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Abstract

This paper presents a proximal bundle (PB) framework based on a generic bundle update
scheme for solving the hybrid convex composite optimization (HCCO) problem and establishes a
common iteration-complexity bound for any variant belonging to it. As a consequence, iteration-
complexity bounds for three PB variants based on different bundle update schemes are obtained
in the HCCO context for the first time and in a unified manner. While two of the PB variants
are universal (i.e., their implementations do not require parameters associated with the HCCO
instance), the other newly (as far as the authors are aware of) proposed one is not but has the
advantage that it generates simple, namely one-cut, bundle models. The paper also presents a
universal adaptive PB variant (which is not necessarily an instance of the framework) based on
one-cut models and shows that its iteration-complexity is the same as the two aforementioned
universal PB variants.
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1 Introduction

Let f, h : Rn → R ∪ {+∞} be proper lower semi-continuous convex functions such that domh ⊆
dom f and h− µ‖ · ‖2/2 is convex for some µ ≥ 0, and consider the optimization problem

φ∗ := min {φ(x) := f(x) + h(x) : x ∈ Rn} . (1)

It is said that (1) is a hybrid convex composite optimization (HCCO) problem if there exist non-
negative scalars Mf and Lf and a first-order oracle f ′ : domh→ Rn (i.e., f ′(x) ∈ ∂f(x) for every
x ∈ domh) satisfying the (Mf , Lf )-hybrid condition, namely: ‖f ′(u)− f ′(v)‖ ≤ 2Mf + Lf‖u− v‖
for every u, v ∈ domh. The main goal of this paper is to study the complexity of proximal bundle
methods for solving the HCCO problem (1) based on different bundle update schemes. Instead of
focusing on a particular proximal bundle method, our unified approach considers a framework of
generic proximal bundle methods (referred to as the GPB framework) based on a generic bundle
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update scheme, and establishes a common iteration-complexity bound for all instances belonging
to it.

Method outline. Like all other proximal bundle methods, an iteration of a GPB variant solves
the prox bundle subproblem

x = argmin
u∈Rn

{
Γ(u) +

1

2λ
‖u− xc‖2

}
(2)

where λ is the prox stepsize, and xc and Γ are the current prox-center and bundle function, respec-
tively. Moreover, it also performs two types of iterations, i.e., serious and null ones. In a serious
iteration, the prox-center is updated to xc ← x and the updated bundle function Γ+ is chosen so as
to satisfy Γ+ ≥ `f (·;x) +h where `f (·;x) = f(x) + 〈f ′(x), ·−x〉. In a null iteration, the prox-center
does not change but Γ is updated according to a certain bundle update scheme (which is usually
more restrictive than the ones in the serious iterations).

In order to illustrate the use of the generic bundle update scheme, this paper considers three
specific well-known bundle update schemes and shows that they can all be viewed as special cases
of the generic one. We now briefly describe the specific ones in the next three itemized paragraphs.

(E1) one-cut scheme: This scheme obtains Γ+ as

Γ+ = Γ+
τ := τΓ + (1− τ)[`f (·;x) + h] (3)

where x is as in (2) and τ ∈ (0, 1) depends on (Lf ,Mf , µ). Clearly, if Γ is the sum of h and
an affine function underneath f , then so is Γ+.

(E2) two-cuts scheme: Assume that Γ = max{Af , `f (·;x−)}+ h where Af is an affine function
satisfying Af ≤ f and x− is the previous iterate. This scheme sets the next bundle function
Γ+ to one similar to Γ but with (x−, Af ) replaced by (x,A+

f ) where A+
f = θAf+(1−θ)`f (·;x−)

for some θ ∈ [0, 1] which does not depend on (Lf ,Mf , µ).

(E3) multiple-cuts scheme: The current bundle function Γ is of the form Γ = Γ(·;B) where
B ⊂ Rn is a finite set (i.e., the current bundle set) and Γ(·;B) is defined as

Γ(·;B) := max{`f (·; b) : b ∈ B}+ h. (4)

This scheme obtains Γ+ as Γ+ = Γ(·;B+) where B+ is the updated bundle set obtained by
possibly removing some points from B and then adding the most recent x to the resulting
set.

Throughout out the paper, we refer to the GPB instances based on (E1), (E2) and (E3) as 1C-PB,
2C-PB and MC-PB, respectively.

Contribution. Regardless of the parameter triple (Lf ,Mf , µ), it is shown that the iteration-
complexity for any GPB variant to obtain a ε̄-solution of the HCCO problem (1) (i.e., a point
x̄ ∈ domh satisfying φ(x̄)− φ∗ ≤ ε̄) is

O

(
min

{
(M2

f + ε̄Lf )d2
0

ε̄2
,

(
M2
f + ε̄Lf

µε̄
+ 1

)
log

(
µd2

0

ε̄
+ 1

)}
+ 1

)
(5)

for a large range of prox stepsizes λ, where d0 denotes the distance of the initial point x0 to
the optimal solution set of (1). Since 2C-PB and MC-PB methods do not rely on (Lf ,Mf ), a

2



sharper iteration-complexity bound can be obtained for them by replacing (Mf , Lf ) in (5) by
(M̄f , L̄f ), respectively, where (M̄f , L̄f ) is the unique pair which minimizes M2

f + ε̄Lf over the set of
pairs (Mf , Lf ) satisfying the (Mf , Lf )-hybrid condition of f ′. Moreover, even though this sharper
complexity bound can not be shown for 1C-PB, Section 5 presents an adaptive version of this
variant where τ in (3), instead of being chosen as a function of (Lf ,Mf ), is adaptively searched so
as to satisfy a key inequality condition. Finally, Section 5 also shows that this adaptive variant has
the same iteration-complexity as that of 2C-PB and MC-PB.

Related literature. Proximal bundle methods are known to be efficient algorithms for solving
nonsmooth convex composite optimization (NCCO) problems, i.e., instances of (1) for which there
exists Mf ≥ 0 such that the hybrid condition holds with Lf = 0. Some preliminary ideas towards
the development of the proximal bundle method were first presented in [12, 25] and formal presen-
tations of the method were given in [13, 16]. Convergence analysis of the proximal bundle method
for NCCO problems has been broadly discussed in the literature and can be found for example in
the textbooks [21, 23]. Different bundle management policies in the context of proximal bundle
methods are discussed for example in [6, 7, 9, 20, 21, 24].

Iteration-complexity bounds have been established for some proximal bundle methods in the
context of the NCCO problem with µ = 0 (see for example [1, 5, 9, 15]). Papers [1, 9] both consider
the NCCO problem where h is the indicator function of a nonempty closed convex set, and [5]
considers the NCCO problem where h is identically zero. Moreover, paper [9] obtains the first
O(ε̄−3) complexity bound, and [1, 5] subsequently also derive an O(ε̄−3) bound. On the other
hand, a previous authors’ paper [15] proposes a proximal bundle variant using a novel condition to
decide whether to perform a serious or null iteration which does not necessarily yield a function
value decrease. More importantly, [15] establishes the first O(ε̄−2) complexity bound for a large
range of prox stepsizes, and shows that the bound is indeed optimal.

More specialized iteration-complexity bounds for some proximal bundle methods in the context
of the NCCO problem with µ > 0 have also been established in [5, 6, 15]. More specifically, [6]
derives a Õ(ε̄−1) iteration-complexity bound for a proximal bundle method with prox stepsize set
to λ = 1/µ. Moreover, improving on the analysis of [6], paper [5] establishes the optimal bound
O(ε̄−1) for the same method. Finally, [15] also establishes a Õ(ε̄−1) iteration-complexity bound for
its proximal bundle variant. In contrast to [5, 6], the bound in [15] is shown to be optimal (up to
a logarithmic term) for a large range of prox stepsizes.

The current paper improves [15] in the following aspects: 1) it deals with the more general
HCCO problem; 2) in contrast to [15], it nowhere assumes that h is Lipschitz continuous nor
imposes any condition on the parameter µ, and shows that the iteration-complexity bound (5)
holds for prox stepsize ranges which are larger than the ones in [15]; 3) while the proximal bundle
variant of [15] is based on the bundle update scheme (E3), GPB is a framework based on a generic
bundle update scheme which contains proximal bundle variants based on different update schemes
(such as (E1)-(E3)); moreover, its unified analysis presented here applies to all these proximal
bundle variants; and 4) as far as the authors are aware of, it presents and analyzes for the first
time a one-cut proximal bundle method for both NCCO and HCCO problems and also presents a
universal variant of such method.

Another method related, and developed subsequently, to the proximal bundle method is the
bundle-level method, which was first proposed in [14] and extended in many ways in [3, 8, 11]. These
methods have been shown to have optimal iteration-complexity in the setting of the NCCO problem
with h being the indicator function of a compact convex set. Since their generated subproblems do
not have a proximal term, and hence do not use a prox stepsize, they are different from the ones
studied in this paper. Finally, paper [4] presents a doubly stabilized bundle method for solving
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NCCO problems whose prox subproblems combine elements from both proximal bundle and bundle-
level methods and analyzes its asymptotic convergence (but not its iteration-complexity).

Organization of the paper. Subsection 1.1 presents basic definitions and notation used through-
out the paper. Section 2 formally describes the assumptions on the HCCO problem (1), reviews
the constant stepsize composite subgradient (CS-CS) method and discusses its iteration-complexity.
Section 3 presents a generic bundle update scheme, describes the GPB framework and states the
main results of the paper, namely, the iteration-complexity of GPB. Section 4 contains three sub-
sections, and they provide the analysis of bounds on the number of the serious, null and total
iterates, respectively. Section 5 presents the adaptive variant of 1C-PB and establishes the iteration-
complexity of it. Section 6 presents some concluding remarks and possible extensions. Appendix A
provides a few useful technical results. Appendix B presents two recursive formulas and their related
results. Appendix C provides the proof of the iteration-complexity for the CS-CS method, and de-
scribes an adaptive variant of CS-CS and establishes its iteration-complexity. Finally, Appendix D
provides the proofs of properties of bundle update schemes (E2) and (E3).

1.1 Basic definitions and notation

Let R denote the set of real numbers. Let R+ and R++ denote the set of non-negative real numbers
and the set of positive real numbers, respectively. Let Rn denote the standard n-dimensional
Euclidean space equipped with inner product and norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let
log(·) denote the natural logarithm.

Let Ψ : Rn → (−∞,+∞] be given. Let dom Ψ := {x ∈ Rn : Ψ(x) < ∞} denote the effective
domain of Ψ and Ψ is proper if dom Ψ 6= ∅. A proper function Ψ : Rn → (−∞,+∞] is µ-convex
for some µ ≥ 0 if

Ψ(αz + (1− α)z′) ≤ αΨ(z) + (1− α)Ψ(z′)− α(1− α)µ

2
‖z − z′‖2

for every z, z′ ∈ dom Ψ and α ∈ [0, 1]. The set of all proper lower semicontinuous µ-convex functions
is denoted by Convµ (Rn). When µ = 0, we simply denote Convµ (Rn) by Conv (Rn). For ε ≥ 0,
the ε-subdifferential of Ψ at z ∈ dom Ψ is denoted by

∂εΨ(z) :=
{
s ∈ Rn : Ψ(z′) ≥ Ψ(z) +

〈
s, z′ − z

〉
− ε, ∀z′ ∈ Rn

}
.

The subdifferential of Ψ at z ∈ dom Ψ, denoted by ∂Ψ(z), is by definition the set ∂0Ψ(z).
Finally, even though O(·) is a well-known concept in the study of complexity of algorithms, it

is convenient for the purpose of our presentation to give a slightly stronger meaning to it, namely,
if f and g are two positive functions defined in a certain set Ω, the notation f(x) = O(g(x)) means
that there exists constant C > 0 such that f(x) ≤ Cg(x) for all x ∈ Ω.

2 Problem of interest and a review of the CS-CS method

This section consists of two subsections. The first one describes the main problem and the assump-
tions imposed on it. The second one reviews the CS-CS method and an adaptive variant of it, and
describes their iteration-complexity bounds for obtaining a ε̄-solution of the main problem.

2.1 Main problem and assumptions

The problem of interest in this paper is (1) which is assumed to satisfy the following conditions for
some triple (Lf ,Mf , µ) ∈ R3

+:
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(A1) f ∈ Conv (Rn) and h ∈ Convµ (Rn) are such that domh ⊂ dom f , and a subgradient oracle,
i.e., a function f ′ : domh→ Rn satisfying f ′(x) ∈ ∂f(x) for every x ∈ domh, is available;

(A2) the set of optimal solutions X∗ of problem (1) is nonempty;

(A3) for every x, y ∈ domh,
‖f ′(x)− f ′(y)‖ ≤ 2Mf + Lf‖x− y‖.

Throughout this paper, an instance of (1) means a triple (f, f ′;h) satisfying conditions (A1)-
(A3) for some triple of parameters (Lf ,Mf , µ) ∈ R3

+.
We now add a few remarks about assumptions (A1)-(A3). First, letting

`f (·;x) := f(x) + 〈f ′(x), · − x〉 ∀x ∈ domh, (6)

then it is well-known that (A3) implies that for every x, y ∈ domh,

f(x)− `f (x; y) ≤ 2Mf‖x− y‖+
Lf
2
‖x− y‖2. (7)

Second, an obvious example of f satisfying (A3) is the sum of an Mf -Lipschitz continuous function
and a function whose gradient is Lf -Lipschitz continuous, e.g., f(x) = Mf‖x‖+ Lf‖x‖2/2. Third,
another way of obtaining functions f satisfying (A3) is discussed in Proposition 2.1 below.

We now discuss other quantities which, in addition to the parameters Lf , Mf , and µ, are also
used in the complexity bounds obtained in this paper. For a given initial point x0 ∈ domh, we
denote its distance to X∗ as

d0 := ‖x0 − x∗0‖, where x∗0 := argmin {‖x0 − x∗‖ : x∗ ∈ X∗}. (8)

Alternative quantities which are used in place of Mf and Lf are as follows. First note that the set
Ω ⊂ R2

+ consisting of the pairs (Mf , Lf ) satisfying (A3) is easily seen to be a (nonempty) closed
convex set. Moreover, for a given tolerance ε̄ > 0, it is easily seen that there exists a unique pair
(M̄f (ε̄), L̄f (ε̄)) which minimizes M2

f + ε̄Lf over Ω and, without any loss of clarity, we denote this

pair simply by (M̄f , L̄f ) and define

Tε̄ :=
(
M̄2
f + ε̄L̄f

)1/2
. (9)

Moreover, if there exists a pair (Mf , 0) satisfying (A3), then the smallest Mf with this property is
denoted by M̄f,0; otherwise, if no such pair exists, then we set M̄f,0 :=∞. Finally, it is easily seen
that M̄f,0 ≥ Tε̄ ≥ M̄f and that any one of these two inequalities can hold strictly. For example, if
f = ‖ · ‖+ ‖ · ‖2/2 and h ≡ 0, then we can easily see that M̄f,0 =∞, M̄f = 1, and Tε̄ ∈ (1,∞) for
any ε̄ > 0.

The following result, whose proof is postponed to Appendix A, gives conditions on (f, h) which
guarantee that (A3) holds.

Proposition 2.1. Assume that (A1) holds and that, for some ν ∈ (0, 1), the function f ′ in (A1)
satisfies

‖f ′(x)− f ′(y)‖ ≤ 2Mν + Lν‖x− y‖ν , ∀x, y ∈ domh (10)

and, for any α > 0, define

Mf (α) := Mν +
Lνα

2
, Lf (α) := Lνν

(
1− ν
α

) 1−ν
ν

. (11)
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Then, for any α > 0, the pair (Mf , Lf ) = (Mf (α), Lf (α)) satisfies (A3) and

inf
α>0
{Mf (α)2 + ε̄Lf (α)} ≤ 2

(
M2
ν + ε̄

2ν
ν+1L

2
ν+1
ν

)
. (12)

As a consequence,

Tε̄ ≤
√

2

(
Mν + ε̄

ν
ν+1L

1
ν+1
ν

)
. (13)

We now make two remarks about (10). First, a trivial example of a pair (f, h) satisfying (10) is
f(·) = Mν‖·‖+Lν‖·‖ν+1/(ν+1) and h ≡ 0. More generally, the sum of an Mf -Lipschitz continuous
function on domh and a function whose gradient is ν-Hölder continuous on domh satisfies (10).
Second, if (10) holds with Mν = 0, it follows that f is differentiable on domh and its gradient is
ν-Hölder continuous on domh. Algorithms for solving instances of (1) satisfying (10) with Mν = 0
have been studied for example in [11, 19].

Finally, for a given tolerance ε̄ > 0, it is said that an algorithm for solving (1) has ε̄-iteration
complexity O(T ) if its total number of iterations until it obtains a ε̄-solution is bounded by C(T+1)
where C > 0 is a universal constant.

2.2 Review of the CS-CS method

We start by reviewing the CS-CS method. The CS-CS method with initial point x0 ∈ domh and
constant prox stepsize λ > 0, denoted by CS-CS(x0, λ), recursively computes its iteration sequence
{xj} according to

xj+1 = argmin
u∈Rn

{
`f (u;xj) + h(u) +

1

2λ
‖u− xj‖2

}
∀j ≥ 0. (14)

For any given universal constant C > 1, pair (Mf , Lf ) satisfying (A3), and tolerance ε̄ > 0, it
follows from Proposition C.1 that CS-CS(x0, λ) with any stepsize λ such that ε̄/[4C(M2

f + ε̄Lf )] ≤
λ ≤ ε̄/[4(M2

f + ε̄Lf )], has ε̄-iteration complexity given by

O

(
min

{
(M2

f + ε̄Lf )d2
0

ε̄2
,

(
M2
f + ε̄Lf

µε̄
+ 1

)
log

(
µd2

0

ε̄
+ 1

)}
+ 1

)
(15)

(see our slightly modified definition of O(·) in Subsection 1.1) with the convention that the second
term is equal to the first one when µ = 0. (It is worth noting that the second term converges to
the first one as µ ↓ 0.)

In order to obtain the ε̄-iteration complexity (15), the CS-CS method requires the knowledge of
(Mf , Lf ) satisfying (A3) to compute a suitable λ. Subsection C.2 presents an adaptive variant of the
CS-CS method which does not require such knowledge. More precisely, this adaptive variant starts
with any stepsize λ0 > 0, employs a backtracking procedure to compute a nonincreasing sequence
{λj} such that each λj satisfies a key condition, and recursively performs iterations similar to (14).
It is shown in Proposition C.3 that, without the prior knowledge of Tε̄, the adaptive variant of
CS-CS has ε̄-iteration complexity given by

O
(

min

{
T 2
ε̄ d

2
0

ε̄2
,

(
T 2
ε̄

µε̄
+ 1

)
log

(
µd2

0

ε̄
+ 1

)}
+ 1

)
. (16)

It is worth noting that bound (16) is better than the one for the CS-CS method (i.e., (15)) due to
the fact that it is expressed in terms of the tighter quantity T 2

ε̄ instead of the estimate M2
f + ε̄Lf .
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3 The GPB Framework

This section contains three subsections. Subsection 3.1 describes a generic bundle update scheme
that is used to perform the null iterations of a method in the GPB framework. Subsection 3.2
presents the GPB framework and Subsection 3.3 describes the main complexity results about it.

3.1 Bundle update schemes

Bundle methods discussed in the literature rely on different bundle update schemes, i.e., schemes
for updating the bundle function Γ in (2) which approximates the objective function of (1). Instead
of focusing on a specific bundle update scheme, we describe in this subsection a generic scheme
which includes many of the ones considered in the literature. This subsection also gives the details
of the three concrete examples (E1)-(E3) of the generic bundle update scheme.

We start by describing the bundle update (BU) blackbox.

BU

Input: (λ, τ) ∈ R++× (0, 1) and (xc, x,Γ) ∈ Rn×Rn×Convµ (Rn) such that Γ ≤ φ and (2) holds.

• find function Γ+ such that

Γ+ ∈ Convµ (Rn), τ Γ̄(·) + (1− τ)[`f (·;x) + h(·)] ≤ Γ+(·) ≤ φ(·), (17)

where `f (·; ·) is as in (6) and Γ̄(·) is such that

Γ̄ ∈ Convµ (Rn), Γ̄(x) = Γ(x), x = argmin
u∈Rn

{
Γ̄(u) +

1

2λ
‖u− xc‖2

}
. (18)

Output: Γ+.

Clearly, the above update scheme does not completely determine Γ+ but rather gives minimal
conditions on it which are suitable for the complexity analysis of this paper.

We now describe three concrete update schemes (E1), (E2), and (E3) which are special ways of
implementing BU. Unless otherwise stated, it is assumed that their input is the same as in BU.

(E1) one-cut scheme: This scheme obtains Γ+ as in (3). It is easy to see that if this update is
used recursively then Γ is always of the form

Γ(·) =
∑
x∈X

αx`f (·;x) + h(·) (19)

where X is a finite set in domh and {αx : x ∈ X} ⊂ R++ are scalars such that
∑

x∈X αx = 1.

(E2) two-cuts scheme: For this scheme, it is assumed that Γ has the form

Γ = max{Af , `f (·;x−)}+ h (20)

where h ∈ Convµ (Rn) and Af is an affine function satisfying Af ≤ f . In view of (2), it can
be shown that there exists θ ∈ [0, 1] such that

1

λ
(x− xc) + ∂h(x) + θ∇Af + (1− θ)f ′(x−) 3 0, (21)

θAf (x) + (1− θ)`f (x;x−) = max{Af (x), `f (x;x−)}. (22)
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The scheme then sets
A+
f (·) := θAf (·) + (1− θ)`f (·;x−) (23)

and outputs the function Γ+ defined as

Γ+(·) := max{A+
f (·), `f (·;x)}+ h(·). (24)

(E3) multiple-cuts scheme: For this scheme, it is assumed that Γ of the form Γ = Γ(·;B) where
B ⊂ Rn is a finite set (i.e., the current bundle set) and Γ(·;B) is defined as in (4). This
scheme chooses the next bundle set B+ so that

B(x) ∪ {x} ⊂ B+ ⊂ B ∪ {x} (25)

where
B(x) := {b ∈ B : `f (x; b) + h(x) = Γ(x)}, (26)

and then output Γ+ = Γ(·;B+).

It is interesting to note that (24), (25) and the definition of Γ+ in (E3) imply that the updates
Γ+ output by schemes (E2) and (E3) have the property that Γ+(·) is minorized by `f (·;x) + h(·)
where x is as in (2). On the other hand, Γ+ output by (E1) does not necessarily has this property.

We now make some remarks to argue that all the update schemes above are special implemen-
tations of BU. It can be easily seen that the update Γ+ in (E1), together with Γ̄ = Γ, satisfies (17)
and (18), and hence that this Γ+ is a special way of implementing BU. On the other hand, the
proofs that the updates Γ+ of (E2) and (E3) are special implementations of BU are more involved
and are given in Propositions D.1 and D.2, respectively.

3.2 The GPB framework

This subsection states the GPB framework based on the BU blackbox presented in Subsection 3.1.
It also gives several remarks about GPB and discusses how it relates to the classical proximal point
method.

Before stating GPB, we first give a brief description for its j-th iteration. Given a prox-center
xcj , it attempts to approximately solve the prox subproblem

m∗j := min

{
φ(u) +

1

2λ
‖u− xcj‖2 : u ∈ Rn

}
(27)

(according to a certain termination criterion outlined below) by computing the exact solution xj
of the approximate prox subproblem of the form (2) with xc = xcj and with bundle function Γ = Γj
obtained for example according to one of the update schemes (E1), (E2) or (E3) described above.
If it succeeds then xcj+1 is set to be xj ; otherwise, xcj+1 is set to be xcj . Finally, j is updated to j+1
and the above iteration is repeated.

The method outlined above can be viewed as an inexact proximal point method. More specif-
ically, consecutive iterations j such that xcj remains the same approximately solve the prox sub-
problem (27) (which does not depend on j). When that happens at an iteration j, the prox-center
for the next iteration j + 1 is then updated to a new one.

We now describe the aforementioned termination criterion. Given δ > 0, it checks whether xj
and the iterate yj defined as

yj ∈ Argmin {φ(x) : x ∈ {x0, x1, . . . , xj}} . (28)

8



satisfies

tj := φ(yj)− Γj(xj)−
1

2λ
‖xj − xcj‖2 ≤ δ.

We are now ready to state GPB.

GPB

0. Let x0 ∈ domh, λ > 0, ε̄ > 0 and τ ∈ (0, 1) be given such that

τ

1− τ
≥ 8λT 2

ε̄

(1 + λµ)ε̄
(29)

where Tε̄ is as in (9), and set y0 = x0, t0 = 0 and j = 1;

1. if tj−1 ≤ ε̄/2, then perform a serious update, i.e., set xcj = xj−1 and find Γj such that

Γj ∈ Convµ (Rn), `f (·;xj−1) + h ≤ Γj ≤ φ; (30)

else, perform a null update, i.e., set xcj = xcj−1 and let Γj be the output of the BU blackbox
with input (λ, τ) and (xc, x,Γ) = (xcj−1, xj−1,Γj−1);

2. compute

xj = argmin
u∈Rn

{
Γj(u) +

1

2λ
‖u− xcj‖2

}
, (31)

choose yj according to (28), and set

mj = Γj(xj) +
1

2λ
‖xj − xcj‖2, tj = φ(yj)−mj ; (32)

3. set j ← j + 1 and go to step 1.

An iteration j such that tj ≤ ε̄/2 is called a serious iteration in which case xj (resp., yj) is
called a serious iterate (resp., auxiliary serious iterate); otherwise, j is called a null iteration. Let
j1 ≤ j2 ≤ . . . denote the sequence of all serious iterations and define the k-th cycle Ck to be the
iterations j such that jk−1 + 1 ≤ j ≤ jk, i.e.,

Ck := {jk−1 + 1, . . . , jk} (33)

where j0 := 0. Hence, only the last iteration of a cycle (which can be the first one if Ck contains
only one iteration) is serious.

We make some basic remarks about GPB. First, we refer to it as a framework since it does
not completely specify how some algorithmic quantities are generated. The framework rather gives
minimal conditions on these quantities which enables us to establish complexity bounds for all
specific instances of it in a unified manner. Second, in view of (30) or the fact that the output of
BU satisfies (17), it follows that

Γj ≤ φ, Γj ∈ Convµ (Rn) ∀j ≥ 1. (34)
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Third, in view of the definition of Ck and the way the prox-center iterates are generated, it is easy
to see that for every k ≥ 1, we have

xcj = xjk−1
∀j ∈ Ck. (35)

In words, all prox-centers in the k-th cycle is equal to the most recent serious iterate. Fourth,
schemes (E1)-(E3) in the previous subsection provide three possible concrete ways of implementing
the BU blackbox in step 1. Fifth, although GPB does not specify a termination criterion for the
sake of shortness, all iteration-complexity bounds established in this paper are relative to the effort
of obtaining a ε̄-solution of (1). Finally, although iteration-complexity bounds for GPB can also
be established for other termination criteria (see for example Section 6 of [15]), we have omitted
the details of their derivation for the sake of shortness.

We now make some observations about possible simple ways of choosing the bundle function
Γj in a serious update. Specifically, two simple ways are: 1) Γj = `f (·;xj−1) + h, and 2) Γj =
max{Γj−1, `f (·;xj−1) + h}. Moreover, under the assumption that every call to BU during a null
update is carried out using (E2) (resp., (E3)), another way to obtain Γj during a serious update is
to also use update (E2) (resp., (E3)). In view of the observation in the second last paragraph in
Subsection 3.1, it follows that the latter way yields a bundle function Γj satisfying (30).

We now discuss the role played by the parameter τ of GPB. First, τ is only used in step 1
as input to the BU blackbox to obtain Γj . Second, even though the analysis of GPB depends on
a scalar τ satisfying (29), the implementations of some specific instances of GPB do not require
knowledge of such τ . For instance, since the updates (E2) and (E3) do not depend on τ , the GPB
instances 2C-PB and MC-PB do not depend on τ either. (Recall the meaning of 1C-PB, 2C-PB
and MC-PB given in the sentence following (E3) in Section 1.) Third, the GPB instance 1C-PB
requires a scalar τ satisfying (29) since the update (E1) depends on τ (see (3)). Finally, (29) implies
that τ has to be sufficiently close to one which, in the context of (E1), means that the new bundle
Γj is closer to Γj−1 than the new cut `f (·;xj−1) + h(·) in view of the nature of the one-cut scheme
(E1) (see relation (3)).

We finally briefly discuss how accurately GPB solves the prox problem (27). Since Γj ≤ φ, it
follows from the definition of mj in (32) that mj ≤ m∗j , and hence that

0 ≤ φ(yj) +
1

2λ
‖yj − xcj‖2 −m∗j

≤ φ(yj) +
1

2λ
‖yj − xcj‖2 −mj = tj +

1

2λ
‖yj − xcj‖2. (36)

Thus, if j is a serious iteration, or equivalently, tj ≤ ε̄/2, it follows that yj is a ε̄j-solution of (27)
where

ε̄j :=
ε̄

2
+

1

2λ
‖yj − xcj‖2.

The sequence of consecutive null iterations between two serious ones can be regarded as an iterative
procedure to compute the aforementioned ε̄j-solution. More details of such an interpretation can
be found in Subsection 3.1 of [15].

Observe that even though the right-hand side of (36) contains two terms, our serious step
condition used in GPB only checks the magnitude of the first one. It is possible to modify GPB to
one whose serious step condition controls the magnitude of the right-hand side of (36). However,
since the latter serious step condition is more restrictive, the resulting method will perform more
null iterations, and hence its practical performance might not be as good as the one proposed in
this paper.
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We end this subsection by stating a general complexity bound which applies to any GPB
variant. It assumes that the triple (Mf , Lf , µ) is known so that a parameter τ satisfying (29) can
be computed.

Theorem 3.1. Let universal constant C > 0, initial point x0 ∈ domh, tolerance ε̄ > 0, and
instance (f, f ′;h) of (1) satisfying (A1)-(A3) for some parameter triple (Lf ,Mf , µ) ∈ R3

+ be given.
Then, if λ satisfies

ε̄

C(M2
f + ε̄Lf )

≤ λ ≤ Cd2
0

ε̄
, (37)

and τ is given by

τ =

[
1 +

(1 + λµ)ε̄

8λ(M2
f + ε̄Lf )

]−1

, (38)

then any variant of GPB with input (x0, λ, ε̄, τ) obtains a ε̄-solution of the above instance in a
number of iterations bounded (up to a logarithmic term) by (5).

3.3 Iteration-complexity results for τ-free GPB variants

This subsection considers the subclass of GPB methods, referred to as the τ -free GPB subclass,
which do not depend on τ (and hence do not need τ as input), and derives improved iteration-
complexity bounds for it which follow as immediate consequences of Theorem 3.1. Since 2C-PB
and MC-PB do not depend on τ , the results below apply to both of them.

Corollary 3.2. Let universal constant C > 0, initial point x0 ∈ domh, and tolerance ε̄ > 0 be
given, and consider an instance (f, f ′;h) of (1) satisfying (A1)-(A3). Then, any variant of the
τ -free GPB subclass with input (x0, λ, ε̄) satisfying

ε̄

CT 2
ε̄

≤ λ ≤ Cd2
0

ε̄
(39)

where Tε̄ is as in (9) obtains a ε̄-solution of the above instance in a number of iterations bounded
(up to a logarithmic term) by (16).

Proof: Observe that any variant of the τ -free GPB subclass can be viewed as an instance of GPB
with input τ satisfying the equality in (29) since it does not depend on τ . Hence, it follows from
(16) and Theorem 3.1 with (Lf ,Mf ) replaced by (L̄f , M̄f ) that the conclusion of the corollary
holds.

Recall that Proposition 2.1 shows that if f satisfies (10) then it satisfies (A3) with (Mf , Lf ) =
(Mf (α), Lf (α)). The following result is a consequence of Corollary 3.2 when condition (10) holds
in place of (A3). We omit its proof since it directly follows from Corollary 3.2 and (13).

Corollary 3.3. Let universal constant C > 0, initial point x0 ∈ domh, and tolerance ε̄ > 0 be
given, and consider an instance (f, f ′;h) of (1) such that (A1), (A2), and condition (10) hold for
some quadruple (Mν , Lν , µ, ν) ∈ R3

+ × (0, 1). Then, any variant of the τ -free GPB subclass with
input (x0, λ, ε̄) satisfying (39) obtains a ε̄-solution of the above instance in a number of iterations
bounded (up to a logarithmic term) by

O

min

M2
ν d

2
0

ε̄2
+

(
Lν
ε̄

) 2
ν+1

d2
0,

M2
ν

µε̄
+

L
2
ν+1
ν

µε̄
1−ν
1+ν

+ 1

 log

(
µd2

0

ε̄
+ 1

)+ 1

 . (40)
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We now make two remarks about Corollary 3.3. First, when Mν = 0, bound (40) reduces to

O

min


(
Lν
ε̄

) 2
ν+1

d2
0,

 L
2
ν+1
ν

µε̄
1−ν
1+ν

+ 1

 log

(
µd2

0

ε̄
+ 1

)+ 1

 .

Second, when µ = 0, the above bound agrees with the one obtained for the primal universal method
of [19] (see (2.20) therein).

For the sake of comparing the results of this paper with the ones obtained in [15], we now state
another consequence of Theorem 3.1 in which an alternative ε̄-iteration complexity for τ -free GPB
instances applied to instances of (1) with M̄f,0 finite. (Recall the definition of M̄f,0 is in the line
below (9).)

Corollary 3.4. Let universal constant C > 0, initial point x0 ∈ domh, and tolerance ε̄ > 0 be
given, and consider an instance (f, f ′;h) of (1) such that (A1)-(A3) holds and M̄f,0 is finite. Then,
any variant of the τ -free GPB subclass with input (x0, λ, ε̄) satisfying

ε̄

C(M̄f,0)2
≤ λ ≤ Cd2

0

ε̄
, (41)

obtains a ε̄-solution of the above instance in a number of iterations bounded (up to a logarithmic
term) by

O
(

min

{
(M̄f,0)2d2

0

ε̄2
,

(
(M̄f,0)2

µε̄
+ 1

)
log

(
µd2

0

ε̄
+ 1

)}
+ 1

)
. (42)

Proof: Observe that any variant of the τ -free GPB subclass can be viewed as an instance of GPB
with input τ = [1 + (1 + λµ)ε̄/(8λM̄2

f,0)]−1 since it does not depend on τ . Since the pair (0, M̄f,0)

satisfies conditions (A1)-(A3), it then follows from (16) with Tε̄ replaced by M̄f,0 and Theorem 3.1
with (Lf ,Mf ) replaced by (0, M̄f,0) that the conclusion of the corollary holds.

Before comparing the RPB method of [15] with the τ -free GPB instances of the paper, we first
make two remarks about the first one in regards to the latter ones. First, the RPB method of
[15] with δ = ε̄/2 can be viewed as a special case of τ -free GPB since: RPB uses the inequality
tj−1 ≤ ε̄/2 to decide whether to perform a serious or null update; and, its serious and null updates,
the latter of which are based on (E3), fulfill the requirements of step 1 of GPB (see Lemma D.1).
Second, while the RPB method of [15] deals with instances of (1) such that M̄f,0 is finite (i.e., the
nonsmooth setting), the analysis presented in this paper for τ -free GPB applies to the larger class
of instances of (1) such that Tε̄ is finite (i.e., the hybrid or smooth/nonsmooth setting).

We now compare Corollary 3.4 of this paper with Corollary 3.2 of [15]. Indeed, it follows
from Corollary 3.2 of [15] with Mf = M̄f,0 that RPB has ε̄-iteration complexity given by (42) as
long d0/M̄f,0 ≤ λ ≤ Cd2

0/ε̄ and µ ≤ CM̄f,0/d0. On the other hand, Corollary 3.4 of this paper
establishes complexity bound (42) for any λ lying in the larger range (41) without imposing any
condition on µ.

We now compare Corollary 3.4 of this paper with Corollary 3.3 of [15]. Indeed, it follows from
Corollary 3.3 of [15] with Mf = M̄f,0 that RPB has ε̄-iteration complexity O((M̄f,0)2d2

0/ε̄
2 + 1) as

long (41) holds and h is (CM̄f,0)-Lipschitz continuous. On the other hand, Corollary 3.4 of this
paper establishes the (possibly sharper) ε̄-iteration complexity (42) for any λ in the same range
without imposing any condition Lipschitz continuity on h.

Even though 1C-PB depends on τ , it can be easily seen that its iteration-complexity is similar
to the one of Corollary 3.2 if τ is close to the one satisfying the equality in (29). Section 5 describes
an adaptive variant of 1C-PB which adaptively chooses τ = τj such that a key condition holds in
every iteration j and which has the same ε̄-iteration complexity as that of Corollary 3.2.
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4 Complexity Analysis of GPB

This section consists of three subsections. The first one provides a bound on the number of serious
iterates generated by the GPB framework. The second one derives a preliminary complexity bound
on the number of possible consecutive null iterates. Finally, the last subsection combines the
aforementioned bounds to obtain a complexity bound on the total number of iterations performed
by any algorithm in the GPB framework with prox stepsize λ arbitrarily chosen. Moreover, it also
provides the proof of Theorem 3.1 as a consequence of this general complexity result.

4.1 Bounding the number of serious iterates

We start by introducing some notation and definitions. Recall from the paragraph following GPB
that j1 < j2 < . . . denote the serious iterations of the GPB framework. Now, define x̂0 := x0, and
for every k ≥ 1, let

x̂k := xjk , ŷk := yjk , Γ̂k := Γjk , m̂k := mjk . (43)

The following result summarizes the basic properties of the above “hat” entities that follow
as an immediate consequence of their definitions and the description of the GPB framework. It
is worth noting that the complexity results developed in this subsection apply not only to the
sequences defined in (43), but also to arbitrary sequences {x̂k}, {ŷk} and {Γ̂k} satisfying the basic
properties stated below.

Lemma 4.1. The following statements about GPB hold for every k ≥ 1:

a) Γ̂k ∈ Convµ (Rn) and Γ̂k ≤ φ;

b) (x̂k, m̂k) is the pair of optimal solution and optimal value of

min

{
Γ̂k(u) +

1

2λ
‖u− x̂k−1‖2 : u ∈ Rn

}
;

c) there holds φ(ŷk)− m̂k ≤ ε̄/2.

Proof: a) This statement follows from (34) and the definition of Γ̂k in (43).
b) It follows from (31) with j = jk, the first identity in (32) with j = jk, and relations (35) and

(43), that b) holds.
c) Since jk is a serious iteration, we have that tjk ≤ ε̄/2. Using this conclusion, (43), and the

definition of tj in (32), we conclude that c) holds.
It is worth noting that a), b), and c) can be viewed only as properties about the sequences {Γ̂k}

and {ŷk}, and the initial point x̂0, since {x̂k : k ≥ 1} is uniquely determined by {Γ̂k}.
The next result provides an important recursive formula for the sequences in (43) and derives

some important consequences that follow from it.

Lemma 4.2. Let u ∈ domh be given and define

λµ =
λ

1 + λµ
. (44)

Then, the following statements hold:
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a) for every k ≥ 1, we have

φ(ŷk)− φ(u) ≤ 1

2λ
‖x̂k−1 − u‖2 −

1

2λµ
‖x̂k − u‖2 +

ε̄

2
; (45)

b) we have min1≤k≤K{φ(ŷk)− φ(u)} ≤ ε̄ for every index K satisfying

K ≥ min

{
‖x0 − u‖2

λε̄
,

1

µλµ
log

(
µ‖x0 − u‖2

ε̄
+ 1

)}
;

c) for every k ≥ 1, we have ‖x̂k − u‖2 ≤ ‖x0 − u‖2 + λkε̄.

Proof: a) It follows from Lemma 4.1(a) that Γ̂k is µ-convex, and hence that the objective function
in Lemma 4.1(b) is (µ+ 1/λ)-strongly convex. Using this observation, Lemma 4.1(b) and Theorem
5.25(b) of [2] with f = Γ̂k + ‖ · −x̂k−1‖2/(2λ), x∗ = x̂k and σ = µ + 1/λ, we have for the given
u ∈ domh and every k ≥ 1,

m̂k +
1

2

(
µ+

1

λ

)
‖u− x̂k‖2 ≤ Γ̂k(u) +

1

2λ
‖u− x̂k−1‖2. (46)

Using the above inequality and Lemma 4.1(a) and (c), we conclude that

φ(ŷk)− φ(u) +
1

2

(
µ+

1

λ

)
‖x̂k − u‖2 ≤ φ(ŷk)− Γ̂k(u) +

1

2

(
µ+

1

λ

)
‖x̂k − u‖2

(46)

≤ φ(ŷk)− m̂k +
1

2λ
‖u− x̂k−1‖2 ≤

ε̄

2
+

1

2λ
‖u− x̂k−1‖2

and hence that a) holds.
b)-c) Since (45) is a special case of inequality (77) in which

ηk = φ(ŷk)− φ(u), αk =
1

2λ
‖x̂k − u‖2, θ = 1 + λµ, δ =

ε̄

2
,

it follows from Corollary B.2, the fact that x̂0 = x0 and the definition of λµ in (44) that b) and c)
hold.

We are now ready to present the main result of this subsection which provides a bound on the
number of serious iterates generated by GPB until it obtains a ε̄-solution of (1).

Proposition 4.3. The number of serious iterations K performed by GPB until it obtains for the
first time an auxiliary serious iterate ŷK such that φ(ŷK)− φ∗ ≤ ε̄ is bounded by

min

{
d2

0

λε̄
,

1

µλµ
log

(
µd2

0

ε̄
+ 1

)}
+ 1 (47)

where λµ is as in (44). Moreover,

‖x̂k − x∗0‖ ≤
√

2d0 ∀k ∈ {0, 1, . . . ,K − 1}. (48)

Proof: Lemma 4.2(b) with u = x∗0 and the definition of d0 in (8) imply the first conclusion of the
proposition, and hence that K − 1 ≤ d2

0/(λε̄). This conclusion, together with Lemma 4.2(c) with
u = x∗0, then implies (48).

We note that Proposition 4.3 holds for any λ > 0.
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4.2 Bounding the number of consecutive null iterates

Our goal in this subsection is to show that the set Ck is finite and also to provide a bound on its
cardinality in terms of M̄f , L̄f , λ, ε̄, d0, and τ .

We start by noting that (35), the definition of mj in (32), and the first identity in (43), imply
that

mj = Γj(xj) +
1

2λ
‖xj − x̂k−1‖2 ∀j ∈ Ck. (49)

The first result below describes some basic properties of a sequence of auxiliary bundle functions
{Γ̄j} whose existence is guaranteed by the nature of the BU blackbox.

Lemma 4.4. For every j ∈ Ck \ {jk}, the following statements hold:

a) there exists function Γ̄j(·) such that

τ Γ̄j(·) + (1− τ)[`f (·;xj) + h(·)] ≤ Γj+1(·) ≤ φ(·), (50)

Γ̄j ∈ Convµ (Rn), Γ̄j(xj) = Γj(xj), xj = argmin
u∈Rn

{
Γ̄j(u) +

1

2λ
‖u− x̂k−1‖2

}
; (51)

b) if λµ is as in (44), then for every u ∈ Rn, we have

Γ̄j(u) +
1

2λ
‖u− x̂k−1‖2 ≥ mj +

1

2λµ
‖u− xj‖2. (52)

Proof: a) This statement immediately follows from (17), (18), and the facts that Γj+1 is the output
of the BU blackbox with input (λ, τ) and (xc, x,Γ) = (xcj , xj ,Γj) (see the null update in step 1 of
GPB) and xcj = x̂k−1.

b) It follows from Γ̄j ∈ Convµ (Rn) and the definition of λµ in (44) that Γ̄j + ‖ · −x̂k−1‖2/(2λ)
is (λ−1

µ )-strongly convex. Using the second identity in (51) and Theorem 5.25(b) of [2] with f =
Γ̄j + ‖ · −x̂k−1‖2/(2λ), x∗ = xj and σ = λ−1

µ , we have for every u ∈ domh,

Γ̄j(u) +
1

2λ
‖u− x̂k−1‖2 ≥ Γ̄j(xj) +

1

2λ
‖xj − x̂k−1‖2 +

1

2λµ
‖u− xj‖2.

The statement follows from the above inequality, the first identity in (51), and relation (49).
The following technical result provides an important recursive formula for {mj} which is used

in Lemma 4.6 to give a recursive formula for {tj}. It is worth observing that its proof uses for the
first time the condition (29).

Lemma 4.5. Suppose (29) holds, then for every j ∈ Ck \ {jk}, we have

mj+1 ≥ τmj + (1− τ)

[
`f (xj+1;xj) + h(xj+1) +

(
L̄f
2

+
4M̄2

f

ε̄

)
‖xj+1 − xj‖2

]
. (53)

Proof: First, it immediately follows from (29) and the definitions of Tε̄ and λµ in (9) and (44),
respectively, that

τ

1− τ
≥

8λ(M̄2
f + ε̄L̄f )

(1 + λµ)ε̄
≥ λµ

(
L̄f +

8M̄2
f

ε̄

)
. (54)
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Using (49), (50), the fact that τ < 1, and (52) with u = xj+1, we have

mj+1
(49)
= Γj+1(xj+1) +

1

2λ
‖xj+1 − x̂k−1‖2

(50)

≥ (1− τ)[`f (xj+1;xj) + h(xj+1)] + τ

(
Γ̄j(xj+1) +

1

2λ
‖xj+1 − x̂k−1‖2

)
(52)

≥ (1− τ)[`f (xj+1;xj) + h(xj+1)] + τ

(
mj +

1

2λµ
‖xj+1 − xj‖2

)
which, together with (54), implies (53).

The next result, which plays an important role in the analysis of the null iterates, establishes a
key recursive formula for the sequence {tj} defined in (32).

Lemma 4.6. For every j ∈ Ck \ {jk}, we have

tj+1 −
ε̄

4
≤ τ

(
tj −

ε̄

4

)
. (55)

Proof: Using (7) with (Mf , Lf , x, y) = (M̄f , L̄f , xj+1, xj) and the fact that φ = f + h, we have

`f (xj+1;xj) + h(xj+1) +
L̄f
2
‖xj+1 − xj‖2 ≥ φ(xj+1)− 2M̄f‖xj+1 − xj‖. (56)

This inequality and (53) imply that

mj+1 − τmj

(53)

≥ (1− τ)

[
`f (xj+1;xj) + h(xj+1) +

(
L̄f
2

+
4M̄2

f

ε̄

)
‖xj+1 − xj‖2

]
(56)

≥ (1− τ)φ(xj+1) +
1− τ
ε̄

(
4M̄2

f ‖xj+1 − xj‖2 − 2M̄f ε̄‖xj+1 − xj‖
)

≥ (1− τ)φ(xj+1)− (1− τ)ε̄

4
, (57)

where the last inequality is due to the inequality a2 − 2ab ≥ −b2 with a = 2M̄f‖xj+1 − xj‖
and b = ε̄/2. Using the above inequality and the definitions of yj+1 and tj+1 in (28) and (32),
respectively, we conclude that

tj+1
(32)
= φ(yj+1)−mj+1

(57)

≤ φ(yj+1)− τmj − (1− τ)φ(xj+1) +
(1− τ)ε̄

4
(32)
= φ(yj+1)− τ [φ(yj)− tj ]− (1− τ)φ(xj+1) +

(1− τ)ε̄

4
(28)

≤ τtj +
(1− τ)ε̄

4
,

and that the lemma holds.
The next lemma gives a uniform bound on tjk+1 which is used in Proposition 4.8 to derive a

uniform bound on the maximum number of consecutive null iterates generated by GPB. Its proof
uses Lemma A.3 in Appendix A where a crucial bound on ‖xjk+1− x̂k‖ = ‖xjk+1−xjk‖ is obtained.

Lemma 4.7. For every k ≥ 0, we have tjk+1 ≤ t̄ where

t̄ := M̄2
f + 4(L̄f + 2)(max{1, 2λL̄f}d0 + λM̄f )2. (58)
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Proof: Using both (28) and (32) with j = jk + 1, relation (49), and the facts that φ = f + h and
Γjk+1 ≥ `f (·;xjk) + h (see the serious update in step 1 of GPB), we have

tjk+1
(32)
= φ(yjk+1)−mjk+1

(28),(49)

≤ φ(xjk+1)− Γjk+1(xjk+1) ≤ f(xjk+1)− `f (xjk+1;xjk)

(7)

≤ 2M̄f‖xjk+1 − xjk‖+
L̄f
2
‖xjk+1 − xjk‖

2 ≤ M̄2
f +

(
L̄f
2

+ 1

)
‖xjk+1 − xjk‖

2

where the third inequality is due to (7) with (Mf , Lf , x, y) = (M̄f , L̄f , xjk+1, xjk), and the last
inequality is due to the fact that 2ab ≤ a2 + b2 for every a, b ∈ R. The conclusion of the lemma
now follows from the above inequality and Lemma A.3 in Appendix A.

We are now ready to present the main result of this subsection where a bound on |B(`0)| is
obtained in terms of τ , t̄ and ε̄.

Proposition 4.8. The set Ck is finite and

|Ck| ≤
1

1− τ
log

(
4t̄

ε̄

)
+ 1 (59)

where t̄ is as in (58) and τ is as in step 0 of GPB. In particular, if τ is as in (38), then

|Ck| ≤

(
1 +

8λµ(M2
f + ε̄Lf )

ε̄

)
log

(
4t̄

ε̄

)
+ 1. (60)

Proof: Using the inequality τ ≤ eτ−1, and Lemmas 4.6 and 4.7, we then conclude that for every
j ∈ Ck,

tj −
ε̄

4
≤ τ j−jk−1−1

(
tjk−1+1 −

ε̄

4

)
≤ τ j−jk−1−1tjk−1+1 ≤ e(τ−1)(j−jk−1−1)t̄.

Using this observation, and noting that step 1 of GPB and the definition of Ck imply that tj > ε̄/2
for every j ∈ Ck \ {jk}, it is now easy to see that (59) follows. Since τ as in (38) satisfies (29), it
immediately follows that (60) holds in view of (38) and (59).

4.3 The total iteration-complexity of GPB

This subsection establishes the total iteration-complexity of GPB.
We start by providing a more general version of Theorem 3.1 which does not impose any

condition on λ.

Proposition 4.9. Let (x0, λ, ε̄) ∈ domh×R++×R++ and τ as in (38) be given. Then, any variant
of GPB with input (x0, λ, ε̄, τ) obtains a ε̄-solution of (1) in a number of iterations bounded by[(

1 +
8λµ(M2

f + ε̄Lf )

ε̄

)
log

(
4t̄

ε̄

)
+ 1

] [
min

{
d2

0

λε̄
,

1

µλµ
log

(
µd2

0

ε̄
+ 1

)}
+ 1

]
(61)

where t̄ is as in (4.7).

Proof: This proposition is a direct consequence of Propositions 4.3 and 4.8.
Since τ -free GPB instances do not depend on τ , we can choose τ as in (38) with (Mf , Lf )

replaced by (M̄f , L̄f ). Hence, the ε̄-iteration complexity for τ -free GPB instances is (61) with
M2
f + ε̄Lf replaced by Tε̄.
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Proposition 4.9 allows us to make one additional remark about Theorem 3.1, namely, in the
unusual case where the range of λ (39) is empty, i.e., C2(M2

f + ε̄Lf )d2
0/ε̄

2 < 1, it can be easily seen

that (61), up to a logarithmic term, reduces to O([κ+ 1][C−2κ−1 + 1]) where κ := λ(M2
f + ε̄Lf )/ε̄.

Hence, the ε̄-iteration complexity of GPB with λ = ε̄/[C(M2
f + ε̄Lf )] becomes O((1+C−1)2), which

shows that the instances of (1) for which (39) does not hold can be trivially solved by GPB with
a proper choice of the prox stepsize.

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1 Defining

a =
λµ(M2

f + ε̄Lf )

ε̄
, b = min

{
d2

0

λε̄
,

1

µλµ
log

(
µd2

0

ε̄
+ 1

)}
, (62)

and using (61), we conclude that O((a + 1)(b + 1)) is a ε̄-iteration complexity bound for GPB
up to a logarithmic term. We break the proof into two cases: 1) µ ≤ C(M2

f + ε̄Lf )/ε̄2; and 2)

µ ≥ C(M2
f + ε̄Lf )/ε̄2.

First, assume that case 1 holds. Using the definition of λµ in (44), the fact that µ ≤ C(M2
f +

ε̄Lf )/ε̄2, and the first inequality in (37), we have

1

λµ
=

1

λ
+ µ ≤

2C(M2
f + ε̄Lf )

ε̄
, (63)

and hence a ≥ 1/(2C). Moreover, it follows from the definition of b in (62) and the second inequality
in (37) that

b ≥ min

{
1

C
,

1

µλµ
log

(
λµ

C
+ 1

)}
. (64)

Using the fact that log(1 + t) ≥ t/(1 + t) for every t > 0, we easily see that log(1 + t) ≥ t/2 if t ≤ 1
and log(1 + t) ≥ log 2 > 0 if t ≥ 1. This observation with t = λµ/C and the definition of λµ in (44)
then imply that

1

µλµ
log

(
λµ

C
+ 1

)
≥ min

{
λ

2λµC
,

(
1 +

1

λµ

)
log 2

}
≥ min

{
1

2C
, log 2

}
,

and hence that b ≥ min{1/(2C), log 2}. This inequality and the fact that a ≥ 1/(2C) imply that
O((a+ 1)(b+ 1)) is equal to O(ab+ 1). Using this observation, the definitions of a and b in (62),
and the fact that λµ ≤ λ, we then conclude that the bound O((a + 1)(b + 1)) reduces to (5), and
hence that the theorem holds for case 1.

Assume now that case 2 holds. Then, it follows from the definition of λµ in (44) and the first
inequality in (37) that

1

λµ
= µ+

1

λ
≥ µ ≥

C(M2
f + ε̄Lf )

ε̄
, λµ ≥ 1. (65)

The first inequality then implies that a ≤ 1/C in view of the first identity in (62), and hence that
O((a+ 1)(b+ 1)) is O(b+ 1). We will now derive a bound on b. Indeed, using the definitions of b
and λµ in (62) and (44), respectively, we have

b = min

{
d2

0

λε̄
,

(
1 +

1

λµ

)
log

(
µd2

0

ε̄
+ 1

)}
≤ min

{
C(M2

f + ε̄Lf )d2
0

ε̄2
, 2 log

(
µd2

0

ε̄
+ 1

)}
(66)
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where the inequality is due to the second inequality in (65) and the first inequality in (37). Hence,
the bound O(b+ 1) becomes

O

(
min

{
(M2

f + ε̄Lf )d2
0

ε̄2
, log

(
µd2

0

ε̄
+ 1

)}
+ 1

)
.

Finally, it is easy to see that bound (5) becomes the above bound when µ ≥ C(M2
f + ε̄Lf )/ε̄2, and

hence that the theorem holds for case 2.
It is worth pointing out how condition (37) on the prox stepsize is used in the proof of The-

orem 3.1. Indeed, the first inequality in (37) is used to obtain the inequality in (63), the last
inequality in (65), and the inequality in (66), while the second inequality in (37) is used to obtain
(64).

5 A One-Cut Adaptive Proximal Bundle Method

This section presents an adaptive version of the 1C-PB method, referred to as the 1C-APB method
which, in contrast to 1C-PB, does not require the availability of a triple (Lf ,Mf , µ) satisfying
(A1) and (A3), and which has the same ε̄-iteration complexity as described in Corollary 3.2 for an
arbitrary τ -free GPB variant.

We start by stating the 1C-APB method.

1C-APB

0. Let x0 ∈ domh, λ > 0, β ≥ 1 and ε̄ > 0 be given, and set y0 = x0, t0 = 0, τ0 = 0, and j = 1;

1. set τ = τj−1/β;

2. if tj−1 ≤ ε̄/2, then perform a serious update, i.e., set xcj = xj−1 and Γj = `f (·;xj−1) + h;
else, perform a null update, i.e., set xcj = xcj−1 and Γj = τΓj−1 + (1− τ)[`f (·;xj−1) + h];

3. compute xj , yj , mj and tj as in step 2 of GPB;

4. if tj−1 > ε̄/2 and tj > τtj−1 + (1 − τ)ε̄/4, then set τ = (1 + τ)/2 and go to step 2; else, set
τj = τ and j ← j + 1, and go to step 1.

We use the same terminology (e.g., serious iteration) as defined in the paragraph following GPB.
For ease of discussion in this subsection, we define τ̄ as follows

τ̄ :=

[
1 +

(1 + λµ)ε̄

8λT 2
ε̄

]−1

(67)

where Tε̄ is as in (9). We note that τ̄ is the smallest τ ∈ (0, 1) satisfying (29).
We now make some remarks about the 1C-APB method. First, in contrast to the GPB frame-

work which does not specify how some quantities are generated, 1C-APB is a well-determined
method since it specifies Γj in both the serious and null updates, the latter of which computes Γj
based on the one-cut bundle update scheme (E1). Second, the iteration count j is only increased
in step 4 and when that happens the key inequality

tj −
ε̄

4
≤ τj

(
tj−1 −

ε̄

4

)
(68)
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is satisfied. Before that happens, 1C-APB can loop a few times between steps 2 and 4 and, in the
process, computes intermediate quantities which depends on τ and (with some abuse of notation)
are all denoted by Γj , xj , yj , mj and tj . Third, since τ0 = 0 < τ̄ , it may happen that many τj ’s will
also be less than τ̄ . Hence, 1C-APB can not be viewed as a special case of GPB since the latter
one requires its constant τ to be at least τ̄ . Finally, {τj} is a non-decreasing sequence if β = 1 but
it can decrease if β > 1.

The following lemma summarizes some basic properties of 1C-APB.

Lemma 5.1. The following statements about the 1C-APB method hold:

a) 0 ≤ τj ≤ (1 + τ̄)/2 for every j ≥ 0;

b) for every serious iteration jk, tjk ≤ ε̄/2 and (68) holds for every j ∈ Ck \ {jk−1 + 1}.

Proof: a) It follows from Lemma 4.6 that if τj ≥ τ̄ then τ` = τj for every ` > j. This statement
now immediately follows from this observation, the fact that τ0 = 0, and the way the sequence {τj}
is generated.

b) This statement follows immediately from steps 2 and 4 of 1C-APB.
The following result is similar to Proposition 4.8 and establishes a bound on the maximum

number of consecutive null iterates generated by 1C-APB.

Proposition 5.2. The following statements about 1C-APB hold:

a) in each iteration, the number of times τ is updated in step 4 is at most

1 +

⌈
log

(
1 +

8λµT
2
ε̄

ε̄

)⌉
; (69)

b) if jk−1 is a serious iteration of the 1C-APB method, then the next serious iteration jk happens
and satisfies

jk − jk−1 ≤ 2

(
1 +

8λµT
2
ε̄

ε̄

)
log

(
4t̄

ε̄

)
+ 1

where Tε̄, λµ, and t̄ are as in (9), (44), and (58), respectively.

Proof: a) It follows from the way τ is updated in step 4 that 1− τ+ = (1− τ)/2 where τ+ is the
updated τ . Using this observation and Lemma 5.1(a), we then easily conclude that the number of
times τ changes is bounded by 1 + dlog (1/(1− τ̄))e. The conclusion in a) now follows from the last
conclusion and the definition of τ̄ in (67).

b) It follows from Lemma 5.1 (a) and (b) that for every j ∈ Ck \ {jk−1 + 1},

tj −
ε̄

4
≤ 1 + τ̄

2

(
tj−1 −

ε̄

4

)
.

Using the inequality above, the fact that tjk ≤ ε̄/2 (see Lemma 5.1(b)) and Proposition 4.8, we
conclude that

jk − jk−1 ≤
2

1− τ̄
log

(
4t̄

ε̄

)
+ 1.

The above inequality, (44), and the definition of τ̄ in (67) immediately imply b).
We now discuss the ε̄-iteration complexity of 1C-APB.
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Theorem 5.3. Let initial point x0 ∈ domh, tolerance ε̄ > 0 and prox stepsize λ > 0 be given,
and consider an instance (f, f ′;h) of (1) satisfying conditions (A1)-(A3). Then, the ε̄-iteration
complexity for 1C-APB is[

2

(
1 +

8λµT
2
ε̄

ε̄

)
log

(
4t̄

ε̄

)
+ 1

] [
min

{
d2

0

λε̄
,

1

µλµ
log

(
µd2

0

ε̄
+ 1

)}
+ 1

]
. (70)

As a consequence, if in addition the instance (f, f ′;h) and the input triple (x0, λ, ε̄) satisfy (39),
then the ε̄-iteration complexity for 1C-APB is (up to a logarithmic term) given by (16).

Proof: First, the same analysis as in Subsection 4.1 shows that the number of serious iterations
of 1C-APB is bounded by (47). Hence, this conclusion and Proposition 5.2(b) imply that the ε̄-
iteration complexity for 1C-APB is given by (70). Letting a = λµT

2
ε̄ /ε̄ and b be as in (62), and

using (70), we have O((a+ 1)(b+ 1)) is the ε̄-iteration complexity for 1C-APB up to a logarithmic
term. Using the assumption (39) and following a similar argument as in the proof of Theorem 3.1,
we conclude that the ε̄-iteration complexity for 1C-APB is (up to a logarithmic term) given by
(16).

It is worth noting that a result similar to Corollary 3.3 dealing with instances (f, f ′;h) of (1)
satisfying (A1), (A2), and (10) can also be established for 1C-APB.

We end this section by discussing the complexity of 1C-APB in terms of the total number of
resolvent evaluations of ∂h, i.e., an evaluation of the point-to-point operator (I + α∂h)−1(·) for
some α > 0. Observe first that the computation of xj in step 3 of 1C-APB requires one resolvent
evaluation of ∂h due to (31) and the fact that Γj has the form (19). Hence, the total number of
resolvent evaluations of ∂h is bounded by the number that step 3 is performed. Thus, it follows
from Theorem 5.3 and Proposition 5.2(a) that the total number of resolvent evaluations of ∂h is
bounded by the product of (69) and (70) if β > 1 or the sum of (69) and (70) if β = 1.

6 Concluding Remarks

This paper presents a generic proximal bundle framework, namely, GPB, for solving the HCCO
problem (1). Instead of focusing on a specific bundle update scheme, GPB is based on a generic
one, i.e., the BU blackbox, which includes three schemes, namely, multiple-cuts (E3), two-cuts
(E2), and a novel one-cut scheme (E1). Moreover, this paper considers the hybrid case where (A3)
holds and presents a unified and simple analysis for GPB. It establishes two ε̄-iteration complexity
for GPB instances, namely, (5) for 1C-PB and (16) for the τ -free GPB instances (i.e., 2C-PB and
MC-PB). Finally, this paper presents the 1C-APB method which is an adaptive version of 1C-PB
and shows that 1C-APB has the same ε̄-iteration complexity as the τ -free GPB instances.

We briefly discuss the relationship between GPB instances and other methods. First, the CS-
CS method can be viewed as a special instance of any GPB variant with a relatively small prox
stepsize. Second, it is worth noting that 1C-PB has slight similarity with the dual averaging (DA)
method of [18] since both methods explore the idea of aggregating cuts into a single one. However,
there are essential differences between the two methods: 1) DA uses variable prox stepsizes, while
1C-PB uses a constant one; and 2) most importantly, 1C-PB updates the prox-center immediately
after every serious iteration, while DA uses a fixed prox-center throughout the process.

We finally discuss some possible extensions of our analysis in this paper.
First, under the assumption that the diameter D of domh is finite, it follows from the last

inequality in Subsection 3.1 of [10] that the ε̄-iteration complexity of an accelerated composite
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subgradient method proposed in [10] is

O

(√
LfD√
ε̄

+
M2
fD

2

ε̄2

)
.

Moreover, it follows from the Introduction of [10] (see the paragraph containing equation (6) there)
that the above bound is optimal for the HCCO problem class determined by Lf , Mf and D. In this
regards, the ε̄-iteration complexity of GPB is optimal when Lf = 0 (i.e., in the pure nonsmooth
case), but it is not optimal when Lf > 0. It would be interesting to design an accelerated variant
of GPB which is optimal for the aforementioned HCCO problem class.

Second, proximal bundle methods have not been studied in the context of stochastic subgradient
oracles with continuous distribution, and hence it is interesting to investigate such methods by using
the techniques developed in this paper.

Third, a drawback of GPB is that its cycle termination criterion, namely, tj ≤ ε̄/2, depends on
the tolerance ε̄ specified for it. An interesting question is whether it is possible to develop a variant
of GPB with a cycle termination criterion which does not depend on the tolerance ε̄.

Finally, we address issues related to the strongly convex case (i.e., µ > 0). Our analysis
assumes that f is convex and h is µ-convex and shows that (see Theorem 3.1), even though GPB
does not require µ > 0, the dependence of its iteration-complexity bound (5) on µ and ε̄ is (up to
a logarithmic term) the same as that for the CS-CS method (see Proposition C.1). An interesting
question is whether GPB or a related variant which does not require µ either, directly applied to
the HCCO problem (1) also has the above iteration-complexity bound under the assumption that
f is µf -convex, h is µh-convex and µ = µf + µh.

We now mention some papers and observations related to the topic of the previous paragraph.
Under the assumption that Lf = 0 and µh = 0 (and hence, µ = µf ), the proximal bundle method
of [6] is shown to have an Õ(M2

f /(µε̄)) iteration-complexity bound but requires µf as input since
its prox stepsize is chosen as λ = 1/µf . Moreover, for the same method and under the same
assumptions, [5] improves the latter bound to O(M2

f /(µε̄)) by removing a logarithmic term. Finally,

if µf is known and the new composite structure (f̃ , h̃) defined as f̃ = f − µf‖ · ‖2/2 and h̃ =
h+µf‖ ·‖2/2 is considered in place of (f, h), then GPB with this composite structure has iteration-
complexity equal to (5) where µ = µf + µh.
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A Technical Results

The main result of this section is Lemma A.3 which was used in the proof of Lemma 4.7. It also
presents the proof of Proposition 2.1.

Before stating and proving Lemma A.3, we first present two technical results.

Lemma A.1. Let x ∈ Rn, 0 < λ̃ < λ and Γ ∈ Conv (Rn) be given, and define

x+ = argmin
u∈Rn

{
Γ(u) +

1

2λ
‖u− x‖2

}
, x̃+ = argmin

u∈Rn

{
Γ(u) +

1

2λ̃
‖u− x‖2

}
.

Then, we have ‖x+ − x‖ ≤ (λ/λ̃)‖x̃+ − x‖.

Proof: Denote ∂Γ by A, and define

yA(λ;x) := (I + λA)−1(x), ϕA(λ;x) := λ‖yA(λ;x)− x‖.

It is easy to see that

‖x+ − x‖ = ‖yA(λ;x)− x‖ =
1

λ
ϕA(λ;x), ‖x̃+ − x‖ = ‖yA(λ̃;x)− x‖ =

1

λ̃
ϕA(λ̃;x).

The conclusion of the lemma now follows from the above observation and the second inequality in
(39) of [17] which claims that

ϕA(λ;x) ≤ λ2

λ̃2
ϕA(λ̃;x).

Lemma A.2. Let (Γ, z0, λ) ∈ Convµ (Rn)× Rn × (0, 1/L̄f ) be a triple such that

`f (·; z0) + h ≤ Γ ≤ φ (71)

and define

z := argmin
u∈Rn

{
Γ(u) +

1

2λ
‖u− z0‖2

}
. (72)

Then, for every u ∈ domh, we have

1

2

(
µ+

1

λ

)
‖u− z‖2 + φ(z)− φ(u) ≤ 1

2λ
‖u− z0‖2 +

2λM̄2
f

1− λL̄f
. (73)
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Proof: It follows from the assumption that Γ ∈ Convµ (Rn) that the function Γ + ‖ · −z0‖2/(2λ)
is (µ + λ−1)-strongly convex. This conclusion, (71), (72) and Theorem 5.25(b) of [2] with f =
Γ + ‖ · −z0‖2/(2λ), x∗ = z and σ = µ+ λ−1, then imply that for every u ∈ domh,

φ(u) +
1

2λ
‖u− z0‖2

(71)

≥ Γ(u) +
1

2λ
‖u− z0‖2

(72)

≥ Γ(z) +
1

2λ
‖z − z0‖2 +

1

2

(
µ+

1

λ

)
‖u− z‖2

(71)

≥ `f (z; z0) + h(z) +
1

2λ
‖z − z0‖2 +

1

2

(
µ+

1

λ

)
‖u− z‖2.

The above inequality, the fact that φ = f + h and (7) with (Mf , Lf , x, y) = (M̄f , L̄f , z, z0) then
imply that

1

2

(
µ+

1

λ

)
‖u− z‖2 + φ(z)− φ(u) ≤ 1

2λ
‖u− z0‖2 + φ(z)− `f (z; z0)− h(z)− 1

2λ
‖z − z0‖2

(7)

≤ 1

2λ
‖u− z0‖2 + 2M̄f‖z − z0‖ −

1− λL̄f
2λ

‖z − z0‖2.

The lemma now follows from the above inequality, the fact that λL̄f < 1 and the inequality
2ab− a2 ≤ b2 with a2 = (1− λL̄f )‖z − z0‖2/(2λ) and b2 = 2λM̄2

f /(1− λL̄f ).
We are now ready to prove the main technical result of this section which provides a bound

on the distance between a serious iterate generated by GPB and its consecutive (possibly null or
serious) iterate. It is worth noting that this result is quite general and makes no use of the generic
bundle update scheme of Subsection 3.1 since the step from x`0 to x`0+1 does not use this update.

Lemma A.3. If `0 is a serious iteration, then

‖x`0 − x`0+1‖ ≤ 2
√

2(max{1, 2λL̄f}d0 + λM̄f ). (74)

Proof: For the sake of this proof only, we define the auxiliary stepsize λ̃ := min{λ, 1/(2L̄f )} and
auxiliary point

w`0 := argmin
u∈Rn

{
Γ`0+1(u) +

1

2λ̃
‖u− x`0‖2

}
.

Since j = `0 is a serious index, it follows from step 1 of GPB that Γ`0+1 ≥ `f (·;x`0) + h, and hence
that (Γ, z0, λ) = (Γ`0+1, x`0 , λ̃) and z = w`0 satisfy the assumptions of Lemma A.2. The conclusion
of Lemma A.2 with (u, z, z0, λ) = (x∗0, w`0 , x`0 , λ̃) and the fact that λ̃ ≤ 1/(2L̄f ) then imply that

1

2

(
µ+

1

λ̃

)
‖x∗0 − w`0‖2 + φ(w`0)− φ(x∗0) ≤ 1

2λ̃
‖x∗0 − x`0‖2 + 4λ̃M̄2

f

which in turn, in view of the facts that φ(w`0) ≥ φ∗ = φ(x∗0) and µ ≥ 0, and the inequality
(a+ b)1/2 ≤ a1/2 + b1/2 for any a, b ≥ 0, yields

‖x∗0 − w`0‖ ≤ ‖x`0 − x∗0‖+ 2
√

2λ̃M̄f .

This inequality and the triangle inequality then imply that

‖x`0 − w`0‖ ≤ ‖x`0 − x∗0‖+ ‖x∗0 − w`0‖ ≤ 2‖x`0 − x∗0‖+ 2
√

2λ̃M̄f ≤ 2
√

2(d0 + λ̃M̄f ) (75)
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where the last inequality is due to (48) and the fact that x`0 is equal to one of serious iterates
x̂k preceding the last one generated by GPB. On the other hand, since 0 < λ̃ < λ and Γ`0+1 ∈
Conv (Rn), it follows from Lemma A.1 with (Γ, x) = (Γ`0+1, x`0) that

‖x`0+1 − x`0‖ ≤
λ

λ̃
‖w`0 − x`0‖.

This inequality together with (75) and the fact that λ/λ̃ = max{1, 2λL̄f} clearly implies (74).
We end this section by providing the proof of Proposition 2.1.

Proof of Proposition 2.1 Using Young’s inequality

ab ≤ ap

p
+
bq

q

with

a = ‖x− y‖ν
(

1− ν
α

)1−ν
, b =

(
α

1− ν

)1−ν
, p =

1

ν
, q =

1

1− ν
,

where α > 0 is arbitrary, we have

‖x− y‖ν ≤ ν
(

1− ν
α

) 1−ν
ν

‖x− y‖+ α.

It follows from (10) and the above inequality that

‖f ′(x)− f ′(y)‖ ≤ 2Mν + Lνα+ Lνν

(
1− ν
α

) 1−ν
ν

‖x− y‖,

and hence that (A3) holds with (Mf , Lf ) = (Mf (α), Lf (α)) in view of (11). Moreover, using (11)
and the fact that (a+ b)2 ≤ 2a2 + 2b2 for every a, b ∈ R, we have

inf
α>0
{Mf (α)2 + ε̄Lf (α)} ≤ min

α>0

{
2M2

ν +
L2
να

2

2
+ ε̄Lνν

(
1− ν
α

) 1−ν
ν

}

= 2M2
ν + ε̄

2ν
ν+1L

2
ν+1
ν

[
1

2
(1− ν)

2
ν+1 + ν(1− ν)

1−ν
ν+1

]
≤ 2M2

ν + 2ε̄
2ν
ν+1L

2
ν+1
ν ,

where the minimization problem is minimized at

α =

(
ε̄

Lν

) ν
ν+1

(1− ν)
1
ν+1

and the second inequality is due to the fact that ν ∈ (0, 1). Hence, (12) holds. Finally, (13)
immediately follows from the definition of Tε̄ in (9), (12), and the fact that

√
a+ b ≤

√
a+
√
b for

every a, b ∈ R++.
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B Useful recursive formulas

The following two technical results play important roles in the complexity analysis of both GPB
and CS-CS. We start by stating the following simple result for general sequences of nonnegative
scalars.

Lemma B.1. Assume that sequences of nonnegative scalars {θj}, {δj}, {ηj} and {αj} satisfy for
every j ≥ 1, θj ≥ 1, δj > 0 and

ηj ≤ αj−1 − θjαj + δj . (76)

Let Θ0 := 1 and Θj := Πj
i=1θi for every j ≥ 1, then we have for every k ≥ 1,

k∑
j=1

Θj−1ηj ≤ α0 −Θkαk +
k∑
j=1

Θj−1δj .

Proof: Multiplying (76) by Θj−1 and summing the resulting inequality from j = 1 to k, we have

k∑
j=1

Θj−1ηj ≤
k∑
j=1

Θj−1 (αj−1 − θjαj + δj) = α0 −Θkαk +
k∑
j=1

Θj−1δj .

Hence, the lemma holds.
The next result discusses a special case of the previous lemma in which θj = θ and δj = δ for

every j ≥ 1.

Corollary B.2. Assume that scalars θ ≥ 1 and δ > 0, and sequences of nonnegative scalars {ηj}
and {αj} satisfy

ηj ≤ αj−1 − θαj + δ ∀j ≥ 1. (77)

Then, the following statements hold:

a) min1≤j≤k ηj ≤ 2δ for every k ≥ 1 such that

k ≥ min

{
α0

δ
,

θ

θ − 1
log

(
α0(θ − 1)

δ
+ 1

)}
with the convention that the second term is equal to the first term when θ = 1 (Note that the
second term converges to the first term as θ ↓ 1.);

b) αk ≤ α0 + kδ for every k ≥ 1.

Proof: a) It follows from Lemma B.1 with θj = θ and δj = δ for every j ≥ 1 that

k∑
j=1

θj−1

[
min

1≤j≤k
ηj

]
≤

k∑
j=1

θj−1ηj ≤ α0 − θkαk +

k∑
j=1

θj−1δ. (78)

Using the fact that θ ≥ e(θ−1)/θ for every θ ≥ 1, we have

k∑
j=1

θj−1 = max

{
k,
θk − 1

θ − 1

}
≥ max

{
k,
e(θ−1)k/θ − 1

θ − 1

}
.

This inequality, (78) and the fact that αk ≥ 0 imply that for every k ≥ 1,

min
1≤j≤k

ηj ≤ α0 min

{
1

k
,

θ − 1

e(θ−1)k/θ − 1

}
+ δ,

which can be easily seen to imply a).
b) This statement follows from (78), the fact that ηj ≥ 0, and the assumption that θ ≥ 1.
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C The Composite Subgradient Method

This section contains two subsections. The first one provides the analysis of the CS-CS method,
which is used to derive the ε̄-iteration complexity of CS-CS in Subsection 2.2. The second one
presents an adaptive variant of CS-CS and establishes the ε̄-iteration complexity of it.

C.1 Analysis of CS-CS

Proposition C.1. Let an initial point x0 ∈ domh, (Lf ,Mf ) ∈ R2
+ and instance (f, f ′;h) satisfying

conditions (A1)-(A3) be given. Then, the number of iterations performed by CS-CS(x0, λ) with
λ ≤ ε̄/[4(M2

f + ε̄Lf )] until it finds a ε̄-solution is bounded by⌊
min

{
d2

0

λε̄
,
1 + λµ

λµ
log

(
µd2

0

ε̄
+ 1

)}⌋
+ 1.

Proof: Recall that an iteration of CS-CS(x0, λ) is as in (14). Noting that (14) satisfies (72) with
(z0, z,Γ) = (xj , xj+1, `f (·;xj)+h), and using the facts that λ ≤ ε̄/[4(M2

f + ε̄Lf )] ≤ ε̄/(4T 2
ε̄ ) < 1/L̄f ,

`f (·;xj) + h ∈ Convµ (Rn), and `f (·;xj) + h ≤ φ, we conclude that the assumptions of Lemma A.2
is satisfied. Hence, it follows from (73) with (u, z, z0) = (x∗0, xj+1, xj) that

φ(xj+1)− φ∗ − 1

2λ
‖x∗0 − xj‖2 +

1 + λµ

2λ
‖x∗0 − xj+1‖2 ≤

2λM̄2
f

1− λL̄f
≤ ε̄

2

where the last inequality is due to the facts that 2λM̄2
f /(1 − λL̄f ) is an increasing function in λ

and λ ≤ ε̄/(4T 2
ε̄ ). Since the above inequality with j = j − 1 satisfies (77) with

ηj = φ(xj)− φ∗, αj =
1

2λ
‖xj − x∗0‖2, θ = 1 + λµ, δ =

ε̄

2
,

it follows from Corollary B.2(a) and the fact that α0 = d2
0/(2λ) that min1≤j≤k φ(xj) − φ∗ ≤ ε̄ for

every index k ≥ 1 such that

k ≥ min

{
d2

0

λε̄
,
1 + λµ

λµ
log

(
µd2

0

ε̄
+ 1

)}
,

and hence that the lemma holds.

C.2 An adaptive CS method

This subsection present an adaptive variant of the CS-CS method, namely, the A-CS method,
and establish ε̄-iteration complexity of the adaptive method. The proposed method is a universal
method for solving the HCCO problem (1) since it does not rely on any problem parameters.

A-CS

0. Let x0 ∈ domh, λ0 > 0 and ε̄ > 0 be given, and set λ = λ0 and j = 0;

1. compute

x = argmin
u∈Rn

{
`f (u;xj) + h(u) +

1

2λ
‖u− xj‖2

}
;
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2. if f(x) − `f (x;xj) − ‖x − xj‖2/(2λ) > ε̄/2, then set λ = λ/2 and go to step 1; else, go to
step 3;

3. set λj+1 = λ, xj+1 = x and j ← j + 1, and go to step 1.

Lemma C.2. The following statements hold for A-CS(λ0, ε̄):

a) for every j ≥ 0, we have

xj+1 = argmin
u∈Rn

{
`f (u;xj) + h(u) +

1

2λj+1
‖u− xj‖2

}
, (79)

f(xj+1)− `f (xj+1;xj)−
1

2λj+1
‖xj+1 − xj‖2 ≤

ε̄

2
; (80)

b) if λj ≤ ε̄/(4T 2
ε̄ ) where Tε̄ is as in (9), then (80) holds with λj+1 = λj;

c) {λj} is a non-increasing sequence;

d) for every j ≥ 0,

λj ≥ λ := min

{
ε̄

8T 2
ε̄

, λ0

}
. (81)

Proof: a) This statement directly follows from the description of A-CS.
b) Using (7) with (Mf , Lf , x, y) = (M̄f , L̄f , xj+1, xj) and the inequality that a2 + b2 ≥ 2ab for

a, b ∈ R, we have

f(xj+1)− `f (xj+1;xj)−
1

2λj
‖xj+1 − xj‖2 ≤ 2M̄f‖xj+1 − xj‖ −

1− λjL̄f
2λj

‖xj+1 − xj‖2

≤
2λjM̄

2
f

1− λjL̄f
≤ ε̄

2

where the last inequality is due to the assumption that λj ≤ ε̄/(4T 2
ε̄ ). Hence, (80) holds with

λj+1 = λj .
c) This statement clearly follows from steps 2 and 3 of A-CS.
d) This statement follows trivially from b) and c), and the way λ is updated in step 2.

Proposition C.3. Let an initial point x0 and a universal constant C > 0 be given, and consider
an instance (f, f ′;h) of (1) satisfying conditions (A1)-(A3). Moreover, assume (λ0, ε̄) ∈ R2

++ is
such that λ0 ≥ ε̄/(CT 2

ε̄ ) where Tε̄ is as in (9). Then, the following statements hold:

a) A-CS(λ0, ε̄) has ε̄-iteration complexity given by (16);

b) the total number of times λ is halved in step 2 is bounded by⌈
log

(
max

{
8λ0T

2
ε̄

ε̄
, 1

})⌉
.
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Proof: a) It follows from the fact that h is µ-convex that the objective function in (79) is (µ+λ−1
j+1)-

strongly convex. Using this conclusion, (79) and Theorem 5.25(b) of [2], we have for every u ∈
domh,

`f (xj+1;xj) + h(xj+1) +
1

2λj+1
‖xj+1 − xj‖2 +

1

2

(
µ+

1

λj+1

)
‖u− xj+1‖2

≤ `f (u;xj) + h(u) +
1

2λj+1
‖u− xj‖2 ≤ φ(u) +

1

2λj+1
‖u− xj‖2.

It follows from the above inequality with u = x∗0 and (79) that

(1 + λj+1µ)‖x∗0 − xj+1‖2 + 2λj+1[φ(xj+1)− φ∗]− ‖x∗0 − xj‖2

≤ 2λj+1

[
f(xj+1)− `f (xj+1;xj)−

1

2λj+1
‖xj+1 − xj‖2

]
≤ ε̄λj+1.

Since the above inequality with j = j − 1 satisfies (76) with

ηj = 2λj [φ(xj)− φ∗], αj = ‖xj − x∗0‖2, θj = 1 + λjµ, δj = ε̄λj ,

it follows from Lemma B.1 and the fact that α0 = d2
0 that k∑

j=1

2λjΘj−1

 min
1≤j≤k

[φ(xj)− φ∗] ≤
k∑
j=1

2λjΘj−1[φ(xj)− φ∗] ≤ d2
0 +

 k∑
j=1

2λjΘj−1

 ε̄

2
(82)

where Θj = Πj
i=1(1 + λjµ) for every j ≥ 1. Note that it follows from Lemma C.2(d) that Θj ≥

(1 + λµ)j for every j ≥ 1. Using this observation, (82), and Lemma C.2(d), and following the
argument in the proof of Corollary B.2(a), we conclude that min1≤j≤k φ(xj)−φ∗ ≤ ε̄ for k satisfying

k ≥ min

{
d2

0

λε̄
,
1 + λµ

λµ
log

(
µd2

0

ε̄
+ 1

)}
,

and hence that the statement holds in view of (81) and the assumption that λ0 ≥ ε̄/(CT 2
ε̄ ).

b) This statement immediately follows from the update rule in λj and Lemma C.2(d).
It is worth noting that a result similar to Corollary 3.3 dealing with instances (f, f ′;h) of (1)

satisfying (A1), (A2), and (10) can also be established for A-CS.

D Properties of Bundle Update Schemes (E2) and (E3)

This section shows that the update schemes (E2) and (E3) of Subsection 3.1 are special implemen-
tations of BU.

Proposition D.1. Consider the update Γ+ of (E2) and set Γ̄ = A+
f + h where A+

f is as in (23).

Then, (Γ+, Γ̄) satisfies (17) and (18). As a consequence, Γ+ is a special implementation of BU.

Proof: First, using the facts that h ∈ Convµ (Rn) and `f (·; z) ≤ f for any z ∈ Rn, the fact that
Γ̄ = A+

f + h, and the definition of Γ+ in (24), we have

Γ+, Γ̄ ∈ Convµ (Rn), Γ+ ≤ φ.

30



We have thus shown the inclusion and the second inequality in (17) and the inclusion in (18). It
follows from the definitions of Γ+ and Γ̄ that

Γ+ = max{Γ̄, `f (·;x) + h},

and hence that Γ+ satisfies the first inequality in (17) for any τ ∈ (0, 1). Moreover, using the fact
that Γ̄ = A+

f + h, relation (22), and the definitions of Γ and A+
f in (20) and (23), respectively, we

have

Γ̄(x) = A+
f (x)+h(x)

(23)
= θAf (x)+(1−θ)`f (x;x−)+h(x)

(22)
= max{Af (x), `f (x;x−)}+h(x)

(20)
= Γ(x),

and hence the first identity in (18) holds. Finally, we prove Γ̄ satisfies the second identity in (18).
It follows from the definition of `f (·; ·) in (6) and relations (21) and (23) that

1

λ
(x− xc) + ∂h(x) +∇A+

f

(6),(23)
=

1

λ
(x− xc) + ∂h(x) + θ∇Af + (1− θ)f ′(x−)

(21)
3 0.

In conclusion, Γ+ as in (E2) is a special way of implementing BU.

Proposition D.2. Consider the update Γ+ of (E3) and set Γ̄ = Γ(·;B(x)) where B(x) is as in
(26) and Γ(·;B(x)) is as in (4). Then, (Γ+, Γ̄) satisfies (17) and (18). As a consequence, Γ+ is a
special implementation of BU.

Proof: First, using the facts that h ∈ Convµ (Rn) and `f (·; b) ≤ f for any b ∈ Rn, and the definition
of Γ(·;B) in (4), it is easy to see that for any B ⊂ Rn, we have

Γ(·;B) ∈ Convµ (Rn), Γ(·;B) ≤ φ. (83)

Recall that
Γ+ = Γ(·;B+), Γ̄ = Γ(·;B(x)), (84)

hence it follows from (83) that

Γ+, Γ̄ ∈ Convµ (Rn), Γ+ ≤ φ.

We have thus shown the inclusion and the second inequality in (17) and the inclusion in (18). Also,
it is easy to see from (84), the first inclusion in (25) and the definition of Γ(·;B) in (4) that

Γ+ ≥ max{Γ̄, `f (·;x) + h},

and hence that Γ+ satisfies the first inequality in (17) fors any τ ∈ (0, 1). Moreover, it follows from
the fact that Γ = Γ(·;B), (4), (84), and the definition of B(x) in (26) that the first identity in (18)
holds. Finally, we prove Γ̄ satisfies the second identity in (18). Using the definitions of Γ(·;B) and
B(x) in (4) and (26), respectively, and a well-known formula for the subdifferential of the pointwise
maximum of finitely many convex functions (e.g., see Corollary 4.3.2 of [22]), we conclude that

∂Γ(x) = co
(
∪{f ′(b) : b ∈ B(x)}

)
+ ∂h(x).

Using the same reasoning but with Γ replaced by Γ̄, we conclude that the above set is also ∂Γ̄(x),
and hence that

1

λ
(x0 − x) ∈ ∂Γ(x) = ∂Γ̄(x)

where the inclusion is due to (2). Now the second identity in (18) immediately follows. In conclusion,
Γ+ as in (E3) is a special way of implementing BU.
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