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Abstract
We present an algebraic characterization of perfect graphs, i.e., graphs for which the clique

number and the chromatic number coincide for every induced subgraph. We show that a graph
is perfect if and only if certain nonnegative polynomials associated with the graph are sums of
squares. As a byproduct, we obtain several infinite families of nonnegative polynomials that are not
sums of squares through graph-theoretic constructions. We also characterize graphs for which the
associated polynomials belong to certain structured subsets of sum of squares polynomials. Finally,
we reformulate some well-known results from the theory of perfect graphs as statements about sum
of squares proofs of nonnegativity of certain polynomials.

Keywords: Nonnegative and sum of squares polynomials, perfect graphs, matrix copositivity, semi-
definite programming, convex relaxations for the clique number.

1 Introduction

A graph is perfect if for each of its induced subgraphs, the chromatic number equals the cardinality of
a largest clique. Perfect graphs, introduced by Berge in 1960, have elegant theoretical properties and
curious connections with linear, integer, and semidefinite programming. For instance, perfect graphs
appear in the study of exactness of linear programming relaxations of integer programs. As an example,
for a matrix A ∈ {0, 1}m×n, all vertices of the polytope {x ∈ Rn : Ax ≤ 1, x ≥ 0} are integral if and only
if the undominated rows of A are the incidence vectors of the maximal cliques of a perfect graph [18, 20].
Moreover, several combinatorial problems that are NP-hard on general graphs can be solved efficiently
on perfect graphs using semidefinite programming [41]. Examples include the maximum independent
set and the minimum clique cover problems. More generally, perfect graphs have been the subject of
much research in recent decades due to the fact that they are at the crossroad of several mathematical
disciplines, including graph theory, information theory, combinatorial optimization, polyhedral and
convex geometry, and semidefinite programming [20, 23, 33, 41, 42, 55, 39].

The second notion of interest to this paper is that of sum of squares polynomials. A polynomial is a
sum of squares (sos) if it can be written as a sum of squares of some other polynomials. There has been a
growing interest in sos polynomials recently due to the fact that they provide semidefinite programming-
based sufficient conditions for problems involving nonnegative polynomials. It is well known that several
important problems in applied and computational mathematics can be formulated as optimization
problems over the set of nonnegative polynomials. Although these problems are generally intractable
to solve exactly, they can be efficiently approximated by replacing nonnegativity constraints with
sum of squares requirements. By connecting ideas from real algebraic geometry and semidefinite
programming, sum of squares polynomials have significantly impacted both discrete and continuous
optimization over the last two decades; see, e.g., [47, 65, 8, 48, 43, 49].
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In this work, we introduce and study the notion of sos-perfectness, a notion that brings together
perfect graphs and sos polynomials. For a graph G = (V, E) with clique number ω(G), we define the
following quartic (homogeneous) polynomial in the variables x = (x1, . . . , x|V (G)|)T :

pG(x) := −2 ω(G)
∑

ij∈E(G)
x2

i x2
j + (ω(G) − 1)

|V (G)|∑
i=1

x2
i

2

. (1)

It turns out that for every graph G, the polynomial pG(x) is nonnegative by construction. We say that
a graph G is sos-perfect if pH(x) is sos for every induced subgraph H of G. In Section 3 of this paper,
we prove the following theorem.

Theorem 1.1. A graph is perfect if and only if it is sos-perfect.

The remainder of this paper is organized as follows. In Section 2, we recall some definitions and
results related to perfect graphs and sos polynomials. In Section 3, we prove Theorem 1.1 (without
using the strong perfect graph theorem; see Section 2 for the statement of this theorem and also
Remark 3). Our proof brings together a number of interesting existing results in graph theory and
conic optimization. In Section 4, we focus on the connection between imperfect graphs and nonnegative
polynomials that are not sos. In Sections 4.1 and 4.2, we provide several infinite families of nonnegative
polynomials that are not sos through various graph-theoretic constructions. In Section 4.3, by building
on previous results on the probable values of certain parameters associated with Erdős-Rényi random
graphs Gn,p, we show that for a fixed parameter p and for large enough n, the polynomial pGn,p(x)
is nonnegative but not sos with high probability. In Section 4.4, we provide an explicit hyperplane
that separates a given non-sos polynomial pG(x) from the set of sos polynomials. In Section 4.5, we
show that an example of a convex nonnegative polynomial that is not sos cannot arise from our graph-
theoretic constructions. The construction of such a polynomial was an open problem until recently
[75]. In Section 5, we examine certain subsets of sos polynomials which admit a linear or second-order
cone representation [2], or a more restricted semidefinite representation. We study the bounds that
optimization over these subsets produces on the clique number of a graph, and characterize the graphs
for which these bounds are tight for all induced subgraphs. Finally, in Section 6, we reformulate
a number of results from the theory of perfect graphs as statements about sum of squares proofs of
nonnegativity of certain polynomials. Our hope is that our reformulations will lead to more connections
between structural graph theory and real algebraic geometry, and ideally to an algebraic proof of the
strong perfect graph theorem. As a step in this direction, we use one of our corollaries together with
results from linear algebra to give a short proof of the weaker statement that graphs with no odd cycles
of length 5 or more are perfect.

2 Preliminaries

A (multivariate) polynomial p(x) in variables x := (x1, . . . , xn)T is a function from Rn to R that is a
finite linear combination of monomials:

p(x) =
∑

α

cαxα =
∑

α1,...,αn

cα1,...,αnxα1
1 . . . xαn

n ,

where the sum is over n-tuples of nonnegative integers αi. The degree of a monomial xα is equal to
α1 + · · · + αn. The degree of a polynomial p(x) is defined to be the highest degree of its monomials. A
form (or a homogeneous polynomial) is a polynomial where all the monomials have the same degree.

We denote the set of real symmetric n×n matrices by Sn. A matrix M ∈ Sn is positive semidefinite
(psd) if xT Mx ≥ 0 for all x ∈ Rn. A matrix M ∈ Sn is nonnegative if the entries of M are all
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nonnegative. We write M ⪰ 0 if M is psd, and M ≥ 0 if M is nonnegative. We denote the set of n × n
psd (resp. nonnegative) matrices by S+

n (resp. Nn). The trace of M is denoted by Tr(M).
All graphs in this paper are undirected, finite, and simple (i.e., have no loops or parallel edges).

Throughout the paper, G = (V, E) denotes a graph with vertex set V (G) and edge set E(G). The
complement of a graph G, denoted by G, is the graph with vertex set V (G) and edge set consisting
of all distinct pairs of vertices that are not adjacent in G. The matrices A := AG and A := AG
respectively denote the adjacency matrices of G and G. We drop the subscript when the graph in
consideration is clear from the context. The matrices I and J respectively denote the identity matrix
and the all-ones matrix. Observe that A + A + I = J .

A graph H is an induced subgraph of a graph G if V (H) ⊆ V (G) and any two vertices of H are
adjacent if and only if they are adjacent in G. We say that G contains a graph H if G has an induced
subgraph isomorphic to H, and that G is H-free if it does not contain H. For an integer k ≥ 4, a hole
(of length k) is a graph isomorphic to the chordless k-vertex cycle Ck, and an antihole (of length k) is
a graph isomorphic to Ck. A hole (or an antihole) is odd if its length is odd.

A clique in a graph is a set of pairwise adjacent vertices, and an independent set is a set of pairwise
non-adjacent vertices. The clique number of a graph G, denoted by ω(G), is the size of a maximum
clique in G, and the independence number of G, denoted by α(G), is the size of a maximum independent
set in G. The chromatic number of a graph G, denoted by χ(G), is the smallest integer ℓ ≥ 1 such that
V (G) can be partitioned into ℓ independent sets. Every graph G clearly satisfies χ(G) ≥ ω(G). The
inequality, however, may be strict. For instance, if G is an odd hole, it is easy to see that ω(G) = 2
and χ(G) = 3. Similarly, if G is an odd antihole of length 2k + 1 for some k ≥ 2, then ω(G) = k and
χ(G) = k + 1.

2.1 Perfect graphs

A graph G is perfect if every induced subgraph H of G satisfies χ(H) = ω(H). Berge introduced
perfect graphs and made two conjectures [4]. The first, proved by Lovász [53] and now known as the
weak perfect graph theorem, states that a graph is perfect if and only if its complement is perfect.
Berge’s second conjecture characterizes minimal imperfect graphs. A graph G is minimal imperfect if
G is not perfect but every proper induced subgraph of G is perfect. Berge observed that odd holes and
odd antiholes are minimal imperfect graphs, and conjectured that they are, in fact, the only minimal
imperfect graphs. This conjecture, now known as the strong perfect graph theorem, was proved by
Chudnovsky, Robertson, Seymour, and Thomas [19]: A graph is perfect if and only if it does not contain
an odd hole or an odd antihole. Indeed, since odd holes and odd antiholes satisfy χ(G) = ω(G) + 1,
perfect graphs do not contain odd holes or odd antiholes. The proof of the converse direction is long
and relies on structural graph theory.

The theta number of a graph G, introduced by Lovász [55] and denoted by ϑ(G), is given as the
optimal value of the following semidefinite program:

ϑ(G) := max
X∈Sn

Tr(JX)

s.t. Xij = 0 if ij ∈ E

Tr(X) = 1
X ⪰ 0.

(2)

Grötschel, Lovász, and Schrijver [41] showed that the theta number of the complement of a graph is
sandwiched between the clique number and the chromatic number of the graph, that is, for any graph
G, we have ω(G) ≤ ϑ(G) ≤ χ(G). Since ϑ(G) can be computed with arbitrary precision in polynomial
time via the semidefinite program (2), one of the consequences of this result is that for a perfect graph
G, the clique number of G can be computed in polynomial time.
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A strengthening of the theta number was introduced by McEliece et al. [57] and Schrijver [76],
where an entry-wise nonnegativity constraint on the matrix X is added to (2):

ϑ′(G) := max
X∈Sn

Tr(JX)

s.t. Xij = 0 if ij ∈ E

Tr(X) = 1
X ⪰ 0
X ≥ 0.

(3)

Schrijver [76] observed that ϑ′(G), too, is an upper bound on ω(G), that is, for any graph G, we have

ω(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ χ(G). (4)

2.2 Sum of squares polynomials

A polynomial p : Rn → R with real coefficients is nonnegative if p(x) ≥ 0 for all x ∈ Rn and a sum of
squares (sos) if there exist polynomials q1(x), . . . , qm(x) such that p(x) = ∑m

i=1 q2
i (x). While every sos

polynomial is clearly nonnegative, Hilbert showed in 1888 that there exist nonnegative polynomials that
are not sos [45]. His proof was not constructive and did not lead to an explicit example of a nonnegative
polynomial that is not sos. The first examples of such polynomials were found by Motzkin [58] and
Robinson [74] nearly eighty years after Hilbert’s proof.

From a complexity standpoint, testing nonnegativity of polynomials of any fixed degree 2d ≥ 4 is
NP-hard [61]. By contrast, checking whether a polynomial is sos can be done by solving a semidefinite
program. Indeed, a polynomial p(x) in n variables and of degree 2d is sos if and only if there exists
a psd matrix Q such that p(x) = z(x)T Qz(x), where z(x) is the vector of monomials of degree up
to d, i.e., z(x) = (1, x1, . . . , xn, x1x2, . . . , xd

n)T (see, e.g., [17, 64]). In fact, this statement leads to a
semidefinite programming-based approach for optimizing a linear function over the intersection of the
set of sos polynomials with an affine subspace. This observation has enabled wide-ranging applications,
see, e.g., [43].

3 A Sum of Squares Characterization of Perfect Graphs

In this section, we prove Theorem 1.1 by establishing a few intermediary lemmas. We begin by stating
some relevant results from prior literature.

A matrix M ∈ Sn is copositive if xT Mx ≥ 0 for all x ≥ 0 (i.e., for all vectors x in the nonnegative
orthant). We denote the set of n × n copositive matrices by Cn. It is not difficult to observe that
minimization of a quadratic function over the standard simplex ∆ := {x ∈ Rn : ∑n

i=1 xi = 1, x ≥ 0} is
equivalent to optimization of a linear function over Cn (see, e.g., [27, 10]):

min
x∈∆

xT Qx = max
k∈R

k

s.t. Q − kJ ∈ Cn.
(5)

As shown by Motzkin and Straus [59], the problem on the left can be related to the clique number of
a graph as follows:

1
ω(G) = min

x∈∆
xT (I + A)x. (6)

4



Here, A denotes the adjacency matrix of the complement graph G. It follows from (5) and (6) that

ω(G) = min
k∈R

k

s.t. k(I + A) − J ∈ Cn.
(7)

It is easy to see that a matrix M belongs to Cn if and only if the quartic form

pM (x) :=
n∑

i,j=1
Mijx2

i x2
j (8)

is nonnegative. Let Kn denote the set of matrices M ∈ Sn such that pM (x) is sos. Clearly, Kn ⊆ Cn.
Hence, a tractable upper bound on ω(G) can be obtained by replacing Cn in (7) with Kn. Using in
part a result from [64, Section 5] (see also [13, Lemma 3.5]), De Klerk and Pasechnik [27] showed that
the resulting upper bound coincides with the parameter ϑ′(G) defined in (3):

ϑ′(G) = min
k∈R

k

s.t. k(I + A) − J ∈ Kn.
(9)

The following lemma sheds light on the construction of the polynomial pG(x) in (1), and a corollary
of it will be used in the proof of Theorem 1.1. Let us consider a more general family of quartic forms
by replacing the constant ω(G) in pG(x) with an arbitrary scalar k ∈ R:

pG,k(x) := −2k
∑

ij∈E(G)
x2

i x2
j + (k − 1)

|V (G)|∑
i=1

x2
i

2

. (10)

Lemma 3.1. For any graph G,

(a) the polynomial pG,k(x) is nonnegative if and only if k ≥ ω(G).
(b) the polynomial pG,k(x) is sos if and only if k ≥ ϑ′(G).

Proof. Let G = (V, E) be a graph with |V (G)| = n and with adjacency matrix A. We first claim that
the polynomial pG,k(x) is nonnegative if and only if k(I+A)−J ∈ Cn. Observe that since I+A = J −A,
we have k(I + A) − J = −kA + (k − 1)J . Therefore,

k(I + A) − J ∈ Cn ⇐⇒
n∑

i,j=1

[
− kA + (k − 1)J

]
ij

x2
i x2

j ≥ 0 ∀x ∈ Rn

⇐⇒ −k
n∑

i,j=1
Aijx2

i x2
j + (k − 1)

n∑
i,j=1

Jijx2
i x2

j ≥ 0 ∀x ∈ Rn

⇐⇒ −2k
∑

ij∈E(G)
x2

i x2
j + (k − 1)

(
n∑

i=1
x2

i

)2

≥ 0 ∀x ∈ Rn

⇐⇒ pG,k(x) ≥ 0 ∀x ∈ Rn.

Similarly, k(I +A)−J ∈ Kn if and only if pG,k(x) is sos. Hence, by (7) and (9), we obtain the following
formulations of ω(G) and ϑ′(G):

ω(G) = min
k∈R

k

s.t. pG,k(x) is nonnegative,

ϑ′(G) = min
k∈R

k

s.t. pG,k(x) is sos.
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Therefore, if pG,k(x) is nonnegative, then k ≥ ω(G). Similarly, if pG,k(x) is sos, then k ≥ ϑ′(G).
Observe also that if pG,k(x) is nonnegative (resp. sos) for some k ∈ R, then pG,k′(x) is nonnegative
(resp. sos) for every k′ ∈ R with k′ ≥ k. This is simply because(

k′(I + A) − J
)

−
(
k(I + A) − J

)
= (k′ − k)(I + A)

is a nonnegative matrix, thus belongs to Cn (resp. Kn). It follows that pG,k(x) is nonnegative if and
only if k ≥ ω(G), and that pG,k(x) is sos if and only if k ≥ ϑ′(G).

Corollary 3.2. For any graph G,

(a) the polynomial pG(x) is nonnegative.
(b) the polynomial pG(x) is sos if and only if ω(G) = ϑ′(G).

Proof. Part (a) follows from Lemma 3.1(a) since pG(x) = pG,ω(G)(x), and part (b) follows from
Lemma 3.1(b) and (4).

We refer the reader to the recent work of Laurent and Vargas [51], where the equality between ω(G)
and ϑ′(G) is studied for graphs with ω(G) ≤ 2 and for the complements of the so-called “α-critical”
graphs. (See also [50, 52] for a related study of a hierarchy of semidefinite programming-based inner
approximations for Cn, whose first level corresponds to Kn.)
Remark 1. In the statement of Corollary 3.2(b), one cannot replace the quantity ϑ′(G) with the theta
number ϑ(G). For example, let G be the graph on 64 vertices corresponding to the vectors in {0, 1}6,
with two vertices adjacent if and only if the Hamming distance between the corresponding vectors
is at least 4. We have ω(G) = ϑ′(G) = 4 and ϑ(G) = 16/3; see [76]. Therefore, pG(x) is sos by
Corollary 3.2(b), but ω(G) ̸= ϑ(G).
Remark 2. Corollary 3.2(b) characterizes the graphs G for which the polynomial pG(x) is sos. We note
that the condition ω(G) = ϑ′(G) is not enough for a graph G to be perfect. In fact, even the condition
ω(G) = χ(G) is not enough for G to be perfect since perfectness requires this condition to hold for every
induced subgraph. As an example, let G be the graph with vertex set {v1, v2, v3, v4, v5, h} and edge set
{v1v2, v2v3, v3v4, v4v5, v5v1, hv1, hv2}, i.e., G is the graph C5 with an additional vertex h adjacent only
to v1 and v2. Then, it is easy to verify that ω(G) = χ(G) = 3. However, G is not perfect as it contains
the graph C5, for which we have 2 = ω(C5) < χ(C5) = 3. Observe also that this graph G is an example
of an imperfect graph for which pG(x) is sos. This observation justifies our definition of sos-perfectness
which takes induced subgraphs into consideration. Indeed, if G is a perfect graph, then, by definition,
every induced subgraph of G is perfect. However, being sos is not a “hereditary” property in the sense
that it is possible for the polynomial pG(x) to be sos and for G to have an induced subgraph H with
pH(x) not sos. The graph above with H = C5 provides one such example.

Although the condition “ω(G) = ϑ′(G)” is not sufficient for a graph G to be perfect, we prove next
that the condition “ω(H) = ϑ′(H) for every induced subgraph H of G” is. We follow a proof technique
of Lovász [56] which makes use of a binary matrix associated with the maximum cliques of a graph.
Let G be a graph with n vertices and m maximum cliques. Then, the max-clique matrix C of G is an
m × n matrix with Cij = 1 if the ith maximum clique contains the jth vertex, and Cij = 0 otherwise.
As an example, the max-clique matrix of the graph C5 is given in Figure 1.

We prove our next lemma without using the strong perfect graph theorem (see Remark 3).

Lemma 3.3. If G is a minimal imperfect graph, then ω(G) < ϑ′(G).

Proof. We follow a proof of Lovász’s (see Lemma 7.9 in [56, Section 3]). Let G = (V, E) be a minimal
imperfect graph with |V (G)| = n and with clique number ω. Let C be the max-clique matrix of G. By
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v1

v2

v3v4

v5
C =

v1 v2 v3 v4 v5


1 1 0 0 0 clique 1
0 1 1 0 0 clique 2
0 0 1 1 0 clique 3
0 0 0 1 1 clique 4
1 0 0 0 1 clique 5

Figure 1: The graph C5 and its max-clique matrix C

a result of Padberg [63] (see also [34] for a different proof), G has n maximum cliques, every vertex of
G is in exactly ω maximum cliques, and the matrix C is non-singular.

Let λ1 be the smallest eigenvalue of CT C. Observe that the diagonal entries of CT C are all ω. It
is then not difficult to see that λ1 ∈ (0, ω). Indeed, since CT C is psd and since Tr(CT C) = nω, we
have λ1 ∈ [0, ω]. Also, we have λ1 ̸= 0 since C is non-singular, and λ1 ̸= ω as otherwise all eigenvalues
of CT C would equal ω, in which case CT C = ωI. This is a contradiction since a minimal imperfect
graph has at least one edge.

Now recall that

ϑ′(G) = max
X∈Sn

Tr(JX)

s.t. Xij = 0 if ij /∈ E(G)
Tr(X) = 1
X ⪰ 0
X ≥ 0.

(11)

Consider the matrix X = 1
n(ω−λ1)(CT C − λ1I). It is straightforward to check that X is a feasible

solution to (11), and that

ϑ′(G) ≥ Tr(JX) = ω2 − λ1
ω − λ1

> ω.

Corollary 3.4. A graph G is perfect if and only if ω(H) = ϑ′(H) for every induced subgraph H of G.

Proof. If G is perfect, then by definition, ω(H) = χ(H) for every induced subgraph H of G. Hence,
by (4), we have ω(H) = ϑ′(H) for every induced subgraph H of G. If G is not perfect, then it contains
a minimal imperfect graph H⋆. By Lemma 3.3, ω(H⋆) < ϑ′(H⋆).

We are now ready to present the proof of Theorem 1.1, which we restate here for ease of reference.

Theorem 1.1. A graph is perfect if and only if it is sos-perfect.

Proof. By Corollary 3.4, a graph G is perfect if and only if ω(H) = ϑ′(H) for every induced subgraph
H of G, which by Corollary 3.2 holds if and only if pH(x) is sos for every induced subgraph H of G.

Remark 3. It is known that if G is an odd hole or an odd antihole, then ω(G) < ϑ′(G) (see, e.g.,
Proposition 15 and Proposition 19 in [68], or see [27, 50, 51]).1 Hence, assuming the strong perfect
graph theorem, one can bypass Lemma 3.3 in the proof of Theorem 1.1. Indeed, if a graph G is not
perfect, then by the strong perfect graph theorem, it contains either an odd hole or an odd antihole,
call it H. Since ω(H) < ϑ′(H), by Corollary 3.2(b), the polynomial pH(x) is not sos. Therefore, G is

1The fact that for an odd hole or an odd antihole G, the inequality ω(G) < ϑ′(G) holds also follows immediately from
Lemma 3.3 since odd holes and odd antiholes are clearly minimal imperfect graphs.
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not sos-perfect. However, we purposefully want to avoid the use of the highly-nontrivial strong perfect
graph theorem in the proof of Theorem 1.1. Indeed, our hope is that Theorem 1.1 could lead to an
algebraic proof of the strong perfect graph theorem in the future (see Section 6.1).

4 Nonnegative Polynomials That Are Not Sums of Squares

As mentioned in Section 2.2, Hilbert proved the existence of nonnegative polynomials that are not
sums of squares in [45], while the first examples of such polynomials were constructed by Motzkin [58]
and Robinson [74] many years later. Many other examples have appeared in the literature over the
years; see, e.g., [71, 13, 14, 15]. Understanding the distinction between nonnegative polynomials and
sos polynomials is an active area of research. In relatively low degrees and dimensions, constructing
examples of nonnegative polynomials that are not sos seems to be a nontrivial task.

In Section 4.1, we provide several infinite families of nonnegative polynomials that are not sos
through various families of imperfect graphs. In Section 4.2, we describe certain operations on graphs
that allow us to generate more nonnegative polynomials that are not sos starting from existing ones. In
Section 4.3, by appealing to the literature on random graph theory, we show that for a fixed parameter
p and for large enough n, the polynomial pGn,p(x) associated with the Erdős-Rényi random graph Gn,p

is nonnegative but not sos with high probability. In Section 4.4, we provide an explicit hyperplane that
separates a given non-sos polynomial pG(x) from the set of sos polynomials. Finally, in Section 4.5,
we show that an example of a convex nonnegative polynomial that is not sos cannot arise from our
graph-theoretic constructions. The construction of such a polynomial was an open problem until
recently [75].

4.1 From imperfect graphs to nonnegative polynomials that are not sos

4.1.1 Odd holes and odd antiholes

Recall that odd holes and odd antiholes are minimal imperfect graphs, i.e., they are not perfect but
their proper induced subgraphs are all perfect. Hence, by Lemma 3.3 and Corollary 3.2, for every odd
hole and odd antihole G, the polynomial pG(x) is a nonnegative polynomial that is not sos. This yields
an infinite family of degree-4 polynomials that are nonnegative but not sos. As an example, consider
the smallest minimal imperfect graph C5 and the corresponding polynomial pC5(x):

pC5(x) = −4(x2
1x2

2 + x2
2x2

3 + x2
3x2

4 + x2
4x2

5 + x2
1x2

5) + (x2
1 + x2

2 + x2
3 + x2

4 + x2
5)2.

This polynomial is known as the “Horn form” in the sos community (see [71]). Similarly, the
polynomials pC7(x), pC9(x), . . . , pC7

(x), pC9
(x), . . . are all nonnegative but not sos. We recall that for

m ≥ 2, we have ω(C2m+1) = 2 and ω(C2m+1) = m, and therefore it is immediate to explicitly write
down the polynomial pG(x) when G is an odd hole or an odd antihole.

Odd holes are a special case of the so-called α-critical graphs, i.e., graphs for which the removal
of any edge increases the stability number. It follows from [51, Corollary 5.3.] that if G is the
complement of an α-critical graph and not complete multipartite (see Section 5.1 for the definition),
then ω(G) < ϑ′(G). Therefore, the fact that odd antiholes yield nonnegative polynomials that are not
sos also follows from [51, Corollary 5.3.].

4.1.2 Powers of cycles and their complements

The conclusion of Lemma 3.3 holds for a more general class of graphs than minimal imperfect graphs.
A graph G is called partitionable (or an (α, ω)-graph) if there exist integers α ≥ 2 and ω ≥ 2 such
that |V (G)| = αω + 1, and for every vertex v, there is a partition of V (G) \ {v} into α many cliques
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of size ω and ω many independent sets of size α. Using only elementary linear algebra, the authors
in [5] show that every partitionable graph G with n vertices has n maximum cliques, every vertex of
G is in exactly ω(G) maximum cliques, and the max-clique matrix C of G is non-singular. Notice
that these were the only properties of minimal imperfect graphs that were used to prove Lemma 3.3.
Hence, the same proof implies that if G is a partitionable graph, then ω(G) < ϑ′(G). Consequently,
by Corollary 3.2, partitionable graphs provide an infinite family of polynomials that are nonnegative
but not sos.

It can be shown that a minimal imperfect graph G is partitionable with α = α(G) and ω = ω(G).
There are, however, many other partitionable graphs; see, e.g., [66, 67] for Cayley partitionable graphs,
and [21] for other constructions of partitionable graphs. The simplest examples are “powers” of cycles.
The kth power of a graph G, denoted by Gk, is a graph with the same vertex set as G, and with
two vertices adjacent if and only if their distance2 in G is at most k. For every integer α ≥ 2 and
ω ≥ 2, the graph Cω−1

αω+1 is a partitionable graph; see [21]. Notice that if ω = 2, then the graphs
Cω−1

αω+1 = C2α+1 are precisely odd holes, and if α = 2, then the graphs Cω−1
αω+1 = Cω−1

2ω+1 = C2ω+1 are
precisely odd antiholes. However, for α, ω ≥ 3, we obtain several other partitionable graphs that are
not odd holes or odd antiholes, such as C2

10, C2
13, C3

13, C2
16, C4

16, C3
17, . . . . Moreover, it is clear from the

definition that a graph is partitionable if and only if its complement is partitionable. Hence, for α ≥ 2
and ω ≥ 2, both Cω−1

αω+1 and Cω−1
αω+1 provide infinite families of graphs whose associated polynomials

are nonnegative but not sos. We remark that the clique number of Cω−1
αω+1 is ω and the clique number

of Cω−1
αω+1 is α, and therefore it is immediate to explicitly write down the polynomial pG(x) when G is

the graph Cω−1
αω+1 or Cω−1

αω+1.

4.1.3 Paley graphs

Paley graphs are graphs constructed from the elements of certain finite fields by connecting pairs of
elements that differ by a quadratic residue. More precisely, for a prime number3 q with q ≡ 1 (mod 4),
the Paley graph Pq is the graph with vertices the elements of the finite field Fq, which can be represented
by integers 0, 1, . . . , q − 1, and an edge between two vertices x and y if and only if x − y = a2 for some
nonzero element a ∈ Fq. Paley graphs have been extensively studied due to their interesting symmetry
properties. In particular, Paley graphs are self-complementary and edge-transitive (see, e.g., [9] for
these and other properties of Paley graphs). See Figure 2 for two examples of Paley graphs.

0

1

23

4

0 1

2

3

4

5
67

8

9

10

11

12

Figure 2: The Paley graphs on 5 and 13 vertices

Let G be an edge-transitive graph and let λmax and λmin respectively denote the largest and smallest
eigenvalues of its adjacency matrix. It is shown in [37, Corollary 5.3] that

ϑ′(G) = ϑ(G) = 1 − λmax
λmin

.

2The distance between two vertices in a graph is the number of edges in a shortest path between them.
3Paley graphs are more generally defined for prime powers. Here we are only interested in Paley graphs with a prime

number of vertices.
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Since the Paley graph Pq is edge-transitive and the distinct eigenvalues of its adjacency matrix are
known to be 1

2(q − 1), 1
2(√q − 1) (see, e.g., [12, Proposition 9.1.1]), and 1

2(−√
q − 1), it follows that

ϑ′(Pq) = √
q. In particular, for a prime number q ≡ 1 (mod 4), as √

q is not an integer, we have
ω(Pq) < ϑ′(Pq). Therefore, by Corollary 3.2, the polynomial pPq (x) is nonnegative but not sos. Thus,
for primes q ≡ 1 (mod 4), the family of Paley graphs Pq yields another infinite family of polynomials
that are nonnegative but not sos.4

Although the clique number of Paley graphs is in general not known, an upper bound was recently
given in [44] for any prime number q:

ω(Pq) ≤
√

2q − 1 + 1
2 .

Note that the inequality
√

2q−1+1
2 <

√
q holds for any integer q > 1. Therefore, for every prime number

q ≡ 1 (mod 4) and for every k ∈ R with
⌊√

2q−1+1
2

⌋
≤ k <

√
q, the polynomial pPq ,k(x) as defined

in (10) is nonnegative but not sos.

4.1.4 Mycielski graphs

For a graph G with vertex set V (G) = {v1, . . . , vn}, the Mycielskian of G, denoted by M(G), is the
graph obtained from G by adding n + 1 new vertices u1, . . . , un, w, and for 1 ≤ i ≤ n, making ui

adjacent to the neighbors of vi and to w. The sequence of graphs M2, M3, M4, . . . obtained by starting
with the one-edge graph M2 and applying the Mycielskian operation Mk+1 = M(Mk) repeatedly for
k ≥ 2 is called the Mycielski graphs. It is well known that for every k = 2, 3, . . . , we have ω(Mk) = 2
and χ(Mk) = k [62]. In other words, the Mycielskian operation preserves the property of having clique
number equal to 2 but increases the chromatic number. The first few graphs in this sequence are the
one-edge graph M2, the 5-vertex cycle graph M3 = C5, and the Grötzsch graph M4. See Figure 3 for
the Mycielski graphs M3 and M4.

Figure 3: The Mycielski graphs M3 and M4

Since ω(M3) < ϑ′(M3) and since Mk+1 is obtained from Mk by adding vertices and edges without
increasing the clique number, it follows from the arguments in Section 4.2.1 below that for k ≥ 3, we
have ω(Mk) < ϑ′(Mk).5 Therefore, by Corollary 3.2, the polynomial pMk

(x) is nonnegative but not
sos. Thus, for k ≥ 3, the family of Mycielski graphs Mk yields another infinite family of polynomials
that are nonnegative but not sos and that can explicitly be written down (since ω(Mk) = 2).

4Paley graphs on a prime number of vertices form a subclass of the so-called “circulant graphs”. It is known that for
a circulant graph G on a prime number of vertices, we have ω(G) < ϑ′(G) (see [11]). Hence, more generally, circulant
graphs yield an infinite family of polynomials that are nonnegative but not sos.

5The inequality ω(Mk) < ϑ′(Mk) for k ≥ 3 also follows from a lemma of Laurent and Vargas [51, Lemma 5.6] which
states that for graphs G with ω(G) ≤ 2, ω(G) = ϑ(G) if and only if ω(G) = χ(G). Since 2 = ω(Mk) < χ(Mk) = k for
k ≥ 3, the result follows.
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4.2 Graph-theoretic operations that preserve the property of being not sos

4.2.1 Adding edges and vertices without increasing the clique number

It is easy to observe that adding edges to a graph without increasing its clique number preserves the
property of being not sos. Indeed, if H is the graph obtained from a graph G by adding the edge ij
such that ω(H) = ω(G), then from the definition in (1), we have pG(x) = pH(x) + 2ω(G)x2

i x2
j . This

observation also appears in [51, Lemma 4.9] (see also [50]) with a slightly different language.
The following lemma, whose proof is simple and thus omitted, also allows us to add new vertices

with arbitrary adjacencies.

Lemma 4.1. Let G be a graph with vertex set V (G) = {v1, . . . , vn} and let H be an induced subgraph of
G with V (H) = {v1, . . . , vk} (i.e., the graph H is obtained from G by deleting the vertices vk+1, . . . , vn).
Then,

pG(x1, . . . , xk, 0, . . . , 0) = pH(x1, . . . , xk)

if and only if ω(G) = ω(H).

Using the “if direction” of this lemma, we can generate many more nonnegative polynomials that
are not sos starting from existing ones. Let H be a graph with ω(H) < ϑ′(H) (such as the graphs
described in Section 4.1). By Corollary 3.2, the polynomial pH(x) is nonnegative but not sos. Let G be
a graph obtained from H by adding new vertices with arbitrary adjacencies such that ω(G) = ω(H).
Then, the polynomial pG(x) is nonnegative but not sos. Indeed, since ω(G) = ω(H), by setting the
variables that correspond to vertices in V (G) \ V (H) to zero, we obtain the polynomial pH(x). Hence,
if pG(x) was sos, then pH(x) would be sos since it is obtained from an sos polynomial by setting some
variables to zero.

As an example of this operation, let H be the graph C5 and G be the graph in Figure 4 (right),
which is arbitrarily constructed by adding vertices to H without increasing the clique number. We
have pG(x1, . . . , x5, 0, . . . , 0) = pH(x1, . . . , x5), and since pH(x1, . . . , x5) is not sos, the polynomial
pG(x1, . . . , x14) is not sos.

v1

v2

v3v4

v5

H

v1

v2

v3v4

v5v6

v7

v8

v9

v10

v11

v12 v13

v14

G

Figure 4: The graph G is obtained from the graph H by adding new vertices with arbitrary adjacencies
such that ω(G) = ω(H), making pG inherit the property of being not sos from pH

We note that for a graph H for which pH(x) is not sos, if G is obtained from H by adding new
vertices in a way that ω(G) > ω(H), then pG(x) might become sos. See the last two sentences of
Remark 2 for an example.

4.2.2 Graph join

The join of two graphs G1 and G2, with disjoint vertex sets, is the graph obtained by connecting every
vertex of G1 to all vertices of G2. See Figure 5 for an example. It is easy to see that if G is the join of
G1 and G2, then ω(G) = ω(G1)+ω(G2). It is also true that ϑ′(G) = ϑ′(G1)+ϑ′(G2) (see Theorem 4.1
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in [11]). Hence, if we start with two graphs G1 and G2 such that ω(Gi) < ϑ′(Gi) for either i = 1 or
i = 2, then the join G of G1 and G2 satisfies ω(G) < ϑ′(G). Therefore, for every graph G obtained
this way, the polynomial pG(x) is a nonnegative polynomial that is not sos. As an example, consider
the graphs G1, G2, and their join G, given in Figure 5. We have

4 = ω(G1) + ω(G2) = ω(G) < ϑ′(G) = ϑ′(G1) + ϑ′(G2) =
√

5 + 2,

and thus the polynomial pG(x) is nonnegative but not sos.

G1 G2 G

Figure 5: Since pG1 is not sos, the polynomial pG associated with the join G of G1 and G2 is not sos

4.2.3 Graph strong product

The strong product of two graphs G1 and G2, denoted by G1 ⊠ G2, is the graph with vertex set
V (G1 ⊠ G2) = V (G1) × V (G2), where two vertices (a1, a2) and (b1, b2) are adjacent if and only if

• a1 = b1 and a2b2 ∈ E(G2), or
• a1b1 ∈ E(G1) and a2 = b2, or
• a1b1 ∈ E(G1) and a2b2 ∈ E(G2).

It is not difficult to see that6 ω(G1 ⊠ G2) = ω(G1)ω(G2) holds for any two graphs G1, G2 (see, e.g.,
Lemma 3.1 in [28]). It is also true that7 ϑ′(G1 ⊠ G2) = ϑ′(G1)ϑ′(G2) for any two graphs G1, G2, see,
e.g., Theorem 258 in [24]. (In fact, for our purposes, the inequalities ω(G1 ⊠ G2) ≤ ω(G1)ω(G2) and
ϑ′(G1 ⊠ G2) ≥ ϑ′(G1)ϑ′(G2) are enough.) Hence, if we start with two graphs G1 and G2 such that
ω(Gi) < ϑ′(Gi) for either i = 1 or i = 2, then

ω(G1 ⊠ G2) = ω(G1)ω(G2) < ϑ′(G1)ϑ′(G2) = ϑ′(G1 ⊠ G2),

and so the graph G1 ⊠ G2 satisfies ω(G1 ⊠ G2) < ϑ′(G1 ⊠ G2). Therefore, for every graph G obtained
this way, the polynomial pG(x) is a nonnegative polynomial that is not sos. As an example, consider
the graphs G1, G2, and their strong product G, given in Figure 6. We have

4 = ω(G1)ω(G2) = ω(G) < ϑ′(G) = ϑ′(G1)ϑ′(G2) = 2
√

5,

and thus the polynomial pG(x) is nonnegative but not sos.
Remark 4. Although not explicitly mentioned, it follows from Theorem 3 of a work of Dickinson and de
Zeeuw [26], which was recently brought to our attention, that for every graph G with at least one edge
whose complement is connected, α-critical, and “α-covered” (see [26] for definitions), the nonnegative

6We would like to warn the reader that the equality α(G1 ⊠ G2) = α(G1)α(G2) is not necessarily true. Although
α(G1 ⊠ G2) ≥ α(G1)α(G2) is always true, there are graphs G1, G2 that make the inequality strict, e.g., G1 = G2 = C5.

7We would like to warn the reader that the equality ϑ′(G1 ⊠ G2) = ϑ′(G1)ϑ′(G2) is not necessarily true. Although
ϑ′(G1 ⊠ G2) ≥ ϑ′(G1)ϑ′(G2) is always true, there are graphs G1, G2 that make the inequality strict. See [24] for details.

8Theorem 25 in [24] shows that ϑ′(G1 ∗ G2) = ϑ′(G1)ϑ′(G2), where G1 ∗ G2 denotes the disjunctive product of G1 and
G2 (see [24] for the definition). We then have ϑ′(G1 ⊠ G2) = ϑ′(G1 ∗ G2) = ϑ′(G1)ϑ′(G2).
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G1 G2 G

Figure 6: Since pG1 is not sos, the polynomial pG associated with the strong product G of G1 and G2
is not sos

polynomial pG(x) in (1) would not be sos. However, these three conditions are quite restrictive for our
purposes. In particular, using the operations presented above, it is easy to produce many examples of
graphs G for which pG(x) is not sos and such that any one of three conditions of [26, Theorem 3] is
violated.

4.3 Random graphs

For a positive integer n and a real number p ∈ (0, 1), an Erdős-Rényi random graph Gn,p, introduced
in [31], is a graph on n vertices where each vertex is adjacent to each other vertex with probability
p, independent of all other choices. In this section, we consider the polynomial pGn,p(x) (as defined
in (1)) associated with an Erdős-Rényi random graph Gn,p. For a constant p ∈ (0, 1), we would like to
understand the probability that the nonnegative polynomial pGn,p(x) is not sos as n tends to infinity.

Lemma 4.2. Let p ∈ (0, 1) be fixed. Then, for every integer n that satisfies 1 ≤ 2 log1/p n ≤ n, we
have

Pr
(
ω(Gn,p) < 2 log1/p n

)
≥ 1 − n

(
e

2 log1/p n

)2 log1/p n

.

Proof. Let Xr denote the number of cliques of size r in Gn,p. Note that

Pr
(
ω(Gn,p) < r

)
= Pr(Xr = 0) = 1 − Pr(Xr ≥ 1) ≥ 1 − E[Xr]. (12)

For any n ≥ r ≥ 1, we have

E[Xr] =
(

n

r

)
p(r

2) ≤
(

ne

r

)r

p
r(r−1)

2 ,

where the inequality follows since
(n

r

)
≤
(

ne
r

)r. If we set r = 2 log1/p n, we obtain

E[Xr] ≤ n

(
e

2 log1/p n

)2 log1/p n

,

which combined with (12) proves the claim.

Lemma 4.3 ([22]). Let p ∈ (0, 1) be fixed. Then, there exists a constant λ > 0 such that for large
enough n, we have

Pr
(

ϑ′(Gn,p) >
1

2(λ + 4)

√
np

1 − p

)
≥ 1 − e−n.

The following theorem is then a direct consequence of Lemma 3.1, and the union bound applied to
Lemma 4.2 and Lemma 4.3. Recall the definition of the polynomial pG,k(x) from (10).
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Theorem 4.4. Let p ∈ (0, 1) be fixed. Then, there exists a constant λ > 0 such that for large enough
n and for any k satisfying 2 log1/p n ≤ k ≤ 1

2(λ+4)

√
np

1−p , we have

Pr
(
pGn,p,k(x) is nonnegative but not sos

)
≥ 1 − e−n − n

(
e

2 log1/p n

)2 log1/p n

. (13)

Notice that the range of allowed values for k in Theorem 4.4 gets larger as n increases, and that the
right hand side in (13) tends to 1 as n tends to infinity. Note also that for any n, p, k, the probability
that the (nonnegative) polynomial pGn,p(x) is not sos is greater than or equal to the probability that
the polynomial pGn,p,k(x) is nonnegative but not sos. Therefore, for a fixed constant p ∈ (0, 1) and
for large enough n, the polynomial pGn,p(x) is nonnegative but not sos with high probability. In some
sense, Theorem 4.4 can be considered as a discrete confirmation of a result of Blekherman [6], which
implies that when the degree is even and at least four, there are “significantly more” nonnegative
polynomials than sos polynomials as the number of variables tends to infinity.

4.3.1 Computational experiments on random graphs

For a fixed constant p ∈ (0, 1), although Theorem 4.4 might require n to be large in order to obtain
random graphs Gn,p with pGn,p(x) not sos, we observe computationally that this phenomenon occurs
for relatively small values of n. To demonstrate this, for each value of n and p given in Table 1, we
generate 100 random graphs on n vertices and with edge probability p. We report a lower bound on
the number of times the (nonnegative) polynomial pGn,p(x) is not sos, which by Corollary 3.2 holds if
and only if ω(Gn,p) < ϑ′(Gn,p). This lower bound is obtained by counting the number of times ϑ′(Gn,p)
is not an integer, which implies ω(Gn,p) < ϑ′(Gn,p) as ω(Gn,p) is an integer. We observe that when
n ≥ 150, the (nonnegative) polynomial pGn,p(x) is almost never sos.

n = 25 n = 50 n = 75 n = 100 n = 125 n = 150 n = 175
p = 0.1 14 68 43 12 17 93 97
p = 0.3 46 65 66 81 100 100 100
p = 0.5 44 78 96 100 100 100 100
p = 0.7 45 84 97 99 100 100 100
p = 0.9 11 71 98 99 100 100 100

Table 1: A lower bound on the number of times that 100 randomly generated graphs Gn,p satisfy
ω(Gn,p) < ϑ′(Gn,p) (or equivalently make the (nonnegative) polynomial pGn,p(x) not sos)

We remark that when the value ϑ′(G) is not an integer, for any k ∈ R with

⌊ϑ′(G)⌋ ≤ k < ϑ′(G),

the polynomial pG,k(x) is nonnegative but not sos. Thus, this method suggests a very simple and
efficient way of generating random nonnegative polynomials of degree 4 that are not sos.

4.4 Separating hyperplanes

Let Σn,d denote the set of sos polynomials of degree d in n variables. Since Σn,d is a closed convex
set, one can always show that a polynomial p(x) of degree d in n variables does not belong to Σn,d by
presenting a hyperplane that separates p(x) from Σn,d. For a graph G with pG(x) /∈ Σn,4, the following
theorem makes this hyperplane explicit and gives a geometric interpretation to an optimal solution of
the semidefinite program in (11).
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Theorem 4.5. Let G = (V, E) be a graph on n vertices with pG(x) /∈ Σn,4. An optimal solution
X ∈ Sn to (11) provides a hyperplane that separates pG(x) from Σn,4.

Proof. Let us recall the polynomial pG(x):

pG(x) = −2 ω(G)
∑

ij∈E(G)
x2

i x2
j + (ω(G) − 1)

(
n∑

i=1
x2

i

)2

.

Notice that the polynomial pG(x) consists of monomials x2
i x2

j for i, j = 1, . . . , n. Let V := V (x) denote
the n × n symmetric matrix that consists of these monomials where Vij = x2

i x2
j for i, j = 1, . . . , n.

Let the matrix of coefficients of pG(x) in the monomial ordering V be denoted by Mp ∈ Sn, i.e.,
pG(x) = ⟨V, Mp⟩, where ⟨·, ·⟩ denotes the standard matrix inner product9. We claim that an optimal
solution X ∈ Sn to (11) satisfies ⟨X, Mp⟩ < 0 and ⟨X, M q⟩ ≥ 0 for any sos polynomial q(x) consisting
of the monomials in V . Here, M q ∈ Sn denotes the coefficients of q(x) listed according to the ordering
in V . Observe that

Mp
ij =


ω(G) − 1 if i = j,

−1 if ij ∈ E(G),
ω(G) − 1 if ij /∈ E(G).

Let X be an optimal solution to (11). Then, we have

X ≥ 0, X ⪰ 0, Tr(X) = 1, Xij = 0 for ij /∈ E(G), 2
∑

ij∈E(G)
Xij = ϑ′(G) − 1,

where the last equality follows since

ϑ′(G) = Tr(JX) =
n∑

i,j=1
Xij = 2

∑
ij∈E(G)

Xij + 2
∑

ij /∈E(G)
Xij +

n∑
i=1

Xii = 2
∑

ij∈E(G)
Xij + 1.

Now, observe that

⟨X, Mp⟩ = (ω(G) − 1)Tr(X) − 2
∑

ij∈E(G)
Xij = (ω(G) − 1) − (ϑ′(G) − 1) = ω(G) − ϑ′(G).

Since pG(x) is not sos, by Corollary 3.2(b), we have ω(G) < ϑ′(G), and therefore ⟨X, Mp⟩ < 0.
Consider now an arbitrary sos polynomial q(x) consisting of the monomials in V . By [64, Section 5]

(see also [13, Lemma 3.5]), we must have M q = P + N , where P ⪰ 0 and N ≥ 0. Since X ⪰ 0 and
X ≥ 0, it follows that ⟨X, M q⟩ = ⟨X, P ⟩ + ⟨X, N⟩ ≥ 0.

4.5 Convexity of the polynomial pG,k(x)
In addition to nonnegativity, convexity10 is another fundamental property of polynomials. The study
of the relationship between the set of convex polynomials and the set of sos polynomials is a subject of
active research. In [7], Blekherman showed that there are convex forms11 that are not sos, although the
problem of constructing an explicit example remained open until recently. In [75], Saunderson provided

9Recall that for two matrices A, B ∈ Sn, we have ⟨A, B⟩ = Tr(AB) =
n∑

i,j=1
AijBij .

10Recall that a polynomial p(x) in n variables is convex if and only if its Hessian H(x), i.e., the n×n symmetric matrix
of its second derivatives, is psd for all x.

11A convex form is nonnegative since it vanishes together with its gradient at the origin.
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the first such example. Saunderson’s form is of degree 4 and has 272 variables and it is known that
such an example does not exist among forms of degree 4 in less than 5 variables [30]. Given that we
have shown in Sections 4.1, 4.2, 4.3 how various graphs G can lead to degree-4 nonnegative forms
pG(x) that are not sos, it is natural to ask whether it is possible to construct convex forms that are
not sos through the polynomial pG(x), or more generally pG,k(x). In this section, we show that these
polynomials are unfortunately always “closer” to being sos than to being convex.

Recall the definitions of the quartic forms pG(x) and pG,k(x) from (1) and (10). It is easy to see

that if G is a graph with no edge, then pG,k(x) = (k − 1)
(|V (G)|∑

i=1
x2

i

)2

, which is convex if and only if

k ≥ 1. It turns out that this is the only case where pG,k(x) is convex.

Lemma 4.6. Let G be a graph with at least one edge. Then, the polynomial pG,k(x) is not convex for
any k.

It follows that the polynomial pG,k(x) is convex if and only if G has no edge and k ≥ 1 (in which
case pG,k(x) is clearly sos). In particular, the polynomial pG(x) is convex if and only if G has no edge
(in which case pG(x) = 0).

Instead of proving Lemma 4.6, we prove a more general statement in Lemma 4.7. Even though
the polynomial pG,k(x) does not directly lead to a convex form that is not sos, one might still hope to
obtain such a form by considering the following family of polynomials:

pG,k,γ(x) := pG,k(x) + γ

|V (G)|∑
i=1

x2
i

2

.

Indeed, starting with a pair (G, k) for which the nonnegative polynomial pG,k(x) is not sos, by increasing
the value of the scalar γ, one might hope that the polynomial pG,k,γ(x) becomes convex before it
becomes sos.12 The next lemma shows that this can never happen.

Lemma 4.7. Let G be a graph with at least one edge. If the polynomial pG,k,γ(x) is convex for some
k, then γ ≥ 1 (in which case the polynomial pG,k,γ(x) is sos).

Proof. Let G = (V, E) be a graph with at least one edge and with vertex set V = {1, . . . , n}. We may
assume without of loss of generality that vertex 1 is adjacent to vertex 2. Let H(x) denote the Hessian
of the polynomial pG,k,γ(x). We have

H1,1(x) = 12(k − 1 + γ)x2
1 + 4k

∑
1i/∈E

x2
i + 4(γ − 1)

n∑
i=2

x2
i .

Observe that H1,1(0, 1, 0, . . . , 0) = 4(γ − 1). Hence, regardless the value of k, the Hessian H(x) cannot
not globally psd when γ < 1. This proves that if pG,k,γ(x) is convex, then γ ≥ 1.

Observe also that pG,k,1(x) = k
n∑

i=1
x4

i + 2k
∑

ij /∈E

x2
i x2

j . Therefore, pG,k,γ(x) is sos for γ ≥ 1.

12This approach is related to the comparison between two conic programming-based lower bounds on the minimum
value of pG,k(x) on the unit sphere that can be obtained by inner approximating the cone of nonnegative forms with the
cones of convex forms and sos forms respectively.
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5 Subsets of Sum of Squares Polynomials and Their Graph-Theoretic
Interpretations

As observed in the proof of Lemma 3.1, the following formulations of ω(G) and ϑ′(G) can be obtained
through nonnegativity and sum of squares conditions on the polynomial pG,k(x) defined in (10):

ω(G) = min
k∈R

k

s.t. pG,k(x) is nonnegative,
(14)

ϑ′(G) = min
k∈R

k

s.t. pG,k(x) is sos.
(15)

It is therefore natural to wonder what graph parameters some specific subsets of sos polynomials would
lead to. In this section, we consider certain well-studied subsets of sos polynomials and examine the
bounds that optimization over these subsets produces on the clique number of a graph. We then
characterize the graphs for which these bounds are tight for all induced subgraphs.

5.1 Dsos and sdsos polynomials

Recall that a polynomial p(x) in n variables and of degree 2d is sos if and only if there exists a matrix
Q ∈ S+

n such that p(x) = z(x)T Qz(x), where z(x) is the vector of monomials of degree up to d [17, 64].
In [2], the condition that the matrix Q be psd is replaced with stronger conditions for the purpose of
obtaining subsets of sos polynomials that one can optimize over more efficiently. Two such conditions
arise from the notions of diagonally dominant and scaled diagonally dominant matrices. A matrix
A ∈ Sn is

• diagonally dominant (dd) if Aii ≥
∑

j ̸=i |Aij | for every i = 1, . . . , n,
• scaled diagonally dominant (sdd) if there exists a diagonal matrix D, with positive diagonal

entries, such that DAD is diagonally dominant.

We refer to the set of n × n dd (resp. sdd) matrices as DDn (resp. SDDn). By Gershgorin’s
circle theorem [36], we have DDn ⊆ SDDn ⊆ S+

n . We say that a polynomial p(x) is diagonally
dominant sum of squares (dsos) (resp. scaled diagonally dominant sum of squares (sdsos)) if there
exists a dd (resp. sdd) matrix Q such that p(x) = z(x)T Qz(x). It turns out that one can optimize
a linear function over the set of dsos (resp. sdsos) polynomials intersected with an affine subspace
using linear programming (resp. second-order cone programming) [2]. Motivated in part by this fact,
many researchers have studied these and related sets in recent years (see, e.g., [77, 40, 38, 73, 60, 46]
and references therein). These sets also have natural interpretations in the polynomial language; for
example “sdsos” polynomials are exactly sums of binomial squares, which were studied in the algebra
community in early papers of Reznick [71], Choi, Lam, and Reznick [16], and Robinson [74].

Since dsos/sdsos polynomials form more tractable subsets of sos polynomials, in view of (14)
and (15), it is natural to wonder the graph parameters that they produce. For a graph G, let us define
the following parameters:

τ(G) := min
k∈R

k

s.t. pG,k(x) is dsos,
(16)

γ(G) := min
k∈R

k

s.t. pG,k(x) is sdsos.
(17)

In this subsection, we show that for any graph G, we have

• τ(G) = ∆(G) + 1, where ∆(G) is the maximum degree of G,
• γ(G) = λmax(A) + 1, where λmax(A) is the largest eigenvalue of the adjacency matrix A of G.13

13In [2, Section 4.2], two hierarchies of upper bounds on the clique number based on dsos (resp. sdsos) polynomials are
proposed. Our results in this section concern the first level of these hierarchies.
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Since dsos polynomials form a subset of sdsos polynomials, we have γ(G) ≤ τ(G) for any graph G,
and therefore we obtain the well-known inequality λmax(A) ≤ ∆(G) from spectral graph theory (see,
e.g., Section 3 in [25]). Together with (14) and (15), we have

ω(G) ≤ ϑ′(G) ≤ λmax(A) + 1 ≤ ∆(G) + 1.

Remark 5. Recall the formulations of ω(G) and ϑ′(G) given in (7) and (9), respectively. As stated
in Section 3, the set Cn (resp. Kn) can equivalently be described as the set of matrices M ∈ Sn for
which the polynomial pM (x) given in (8) is nonnegative (resp. sos). Parrilo [64, Section 5] observed
(see also [13, Lemma 3.5]) that for a matrix M ∈ Sn, the polynomial pM (x) in (8) is sos if and only if
M ∈ S+

n + Nn, i.e., that Kn = S+
n + Nn. Following the proof of Parrilo and using [2, Theorem 3.4 and

Theorem 3.6], it is not difficult to verify that the polynomial pM (x) is sdsos (resp. dsos) if and only if
M ∈ SDDn + Nn (resp. M ∈ DDn + Nn). Hence, γ(G) and τ(G) can equivalently be formulated as:

τ(G) = min
k∈R

k

s.t. k(I + A) − J ∈ DDn + Nn,
(18)

γ(G) = min
k∈R

k

s.t. k(I + A) − J ∈ SDDn + Nn.
(19)

Theorem 5.1. For any graph G, we have τ(G) = ∆(G) + 1.

Proof. Let G be a graph on n vertices and let A denote the adjacency matrix of G. Let k ∈ R be
feasible to (18). Then, we have k(I + A) − J = D + N , where D ∈ DDn and N ∈ Nn. Note that the
matrix k(I + A) − J has entries k − 1 or −1. More precisely,

(
k(I + A) − J

)
ij

=


k − 1 if i = j,

−1 if ij ∈ E(G),
k − 1 if ij /∈ E(G).

Since N is a nonnegative matrix, for every ij ∈ E(G), we must have Dij ≤ −1. Then, since D is a
dd matrix, for every i ∈ V (G), we must have k − 1 ≥ deg(i), where deg(i) denotes the degree of the
vertex i in G. Thus, for any feasible k ∈ R, we have k ≥ ∆(G) + 1, and therefore τ(G) ≥ ∆(G) + 1.

It remains to show that k = ∆(G) + 1 is feasible to (18).14 Indeed, if k = ∆(G) + 1, let

Dij =


∆(G) if i = j,

−1 if ij ∈ E(G),
0 if ij /∈ E(G),

Nij =


0 if i = j,

0 if ij ∈ E(G),
∆(G) if ij /∈ E(G).

Then, k(I + A) − J = D + N , where D ∈ DDn and N ∈ Nn.

We now move to the parameter γ(G). Recall the following characterization of the largest eigenvalue
of a symmetric n × n matrix A:

λmax(A) = min
k∈R

k

s.t. kI − A ∈ S+
n .

The following lemma gives a refined characterization of the largest eigenvalue of the adjacency matrix
of a graph.

14This was also observed in [1, Theorem 5.1].
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Lemma 5.2. Let G be a graph on n vertices with adjacency matrix A. Then,

λmax(A) = min
k∈R

k

s.t. kI − A ∈ SDDn.

Proof. Since SDDn ⊆ S+
n , it is enough to show that for k = λmax(A), we have kI − A ∈ SDDn.

Assume first that G is a connected graph. Let v = (v1, . . . , vn)T be an eigenvector that corresponds
to λmax(A). Then, by the Perron-Frobenius15 theorem [69, 32], we have λmax(A) > 0 and we may
assume that vi > 0 for i = 1, . . . , n. Let D = Diag(v1, . . . , vn), where Diag(v1, . . . , vn) denotes the
n × n diagonal matrix with the vector (v1, . . . , vn)T on its diagonal. We claim that D(λmax(A)I − A)D
is dd, and thus λmax(A)I − A ∈ SDDn. We have

D(λmax(A)I − A)D = λmax(A) · Diag(v2
1, . . . , v2

n) − A|vivj : ij∈E(G),

where A|vivj : ij∈E(G) denotes the adjacency matrix A with 1’s replaced by vivj for ij ∈ E(G). Hence,
the matrix D(λmax(A)I − A)D is dd if and only if

λmax(A) · v2
i ≥

∑
ij∈E(G)

vivj

for every i = 1, . . . , n, which holds if and only if λmax(A) · vi ≥
∑

ij∈E(G) vj for every i = 1, . . . , n. But
since Av = λmax(A)v, we have λmax(A) · vi = ∑

ij∈E(G) vj for every i = 1, . . . , n. This completes the
proof for the case when G is a connected graph.

Next, assume that G has several connected components G1, . . . , Gr, with adjacency matrices
A1, . . . , Ar and with |V (Gi)| = ni for i = 1, . . . , r. Then, A is a block diagonal matrix with diag-
onal blocks A1, . . . , Ar, and

λmax(A) = max
1≤i≤r

λmax(Ai) = max
1≤i≤r

min
k∈R

k

s.t. kI − Ai ∈ SDDni

= min
k∈R

k

s.t. kI − Ai ∈ SDDni , i = 1, . . . , r

= min
k∈R

k

s.t. kI − A ∈ SDDn.

This completes the proof.

Theorem 5.3. For any graph G, we have γ(G) = λmax(A) + 1.

Proof. Let G be a graph on n vertices, and let A and A be the adjacency matrices of G and G
respectively. Since k(I + A) − J = (k − 1)I − A + (k − 1)A, by (19), we have

γ(G) = min
k∈R

k

s.t. (k − 1)I − A + (k − 1)A ∈ SDDn + Nn.
(20)

By Lemma 5.2, we also have

λmax(A) + 1 = min
k∈R

k

s.t. (k − 1)I − A ∈ SDDn.
(21)

15Recall that the adjacency matrix of a connected graph is irreducible and that the Perron-Frobenius theorem applies
to nonnegative irreducible matrices, that is, the largest eigenvalue of an irreducible nonnegative matrix is positive and
the corresponding eigenvector can be chosen to be positive.
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We claim that
min
k∈R

k

s.t. (k − 1)I − A ∈ SDDn

= min
k∈R

k

s.t. (k − 1)I − A + (k − 1)A ∈ SDDn + Nn.

Since (k − 1)A ∈ Nn for any k ≥ 1, any feasible solution to (21) is also feasible to (20). Next, we show
that any feasible solution to (20) is also feasible to (21). Assume for the sake of contradiction that for
some k ∈ R, we have (k − 1)I − A + (k − 1)A ∈ SDDn + Nn, but (k − 1)I − A /∈ SDDn. Then, there
exists a diagonal matrix D with positive diagonal entries, a dd matrix M , and a nonnegative matrix
N , such that D((k − 1)I − A)D + (k − 1)DAD = M + N . We have

(
D((k − 1)I − A)D + (k − 1)DAD

)
ij

=


(k − 1)d2

i if i = j,

−didj if ij ∈ E(G),
(k − 1)didj if ij /∈ E(G).

Since N is a nonnegative matrix, for every ij ∈ E(G), we must have Mij ≤ −didj . Then, since M
is a dd matrix, for every i ∈ V (G), we must have (k − 1)d2

i ≥
∑

ij∈E(G) didj . But then the matrix
D((k − 1)I − A)D is a dd matrix since we have

(D((k − 1)I − A)D)ij =


(k − 1)d2

i if i = j,

−didj if ij ∈ E(G),
0 if ij /∈ E(G).

Hence, (k − 1)I − A ∈ SDDn, a contradiction.

Next, we characterize the graphs G for which ω(H) = τ(H) or ω(H) = γ(H) for every induced
subgraph H of G. A path on three vertices, denoted by P3, is a graph with vertex set {v1, v2, v3} and
edge set {v1v2, v2v3}; see Figure 7 for the graph P3 and its complement P3. It is easy to observe that a
graph is P3-free if and only if it is a disjoint union of cliques (i.e., a graph whose connected components
are complete graphs). Taking the complement, it follows that a graph is P3-free if and only if it is
complete multipartite (i.e., a graph whose vertices can be partitioned into independent sets in such a
way that all edges across independent sets are present).

Figure 7: The graph P3 (left) and its complement P3 (right)

Corollary 5.4. For any graph G, the following are equivalent:
(a) ω(H) = τ(H) for every induced subgraph H of G,
(b) ω(H) = γ(H) for every induced subgraph H of G,
(c) G is a disjoint union of cliques.
Proof. Since γ(H) ≤ τ(H) for any graph H, (a) clearly implies (b). We first show that (b) implies (c).
Suppose G is not a disjoint union of cliques. Then, G contains P3, and we have

2 = ω(P3) < γ(P3) = λmax(AP3) + 1 =
√

2 + 1,

where AP3 is the adjacency matrix of P3 and the equality γ(P3) = λmax(AP3) + 1 follows from The-
orem 5.3. This shows that G has an induced subgraph H with ω(H) ̸= γ(H).

Next, we show that (c) implies (a). Let G be a disjoint union of cliques. Clearly, ω(G) = ∆(G) + 1
and by Theorem 5.1, we have ω(G) = τ(G). Since every induced subgraph of G is also a disjoint union
of cliques, we have ω(H) = τ(H) for every induced subgraph H of G.
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5.2 Another structured subset of sos polynomials

For a graph G and for an arbitrary scalar k ∈ R, let us define the following quadratic polynomial:

p̂G,k(x) := −2k
∑

ij∈E(G)
xixj + (k − 1)

|V (G)|∑
i=1

xi

2

.

Equivalently, the polynomial p̂G,k(x) is obtained from pG,k(x) (defined in (10)) by replacing x2
i with

xi for i = 1, . . . , n. We then define the following parameter:

ρ(G) := min
k∈R

k

s.t. p̂G,k(x) is nonnegative.
(22)

Since p̂G,k(x) is a quadratic polynomial, it is nonnegative if and only if it is sos. Thus, whenever
p̂G,k(x) is nonnegative, the polynomial pG,k(x1, . . . , xn) = p̂G,k(x2

1, . . . , x2
n) is sos. Hence, in view of

(14) and (15), we have ω(G) ≤ ϑ′(G) ≤ ρ(G).
Remark 6. Recall the formulations of ω(G) and ϑ′(G) in (7) and (9), and the fact that Kn = S+

n + Nn.
We remark that the polynomial p̂G,k(x) is nonnegative if and only if k(I + A) − J ∈ S+

n . Hence, ρ(G)
can equivalently be formulated as:

ρ(G) = min
k∈R

k

s.t. k(I + A) − J ∈ S+
n .

(23)

(This upper bound on ω(G) has also been mentioned but not carefully analyzed in [11, Section 2.1].)
One can also define an upper bound on ω(G) by replacing the set S+

n in (23) with Nn. However, it is
easy to observe that k(I + A) − J ∈ Nn for some k ∈ R if and only if A = J − I, which holds if and
only if the graph G has no edge.

The result of this subsection is the following theorem.

Theorem 5.5. The parameter ρ(G) is finite if and only if G is complete multipartite, in which case
ρ(G) = ω(G).

Proof. Suppose first that G is not complete multipartite. We show that the matrix k(I +A)−J in (23)
is not psd for any k ∈ R, and thus ρ(G) is not finite. Since G is not complete multipartite, it contains
P3. Consider the submatrix of k(I + A) − J that corresponds to P3:k − 1 k − 1 −1

k − 1 k − 1 k − 1
−1 k − 1 k − 1

 .

Suppose this matrix is psd for some k ∈ R. Then, by nonnegativity of its principal minors, we have
k − 1 ≥ 0, (k − 1)2 − 1 ≥ 0, and −k2(k − 1) ≥ 0. The first and the third inequalities together imply
that k = 1, which contradicts the second inequality.

Conversely, suppose G is complete multipartite. We show that the matrix k(I + A) − J is psd
for k = ω(G). Since ω(G) ≤ ρ(G), this would prove that ρ(G) = ω(G). Let k = ω(G). Since G is
complete multipartite, V (G) can be partitioned into ω(G) independent sets V (G) = I1 ∪ · · · ∪ Ik. For
i = 1, . . . , k, let |Ii| = mi. Since

(
k(I + A) − J

)
ij

=


k − 1 if i = j,

−1 if ij ∈ E(G),
k − 1 if ij /∈ E(G),
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we have

k(I + A) − J =


(k − 1)Jm1 −Jm1m2 . . . −Jm1mk

−Jm2m1 (k − 1)Jm2 . . . −Jm2mk

...
... . . . ...

−Jmkm1 −Jmkm2 . . . (k − 1)Jmk

 ,

where Jmi and Jmimj respectively denote the mi × mi and mi × mj all-ones block matrices. Then,
observe that the matrix k(I + A) − J can be expressed as

Lm1 0 . . . 0
0 Lm2 . . . 0
...

... . . . ...
0 0 . . . Lmk




(k − 1)Um1 −Um1m2 . . . −Um1mk

−Um2m1 (k − 1)Um2 . . . −Um2mk

...
... . . . ...

−Umkm1 −Umkm2 . . . (k − 1)Umk




LT
m1 0 . . . 0
0 LT

m2 . . . 0
...

... . . . ...
0 0 . . . LT

mk

 ,

where Lmi is an mi × mi matrix with 1’s on its diagonal and on its first column, and 0’s everywhere
else; and Umi and Umimj are respectively the mi ×mi and mi ×mj matrices with 1 on the first element
of the first row, and 0’s everywhere else. Since the matrix in the middle is psd,16 it follows that the
matrix k(I + A) − J is psd.

It follows from Theorem 5.5 that a graph G is complete multipartite if and only if ω(G) = ρ(G),
which holds if and only if ω(H) = ρ(H) for every induced subgraph H of G.

6 Future Research Directions

The algebraic characterization of perfect graphs presented in this paper enables an interesting interplay
between structural graph theory and nonnegative polynomials (or copositive matrices). In Section 4,
we exploited certain results from graph theory to systematically construct nonnegative polynomials
that are not sos, a task which is of interest to the algebraic geometry and polynomial optimization
communities. We believe that future research can also transfer ideas in the other direction. As an
example, by using facts from linear algebra and optimization, the following graph-theoretic statement
follows easily from Corollary 3.4 (without using the strong perfect graph theorem).

Proposition 6.1. A graph with no odd cycles of length 5 or more is perfect.

Proof. Consider a graph G = (V, E) with no odd cycles of length 5 or more. By [29, Theorem 1], the
optimal value of (11) does not change if the two constraints X ≥ 0 and X ⪰ 0 are replaced with the
stronger constraint that X = BBT for some nonnegative matrix B. By [27, Theorem 2.2], the optimal
value of (11) after this replacement is ω(G). Since these claims hold for every induced subgraph of G,
it follows from Corollary 3.4 that G is perfect.

We hope that future research can similarly provide algebraic proofs of other structural results con-
cerning perfect graphs. Some examples are mentioned in Section 6.1. Other future research directions
are discussed in Section 6.2.

6.1 Algebraic reformulations of structural results concerning perfect graphs

In view of Theorem 1.1, we reformulate a number of results from the theory of perfect graphs as
statements about sum of squares proofs of nonnegativity of certain polynomials.

16After removing rows and columns consisting of 0’s, the matrix in the middle reduces to the k × k matrix kI − J ,
which has eigenvalues 0 with multiplicity 1, and k with multiplicity k − 1.
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The weak perfect graph theorem [53]:
A graph is perfect if and only if its complement is perfect.

The proof of the weak perfect graph theorem was given by Lovász in 1972 and relies on the following
lemma which is interesting in its own right. Recall that replicating a vertex v of a graph means adding
a new vertex to the graph and making it adjacent to v and to all the neighbors of v.

The replication lemma [53]:
If G is a perfect graph and G′ is obtained from G by replicating a vertex of G, then G′ is perfect.

Other proofs of the weak perfect graph theorem can be obtained by self-complementary characteriza-
tions of perfect graphs. The following is one such characterization due to Lovász.

Lovász’s characterization of perfect graphs [54]:
A graph G is perfect if and only if every induced subgraph H of G satisfies α(H)ω(H) ≥ |V (H)|.

Lastly, the following (self-complementary) characterization of perfect graphs was proven in [19] more
than forty years after it was conjectured in [4].

The strong perfect graph theorem [19]:
A graph is perfect if and only if it does not contain an odd hole or an odd antihole.

We now invoke Theorem 1.1 to provide algebraic reformulations of the four structural results above.
From (1), recall the definition of the polynomial pG(x) associated with a graph G.

The weak perfect graph theorem (algebraic reformulation):
If for every induced subgraph H of a graph G, pH(x) is sos, then pG(x) is sos.

Remark 7. The statement “if pG(x) is sos, then pG(x) is sos” is not true in general. To see this,
let G be the the graph in Figure 8. Then, by Corollary 3.2(b), the polynomial pG(x) is sos since
ω(G) = ϑ′(G) = 3, while the polynomial pG(x) is not sos since ω(G) = 2 <

√
5 = ϑ′(G).

Figure 8: The graph associated with Remark 7

The replication lemma (algebraic reformulation):
Let G′ be the graph obtained from a graph G by replicating a vertex of G. If for every induced

subgraph H of G, pH(x) is sos, then pG′(x) is sos.

Remark 8. The statement “if pG(x) is sos, then pG′(x) is sos” is not true in general. To see this, let
G be the graph in Figure 9 (left), and G′ be the graph obtained from G by replicating the vertex v as
shown in Figure 9 (right). One can verify that ω(G) = ϑ′(G) = 3 while ω(G′) = 3 < 3.196 < ϑ′(G′).
By Corollary 3.2(b), the polynomial pG(x) is sos while the polynomial pG′(x) is not.

The following is a reformulation of the nontrivial direction of Lovász’s characterization of perfect
graphs. (The other direction is immediate since α(G)χ(G) ≥ |V (G)| for any graph G.)

Lovász’s characterization of perfect graphs (algebraic reformulation):
If every induced subgraph H of a graph G satisfies α(H)ω(H) ≥ |V (H)|, then pG(x) is sos.
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v v

Figure 9: The graphs G (left) and G′ (right) associated with Remark 8

Remark 9. The statement “if G satisfies α(G)ω(G) ≥ |V (G)|, then pG(x) is sos” is not true in general.
As an example, consider the graph G obtained from C5 by adding a vertex adjacent to every vertex
of C5. We have ω(G) = 3, α(G) = 2, and |V (G)| = 6. However, by Corollary 3.2(b), the polynomial
pG(x) is not sos since ϑ′(G) =

√
5 + 1.

The following is a reformulation of the nontrivial direction of the strong perfect graph theorem.
(As mentioned in Section 2.1, the other direction is immediate.)
The strong perfect graph theorem (algebraic reformulation - polynomial version):

If a graph G does not contain an odd hole or an odd antihole, then pG(x) is sos.
Considering (7) and (9), together with Corollary 3.2(b) and the fact that Kn = S+

n + Nn, another
reformulation of the strong perfect graph theorem is the following.
The strong perfect graph theorem (algebraic reformulation - matrix version):

If a graph G does not contain an odd hole or an odd antihole, then ω(G)(I + A) − J ∈ S+
n + Nn.

We hope that the above algebraic reformulations lead to new (and ideally simpler) proofs of these
statements, possibly using tools from convex algebraic geometry and semidefinite optimization. This
would be particularly exciting in the case of the strong perfect graph theorem, whose original proof
in [19] is long and highly nontrivial.

6.2 Other research directions

We end with a few other research directions that could be of interest.

6.2.1 Sos decompositions for subclasses of perfect graphs

By Theorem 1.1, for any perfect graph G, the polynomial pG(x) is sos. Can one write down an explicit
sos decomposition for some subclasses of perfect graphs? For example, for a complete graph G on n
vertices, we have the following two possible sos decompositions:

pG(x) =
∑

ij∈E(G)
(x2

i − x2
j )2,

pG(x) =
n−1∑
i=1

n

(n − i + 1)(n − i)
(
(n − i)x2

i − x2
i+1 − x2

i+2 − · · · − x2
n

)2
.

Similarly, for a bipartite graph G whose vertex set is partitioned into two (independent) sets
A = {1, 2, . . . , p} and B = {p + 1, p + 2, . . . , n}, we have the following sos decomposition:

pG(x) =

 p∑
i=1

x2
i −

n∑
i=p+1

x2
i

2

+
∑

i∈A,j∈B,ij /∈E(G)
(2xixj)2.

Can one similarly write sos decompositions for other subclasses of perfect graphs, e.g., for chordal
graphs? More interestingly, does an sos decomposition of pG(x) contain useful information about the
perfect graph G?
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6.2.2 Algebraic imperfection ratio

It would be interesting to study the relationship between the so-called imperfection ratio of a graph
(see [35] for a definition) and an algebraic notion we define below which measures how close a given
graph is to being sos-perfect.

Let pmin
G and pmax

G respectively denote the minimum and the maximum value of the nonnegative
quartic form pG(x) on the unit sphere:

pmin
G := min

||x||2=1
pG(x), pmax

G := max
||x||2=1

pG(x).

In general, a (computationally tractable) lower bound on pmin
G can be obtained by

psos
G := max

γ∈R
γ

s.t. pG(x) − γ||x||4 is sos.

One way to measure the quality of psos
G as a lower bound on pmin

G is through the “normalized” quantity
(pmax

G − psos
G )/(pmax

G − pmin
G ). Taking induced subgraphs into consideration, we propose the following as

to measure how close a given graph is to being sos-perfect:

AIMP(G) := max
H⊆G

{
pmax

H − psos
H

pmax
H − pmin

H

}
. (24)

Here, the maximum is taken over all induced subgraphs H of G. The following is a simple observation,
which we give without proof.

Observation 6.2. For any graph G, we have pmin
G = 0 and pmax

G = ω(G) − 1.

Notice that since pmin
G = 0, we have psos

G ≤ 0 for every graph G. By Observation 6.2, we have

AIMP(G) = max
H⊆G

{
1 − psos

H

ω(H) − 1

}
.

From (24), it is easy to see that AIMP(H) ≤ AIMP(G) for every induced subgraph H of G.
Moreover, AIMP(G) ≥ 1 for every graph G, and AIMP(G) = 1 if and only if G is sos-perfect (i.e.,
perfect). (These properties of AIMP(G) hold also for the imperfection ratio that is proposed in [35].)
Can one classify interesting families of graphs for which AIMP(G) is bounded above by a given con-
stant? Is it possible to efficiently approximate the clique number or the chromatic number for these
graph families, e.g., by semidefinite programming?

6.2.3 r-sos-perfect graphs

Theorem 1.1 and the construction of the polynomial pG(x) provide a framework for studying the
relationship between subsets of nonnegative polynomials and subsets or supersets of perfect graphs. In
this paper, we establish this relationship for sos, sdsos, and dsos polynomials, but the same question
for certain natural supersets of sos polynomials remains open, as we describe next.

From Artin’s solution [3] to Hilbert’s 17th problem, we know that for every nonnegative form p(x),
there exists a nonzero sos form q(x) such that p(x)q(x) is sos. (The representation of p(x) as the ratio
of two sos forms algebraically certifies nonnegativity of p(x).) For an even nonnegative integer r, let us
call a graph G r-sos-perfect if for every induced subgraph H of G, there exists a nonzero degree-r sos
form qH(x) with pH(x)qH(x) sos. (Here, pH(x) is defined as in (1).) With this definition, 0-sos-perfect
graphs are precisely perfect graphs. What are r-sos-perfect graphs for r ≥ 2? What is the minimum
r that makes odd holes or odd antiholes (or some other families of imperfect graphs) r-sos-perfect?
Does the answer relate to the algebraic imperfection ratio of these graphs, and if so how?

25



Acknowledgements

We thank Abraar Chaudhry for insightful discussions around Proposition 6.1 and the anonymous
referees for their careful reading of the manuscript.

References

[1] A.A. Ahmadi, S. Dash, G. Hall, “Optimization over structured subsets of positive semidefinite
matrices via column generation”, Discrete Optimization, 24 (2017), 129–151.

[2] A.A. Ahmadi, A. Majumdar, “DSOS and SDSOS optimization: More tractable alternatives to
sum of squares and semidefinite optimization”, SIAM Journal on Applied Algebra and Geometry,
3(2) (2019), 193–230.
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[24] T. Cubitt, L. Mančinska, D.E. Roberson, S. Severini, D. Stahlke, A. Winter, “Bounds on
entanglement-assisted source-channel coding via the Lovász ϑ number and its variants”, IEEE
Transactions on Information Theory, 60 (11) (2014), 7330–7344.
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[32] G. Frobenius, “Über Matrizen aus nicht negativen Elementen”, S.B. Preuss Acad. Wiss., 26
(1912), 456–477.

[33] D.R. Fulkerson, “Blocking and anti-blocking pairs of polyhedra”, Mathematical Programming, 1
(1) (1971), 168–194.

[34] G.S. Gasparian, “Minimal imperfect graphs: a simple approach”, Combinatorica, 16 (1996),
209–212.

27



[35] S. Gerke, C. McDiarmid, “Graph imperfection I, II”, Journal of Combinatorial Theory (B), 83
(2001), 58–78, 79–101.
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