization problems with CARA preferences, applicable to various decision

problems such as, inter alia, network lot-sizing, project management, and inventory management.

We summarize our contribution as follows.

(i) We demonstrate that, unlike DRO problems with a risk-neutral objective, the robust CARA

optimization problem with an affine payoff function is NP-hard even under a simple ambi-

guity set with mean and polytope support set. To alleviate the computational intractability
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while maintaining practical modeling, we focus on uncertainty generated from stochastically

independent factors with ambiguous marginals and reformulate the problem as exponential

conic optimization problems, which can be practically solved with off-the-shelf solvers.

(ii) We develop a tractable exponential conic optimization approximation for robust CARA opti-

mization problems with concave piecewise affinely perturbed payoff functions, in contrast to

existing literature that focuses on affine perturbations. We prove the associated properties

and demonstrate its advantages over a Monte-Carlo approach.

(iii) We extend these approximations to address adaptive optimization by proposing a new piece-

wise affine decision rule called the multi-deflected linear decision rule (MLDR). We show

that the MLDR outperforms existing decision rules in recourse approximation and achieves

optimality under complete recourse condition with one recourse variable.

(iv) We also extend the MLDR to solve a multi-period consumption model while preserving non-

anticipative requirements.

(v) We present numerical examples, including project management and multi-period inventory

management with financing, to demonstrate the effectiveness of our tractable approxima-

tions in obtaining high-quality solutions that may outperform current stochastic optimization

approaches, particularly in scenarios with high risk aversion levels.

Notations We use boldface lowercase letters to represent vectors such as a, and calligraphic font

to denote a set such as Z. We denote by R, R+ the set of all and non-negative real numbers,

respectively. We denote by [N ] , {1,2, ...,N} the set of positive running indices up to N . We

denote by |Z| the cardinality of the set Z. We use ‖ · ‖ to denote Euclidean norm of a vector.

We denote by P0(Z) the set of all probability distributions on support set Z. We use tilde (̃·)

to denote uncertain parameters and use P to denote probability measure on sample space Z. We

denote by EP [z̃] the expectation of z̃ under probability distribution z̃ ∼ P. The inequality between

two uncertain parameters t̃≥ ṽ describes state-wise dominance, i.e., t̃(ω)≥ ṽ(ω) for all ω ∈Ω. We

denote Rk,n as the space of all measurable functions from Rk to Rn that are bounded on compact

sets. We define plus function (x)+ ,max{x,0}.

2. Robust optimization with CARA preferences

We first focus on a decision model where we denote x ∈ X ⊆ RIx as a vector of here-and-now

decision variables and f(x,z) being the payoff function in which the second argument, z ∈Z ⊆RIz

represents the model’s parameters that are subject to uncertainty. After the decision x has been

made, the payoff function would be randomly perturbed by the uncertain parameters. We next

present the following assumption on the model of uncertainty.
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Assumption 1 (Independent factors with ambiguous marginals). We assume that the

model’s uncertainty is generated from a set of stochastically independent factors with ambiguous

marginals, denoted by z̃ = (z̃1, z̃2, · · · , z̃Iz) where z̃j, j ∈ [Iz] has an unknown distribution Pj par-

tially characterized by an ambiguity set Fj, i.e., z̃j ∼ Pj ∈Fj ⊆P0([zj, z̄j]), zj < z̄j. The distribution

of z̃ is the product distribution P ∈ F , where F ,×j∈[Iz ]Fj. We denote Z = [z, z̄] as the support

set of all distributions in F , i.e., F ⊆P0(Z). We also partition the index set [Iz] = J + ∪J − ∪J
so that j ∈J + if and only if zj ≥ 0 ( i.e., P [z̃j ≥ 0]), j ∈J − if and only if z̄j ≤ 0 ( i.e., P [z̃j ≤ 0]).

It is worth noting that the independence assumption may not be as restrictive as it initially

seems. Under independent factors, we can model correlated uncertainty using a factor-based model,

which is a common approach in operations research. For instance, in a portfolio optimization model,

uncertain returns can be generated using a factor-based model such as r̃ , F z̃+ g, where F and

g are fixed coefficients obtained from statistical methods or prior knowledge (see, e.g., Natarajan

et al. 2008). Even when the factor z̃ has independent components, the uncertain returns can

still exhibit strong correlation. The assumption of independently distributed random variables is

prevalent in dynamic and stochastic optimization problems, and has been used in previous studies

to justify the approximation of chance constrained problems using robust optimization methods

(see Ben-Tal et al. 2009).

CARA certainty equivalent

Observe that under Assumption 1, the payoff function, f(x, z̃) is a random variable with ambigu-

ous probability distributions. Drawing inspiration from the max-min expected utility framework

(Gilboa and Schmeidler 1989), we address both risk and ambiguity by considering the preference

relation, such that for a given increasing concave utility function u : R→ R and ambiguity set,

F ⊆ P0(Z), the random payoff f(x1, z̃) is preferred over f(x2, z̃) if and only if the worst-case

expected utility value infP∈F EP [u(f(x1, z̃))]≥ infP∈F EP [u(f(x2, z̃))]. Such preference can be cor-

roborated by an extension of Theorem 3 from Delage et al. (2019) from an ambiguity-averse risk

measure perspective when the function u is strictly increasing and concave. For a detailed expla-

nation, please refer to Appendix D. The goal of our robust decision model is to maximize the

worst-case expected utility of the payoff as follows:

max
x∈X

inf
P∈F

EP [u(f(x, z̃))] . (1)

Specific to the CARA preferences, we have the exponential utility u(v) = 1 − e−v/κ with κ > 0

being the risk tolerance level. Since u−1(·) is also increasing, the model (1) shares the same optimal

solution with the model

max
x∈X

inf
P∈F

u−1 (EP [u(f(x, z̃))]) = max
x∈X

inf
P∈F
−κ logEP

[
exp

(
−f(x, z̃)

κ

)]
(2)
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where the operator u−1 (EP [u(·)]) is referred to the certainty equivalent of the random payoffs under

the utility function u and distribution P ∈ F . In articulating risk, certainty equivalent has the

benefit of being more interpretable than expected utility. Hence, we focus on the robust CARA

optimization model (2), which is justified by the Theorem 3 in Delage et al. (2019) because the

CARA certainty equivalent is known as a monetary risk measure called entropic risk measure.

Definition 1. For a given random variable ṽ, ṽ∼ P, the CARA certainty equivalent is defined

as

CκP [ṽ],


ess infP [ṽ] if κ= 0

EP [ṽ] if κ=∞

−κ logEP

[
exp

(
− ṽ
κ

)]
if κ∈ (0,∞).

Note that the certainty equivalent would not exceed the risk-neutral expected payoffs as a result

of Jensen’s inequality for exponential utility. Given an ambiguity set of probability distributions

F , the ambiguity-averse CARA certainty equivalent is defined as

CκF [ṽ], inf
P∈F

CκP [ṽ] .

Hence, Problem (2) can be written as

max
x∈X

CκF [f(x, z̃)] . (3)

Throughout the paper, we focus on payoff functions that are finite for any x∈X and z ∈Z so that

CκF [f(x, z̃)] is well-defined. Note that we extend the definition of CARA certainty equivalent to

the cases of zero and infinite risk tolerance level, which would correspond to the worst-scenario and

risk-neutral preferences, respectively. Specifically, our robust CARA optimization model recovers

the distributionally robust optimization model of the form

max
x∈X

inf
P∈F

EP [f(x, z̃)] (4)

when κ =∞ where the decision maker is risk-neutral and ambiguity-averse. When κ ∈ R+, the

robust CARA optimization model captures the preference of risk and ambiguity aversion, and the

degree of risk aversion increases as the risk tolerance level κ decreases. In the extreme case of κ= 0,

the model would coincide with the classical stochastic-free robust optimization model as follows:

max
x∈X

inf
z∈Z

f(x,z). (5)

We note that as it is more common in the optimization literature to consider minimizing a cost

function, we can also consider the following minmax certainty equivalent problem associated with

exponential disutility:

min
x∈X

sup
P∈F

κ logEP

[
exp

(
f(x, z̃)

κ

)]
, (6)
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where the exponential disutility has the form u(v) = ev/κ− 1. Hence, analogous to the definitions

of CARA certainty equivalent and ambiguity-averse CARA certainty equivalent, we also define

CκP [ṽ],−CκP [−ṽ] , CκF [ṽ], sup
P∈F

CκP [ṽ] =−CκF [−ṽ] .

In the remaining of the paper, we will adopt the payoff maximization decision model of Problem (3),

although all the following development can easily be transformed to the cost minimization decision

model of Problem (6).

We review some useful properties of the CARA certainty equivalent as follows:

Proposition 1. Consider the random variable ṽ, ṽ∼ P. The CARA certainty equivalent has the

following properties:

1. lim
κ→∞

CκP [ṽ] =EP [ṽ].

2. lim
κ↓0

CκP [ṽ] = ess infP [ṽ].

3. CκP [ṽ] is non-decreasing in κ> 0.

4. CκP [ṽ] is jointly concave in ṽ and κ> 0.

5. For all ν ∈R, CκP [ṽ+ ν] =CκP [ṽ] + ν.

These properties hold for CκF [·] as well.

Remark 1. The first two properties justify the definition of the CARA certainty equivalent at

its limits. The third property relates to the monotonicity of the CARA certainty equivalent with

regards to the degree of risk aversion. As we will show, we can exploit the concavity property for

computational tractability. For a fix risk tolerance, the concavity of the CARA certainty equivalent

implies a preference for diversification, which is also associated with risk aversion behavior. The last

property implies translation invariance, i.e., adding a constant amount to the random payoff would

increase the CARA certainty equivalent by exactly the same amount. It is worth noting that the

negative of the (ambiguity-averse) CARA certainty equivalent constitutes a convex risk measure

(see, e.g., Föllmer and Schied 2002), which is unique for CARA among all certainty equivalents.

We also present the following properties, which are useful for deriving exact and tractable approx-

imations of robust CARA optimization models.

Proposition 2. Consider the random variables ṽ, ν̃, (ṽ, ν̃)∼ P.

1. CκP [ṽ] is super-additive in (κ, ṽ), i.e.,

Cκ1+κ2
P [ṽ+ ν̃]≥Cκ1

P [ṽ] +Cκ2
P [ν̃]

for any κ1, κ2 ∈R+.

2. If ṽ, ν̃ are also independently distributed, then

CκP [ṽ+ ν̃] =CκP [ṽ] +CκP [ν̃] .

These properties hold for CκF [·] as well.
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Payoff functions with affine perturbations

We now focus on robust CARA optimization models with affinely perturbed payoff functions, which

arise, for example, in shortest path (Chicoisne et al. 2018) and portfolio optimization (El Ghaoui

et al. 2003). Specifically, we consider the payoff function of the following form,

f(x,z) = a0(x) +
∑
j∈[Iz ]

aj(x)zj. (7)

We assume the function aj(x) :RIx→R is concave for all j ∈ {0}∪J +, convex for all j ∈J −, and

affine for all j ∈J so that f(x,z) is concave in x for any z ∈Z.

Since z̃j’s are independent, we have CκF [f(x, z̃)] = a0(x) +
∑

j∈[Iz ] φj(κ,a
j(x)) where we define

the function φj : [0,∞]×R→R,

φj(κ,λ),CκFj [λz̃j] . (8)

By introducing the auxiliary variables λ0 and λj, j ∈ [Iz], we obtain the following representation

CκF [f(x, z̃)] = max
λ∈R1+Iz

λ0 +
∑
j∈[Iz ]

φj(κ,λ
j)

s.t. aj(x)≥ λj ∀j ∈ {0}∪J +

aj(x)≤ λj ∀j ∈J −

aj(x) = λj ∀j ∈J ,

(9)

As we see, having stochastic independent factors would help us decompose the multi-dimensional

integration problems associated with evaluating the CARA certainty equivalent to more ana-

lytically tractable single-dimensional integration problems. To appreciate the simplification, we

consider the following example.

Example 1. Let z̃j be independent uniform random variables over the unit interval [0,1],

aj(x)≡ aj < 0 for any j ∈ [Iz] and a0(x)≡ a0 > 0, then

CκP [f(x, z̃)] = a0−
∑
j∈[Iz ]

κ log

∫ 1

0

exp
(
−ajzj

κ

)
dzj = a0−

∑
j∈[Iz ]

κ log

(
κ−κe−aj/κ

aj

)
.

Hence the computation of CκP [f(x, z̃)] can be obtained in closed form. In contrast, due to multi-

dimensional integration, evaluating an expected concave piecewise linear utility such as

EP

min

a0 +
∑
j∈[Iz ]

aj z̃j,0




is known to be a #P-hard problem (Dyer and Stougie 2006, Hanasusanto et al. 2016).
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Finally, we point out the unique computational challenge of robust CARA optimization compared

with distributionally robust optimization. We consider an affine payoff function f(x,z) = x>z

under an ambiguity set with mean and polytope support set, i.e.,

G =

P∈P0(RIz)

∣∣∣∣∣∣∣∣
z̃ ∼ P

EP [z̃] =µ

P [z̃ ∈Z] = 1

 . (10)

When κ = 0 or κ =∞, the ambiguity-averse CARA certainty equivalent CκG [x>z̃] can be easily

evaluated computationally, corresponding to infz∈Z x
>z and x>µ, respectively. For any x ∈ X ,

and κ∈ (0,∞), we have

CκG [x>z̃]≥ t

⇐⇒ −κ log sup
P∈G

EP

[
exp

(
−x

>z̃

κ

)]
≥ t

⇐⇒ sup
P∈G

EP

[
κ exp

(
t−x>z̃

κ

)]
≤ κ

⇐⇒ ∃ α,β such that

α+β>µ≤ κ

α+β>z ≥ κ exp
(
t−x>z
κ

)
∀z ∈Z.

where the last step follows from duality. Note that the constraint

max
z∈Z

κ exp

(
t−x>z

κ

)
−α−β>z ≤ 0 (11)

involves a convex maximization problem, which is in general an intractable optimization problem.

Theorem 1. Evaluating the ambiguity-averse CARA certainty equivalent of an affine payoff

function over the polyhedral mean-support ambiguity set (10) is NP-hard for some κ∈ (0,∞).

To derive a tractable convex approximation for the ambiguity-averse CARA certainty equivalent,

we can consider the reformulation-perspectification approach of Bertsimas et al. (2022). We can also

consider a hybrid uncertainty model, where some random variables are independently distributed,

and use infimum convolution to obtain a unified bound on the ambiguity-averse CARA certainty

equivalent (see Wiesemann et al. 2014, Goh and Sim 2010). However, these approaches would

inevitably increase the complexity of the model. In this paper, we focus primarily on independently

distributed random variables as a foundation for constructing more complex models.

Practicably solvable reformulations

We next focus on tractable reformulations of robust CARA optimization problems under Assump-

tion 1. From a theoretical perspective, an optimization problem is considered to be tractable if

it can be solved in polynomial time (e.g., by the ellipsoid method). However, this definition does
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not always reflect how well optimization problems can be solved in practice. Therefore, we use the

term practicably solvable problems informally to refer to problems that are of practical interest and

can be efficiently solved by current off-the-shelf solvers. Our main interest is to obtain solutions to

the robust CARA optimization problems reliably and within reasonable time so that the solutions

can be implemented in practice. In this regard, we refer to a problem as practicably solvable if

it can be formulated using a modest number of decision variables, and a modest number of lin-

ear, convex quadratic, second-order conic, exponential conic constraints that can be solved using

current off-the-shelf software tools.1.Among these constraint types, exponential conic constraints

are essential in modeling exponential and logarithms arising from the robust CARA optimization

model. Exponential conic constraints are now supported in Mosek, and they can also be approxi-

mated fairly accurately via second-order conic constraints (see, e.g., Ye and Xie 2021), which are

broadly supported in solvers such as Gurobi, CPLEX and SDPT3.

Definition 2. A convex set W ⊆RI is exponential cone representable (Kexp-representable) if it

is conic representable with exponential cones, i.e.,

x∈W ⇐⇒∃ u∈RJ :Ax+Bu+ b∈KKexp

with A∈R3K×I , B ∈R3K×J , b∈R3K and KKexp is the Cartesian product of K exponential cones

Kexp , {(x1, x2, x3)|x1 ≥ x2 exp(x3/x2), x2 > 0}∪ {(x1,0, x3)|x1 ≥ 0, x3 ≤ 0} . (12)

We also say that a convex (concave) function is Kexp-representable if its epigraph (hypograph) is

a Kexp-representable set.

Theorem 2. Let g(x, κ) = −κ log
∑

i∈[I] pie
−xi/κ with κ > 0 and pi > 0 for all i ∈ [I], then the

closure of its hypograph {(x, κ, y) : y≤ g(x, κ), κ > 0} can be represented by(x, κ, y)

∣∣∣∣∣∣ ∃ q ∈RI :
∑
i∈[I]

piqi ≤ κ, (qi, κ, y−xi)∈Kexp ∀i∈ [I]

 .

For Problem (9) to be practicably solvable, we note that the functions φj(κ,λ
j), j ∈ [Iz] are

Kexp-representable for some choice of ambiguity sets, as we will show in the following example.

Example 2. Consider an ambiguity set with mean, mean absolute deviation, and support infor-

mation

G =


P∈P0(R)

∣∣∣∣∣∣∣∣∣∣∣

z̃ ∼ P

EP [z̃] = µ

EP [|z̃−µ|]≤ δ

P [z̃ ∈ [−1,1]] = 1


1 We do not include semidefinite constraints since semidefinite programs (SDPs) are less scalable compared to afore-
mentioned problems (see, e.g., Toh 2018, for a rough guide of the SDP problem size that can be solved by current
off-the-shelf solvers)
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where the support is normalized without loss of generality, otherwise we can consider transformation

z 7→ 2z−(z+z)

z−z if P [z̃ ∈ [z, z]] = 1. As in Postek et al. (2018) where the inequality in G is replaced by

equality, we show

φ(κ,λ) =−κ log

(
δ

2(µ+ 1)
eλ/κ +

δ

2(1−µ)
e−λ/κ +

(
1− δ

2(µ+ 1)
− δ

2(1−µ)

)
e−µλ/κ

)
,

where

φ(κ,λ),CκG [λz̃]

is hence Kexp-representable based on the Theorem 2. The proof is relegated to Appendix A.

We refer interested readers to Nemirovski and Shapiro (2007) for more examples, which we also

summarize in Table 1 and discuss their exponential conic representations in Appendix B.

Payoff functions with concave piecewise affine perturbations

We have shown that robust CARA optimization is practicably solvable for concave payoff functions

with affine perturbations. However, in practice, payoff functions can be nonlinear in the uncertain

factors. Many real-world problems, such as option pricing (Bertsimas and Popescu 2002), inventory

management (Ardestani-Jaafari and Delage 2016), routing optimization with time windows (Zhang

et al. 2021), and electric vehicle charging scheduling (Chen et al. 2023), involve payoff functions with

concave piecewise affine perturbations. Piecewise affine functions are also fundamental building

blocks in stochastic and dynamic optimization models commonly used in operations research. For

instance, a two-stage linear optimization problem with fixed recourse can have its recourse function

represented by a piecewise affine function with exponentially many pieces (see, e.g., Birge and

Louveaux 2011).

Therefore, in contrast to existing literature that focuses on affine perturbations (see, e.g.,

Nemirovski and Shapiro 2007, Jaillet et al. 2016), we consider payoff functions with concave piece-

wise affine perturbations, i.e.,

f(x,z) = min
i∈I

a0
i (x) +

∑
j∈[Iz ]

aji (x)zj

 . (13)

For each i ∈ I, we assume the function aji (x) : RIx→R is concave for all j ∈ {0} ∪J +, convex for

all j ∈J −, and affine for all j ∈J . Moreover, we assume the optimization problem maxx∈X f(x,z)

is practicably solvable for any z ∈Z.

However, when dealing with payoff functions that have concave piecewise affine perturbations,

the robust CARA optimization model becomes intractable. Example 1 demonstrates that even

evaluating the CARA certainty equivalent C∞P
[
min

{
a0 +

∑
j∈[Iz ] aj z̃j,0

}]
under independent uni-

form distribution can be #P-hard. As a result, we are motivated to develop a practicably solvable

lower bound for the ambiguity-averse CARA certainty equivalent of the payoff function (13).
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Theorem 3. The ambiguity-averse CARA certainty equivalent of the payoff function (13),

CκF [f(x, z̃)] has a practicably solvable lower bound:

Λ(κ,x),max
α,β

Φ(κ,α,β)

s.t. a0
i (x)≥ αi ∀i∈ I

aji (x)≥ βji ∀i∈ I, j ∈J +

aji (x)≤ βji ∀i∈ I, j ∈J −

aji (x) = βji ∀i∈ I, j ∈J

α∈R|I|,β ∈R|I|×Iz ,

(14)

where the objective function is

Φ(κ,α,β), max
ρ,γ,r,q,κ

r0 + ρ

s.t. κ0 +κ1 = κ∑
i∈I

qi ≤ κ1

(qi, κ1, ρ− ri)∈Kexp ∀i∈ I∑
j∈[Iz ]

φj(κ0, γ
j)≥ r0

αi +
∑
j∈[Iz ]

φj(κ1, β
j
i − γj)≥ ri ∀i∈ I

γ ∈RIz ,r ∈R1+|I|,κ∈R2
+, ρ∈R,q ∈R|I|.

(15)

It is worth noting that despite being challenging to determine the precise value of CκF [f(x, z̃)],

the following result provides conditions when the the bound in Theorem 3 can be exact. We also

provide two examples in Appendix C to demonstrate its advantages by comparing with other

approximations including a bound in Nemirovski and Shapiro (2007) and the Monte-Carlo approx-

imations.

Theorem 4. For any x ∈ X , the function Λ(κ,x) is non-decreasing in κ ∈ [0,∞] and satisfies

Λ(κ,x)≥ infz∈Z f(x,z). Moreover, CκF [f(x, z̃)] = Λ(κ,x) if there exists some i∗ ∈ I such that

a0
i∗(x) +

∑
j∈[Iz ]

aji∗(x)zj ≤ a0
i (x) +

∑
j∈[Iz ]

aji (x)zj ∀z ∈Z, i∈ I.

Remark 2. In the extreme risk aversion where κ= 0, Theorem 4 implies that

inf
z∈Z

f(x,z) =C0
F [f(x, z̃)] = Λ(0,x)≥ inf

z∈Z
f(x,z),

alluding to the improving accuracy of the approximation Λ(κ,x) as the risk tolerance, κ decreases.

The exact result could also occur when there exists a dominant payoff component, i∗ ∈ I as defined
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in Theorem 4, which could arise in situations with low coefficient of variations among the payoff

components, or when there are identical variations such that aji1(x) = aji2(x) for all i1, i2 ∈ I, j ∈ [Iz].

We also remark that, in general, the above condition of exact approximation can be verified by

solving |I| linear optimization problems over the support set Z, which are practicably solvable.

3. Adaptive optimization and tractable approximations

We now propose a more general framework for adaptive robust CARA optimization that has

provisions for recourse. We focus on a two-stage adaptive optimization problem with payoff function

defined by the optimal value of a linear optimization problem as follows,

f(x,z) = max
y
c>y

s.t. b>i y≤ a0
i (x) +a>i (x)z ∀i∈ I,

y ∈RIy

(16)

where I is the index set of constraints and ai(x) is the vector of aji (x) of j ∈ [Iz] for each i∈ I. In

this problem, x is the here-and-now decision and y is the wait-and-see or recourse decision adapted

to uncertain parameter z̃. As before, for each i ∈ I, we assume the function aji (x) : RIx → R is

concave for all j ∈ {0}∪J +, convex for all j ∈J −, and affine for all j ∈J .

Observe that with Iy = 1, c= 1, and bi = 1, i∈ I, the concave piecewise affine payoff function (13)

is a special case of (16). Moreover, we can assume without any loss of generality that the objective

function in Problem (16) contains only the recourse decision. Otherwise, for the objective function

c>y+a0
0(x) +a>0 (x)z, we can introduce another auxiliary variable yIy+1 to replace it, and add the

constraint yIy+1− c>y ≤ a0
0(x) +a>0 (x)z. We assume without loss of generality that bi 6= 0, i ∈ I;

otherwise such a constraint can always be incorporated in X , which describes the feasible set of

the here-and-now decision.

Drawing from the insights of Zhen et al. (2018), we can always improve the formulation of an

adaptive optimization problem via Fourier-Motzkin elimination of the recourse variables whenever

it is computationally viable to do so. In particular, we highlight that Problem (16) does not have

any equality constraint because for each equality constraint, we can eliminate a recourse variable

without increasing the size of the formulation. The two-stage optimization problem is general

enough to cover many practical optimization problems such as appointment scheduling, network

lot-sizing, projection management, and so forth.

Definition 3. We say Problem (16) has complete recourse if and only if for any d∈R|I|, there

exists some y ∈RIy such that b>i y≤ di for all i∈ I (see, e.g., Birge and Louveaux 2011).

Assumption 2. We assume that the optimization problem maxx∈X f(x,z) is practicably solvable

and is bounded from above for any z ∈Z.
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Note that we can express the ambiguity-averse CARA certainty equivalent as the following

optimization problem,

CκF [f(x, z̃)] = max
y

CκF
[
c>y(z̃)

]
s.t. b>i y(z)≤ a0

i (x) +a>i (x)z ∀z ∈Z, ∀i∈ I

y ∈RIz ,Iy .

(17)

Since y is a function map instead of a finite vector of decision variables, the above problem is

generally intractable.

A common approach to solve the adaptive optimization problem approximately is to use linear

decision rule (LDR) to restrict the recourse function map to be affinely dependent on the uncertain

parameters, i.e., y ∈LIz ,Iy where

LIz ,Iy ,

y ∈RIz ,Iy
∣∣∣∣∣∣ ∃ y0,y1, ...,yIz ∈RIy : y(z) = y0 +

∑
j∈[Iz ]

zjy
j

 . (18)

However, it has been well known that such approximation can be rather conservative and in some

situations, we may sacrifice too much for tractability (Garstka and Wets 1974). While there is a

long list of tractable decision rules that have been proposed to improve upon LDRs in the literature,

the main challenge lies in applying these rules to the robust CARA optimization framework, which

is inherently a nonlinear problem. Many decision rules are unique to classical robust optimization

and are incompatible with distribution ambiguity, such as the extended decision rule of Chen and

Zhang (2009) and the piecewise linear decision rule of Ben-Tal et al. (2020). Additionally, it is not

clear how to apply the lifted decision rules of Georghiou et al. (2015), Wiesemann et al. (2014) and

the segregated decision rules of Chen et al. (2008) in their generality under CARA preferences.

Fortunately, the deflected linear decision rule (DLDR) (Chen et al. 2008, Goh and Sim 2010)

can be applied to Problem (17) and has shown to be effective in improving upon LDRs. For this

purpose, we solve for each i∈ I:

max
y∈RIy

c>y

b>k y≤ 0 ∀k ∈ I\{i}

b>i y=−1

(19)

and define Io ⊆I as the index set of i such that the above optimization problem is feasible and yi�

as the corresponding optimal solution. In the case of complete recourse, Chen et al. (2008) note

that Problem (19) would always be feasible. The DLDR has the following form:

y†(z), ȳ(z) +
∑
i∈Io

yi� (hi(x, ȳ(z),z))
+

(20)
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where
ȳ(z) , y0 +Y z

hi(x,y,z) , b>i y− a0
i (x)−a>i (x)z ∀i∈ I,

with y0 ∈RIy and Y , [y1, ...,yIz ]∈RIy×Iz .

Multi-deflected linear decision rule

We now propose the multi-deflected linear decision rule (MLDR) that improves upon DLDR.

Specifically, we first solve for each i∈ I:

max
y∈RIy

c>y

b>k y≤ 0 ∀k ∈ I\{i}

b>i y=−‖bi‖

(21)

and denote yi∗ as its optimal solution for each i∈ Io. Observe that yi∗ = ‖bi‖yi�. Then we partition

the index set Io as

Io =
⋃
`∈[m]

Io`

such that yi1∗ = yi2∗ if and only if i1 and i2 are in the same Io` . We denote y`∗ as any yi∗ with i∈ Io`
and define MLDR as follows:

ŷ(z), ȳ(z) +
∑
`∈[m]

y`∗

(
max
i∈Io

`

{
hi(x, ȳ(z),z)

‖bi‖

})+

. (22)

In the following, we show how the MLDR can improve over the DLDR.

Theorem 5. Under Assumption 2, for any distribution P∈P0(Z) and κ∈R+, we have c>y`∗ ≤ 0

for all `∈ [m] and

CκP
[
c>ŷ(z̃)

]
≥CκP

[
c>y†(z̃)

]
.

We also show that the MLDR can replicate the optimal recourse function for the simplest class

of adaptive optimization problems with complete recourse.

Theorem 6. Suppose Problem (16) has complete recourse and Iy = 1, then there exists an

MLDR that is optimal in Problem (16) for all z ∈Z.

Remark 3. We remark that for the same class of adaptive optimization problems with complete

recourse, Bertsimas et al. (2019) has also proposed the lifted affine recourse adaptation (ARA),

which can achieve the optimal worst-case risk-neutral objective value under a moment-based ambi-

guity set. However, unlike MLDR, the lifted ARA may not necessarily replicate the optimal recourse

function that we have for MLDR in Theorem 6. Hence, Bertsimas et al. (2019) caution the use of

lifted ARA as a form of decision rule or policy for multi-period decision making.
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In line with Theorem 6, we illustrate the advantage of MLDR over DLDR in the following

example.

Example 3. Consider the payoff function as follows:

f(x, z) = max
y

y

s.t. y≤ 2

y≤ z

y≤ 2z− 1

y≤ 3z

where the optimal decision rule is yOPT (z) = min{2, z,2z − 1,3z}. Note that yi∗ = −1 for all i ∈
Io = I. It is easy to see yOPT (z) can be expressed as an MLDR, such as

ŷ(z) = 2− (max{0,2− z,3− 2z,2− 3z})+.

However, it cannot be represented by any DLDR, which has the form

y†(z) = ȳ(z)− (ȳ(z)− 2)
+− (ȳ(z)− z)+− (ȳ(z)− 2z+ 1)

+− (ȳ(z)− 3z)
+

for any ȳ(z) = y0 + y1z. To see this, note that

y†(z)≤min{yOPT (z),5z− 1− ȳ(z),3z+ 1− 2ȳ(z)}.

To guarantee y†(z) = yOPT (z) for all z ∈R, the slope of 5z− 1− ȳ(z) and 3z+ 1− 2ȳ(z) must lie

in the interval [0,3], which implies 5− y1 ≤ 3 and 3− 2y1 ≥ 0, a contradiction. Hence there always

exists z ∈R such that y†(z)< yOPT (z) under any choice of y0, y1 ∈R.

In the following proposition, we establish the conditions of feasibility of the MLDR in Prob-

lem (17).

Proposition 3. Suppose ȳ ∈LIz ,Iy satisfies

b>i ȳ(z)≤ a0
i (x) +a>i (x)z ∀z ∈Z, ∀i∈ I\Io,

Then the MLDR, ŷ satisfies

b>i ŷ(z)≤ a0
i (x) +a>i (x)z ∀z ∈Z, ∀i∈ I.

Therefore, by applying the MLDR to Problem (17), we obtain a lower bound of (17) as follows:

CκF [f(x, z̃)]≥ max
ȳ

CκF

c>
ȳ(z̃) +

∑
`∈[m]

y`∗

(
max
i∈Io

`

{
hi(x, ȳ(z̃), z̃)

‖bi‖

})+


s.t. hi(x, ȳ(z),z)≤ 0 ∀z ∈Z, ∀i∈ I\Io

ȳ ∈LIz ,Iy .

(23)
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However, Problem (23) involves evaluation of ambiguity-averse CARA certainty equivalent of a

sum of concave piecewise affine (i.e., sum-of-min) functions. Theoretically, we can write the sum-

of-min functions as concave piecewise affine functions so that the problem can be approximated

using techniques in Theorem 3. However, this may not be practical since the piecewise affine

reformulation might involve exponentially many pieces. Nevertheless, we provide a tractable lower

bound as follows.

Theorem 7. Under Assumption 2, the ambiguity-averse CARA certainty equivalent (17) has a

practicably solvable lower bound:

max
κ,r,α,β

y0,Y ,λ̄,λ

r0−
∑
`∈[m]

(c>y`∗)r`

s.t. κ0−
∑
`∈[m]

(c>y`∗)κ` = κ

c>y0 +
∑
j∈[Iz ]

φj(κ0,c
>yj)≥ r0

Φ(κ`, ᾱIo
`
− b̄>Io

`
y0, β̄Io

`
− b̄>Io

`
Y )≥ r` ∀`∈ [m]

λ̄>i z̄−λ
>
i z ≤ αi− b>i y0 ∀i∈ I\Io

Y >bi−βi = λ̄i−λi ∀i∈ I\Io

a0
i (x)≥ αi ∀i∈ I

aji (x)≥ βji ∀i∈ I, j ∈J +

aji (x)≤ βji ∀i∈ I, j ∈J −

aji (x) = βji ∀i∈ I, j ∈J

α∈R|I|,β ∈R|I|×Iz ,κ∈Rm+1
+ ,r ∈Rm+1

y0 ∈RIy ,Y ∈RIy×Iz , λ̄,λ∈R|I\I
o|×Iz

+

(24)

where the function Φ(·) is defined in Equation (15), and for any index set M, we denote ᾱM , 0

αM

 ∈R|M|+1, β̄M ,

 0>

βM

 ∈R(|M|+1)×Iz , b̄M ,
[
0 bM

]
∈RIy×(|M|+1) and αM, βM, bM are

the stacked vectors or matrices of αi/‖bi‖, β>i /‖bi‖, bi/‖bi‖ for i∈M, respectively.

4. Multi-period consumption model

We now extend to a T -period problem where uncertainty is revealed at every period and decisions

are made dynamically to maximize the total utilities of consumption across all periods. Let x∈X

represent the here-and-now decision. At each period t ∈ [T ], up to Iξt independently distributed

random factors, i.e., z̃1, ..., z̃Iξt , are realized, where Iξt increases with t and IξT = Iz. We define

the random vector ξ̃t , (z̃1, ..., z̃Iξt ) and the vector ξt , (z1, ..., zIξt ) to represent a realization of

ξ̃t. It is important to note that the set of uncertain factors z̃ is equivalent to ξ̃T . After ξt is
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realized, the decision-maker makes the t-th period recourse decision yt. We also write yt(ξt) to

emphasize the non-anticipative nature of multi-period decision-making, i.e., yt does not depend

on future uncertain outcomes z̃Iξt+1, . . . , z̃Iz .
2 The recourse decision must satisfy the constraint∑

τ∈[t] b
>
t,i,τyτ (ξτ )≤ a0

t,i(x)+a>t,i(x)ξt for each i∈ It where It represents the set of constraint indices

in period t. For each t∈ [T ], i∈ It, we assume bt,i,t 6= 0, and the function ajt,i(x) :RIx→R is concave

for all j ∈ {0}∪J +
t , convex for all j ∈J −t , and affine for all j ∈Jt where we denote J +

t ,J +∩ [Iξt ],

J −t ,J −∩ [Iξt ], Jt ,J ∩ [Iξt ]. After making the recourse decision, the decision-maker experiences

consumption of vt(ξt) , c>t yt(ξt). The objective is to maximize the decision-maker’s utility of

consumption over the entire horizon.

In evaluating the utility of the consumption profile, we adopt the time-additive exponential

utility preference (Varian 1992, Chapter 19) as follows,

u (v1(ξ1), . . . , vT (ξT )) =
∑
t∈[T ]

θt

(
1− exp

(
−vt(ξt)

κ

))
,

where we can specify the temporal discounting via the weights θt, θt ≥ 0. Since we are maximizing

the utility, without any loss of generality, we will normalize the weights so that
∑

t∈[T ] θt = 1.

We next generalize the notion of CARA certainty equivalent to the multi-period setting, which

we associate with a constant consumption of v=Cκ,θP [ṽ] at every period so that

u(v, . . . , v) =EP

[
u
(
v1(ξ̃1), . . . , vT (ξ̃T )

)]
.

Definition 4. For a given random vector z̃ ∼ P, let ṽ ,
(
v1(ξ̃1), . . . , vT (ξ̃T )

)
denote the ran-

dom non-anticipative consumption profile over time. We define the following multi-period CARA

certainty equivalent

Cκ,θP [ṽ],



min
t∈[T ]:θt>0

{ess infP [ṽt]} if κ= 0∑
t∈[T ]

θtEP [ṽt] if κ=∞

−κ log

∑
t∈[T ]

θtEP

[
exp

(
− ṽt
κ

)] if κ∈ (0,∞).

Note that Cκ,θP [ṽ] coincides with the CARA certainty equivalent CκP [ṽ] when T = 1.

Proposition 4. The multi-period CARA certainty equivalent has the following properties:

1. Cκ,θP [ṽ] is non-decreasing in κ∈ [0,∞].

2 By the standard terminology in multi-period stochastic programming: Let (Ω,H,P) be a probability space and
z̃j : Ω→R, j ∈ [Iz] be independent random variables. We define a filtration H0 ⊆H1 ⊆ · · · ⊆HT =H with H0 = {∅,Ω}
and Ht is the σ-algebra generated by z̃1, · · · , z̃Iξt . For each t∈ [T ], we require yt is adapted to Ht.
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2.

min
t∈[T ]:θt>0

{ess infP [ṽt]} ≤Cκ,θP [ṽ]≤
∑
t∈[T ]

θtEP [ṽt] ,

and the bounds are achievable.

3. Cκ,θP [ṽ] is jointly concave in ṽ and κ> 0.

4.

Cκ,θP [ṽ] = max
ν∈RT

−κ log

∑
t∈[T ]

θt exp
(
−νt
κ

)
s.t. CκP [ṽt]≥ νt ∀t∈ [T ].

(25)

5. For all ν ∈R,

Cκ,θP [ṽ+ ν1] =Cκ,θP [ṽ] + ν.

Remark 4. The first two properties show the preservation of monotonicity with regards to

the risk tolerance level and justify the definition of the multi-period CARA certainty equivalent

at its limits. The joint concavity property is also preserved, together with the fourth property

showing the connection to CARA certainty equivalent in each period, are essential for tractability

of multi-period CARA optimization problems. The last property is the extension of the translation

invariance to multi-period so that if each period is increased by the same certain amount, then

the multi-period certainty equivalent should also increase by the same amount. This property is

sensible and unique to the choice of exponential utility.

In considering ambiguity aversion, it may seem natural to evaluate the worst-case expected

cumulative utility for the entire horizon as follows

inf
P∈F

EP

∑
t∈[T ]

θt

(
1− exp

(
− ṽt(ξ̃t)

κ

)) .
However, we do not know how to tractably evaluate this criterion even if the consumption functions

are affinely dependent on the random factors. Instead, we propose to evaluate the worst-case

expected utility for every period in the following criterion,

∑
t∈[T ]

inf
P∈F

EP

[
θt

(
1− exp

(
− ṽt(ξ̃t)

κ

))]
.

Apart from the computational benefits, we can also justify this approach as being more prudent in

mitigating the ambiguous risk of under consumption or starvation that may occur in any period.

Consequently, we propose the following multi-period ambiguity-averse CARA certainty equivalent.
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Definition 5. Given an ambiguity set of probability distributions F , we define the multi-period

ambiguity-averse CARA certainty equivalent as follows

Cκ,θF [ṽ],



min
t∈[T ]:θt>0

{
inf
P∈F

ess infP [ṽt]

}
if κ= 0∑

t∈[T ]

θt inf
P∈F

EP [ṽt] if κ=∞

−κ log

∑
t∈[T ]

θt sup
P∈F

EP

[
exp

(
− ṽt
κ

)] if κ∈ (0,∞)

where ṽ,
(
c>1 y1(ξ̃1), . . . ,c>T yT (ξ̃T )

)
and ξ̃T ∼ P∈F .

Note that Cκ,θF [ṽ] is well-defined under Assumption 1 if yt ∈RIξt ,Iyt for each t∈ [T ].

Proposition 5. The multi-period ambiguity-averse CARA certainty equivalent has the follow-

ing properties:

1. Cκ,θF [ṽ] is non-decreasing in κ∈ [0,∞].

2.

min
t∈[T ]:θt>0

{
inf
P∈F

ess infP [ṽt]

}
≤Cκ,θF [ṽ]≤

∑
t∈[T ]

θt inf
P∈F

EP [ṽt] ,

and the limits are achievable.

3. Cκ,θF [ṽ] is jointly concave in ṽ and κ> 0.

4.

Cκ,θF [ṽ] = max
ν∈RT

−κ log

∑
t∈[T ]

θt exp(−νt/κ)


s.t. CκF [ṽt]≥ νt ∀t∈ [T ].

(26)

5. For all ν ∈R,

Cκ,θF [ṽ+ ν1] =Cκ,θF [ṽ] + ν.

6.

Cκ,θF [ṽ]≤ inf
P∈F

Cκ,θP [ṽ] .

Remark 5. We see the multi-period ambiguity-averse CARA certainty equivalent preserves the

salient properties of multi-period CARA certainty equivalent in Proposition 4. The last property

shows that the multi-period ambiguity-averse CARA certainty equivalent is a more conservative (or

robust) evaluation of the worst-case achievable multi-period CARA certainty equivalent evaluated

at the beginning of the time horizon.

We are now ready to propose our robust CARA multi-period consumption model as follows,

max
x∈X ,y1,...,yT

Cκ,θF
[
c>1 y1(ξ̃1), . . . ,c>T yT (ξ̃T )

]
s.t.

∑
τ∈[t]

b>t,i,τyτ (ξτ )≤ a0
t,i(x) +a>t,i(x)ξt ∀t∈ [T ], ∀i∈ It, ∀z ∈Z

yt ∈RIξt ,Iyt ∀t∈ [T ].

(27)
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Observe that Problem (27) generalizes the robust CARA optimization with two-stage payoff

function (16). We can also consider maximizing the expected CARA utility of the total payoffs in

the following multi-period optimization model,

max
x∈X ,y1,...,yT

CκF

∑
t∈[T ]

c>t yt(ξ̃t)


s.t.

∑
τ∈[t]

b>t,i,τyτ (ξτ )≤ a0
t,i(x) +a>t,i(x)ξt ∀t∈ [T ], ∀i∈ It, ∀z ∈Z

yt ∈RIξt ,Iyt ∀t∈ [T ].

(28)

Incidentally, this is also a special case of the T -period consumption model of Problem (27) with θt =

0 for all t∈ [T −1], θT = 1, an auxiliary recourse decision yT,IyT +1 in period T as the consumption,

and one more constraint yT,IyT +1(ξT )−
∑

t∈[T ] c
>
t yt(ξt)≤ 0 for all z ∈Z.

We next extend the MLDR to Problem (27) with non-anticipativity consideration. For this

purpose, we first solve for each t∈ [T ], i∈ It, the problem

max
yt,..,yT

T∑
τ=t

θτ
(
1− exp

(
−c>τ yτ/κ

))
s.t.

s∑
τ=t

b>s,k,τyτ ≤ 0 ∀s∈ {t, ..., T}, k ∈ Is

b>t,i,tyt =−‖bt,i,t‖

c>τ yτ ≤ 0 ∀τ ∈ {t, ..., T}

yτ ∈RIτ ∀τ ∈ {t, ..., T}.

(29)

For each t∈ [T ], we denote Iot ⊆It as the index set of i such that the above optimization problem

is feasible and yt,iτ∗ as the corresponding optimal solution for any τ ∈ {t, ..., T}. Similar to the two-

stage case, we can further partition the index set Iot as Iot =
⋃
`∈[mt]

Iot,` such that yt,i1τ∗ = yt,i2τ∗ if

and only if i1 and i2 are in the same Iot,` and denote yt,`τ∗ as any yt,iτ∗ with i∈ Iot,`. Subsequently, we

propose the multi-period MLDR

ŷt(ξt), ȳt(ξt) +
∑
s∈[t]

∑
`∈[ms]

ys,`t∗

(
max
i∈Io

s,`

{
hs,i(x, ȳ[s](ξs),ξs)

‖bs,i,s‖

})+

(30)

where for each t∈ [T ],

ȳt(ξt) , y0
t +Ytξt

ht,i(x,y[t],ξt) ,
∑
τ∈[t]

b>t,i,τyτ − a0
t,i(x)−a>t,i(x)ξt

with y0
t ∈RIyt , Yt , [y1

t , ...,y
Iξt
t ]∈RIyt×Iξt , and y[t] is the collection of yτ for τ ∈ [t].

We establish the feasibility of the multi-period MLDR as follows.
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Proposition 6. For each t ∈ [T ], the multi-period MLDR, ŷt satisfies the non-anticipativity

constraints. Moreover, suppose ȳt ∈LIξt ,Iyt satisfies
∑

τ∈[t] b
>
t,i,τ ȳτ (ξτ )≤ a0

t,i(x) +a>t,i(x)ξt for each

i∈ It\Iot , then ŷt is feasible to Problem (27).

We construct a tractable approximation of Problem (27) as follows.

Theorem 8. The multi-period model (27) has a practicably solvable lower bound as follows:

max
ρ,x,pt,νt,αt,

βt,y
0
t ,Yt,κ

t,rt,

λ̄t,λt,∀t∈[T ]

ρ

s.t.
∑
t∈[T ]

θtpt ≤ κ

(pt, κ, ρ− νt)∈Kexp ∀t∈ [T ]

rt0−
∑
s∈[t]

∑
`∈[ms]

(c>t y
s,`
t∗ )rts,` ≥ νt ∀t∈ [T ]

κt0−
∑
s∈[t]

∑
`∈[ms]

(c>t y
s,`
t∗ )κts,` = κ ∀t∈ [T ]

c>t y
0
t +

∑
j∈[Iξt ]

φj(κ
t
0,c
>
t y

j
t )≥ rt0 ∀t∈ [T ]

Φ

κts,`, ᾱs,Ios,` −∑
τ∈[s]

b̄>s,Io
s,`
,τy

0
τ , β̄s,Ios,` −

∑
τ∈[s]

b̄>s,Io
s,`
,τ Ȳτs

≥ rts,` ∀t∈ [T ], s∈ [t], `∈ [ms]

λ̄>t,iξ̄t−λ
>
t,iξt ≤ αt,i−

∑
τ∈[t]

b>t,i,τy
0
τ ∀t∈ [T ], i∈ It\Iot∑

τ∈[t]

Ȳ >τt bt,i,τ −βt,i = λ̄t,i−λt,i ∀t∈ [T ], i∈ It\Iot

a0
t,i(x)≥ αt,i ∀t∈ [T ], i∈ It
ajt,i(x)≥ βjt,i ∀t∈ [T ], i∈ It, j ∈J +

t

ajt,i(x)≤ βjt,i ∀t∈ [T ], i∈ It, j ∈J −t
ajt,i(x) = βjt,i ∀t∈ [T ], i∈ It, j ∈Jt
ρ∈R,x∈X

pt, νt ∈R,αt ∈R|It|,βt ∈R|It|×Iξt ,y0
t ∈RIyt ,Yt ∈RIyt×Iξt ∀t∈ [T ]

κt ∈R
1+
∑
s∈[t]ms

+ ,rt ∈R1+
∑
s∈[t]ms , λ̄t,λt ∈R

|It\Iot |×Iξt
+ ∀t∈ [T ]

(31)

where the function Φ(·) is defined in Equation (15), Ȳτt ,
[
Yτ 0

]
∈ RIyτ×Iξt for τ ≤ t, ᾱs,Io

s,`
, 0

αs,Io
s,`

 ∈R|Ios,`|+1, β̄s,Io
s,`
,

 0>

βs,Io
s,`

 ∈R(|Ios,`|+1)×Iξs , b̄s,Io
s,`
,τ ,

[
0 bs,Io

s,`
,τ

]
∈RIyτ×(|Ios,`|+1) and

αs,Io
s,`

, βs,Io
s,`

, bs,Io
s,`
,τ are the stacked vectors or matrices of αs,i/‖bs,i,s‖, β>s,i/‖bs,i,s‖, bs,i,τ/‖bs,i,s‖

for s∈ [T ], `∈ [ms], i∈ Ios,`, respectively.

Note that in practical implementation of the robust optimization solutions, we may ignore

the solutions for the MLDR, but only to implement the solutions for the here-and-now decision,
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x ∈ X . As uncertainty unfolds, the future wait-and-see decision will become here-and-now. In a

rolling-horizon implementation, this decision can be obtained by solving a new robust optimization

problem with updated priors (see, e.g., Ben-Tal et al. 2004, Bertsimas et al. 2019).

On time consistency

We are aware that time consistency is a maxim in many multi-period stochastic programming

models mandating that an optimal policy perceived in one time period must be recognized as

optimal in another. However, we do not enforce time consistency as a preference in our multi-

period decision framework. Apart from the time inconsistency issues that may arise from robust

decision making (see, e.g., Delage and Iancu 2015), we also allow arbitrary choice of temporal

discounting, such as behaviorally inspired hyperbolic discounting (Laibson 1997) that would result

in time inconsistent preferences. In reality, time consistency is not a dominant human behavior

even in the absence of uncertainty (see, e.g., Loch and Wu 2007, Frederick et al. 2002). Moreover,

since dynamic optimization problems are potentially PSPACE-hard (Dyer and Stougie 2006), the

consideration of time consistency presupposes an impractical amount of computational resources

needed to ensure the optimality of a time consistent policy. We acknowledge that our model may

not cater to a fully rational agent with unlimited computational resources.

Our stand to relegate time consistency is not uncommon in the literature, and we refer interested

readers to Kydland and Prescott (1977), Bajeux-Besnainou and Portait (1998). A trivial fix is to

adopt the pre-committed policy approach by firmly adhering to the optimum policy evaluated at

the first period throughout the planning horizon. In one of our numerical studies, we evaluate this

approach by comparing the performance of the pre-committed MLDR policy against the time-

consistent optimal DP policy, with both policies constructed from an empirical distribution at the

beginning of the period. Another common criticism of robust optimization is the perceived over-

conservativeness, which may not be true with more sophisticated ambiguity sets and approximation

techniques such as those introduced in Goh and Sim (2010), See and Sim (2010), Chen et al.

(2020). The proof of the pudding should be in its eating. Hence, it is imperative for us to compare

the quality of the solutions obtained from the deterministic approximations of our robust CARA

optimization models against those obtained from the Monte-Carlo approximations of stochastic

CARA optimization models.

5. Numerical studies

In this section, we apply the tractable approximation of robust CARA optimization models to

study its numerical performance on solving two adaptive linear optimization problems. In the first

experiment, we consider a project management problem, and benchmark our solutions against

those obtained from SAA approximations of stochastic optimization. In the second experiment,
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we study a multi-period inventory management problem and benchmark the multi-period MLDR

policy against the policy obtained using dynamic programming (DP). In both problems we show

that our tractable approximation yields solutions with better out-of-sample performance when

there are insufficient training samples or when the risk tolerance levels are low.

Project management

We consider solving a risk-averse project management problem (e.g. Ben-Tal et al. 2009, Chen et al.

2007b) via our tractable approximation and a stochastic optimization model using an empirical

distribution to mimic a data-driven setting where the underlying data generating model is not

known to the decision maker. We fix the empirical distribution and vary the risk tolerance level to

obtain the solution profiles of both approaches.

To represent the project management problem, we use a directed acyclic graph with n nodes and

m arcs, denoted by E . Each node corresponds to an event that signals the completion of a subset

of activities, while each arc corresponds to an activity linking two events. An event only occurs

when all the activities that correspond to its incoming edges have been completed. We use node

1 as the start event and the last node n as the end event. The completion time of event i ∈ [n] is

denoted by yi. Each activity (i, j) ∈ E is associated with an uncertain processing time t̃ij, which

starts only after the event corresponding to the originating node has occurred. We assume that the

random processing time t̃ij depends on the allocated additional resources and can be represented as

t̃ij = bij + aij z̃ij(1−xij), where z̃ij is a zero-mean random variable, and xij ∈ [0, x̄ij] is the amount

of resources allocated to activity (i, j) ∈ E . We assume that the random processing times t̃ij are

independent of each other, and are non-negative for all realizations of z̃ij and all ranges of xij. We

denote cij as the cost of using each unit of resource for the activity on the arc (i, j).

Our goal is to determine an optimal resource allocation decision x that minimizes the CARA

certainty equivalent of the completion time of the project, subject to the constraint that the total

available resources do not exceed a budget C, i.e.,

min
x∈X

CκP [f(x, z̃)]

where

f(x,z) = min
y

yn

s.t. yj ≥ yi + bij + aijzij(1−xij) ∀(i, j)∈ E

y1 = 0

, (32)

and

X =
{
x : c>x≤C, 0≤x≤ x̄

}
.
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Our computational setup follows Chen et al. (2008), where we consider a fictitious activity

network represented by an H-by-W grid, with a total of n=H ×W nodes and m=H(W − 1) +

W (H − 1) arcs. The first node is located at the bottom left corner, while the last node is at the

upper right corner. Each arc on the graph proceeds either towards the right node or the upper node.

We set H = 4 and W = 6, resulting in n= 24 and m= 38. For all activities, we assume aij = bij = 3,

x̄ij = 1, and cij = 1. The processing times are generated from stochastically independent factors,

and each factor z̃ij is a two-point random variable that takes on the value of 1/(2β) with probability

β or −1/(2(1− β)) with probability 1− β, where β ∈ {0.1,0.2,0.4} controls the variance of the

random duration. However, the distribution is unknown to the decision maker. Instead, we generate

S ∈ {20,10000} i.i.d. samples of z̃ from the underlying distribution for each problem instance and

we denote each sample by ẑs, s ∈ [S]. Then we obtain the here-and-now decisions by an SAA

approach and an MLDR-based approximation approach, denoted as xS and xM , respectively. For

SAA, we use the empirical average to replace the expectation in the certainty equivalent, i.e.,

min
x∈X

κ log
1

S

∑
s∈[S]

exp

(
f(x, ẑs)

κ

)
.

For the MLDR-based approximation, we solve CκF [f(x, z̃)] where the ambiguity set F is based

on mean, support and mean absolute deviation estimated from data. We emphasize that MLDR

is only used for approximating the ambiguity-averse CARA certainty equivalent. After obtaining

xS and xM , we implement them and evaluate the out-of-sample certainty equivalent of f(x, z̃)

on 50,000 i.i.d. test samples generated from the underlying distribution. We set risk tolerance

parameter κ∈ {0.01,0.1,1,10,100} and budget C = 12. The results are averaged over 100 random

problem instances. In Figure 1, we plot the out-of-sample CARA certainty equivalents of the project

completion times under different risk tolerance parameters. We have also tested with C ∈ {4,20}

and the results are similar.

We observe that when the training sample size is limited (S = 20), the solution xM outperforms

xS. Furthermore, the gap in out-of-sample certainty equivalent between the two solutions becomes

larger as κ decreases. As expected, the out-of-sample certainty equivalent evaluated at SAA solu-

tions improves as S increases from 20 to 10,000. With a very large training size (S = 10,000), xS

performs slightly better than xM when κ ∈ {10,100}; however, it is still dominated by xM when

the risk tolerance level is low and the variance is high. Therefore, for a fixed sample size, it becomes

more challenging for the SAA approach to maintain the quality of the approximation as the risk

tolerance level decreases. Moreover, we find that the out-of-sample certainty equivalent of xM is

more concentrated than that of xS, showing the robustness of xM over xS, especially when the

random duration has a high variance (β = 0.1) and the risk tolerance level is low. Finally, we note
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Figure 1 Certainty equivalent of completion time under different risk tolerance parameters
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(b) β = 0.2
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(c) β = 0.4
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Notes. We visualize the tube between the 10% and 90% quantiles (shaded areas) as well as the mean value (solid

lines) of the out-of-sample performance over 100 random instances. Some shaded areas may not be visible in the

plot due to the concentration of certain equivalents.
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that the average computation time of the MLDR-based approach is 1.79 seconds (independent of

the sample size S), while the average computation time of SAA is 0.05 seconds when S = 20 and

11.49 seconds when S = 10,000, respectively. We see that, unlike the SAA approach, the MLDR-

based approach does not suffer from increasing computational burden with larger training sample

sizes.

Based on this experiment, we can conclude that our tractable approximation is a viable alterna-

tive to the SAA approach. It is particularly advantageous in situations where a low-risk tolerance

level is desired and when the training data is limited.

Multi-period inventory management with financing

In the second experiment, we apply the multi-period MLDR approximation approach to solve a risk-

averse multi-period inventory management with financing problem. We benchmark its performance

with the optimum policy obtained via dynamic programming (DP) using a limited sized empirical

distribution that is sampled from the true distribution. In contrast to the previous experiment, we

will implement the multi-period MLDR as a pre-committed policy in our numerical study, which

is less ideal than a rolling-horizon implementation, but will greatly accelerate our computational

studies. A similar robust optimization model has also been proposed in See and Sim (2010) to

address a risk-neutral multi-period inventory management without the consideration of financing.

Unfortunately, their proposed approximations do not naturally extend to the CARA criterion.

Specifically, we consider a multi-period inventory management problem proposed in Chen et al.

(2007a), where the risk-averse firm determines the inventory and financing policies to maximize the

expected utility of consumption over a finite time horizon. We assume the demand is exogenous and

stochastically independent across periods. At the beginning of each period t ∈ [T ], the inventory

level is xt; the firm makes a replenishment decision yt ≥ xt at the cost of ct(yt − xt) before the

uncertain demand z̃t is realized. We assume the unsatisfied demand is backlogged so that the

next-period inventory level is xt+1 = yt − z̃t and the firm obtains an income qt = ptz̃t − h(yt −

z̃t)
+ − b(z̃t − yt)+ − ct(yt − xt), where pt is the unit selling price, h is the unit holding cost, and

b is the unit backlogging cost. Subsequently, the firm determines the consumption level ft and

receives the corresponding utility
(
1− e−ft/κ

)
. We do not consider temporal discounting and set

θt = 1/T , t ∈ [T ]. The consumption decision also determines the financing decision so that its

wealth wt transits according to wt+1 = (1 + β)(wt + qt − ft) where β is the interest rate. We can

interpret β as either the saving or borrowing rate depending on whether (wt + qt− ft) is positive

or negative, respectively. To tractably solve this problem by DP, it is necessary to assume that

the saving and borrowing rates are identical (Chen et al. 2007a). We assume the firm aims to
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maximize the expected time-additive exponential utility function of consumption so the problem

can be formulated as

max
x,y,f ,w,q

EP

∑
t∈[T ]

θt(1− e−ft(ξ̃t)/κ)


s.t. ft(ξ̃t) =wt(ξ̃t−1)− wt+1(ξ̃t)

1+β
+ qt(ξ̃t) ∀t∈ [T ]

qt(ξ̃t)≤ ptz̃t−h(yt(ξ̃t−1)− z̃t)− ct(yt(ξ̃t−1)−xt(ξ̃t−1)) ∀t∈ [T ]

qt(ξ̃t)≤ ptz̃t− b(z̃t− yt(ξ̃t−1))− ct(yt(ξ̃t−1)−xt(ξ̃t−1)) ∀t∈ [T ]

yt(ξ̃t−1)≥ xt(ξ̃t−1) ∀t∈ [T ]

xt+1(ξ̃t) = yt(ξ̃t−1)− z̃t ∀t∈ [T − 1]

wT+1(ξ̃T ) = 0

(33)

where the initial wealth w1 and inventory level x1 are given. Chen et al. (2007a) shows that a

base-stock policy is optimal for all t ∈ [T ]. Moreover, the optimal policy of problem (33) can be

obtained by solving the DP with Bellman equation

Gt(x) = max
y≥x

CRtP

[
qt(y, z̃t) +

1

1 +β
Gt+1(y− z̃t)

]

where the effective risk tolerance Rt =
∑T

τ=t
κ

(1+β)τ−t and GT+1(x) = 0. The optimal consumption

is given by

f∗t (w,y, z̃) =
κ

Rt

(
w+ qt(y, z̃) +

1

1 +β
Gt+1(y− z̃)

)
+Ct

where Ct =− Rt+1κ

Rt(1+β)
log

At+1(1+β)κ

θtRt+1
and At = (1+β)Rt

Rt+1
At+1

(
At+1(1+β)κ

θtRt+1

)−κ/Rt
.

We also solve the problem (33) using our multi-period MLDR approximation approach. To do

so, we first have to remove the equality constraints of the problem; we eliminate xt and qt by
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substitution. The reformulated problem becomes,

max
y,f ,w

Cκ,θP [f(z̃)]

s.t. y1 ≥ x1

yt(ξ̃t−1)≥ yt−1(ξ̃t−2)− z̃t−1 ∀t∈ {2, ..., T}

f1(ξ̃1)≤w1− w2(ξ̃1)

1+β
+ (p1 +h)z̃1− (h+ c1)y1 + c1x1

f1(ξ̃1)≤w1− w2(ξ̃1)

1+β
+ (p1− b)z̃1 + (b− c1)y1 + c1x1

ft(ξ̃t)≤wt(ξ̃t−1)− wt+1(ξ̃t)

1+β
+ (pt +h)z̃t− ctz̃t−1

−(h+ ct)yt(ξ̃t−1) + ctyt−1(ξ̃t−2) ∀t∈ {2, ..., T − 1}

ft(ξ̃t)≤wt(ξ̃t−1)− wt+1(ξ̃t)

1+β
+ (pt− b)z̃t− ctz̃t−1

+(b− ct)yt(ξ̃t−1) + ctyt−1(ξ̃t−2) ∀t∈ {2, ..., T − 1}

fT (ξ̃T )≤wT (ξ̃T−1) + (pT +h)z̃T − cT z̃T−1

−(h+ cT )yT (ξ̃T−1) + cTyT−1(ξ̃T−2)

fT (ξ̃T )≤wT (ξ̃T−1) + (pT − b)z̃T − cT z̃T−1

+(b− cT )yT (ξ̃T−1) + cTyT−1(ξ̃T−2).

(34)

We use the similar parameter setting as in Chen et al. (2007a). In particular, we set h= 6, b= 3,

β = 0.1, x1 =w1 = 0, and ct = 1, pt = 8 for all t∈ [T ]. We set κ∈ {0.25,1,4,16,64,256} and assume

each random demand z̃t is uniformly distributed over {0,1,2, ...,20}.

We conduct two sets of experiments. In the first experiment, we assume that the decision-maker

knows the exact demand distribution. We solve the problem using two approaches: DP and MLDR,

where the expectation is taken with respect to the true distribution. Our goal is to show that

MLDR is near-optimal as a policy by using DP as a benchmark since DP can obtain the optimal

policy. After solving the corresponding problems, we implement the optimal policy obtained from

DP and MLDR on 10,000 i.i.d. samples generated from the same underlying distribution. We

average the results over 100 random instances. We report the out-of-sample multi-period CARA

certainty equivalent of the consumption profile obtained from the two approaches under different

risk tolerance parameter κ in Figure 2. We find that the multi-period MLDR policy performs

comparably to the optimal DP policy across different risk tolerance levels.

In the second experiment, we assume that the demand distribution is unknown, but the decision-

maker has access to the empirical distribution of S = 20 i.i.d. samples of z̃ from the underlying

distribution for each problem instance. Our goal is to evaluate the robustness of our MLDR policy

in distribution ambiguity in a risk-averse setting. To achieve this, we solve the problem using DP,

where the expectation is evaluated on the empirical distribution, and MLDR, where we maximize

the multi-period ambiguity-averse CARA certainty equivalent Cκ,θF [f(z̃)] with an ambiguity set
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Figure 2 Multi-period CARA certainty equivalent under different risk tolerance parameters (known distribution)
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F based on mean, support, and MAD information estimated from the empirical distribution. We

report the out-of-sample multi-period CARA certainty equivalent of the consumption profile in

Figure 3 by visulizing the tube between the 10% and 90% quantiles (shaded areas) as well as the

mean value (solid lines) over 100 random instances.

Figure 3 Multi-peirod CARA certainty equivalent under different risk tolerance parameters
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Based on Figure 3, we observe that for high-risk tolerance levels (κ ∈ {16,64,256}), the DP

policy outperforms the MLDR policy. However, for low-risk tolerance levels (κ ∈ {0.25,1,4}), the

MLDR policy performs better than the DP policy, and we also observe that the multi-period CARA
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certainty equivalent under the MLDR policy is more concentrated, demonstrating the robustness

of the MLDR-based approach. When compared with the perfect information setting in Figure 2,

we find that under the data-driven setting, the DP policy deteriorates under high-risk aversion,

while the MLDR policy can be advantageous by incorporating robustness.

It is important to note that this is a relatively simple multi-period model where we could obtain

the optimal policy reasonably well using DP. The assumptions needed to obtain a tractable DP

formulation can be quite fragile. For instance, if the borrowing and saving rates are different, the

state space will significantly be enlarged and it may not be as computationally viable to solve for the

optimal policy via DP. In contrast, we can easily incorporate these changes in our framework. The

fact that the approximate MLDR policy performs reasonably well against the optimal DP policy is

therefore a comforting assurance attesting to the effectiveness of the hierarchy of approximations

that we have introduced to solve the multi-period robust CARA optimization problem.

6. Concluding remarks

In this paper, we have introduced a robust CARA optimization model that accounts for decision-

makers’ ambiguity aversion and risk aversion characterized by the exponential utility function,

extending traditional DRO models with risk-neutral objectives. To address significant compu-

tational challenges arising from the nonlinear exponential utility function, we have developed a

hierarchy of tractable exponential conic approximations for a wide range of problems, including

adaptive linear optimization problems, under the assumption of stochastic independence.

While we have focused primarily on independent factors to strike a balance between model

flexibility and tractability, it is important to acknowledge that the independence assumption might

restrict modeling flexibility. Although the restriction could be alleviated by considering factor-based

models, we acknowledge that exploring more flexible models beyond the independence assumption

while maintaining computational tractability is an intriguing challenge that could enrich the robust

optimization literature.

Furthermore, we acknowledge that while the CARA preference is widely used in economics, it

may not be as suitable as S-shaped utility functions (see, e.g., Dacey 2003) for representing losses,

as suggested by experimental outcomes. This opens an exciting research avenue to explore robust

optimization with a broader range of utility functions, including S-shaped ones. We hope that our

work can serve as a foundation to this direction.
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Shapiro A, Dentcheva D, Ruszczyński A (2014) Lectures on Stochastic Programming: Modeling and Theory

(SIAM).

Simon HA (1955) A behavioral model of rational choice. The Quarterly Journal of Economics 99–118.

Smith JE, Winkler RL (2006) The optimizer’s curse: Skepticism and postdecision surprise in decision analysis.

Management Science 52(3):311–322.

Toh KC (2018) Some numerical issues in the development of SDP algorithms. INFORMS OS Today 8(2):7–

20.

Trefethen LN (2019) Approximation Theory and Approximation Practice, Extended Edition (SIAM).

Varian HR (1992) Microeconomic Analysis, volume 3 (Norton New York).

Veronesi P (1999) Stock market overreactions to bad news in good times: a rational expectations equilibrium

model. The Review of Financial Studies 12(5):975–1007.



Chen and Sim: Robust CARA Optimization

36

Von Neumann J, Morgenstern O (1947) Theory of Games and Economic Behavior (commemorative edition)

(Princeton University Press).

Wiesemann W, Kuhn D, Sim M (2014) Distributionally robust convex optimization. Operations Research

62(6):1358–1376.

Ye Q, Xie W (2021) Second-order conic and polyhedral approximations of the exponential cone: Application

to mixed-integer exponential conic programs. arXiv:2106.09123 .

Yu Q, Allon G, Bassamboo A (2017) How do delay announcements shape customer behavior? an empirical

study. Management Science 63(1):1–20.

Zhang Y, Zhang Z, Lim A, Sim M (2021) Robust data-driven vehicle routing with time windows. Operations

Research 69(2):469–485.

Zhen J, Den Hertog D, Sim M (2018) Adjustable robust optimization via Fourier–Motzkin elimination.

Operations Research 66(4):1086–1100.



Chen and Sim: Robust CARA Optimization

37

Appendix A: Proofs of results

Proof of Proposition 1. The proof is the same as that of Lemma 1 in Jaillet et al. (2016) and thus omitted.

�

Proof of Proposition 2. We only prove the super-additivity as follows since the proof of another property

can be referred to Lemma 1 in Jaillet et al. (2016). For any κ1, κ2 > 0, let κ= κ1 +κ2, we have

CκP [ṽ1 + ṽ2] = CκP
[
κ1

κ

κṽ1

κ1

+
κ2

κ

κṽ2

κ2

]
≥ κ1

κ
CκP
[
κṽ1

κ1

]
+
κ2

κ
CκP
[
κṽ2

κ2

]
=Cκ1

P [ṽ1] +Cκ2
P [ṽ2]

where the inequality is from concavity of CARA certainty equivalent in Proposition 1. For the cases of either

κ1 or κ2 is zero, we assume κ1 = κ and κ2 = 0 without loss of generality. Then by the last property in

Proposition 1, we have

CκP [ṽ1 + ṽ2] = CκP
[
ṽ1 + ṽ2−C0

P [ṽ2]
]

+C0
P [ṽ2]≥CκP [ṽ1] +C0

P [ṽ2] .

The super-additivity of CκF [ṽ] can be proved in the same way. �

Proof of Theorem 2. We denote Ū =
{

(x, κ, y)
∣∣∣ ∃ q ∈RI :

∑
i∈[I] piqi ≤ κ, (qi, κ, y−xi)∈Kexp,∀i∈ [I]

}
and U = {(x, κ, y)|y≤ g(x, κ), κ > 0}. Observe that

U =

(x, κ, y)

∣∣∣∣∣∣−κ log
∑
i∈[I]

pie
−xi/κ ≥ y,κ > 0


=

(x, κ, y)

∣∣∣∣∣∣
∑
i∈[I]

piκe
(y−xi)/κ ≤ κ,κ > 0


=

(x, κ, y)

∣∣∣∣∣∣∃ q ∈RI :
∑
i∈[I]

piqi ≤ κ,κ > 0, (qi, κ, y−xi)∈Kexp,∀i∈ [I]

 .

Clearly U ⊆ Ū and the latter is closed. Hence the closure cl(U)⊆ Ū .

Next, we show Ū ⊆ cl(U). For any (x, κ, y) ∈ Ū\U , we have κ = 0, xi ≥ y for all i ∈ [I]. We denote

x̄ = mini∈[I]{xi} and consider the sequence {(xj , κj , yj)}∞j=1 ∈ U where xj = x, κj = 1/j and yj =

min{y, g(xj , κj)}. Since

lim
j→∞

g(xj , κj) = x̄− lim
j→∞

κj log
∑
i∈[I]

pie
(x̄−xi)/κj ≤ x̄− lim

j→∞
κj log

∑
{i∈[I]:xi=x̄}

pi = x̄,

and

x̄− lim
j→∞

κj log
∑
i∈[I]

pie
(x̄−xi)/κj ≥ x̄− lim

j→∞
κj log

∑
i∈[I]

pi = x̄,

we know

lim
j→∞

yj = min
{
y, g(xj , κj)

}
= min{y, x̄}= y

and hence limj→∞(xj , κj , yj) = (x, κ, y). Therefore, (x, κ, y)∈ cl(U) and cl(U) = Ū . �

Proof of Theorem 1. Consider the following

Separation problem (S): Given κ> 0, t, x, α, β, check if the dual feasibility constraint (11) is satisfied?

If not, find a z ∈Z such that κ exp
(
t−x>z
κ

)
−α−β>z > 0.
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If this separation problem (S) is NP-hard. The equivalence of separation and optimization (Grötschel et al.

2012) then implies that the ambiguity-averse CARA certainty equivalent evaluation problem is NP-hard.

Inspired by Matsui (1996), we consider a reduction from the set partition problem:

Set partition problem (P): Given a 0-1 matrix M ∈ {0,1}m×n (m< n), is there a 0-1 valued solution

v ∈ {0,1}n to the system Mv= 1?

We first consider a quadratic optimization problem over a polytope,

max
(v,y)∈Z(M)

∑
i∈[n]

pivi

2

−
∑
i∈[n]

∑
j∈[n]

pi+jyij (35)

where p≥ 2 is an integer and the feasible region is

Z(M),


(v,y)∈Rn+n2

:

0≤ vi ≤ 1 ∀i∈ [n]

vi = yii ∀i∈ [n]

0≤ yij ≤ 1 ∀i∈ [n], j ∈ [n]\{i}

yij ≤ vi, yij ≤ vj , yij ≥ vi + vj − 1 ∀i∈ [n], j ∈ [n]\{i}

Mv= 1


.

We denote by v∗1(M) the optimal value of problem (35). Then we have the following theorem.

Theorem 9 (Theorem 2.2 in Matsui (1996)). Let n > m with n > 5 and p = nn
4
, then the system

Mv= 1 has a 0-1 valued solution v ∈ {0,1}n if and only if v∗1(M)≥ 0. Moreover, if the 0-1 valued solution

does not exist, then v∗1(M)<−p.

We now construct an instance of the separation problem (S) as follows,

max
(v,y)∈Z(M)

exp
(
θ
∑

i∈[n] p
ivi

)
− 1− θ

∑
i∈[n] p

ivi−
∑

i∈[n]

∑
j∈[n] θ

2pi+jyij/2

θ2/2
(36)

where we choose θ > 0 such that

sup
|t|≤pn+1

∣∣∣∣exp (θt)− 1− θt− θ2t2/2

θ2/2

∣∣∣∣≤ 1/2.

Equivalently, we define the parameters of the separation problem (S) as

κ= 1, t= 0, xi =−θpi, xn+i×j = 0, ∀i∈ [n], j ∈ [n]

α= 1 , βi =−θpi, βn+i×j =−θ2pi+j/2 ∀i∈ [n], j ∈ [n]

and z ∈Z(M). Since |
∑

i∈[n] p
ivi| ≤

∑
i∈[n] p

i ≤ pn+1 for any v ∈ [0,1], we have∣∣∣∣∣∣
exp

(
θ
∑

i∈[n] p
ivi

)
− 1− θ

∑
i∈[n] p

ivi

θ2/2
−

∑
i∈[n]

pivi

2∣∣∣∣∣∣≤ 1/2, ∀(v,y)∈Z(M).

We denote the optimal value of problem (36) as v∗2(M). It follows that

v∗1(M) + 1/2≥ v∗2(M)≥ v∗1(M).

Then we can decide the answer to the set partition problem (P) by solving the problem (36). If v∗2(M)≥ 0,

then there exists some v ∈ {0,1}n satisfying Mv = 1. Otherwise, v∗2(M)< 1/2− p, which implies there is

no v ∈ {0,1}n satisfying Mv= 1. Since the set partition problem (P) is NP-complete, we conclude that the

separation problem (S) is NP-hard. �
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Proof of Example 2. Note that φ(κ,λ) = CκG [λz̃] =−κ log supP∈G EP
[
e−λz̃/κ

]
and

supP∈G EP [e−λz̃]≤ inf
γ≥0,α,β

α+βµ+ γδ

s.t. e−λz ≤ α+βz+ γ|z−µ| ∀z ∈ [−1,1]

= inf
γ≥0,α,β

α+βµ+ γδ

s.t. e−λz ≤ α+βz+ γ(µ− z) ∀z ∈ [−1, µ]

e−λz ≤ α+βz+ γ(z−µ) ∀z ∈ [µ,1]

= inf
γ≥0,α,β

α+βµ+ γδ

s.t. eλ ≤ α−β+ γ(µ+ 1)

e−µλ ≤ α+βµ

e−λ ≤ α+β+ γ(1−µ)

= sup
p1,p2,p3≥0

p1e
λ + p2e

−µλ + p3e
−λ

s.t. p1 + p2 + p3 = 1

−p1 +µp2 + p3 = µ

(µ+ 1)p1 + (1−µ)p3 ≤ δ

where the first inequality is by weak duality, the second equality is because the optimal solution of a convex

maximization problem is attained at the boundary, and the third equality is due to linear optimization strong

duality. Clearly, the worst-case distribution is attained by a three-point distribution with probability mass

p1, p2, p3 on −1, µ,1. Solving the last linear optimization problem in the above bound, we get p1 = δ
2(1+µ)

,

p3 = δ
2(1−µ)

and p2 = 1− p1− p3 and conclude the proof. �

Proof of Theorem 3. We first note that

CκF [f(x, z̃)] = sup
α,β

CκF
[
min
i∈I

{
αi +β>i z̃

}]
s.t. a0

i (x)≥ αi ∀i∈ I

aji (x)≥ βji ∀i∈ I, j ∈J +

aji (x)≤ βji ∀i∈ I, j ∈J −

aji (x) = βji ∀i∈ I, j ∈J .

(37)

Then for any γ ∈RIz , we have

CκF
[
min
i∈I

{
αi +β>i z̃

}]
=CκF

[
γ>z̃+ min

i∈I
{αi + (βi−γ)>z̃}

]
≥ sup
κ0+κ1=κ,κ≥0

Cκ0
F

[
γ>z̃

]
+Cκ1

F

[
min
i∈I
{αi + (βi−γ)>z̃}

]
= sup
κ0+κ1=κ,κ≥0

Cκ0
F

[
γ>z̃

]
−κ1 log sup

P∈F
EP

[
exp

(
maxi∈I{−αi− (βi−γ)>z̃}

κ1

)]
≥ sup
κ0+κ1=κ,κ≥0

Cκ0
F

[
γ>z̃

]
−κ1 log

∑
i∈I

sup
P∈F

EP

[
exp

(
−αi + (γ−βi)>z̃

κ1

)]
= sup
κ0+κ1=κ,κ≥0

Cκ0
F

[
γ>z̃

]
−κ1 log

∑
i∈I

exp

(
−Cκ1F [αi + (βi−γ)>z̃]

κ1

)
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= sup
κ≥0,r

r0−κ1 log
∑
i∈I

e−ri/κ1

s.t. κ0 +κ1 = κ

Cκ0
F

[
γ>z̃

]
≥ r0

Cκ1
F

[
αi + (βi−γ)>z̃

]
≥ ri ∀i∈ I

= max
κ≥0,r,ρ,q

r0 + ρ

s.t. κ0 +κ1 = κ∑
i∈I

qi ≤ κ1

(qi, κ1, ρ− ri)∈Kexp ∀i∈ I∑
j∈[Iz]

φj(κ0, γ
j)≥ r0

αi +
∑
j∈[Iz]

φj(κ1, β
j
i − γj)≥ ri ∀i∈ I (38)

where the first inequality is due to super-additivity of CκF [ṽ] with respect to (κ, ṽ) in Proposition 2, and

the last equality is from Theorem 2. Combine (37) and (38) together and take infimum over all γ ∈RIz , we

obtain (14). �

Proof of Theorem 4. Without loss of generality, we can focus on proving the properties of the best lower

bound (38) over γ ∈RIz of the ambiguity-averse CARA certainty equivalent CκF [mini∈I {αi +β>i z̃}] for any

fixed α and β. Then all the conclusions in Theorem 4 can be obtained easily from the equivalence (37).

Since Cκ0
F [γ>z̃] is non-decreasing in κ0, the lower bound (38) is non-decreasing in κ as one can fix κ1 and

increase κ0 when κ becomes larger.

Consider the lower bound (38), note that κ= 0 implies κ0 = κ1 = 0, which further implies q= 0 and ri ≥ ρ

for all i∈ I. Therefore, we must have

r0 =
∑
j∈[Iz]

φj(κ0, γ
j) = C0

F

[
γ>z̃

]
= inf
z∈Z

γ>z

ri = αi +
∑
j∈[Iz]

φj(κ1, β
j
i − γj) = C0

F

[
αi + (βi−γ)>z̃

]
= αi + inf

z∈Z
(βi−γ)>z ∀i∈ I

ρ= min
i∈I
{ri}

at optimality so that the best lower bound (38) over γ ∈RIz equals

sup
γ

(
inf
z∈Z

γ>z+ min
i∈I

{
αi + inf

z∈Z
(βi−γ)>z

})
,

which equals infz∈Zmini∈I {αi +β>i z} since

inf
z∈Z

min
i∈I

{
αi +β>i z

}
≥ inf
z∈Z

γ>z+ min
i∈I

{
αi + inf

z∈Z
(βi−γ)>z

}
for any γ ∈ RIz and the equality holds when γ = 0. Hence, the best lower bound over γ ∈ RIz is exactly

C0
F [mini∈I {αi +β>i z̃}].
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If there is some i∗ ∈ I such that αi∗ +β>i∗z = mini∈I{αi +β>i z} for all z ∈Z, then we let γ =βi∗ , κ0 = κ

and κ1 = 0 so that

r0 =
∑
j∈[Iz]

φj(κ,γ
j) = CκF

[
γ>z̃

]
=CκF

[
β>i∗ z̃

]
ri = αi +

∑
j∈[Iz]

φj(κ1, β
j
i − γj) = C0

F

[
αi + (βi−βi∗)>z̃

]
= αi + inf

z∈Z
(βi−βi∗)>z ∀i∈ I

ρ= min
i∈I
{ri}

at optimality and obtain the lower bound (38) as

r0 + ρ =CκF
[
β>i∗ z̃

]
+ min

i∈I

{
αi + inf

z∈Z
(βi−βi∗)>z

}
=CκF

[
αi∗ +β>i∗ z̃

]
+ inf
z∈Z

min
i∈I

{
αi−αi∗ + (βi−βi∗)>z

}
≥CκF

[
αi∗ +β>i∗ z̃

]
,

which implies the lower bound is greater than CκF [mini∈I{αi +β>i z̃}] and hence exact. �

Proof of Proposition 7. It follows from Jensen’s inequality:

EPS

−κ log
1

S

∑
s∈[S]

exp

(
−f(x, z̃s)

κ

)≥−κ log
1

S

∑
s∈[S]

EP

[
exp

(
−f(x, z̃s)

κ

)]
=CκP [f(x, z̃)]

as the function −κ log(·) is convex for any κ> 0. �

Proof of Theorem 5. We claim that c>ŷ(z)≥ c>y†(z) for all z ∈Z, which implies the conclusion directly.

To show this, we note that for any z ∈Z,

c>ŷ(z)− c>y†(z)

=
∑
`∈[m]

c>y`∗

(
max
i∈Io

`

{
hi(x, ȳ(z),z)

‖bi‖

})+

−
∑
i∈Io

c>yi� (hi(x, ȳ(z),z))
+

=
∑
`∈[m]

c>y`∗

(max
i∈Io

`

{
hi(x, ȳ(z),z)

‖bi‖

})+

−
∑
i∈Io

`

(
hi(x, ȳ(z),z)

‖bi‖

)+
 .

by noting yi� = y`∗/‖bi‖ for any `∈ [m], i∈ Io` . Hence it suffices to prove c>y`∗ ≤ 0 for all `∈ [m] since(
max
i∈Io

`

{
hi(x, ȳ(z),z)

‖bi‖

})+

≤
∑
i∈Io

`

max

{
hi(x, ȳ(z),z)

‖bi‖
,0

}
=
∑
i∈Io

`

(
hi(x, ȳ(z),z)

‖bi‖

)+

.

Suppose there is some ` ∈ [m] such that c>y`∗ > 0 and b>i y
`
∗ ≤ 0 for all i ∈ I, then for any x and y(z)

feasible in Problem (17), the solution y(z) +λy`∗ with any λ> 0 is also feasible. Hence the optimal value of

Problem (17) is unbounded above, a contradiction. �

Proof of Theorem 6. Since the two-stage problem (16) has complete recourse with only one recourse

decision variable, we must have bi > 0 for all i∈ I or bi < 0 for all i∈ I. Observe that the second-stage linear

optimization

f(x,z) = max
y

b0y

s.t. biy≤ a0
i (x) +a>i (x)z ∀i∈ I

is unbounded above if b0bi < 0 for any i ∈ I. Since the recourse decision y is unconstrained, for the optimal

value of the problem to be finite, we can assume without loss of generality that bi > 0 and b0 ≥ 0. In which
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case, the optimal decision rule yOPT (z) = mini∈I

{
a0i (x)+a>i (x)z

bi

}
and yi∗ =−1 for all i∈ I. Hence, m= 1 and

y`∗ =−1 for all `∈ [1]. Hence the MLDR is

ŷ(z) = y0 +y>z−
(

max
i∈I

{
bi(y

0 +y>z)− a0
i (x)−a>i (x)z

bi

})+

= y0 +y>z+ min

{
0,min

i∈I

{
−y0−y>z+

a0
i (x) +a>i (x)z

bi

}}
= min

{
y0 +y>z,min

i∈I

{
a0
i (x) +a>i (x)z

bi

}}
.

Let y0 = a0
i (x)/bi and y= ai(x)/bi for any i∈ I we can recover ŷ(z) = yOPT (z). �

Proof of Proposition 3. We prove it by case distinction.

(i) For i∈ I\Io, we have b>i ŷ(z)≤ b>i ȳ(z) for all z ∈Z since b>i y
`
∗ ≤ 0 for all `∈ [m].

(ii) For i∈ Io, let ` be the index such that i∈ Io` . For all z ∈Z we have

b>i ŷ(z)− a0
i (x)−a>i (x)z = hi(x, ȳ(z),z) +

∑
`∈[m]

b>i y
`
∗

(
max
j∈Io

`

{
hj(x, ȳ(z),z)

‖bj‖

})+

≤ hi(x, ȳ(z),z) + b>i y
i
∗
(hi(x, ȳ(z),z))

+

‖bi‖
= min{hi(x, ȳ(z),z),0}

≤ 0

where the first inequality is because
(

maxj∈Io
`

{
hj(x,ȳ(z),z)

‖bj‖

})+

≥ (hi(x,ȳ(z),z))+

‖bi‖
and b>i y

k
∗ ≤ 0 for all

k ∈ Io\{i}, and the second equality is due to b>i y
i
∗ =−‖bi‖. �

Proof of Theorem 7. Note Problem (23) has the following lower bound:

CκF

c>ȳ(z̃) +
∑
`∈[m]

c>y`∗

(
max
i∈Io

`

{
hi(x, ȳ(z̃), z̃)

‖bi‖

})+


≥ sup
κ0,κ`≥0,∀`∈[m]
κ0+

∑
`∈[m] κ`=κ

Cκ0
F

[
c>ȳ(z̃)

]
+
∑
`∈[m]

Cκ`F

[
c>y`∗

(
max
i∈Io

`

{
hi(x, ȳ(z̃), z̃)

‖bi‖

})+
]

= sup
κ≥0,r

r0 +
∑
`∈[m]

r`

s.t.Cκ0
F

[
c>ȳ(z̃)

]
≥ r0

Cκ`F

[
c>y`∗

(
max
i∈Io

`

{
hi(x, ȳ(z̃), z̃)

‖bi‖

})+
]
≥ r`

κ0 +
∑
`∈[m]

κ` = κ

= sup
κ≥0,r

r0−
∑
`∈[m]

(c>y`∗)r`

s.t.Cκ0
F

[
c>ȳ(z̃)

]
≥ r0

Cκ`F

[
−
(

max
i∈Io

`

{
hi(x, ȳ(z̃), z̃)

‖bi‖

})+
]
≥ r`

κ0−
∑
`∈[m]

(c>y`∗)κ` = κ (39)
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where the first inequality is from super-additivity of CκF [ṽ] in Proposition 2, and the last equality is because

c>y`∗ ≤ 0 for all ` ∈ [m] from Theorem 5. Combine (23) and (39), we obtain the following lower bound of

Problem (17):

max
κ≥0,
r,ȳ

r0−
∑
`∈[m]

(c>y`∗)r` (40a)

s.t. κ0−
∑
`∈[m]

(c>y`∗)κ` = κ (40b)

Cκ0
F

[
c>ȳ(z̃)

]
≥ r0 (40c)

Cκ`F
[
min

{
0,min
i∈Io

`

{
−hi(x, ȳ(z̃), z̃)

‖bi‖

}}]
≥ r` ∀`∈ [m] (40d)

hi(x, ȳ(z),z)≤ 0 ∀z ∈Z,∀i∈ I\Io (40e)

ȳ ∈LIz ,Iy (40f)

To derive tractable reformulation of the above problem, we know constraint (40c) can be tractably reformu-

lated by equation (9), constraints (40d) have safe Kexp-representable approximations from Theorem 3, and

constraints (40e) are robust linear constraints with box uncertainty set Z, which can be easily reformulated

as tractable linear constraints by standard robust optimization techniques. The resultant tractable model is

exactly Problem (24). �

Proof of Proposition 4. For notation simplicity, let gθ(ν, κ) =−κ log
(∑

t∈[T ] θt exp
(
− νt

κ

))
and note that

gθ(ν, κ) can be viewed as the CARA certainty equivalent of a random variable ν̃ which realizes as νt with

probability θt, t ∈ [T ]. We first prove the variational representation (25). For any κ > 0, as gθ(ν, κ) is non-

decreasing in νt, the maximum is attained at νt =CκP [ṽt] for all t∈ [T ]. Hence the right hand side of (25) equals

−κ log
(∑

t∈[T ] θt exp(−CκP [ṽt]/κ)
)

=Cκ,θP [ṽ]. Moreover, since CκP [ṽt] is non-decreasing in κ> 0 and gθ(ν, κ)

is non-decreasing in κ > 0 and ν ∈RT , we have Cκ,θP [ṽ] is non-decreasing in κ > 0 from representation (25)

and the limit cases are exactly mint∈[T ]:θt>0 {ess infP [ṽt]} at κ= 0 and
∑

t∈[T ] θtEP [ṽt] at κ=∞ according to

Proposition 1. Cκ,θP [ṽ] is jointly concave in (ṽ, κ) with κ> 0 because its hypograph

{
(ṽ, κ, ρ)

∣∣∃ ν ∈RT : κ> 0, gθ(ν, κ)≥ ρ, CκP [ṽt]≥ νt,∀t∈ [T ]
}

is convex thanks to concavity of gθ(ν, κ) and CκP [ṽ] in Proposition 1. Finally, for any ν ∈ R, the equality

Cκ,θP [ṽ+ ν1] = Cκ,θP [ṽ] + ν is straightforward to verify. �

Proof of Proposition 5. The proof of the first five properties is almost the same as that in Proposition 4

and hence omitted. The last property follows from the observation

inf
P∈F

Cκ,θP [ṽ] =−κ log

sup
P∈F

EP

∑
t∈[T ]

θt exp

(
− ṽt
κ

)≥−κ log

∑
t∈[T ]

θt sup
P∈F

EP

[
exp

(
− ṽt
κ

)] .

�
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Proof of Proposition 6. Clearly ŷt depends only on ξt and hence satisfies non-anticipativity. To show

feasibility, note that for each t∈ [T ], i∈ Iot , we have∑
τ∈[t]

b>t,i,τ ŷτ (ξτ )− a0
t,i(x)−a>t,i(x)ξt

= ht,i(x, ȳ[t](ξt),ξt) +
∑
τ∈[t]

b>t,i,τ

∑
s∈[τ ]

∑
`∈[ms]

ys,`τ∗

(
max
k∈Io

s,`

{
hs,k(x, ȳ[s](ξs),ξs)

‖bs,k,s‖

})+


= ht,i(x, ȳ[t](ξt),ξt) +
∑
s∈[t]

∑
`∈[ms]

(
t∑

τ=s

b>t,i,τy
s,`
τ∗

)(
max
k∈Io

s,`

{
hs,k(x, ȳ[s](ξs),ξs)

‖bs,k,s‖

})+

≤ ht,i(x, ȳ[t](ξt),ξt) +
(
b>t,i,ty

t,i
t∗

) (
ht,i(x, ȳ[t](ξt),ξt)

)+
/‖bt,i,t‖

= min
{
ht,i(x, ȳ[t](ξt),ξt),0

}
≤ 0

.

where the first inequality is because
∑t

τ=s b
>
t,i,τy

s,`
τ∗ ≤ 0 for each s∈ [t] and `∈ [ms] so that we can focus only

on the case of s= t, ` such that i∈ Iot,`, and k= i, and the last equality is because b>t,i,ty
t,i
t∗ =−‖bt,i,t‖. �

Proof of Theorem 8. We first note that Problem (27) is equivalent to:

max
x∈X ,ν∈RT ,y1,...,yT

−κ log

∑
t∈[T ]

θte
−νt/κ


s.t. CκF

[
c>t yt(ξ̃t)

]
≥ νt ∀t∈ [T ]

ht,i(x,y[t](ξt),ξt)≤ 0 ∀t∈ [T ], ∀i∈ It, ∀z ∈Z

yt ∈RIξt ,Iyt ∀t∈ [T ].

(41)

from representation (26). Then we apply the MLDR (30) to obtain a lower bound of Problem (41):

max
x∈X ,ν∈RT ,ȳ1,...,ȳT

−κ log

∑
t∈[T ]

θte
−νt/κ

 (42a)

s.t. CκF

c>t ȳt(ξ̃t) +
∑
s∈[t]

∑
`∈[ms]

c>t y
s,`
t∗

(
max
i∈Io

s,`

{
hs,i(x, ȳ[s](ξ̃s), ξ̃s)

‖bs,i,s‖

})+
≥ νt ∀t∈ [T ] (42b)

ht,i(x, ȳ[t](ξt),ξt)≤ 0 ∀t∈ [T ], ∀i∈ It\Iot , ∀z ∈Z (42c)

ȳt ∈LIξt ,Iyt ∀t∈ [T ]. (42d)

according to Proposition 6. Note that the objective function (42a) is Kexp-representable by Theorem 2.

Similar to the proof in Theorem 7, the constraints (42b) have safe approximations

rt0−
∑
s∈[t]

∑
`∈[ms]

(c>t y
s,`
t∗ )rts,` ≥ νt ∀t∈ [T ]

κt0−
∑
s∈[t]

∑
`∈[ms]

(c>t y
s,`
t∗ )κts,` = κ ∀t∈ [T ]

Cκ
t
0
F

[
c>t ȳt(ξ̃t)

]
≥ rt0 ∀t∈ [T ]

Cκ
t
s,`

F

[
min

{
0, min
i∈Io

s,`

{
−
hs,i(x, ȳ[s](ξ̃s), ξ̃s)

‖bs,i,s‖

}}]
≥ rts,` ∀t∈ [T ], s∈ [t], `∈ [ms],

in which the last constraints can be further safely approximated using Theorem 3 and the second-last con-

straints can be reformulated by equation (9). Finally, the robust linear constraints (42c) with box uncertainty

set admit tractable robust counterparts as in Theorem 7. The resultant tractable model is exactly Prob-

lem (31). �
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Appendix B: Exponential conic representations of ambiguous CARA certainty
equivalent of payoff functions with affine perturbations

Table 1 Equivalent representations of φ(κ,λ)

Ambiguity set φ(κ,λ)

P0([−1,1]) −|λ|P∈P0([−1,1]) :

P is symmetric

 −κ log
(
eλ/κ+e−λ/κ

2

)
P∈P0([−1,1]) :

P is unimodal w.r.t. 0

 −κ log
∫ 1

0
es|λ|/κds

P∈P0([−1,1]) :

P is symmetric,

unimodal w.r.t. 0

 −λ−κ log
∫ 1

0
e−2λs/κds

P∈P0([−1,1]) :

EP [z̃]∈ [µ,µ]

 min


−κ log

(
(1+µ)e−λ/κ+(1−µ)eλ/κ

2

)
,

−κ log
(

(1+µ)e−λ/κ+(1−µ)eλ/κ

2

)


P∈P0([−1,1]) :

EP [z̃] = µ

EP [|z̃−µ|]≤ δ

 −κ log
(

δ
2(µ+1)

eλ/κ + δ
2(1−µ)

e−λ/κ +
(

1− δ
2(µ+1)

− δ
2(1−µ)

)
e−µλ/κ

)


P∈P0([−1,1]) :

EP [z̃] = µ

EP [|z̃|2]≤ σ2

 min


−κ log

(
(1−µ)2 exp

(
−(µ−σ2)λ

(1−µ)κ

)
+(σ2−µ2) exp(−λ/κ)

1−2µ+σ2

)
,

−κ log

(
(1+µ)2 exp

(
−(µ+σ2)λ

(1+µ)κ

)
+(σ2−µ2) exp(λ/κ)

1+2µ+σ2

)


P∈P0([−1,1]) :

P is symmetric,

EP [|z̃|2]≤ σ2

 −κ log
(
σ2(eλ/κ+e−λ/κ)

2
+ 1−σ2

)

We observe that each reformulation φ(κ,λ) presented in Table 1 is exactly Kexp-representable by Theo-

rem 2, except for those involving integrals such as the following

φ(κ,λ) =−κ log

∫ 1

0

es|λ|/κds=−κ log

(
κe|λ|/κ−κ
|λ|

)
.

Ben-Tal et al. (2009) derive its quadratic lower bound −|λ|/2 − λ2/(24κ) based on Taylor’s expansion.

Nevertheless, we can use the Gaussian quadrature approximation (see, e.g., Trefethen 2019)

φ(κ,λ) =−κ log

∫ 1

0

es|λ|/κds≈−κ log
∑
`∈[n]

ω` exp

(
s`|λ|
κ

)
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where ω`, s`, ` ∈ [n] are the quadrature weights and nodes on interval [0,1]. Clearly by Theorem 2 the

quadrature approximation is Kexp-representable.

Motivated from the literature (e.g., Yu et al. 2017), we can choose n= 10 with parameters

ω= [0.0333,0.0747,0.1095,0.1346,0.1478,0.1478,0.1346,0.1095,0.0747,0.0333]

s= [0.0130,0.0675,0.1603,0.2833,0.4256,0.5744,0.7167,0.8397,0.9325,0.9870],

which already provides very accurate estimation, see Figure 4(a) where we plot the relative approximation

error of integral
∫ 1

0
e10xdx by quadrature approximation with different number of nodes, and Figure 4(b)

for a comparison of quadrature approximation and the quadratic lower bound of − log
(
e|λ|−1
|λ|

)
, where the

relative error of quadrature approximation is less than 10−5.

Figure 4 Illustration of Gaussian quadrature approximation
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Appendix C: Illustrative Examples of the bound in Theorem 3

We next illustrate the bound in Theorem 3 through two examples.

Comparison with a bound in Nemirovski and Shapiro (2007)

First we note that Theorem 3 provides a new tractable lower bound for evaluating

EP

[
min

{
λ0 +

∑
j∈[Iz] λ

j z̃j ,0
}]

, which is shown to be #P-hard in Example 1 under independent identically

distributed (i.i.d.) uniform random factors. One well-known tractable lower bound (Nemirovski and Shapiro

2007, Chen et al. 2008) is based on the observation of −min{−z,0} = (z)+ ≤ κ exp
(
z
κ
− 1
)

for any κ > 0.

We show in the following simple example that our approximation scheme may improve that in certain cases.

Example 4. Let z̃ be a standard normal random variable. Consider approximations of EP [(z̃+µ)+] =

µF (µ) + e−µ
2/2

√
2π

where F (·) is the cumulative distribution function of z̃. The popular upper bound in

Nemirovski and Shapiro (2007) is

EP
[
(z̃+µ)+

]
≤ inf
κ>0

EP

[
κ exp

(
z̃+µ

κ
− 1

)]
= inf
κ>0

κ

e
exp

(
µ

κ
+

1

2κ2

)
, (43)
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while based on Theorem 3 we obtain the upper bound

EP [(z̃+µ)+] = C∞P
[
(z̃+µ)+

]
=−C∞P [min{−z̃−µ,0}]

≤ inf
κ1>0,γ

EP [γz̃] +κ1 logEP

[
exp

(
(1− γ)z̃+µ

κ1

)
+ exp

(
−γz̃
κ1

)]
= inf

κ1>0,γ
κ1 log

(
exp

(
µ

κ1

+
(1− γ)2

2κ2
1

)
+ exp

(
γ2

2κ2
1

))
.

(44)

See Figure 5 for a comparison of the existing bound (43) and our bound (44) where µ∈ [−2,2]. We can see

Figure 5 Upper bounds of EP
[
(z̃+µ)+

]
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our bound is better than bound (43) when µ is mostly positive, though the bound does not perform as well

when µ is mostly negative. We can improve the bound of EP [(z̃+µ)+] using infimal convolution of the two

bounds (see, e.g., Chen and Sim 2009). Unfortunately, for κ<∞, we are not able to extend the bound (43)

for evaluating the certainty equivalent, CκP [(z̃+µ)+].

Comparison with the Monte-Carlo approximation

We next compare our bound with Monte-Carlo approximation, which is a typical way of evaluating the

CARA certainty equivalent CκP [f(x, z̃)] under distribution P. Basically, we generate S i.i.d. samples from

the distribution P and construct the random approximation of CκP [f(x, z̃)] as follows:

−κ log
1

S

∑
s∈[S]

exp

(
−f(x, ẑs)

κ

)
where ẑs, s∈ [S] are realized samples independently drawn from z̃ ∼ P. We show the Monte-Carlo approxi-

mation is upward biased as follows.

Proposition 7. Consider the random vectors (z̃1, . . . , z̃S)∼ PS, then

EPS

−κ log
1

S

∑
s∈[S]

exp

(
−f(x, z̃s)

κ

)≥CκP [f(x, z̃)] .
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Although the Monte-Carlo approximation is upward biased, based on the law of large numbers, one can

expect to obtain reasonably good approximation if the sample size S is large enough. This intuition holds

true for high risk tolerance level. However, when risk tolerance level is low, we will show in the following

example that the upward bias can be pronounced even with large sample size.

Example 5. We consider approximations of CARA certainty equivalent of the minimum of N weighted

sum of Iz = 20 independently distributed random variables, for N ∈ {1,20,80,320}. Specifically, we evaluate

CκP
[
mini∈[N] {a>i z̃}

]
, where z̃j , j ∈ [Iz] are i.i.d. uniformly distributed random variables on [0,1], and the

weight vector ai is randomly generated from the uniformly distributed unit hypercube [0,1]Iz . We vary κ in

[0.25,64] and include κ=∞. The results are obtained by averaging over 50 random instances and presented

in Figure 6. We see the Monte-Carlo approximation coincides with our lower bound when N = 1, suggesting

Figure 6 Comparison of our bound and Monte-Carlo approximation (106 samples) for κ≥ 0.25
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both are accurate. For N > 1, the gap between the two approximations becomes larger as κ increases and

stabilizes when κ→∞.

We observe that when the risk tolerance κ is low, the Monte-Carlo method may not provide accu-

rate estimate; we show in Figure 7 where we plot the ratio of the Monte-Carlo approximations with S ∈

{104,105,106,107} samples to our bound of CκP [a>1 z̃] with κ ∈ [0.05,0.2]. Note that our bound is exact at

N = 1. We see the upward bias of Monte-Carlo approximation is more pronounced as S decreases, especially

when κ≤ 0.1. What is surprising is the bias remains noticeable even with 107 samples. Hence, when the risk

tolerance is low, the Monte-Carlo approximation would significantly overestimate the risk adjusted payoffs,

while, as noted in Theorem 4, our deterministic approximation would provide a lower bound that is close

to the actual CARA certainty equivalent. It is important to note that solving a stochastic optimization

using SAA is a form of Monte-Carlo approximation, which yields random solutions with indicative objective

values that are not achievable by the solutions. In contrast, our deterministic approximation would provide

a pessimistic solution with an achievable indicative objective value.
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Figure 7 Ratio of Monte-Carlo approximation to our bound for κ≤ 0.2 at N = 1 where our bound is exact.
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Appendix D: Connection between the worst-case expected utility model and the
ambiguous averse risk measures

In this section, we present the axiomatic justifications for the worst-case expected utility model when the

utility function is strictly increasing and concave. This result is provided by the anonymous Associate Editor.

With this result, the worst-case expected utility model (1) can be justified by an extension of Theorem 3

in Delage et al. (2019) to ambiguity averse expected utility models that satisfy a special type of translation

invariance. The detail is as follows.

Following the notation introduced in Delage et al. (2019)3, we let (Ω,F ,P) be an ambiguous probability

space, i.e., a measurable space (Ω,F) endowed with an ambiguity set P. We further let L∞(Ω,F ,P) =

∩P∈PL∞(Ω,F ,P) be the space of all random variables that are essentially bounded with respect to every

probability measure in the ambiguity set, and note that any X ∈L∞(Ω,F ,P) can have multiple distribution

functions. We finally let {F P
X : P∈P} be the set of all possible distributions of X, where F P

X is the distribution

function of X under the probability measure P∈P. We define D as the set of all distributions with bounded

support, i.e., D comprises all non-decreasing right-continuous functions F : R→ [0,1] that attain both 0

and 1. The following theorem extends Theorem 3 in Delage et al. (2019) to the set of risk measures ρ :

L∞(Ω,F ,P)→R that are only “translation invariant for risk-free revenues”.

Theorem 10 (Extension of Theorem 3 in Delage et al. (2019)). If (Ω,F ,P) is non-atomic and ρ

represents an ambiguity averse risk measure on L∞(Ω,F ,P) that satisfies:

Translation invariance for risk-free revenues: If t∈R, then ρ(t) = ρ(0)− t,

then ρ(X) = supP∈P %(F P
X) where % :D→R is the functional such that for all F ∈ D, we have %(F ) = ρ(X)

for all X ∈L∞(Ω,F ,P) : F P
X = F ∀P∈P.

Proof of Theorem 10. Recall that an ambiguity averse risk measure satisfies both ambiguity aversion

and ambiguity monotonicity. This theorem therefore replaces general translation invariance with translation

3 Note that we drop the 0 notation in P0,F0, ρ0, etc., as we will not discuss the introduction of randomness in this
paper.
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invariance only for risk-free revenues. The proof is exactly identical to the proof of Theorem 3 of Delage

et al. (2019), with a small change in Step 2. Indeed, Step 1, which supports ρ(X)≥ supP∈P %(F P
X), relies on

the property of ambiguity aversion. Step 2, which initially relied on ambiguity monotonicity and translation

invariance, now can instead exploit the translation invariance for risk-free revenues. Namely, letting X ∈

L∞(Ω,F ,P) and setting s= supP∈P %(F P
X), one can confirm that when Y := ρ(s), we continue to have:

ρ(Y ) = ρ(ρ(s)) = ρ(0 + ρ(s)) = ρ(0)− ρ(s) = ρ(0)− ρ(0 + s) = ρ(0)− (ρ(0)− s) = s.

Hence, the rest of Step 2 follows as in the initial proof. �

In order to address the case of extending expected utility risk measures to the ambiguous probability space

of interest, we first formalize the definition of ambiguity averse expected utility measures.

Definition 6 (Ambiguity Averse Expected Utility Measure). An ambiguity averse risk measure

ρ : L∞(Ω,F ,P)→R is called ambiguity averse expected utility measure if it is an expected utility measure

(see Definition 9 in Delage et al. (2019)) for all unambiguous random variable X, i.e., any X, F P
X = FQ

X for

all P,Q∈P.

We next introduce a representation theorem for this class of ambiguity averse risk measures.

Corollary 1. If (Ω,F ,P) is non-atomic and ρ is an ambiguity averse expected utility risk measure that

satisfies translation invariance for risk-free revenues, then for all X ∈L∞(Ω,F ,P), we have that

ρ(X) = sup
P∈P
−u−1(EP [u(X)]) =−u−1

(
inf
P∈P

EP [u(X)]

)
for some strictly increasing and continuous u :R→R.

Proof of Corollary 1. It follows from Theorem 10.1 of Fishburn (1970) that every ambiguity averse

expected utility measure ρ can be represented as

ρ(X) = %(FX) := g(−EP [u(X)])

for some strictly increasing g : R→ R and non-decreasing and continuous u : R→ R, over the set of unam-

biguous random variables, i.e., X such that F P
X = F for all P ∈ P. The translation invariance for risk-free

revenues property further implies that u(·) is strictly increasing, and g(y) = −u−1(−y) over the range of

−u(·). Indeed, if u(·) is not strictly increasing, then there necessarily exists x> y such that ρ(x) = g(−u(x)) =

g(−u(y)) = ρ(y) = ρ(0)− y > ρ(0)− x, which contradicts the translation invariance property. Furthermore,

we must have that for all x ∈R, u−1(u(x)) = x= ρ(0)− ρ(x) = g(−u(0))− g(−u(x)) so that for all y in the

range of −u(·), −u−1(−y) = g(y) up to a constant.

When considering the more general set of ambiguous random variables X ∈ L∞(Ω,F ,P), Theorem 10

implies that:

ρ(X) = sup
P∈P

%(F P
X) = sup

P∈P
−u−1(EP [u(X)]).

By strict monotonicity of u−1(·) we naturally also have that:

ρ(X) = sup
P∈P
−u−1(EP [u(X)]) =−u−1

(
inf
P∈P

EP [u(X)]

)
.

�
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One can thus observe from Corollary 1 that any worst-case expected utility model that employs a strictly

increasing and continuous utility function is therefore using the axiom of ambiguity aversion in an ambiguous

probability space. Corollary 1 further implies that when employing an ambiguity averse expected utility

measure within a risk averse optimization problem, one can focus on optimizing the worst-case expected

utility of the random revenue:

min
X∈X

ρ(X)⇐⇒max
X∈X

inf
P∈P

EP [u(X)] .


