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Abstract

We propose a generic model for the capacitated vehicle routing problem (CVRP) under de-
mand uncertainty. By combining risk measures, satisficing measures or disutility functions with
complete or partial characterizations of the probability distribution governing the demands,
our formulation bridges the popular but often independently studied paradigms of stochastic
programming and distributionally robust optimization. We characterize when an uncertainty-
affected CVRP is (not) amenable to a solution via a popular branch-and-cut scheme, and we
elucidate how this solvability relates to the interplay between the employed decision criterion
and the available description of the uncertainty. Our framework offers a unified treatment of
several CVRP variants from the recent literature, such as formulations that optimize the re-
quirements violation or the essential riskiness indices, while it at the same time allows us to
study new problem variants, such as formulations that optimize the worst-case expected disutil-
ity over Wasserstein or ¢-divergence ambiguity sets. All of our formulations can be solved by the
same branch-and-cut algorithm with only minimal adaptations, which makes them attractive

for practical implementations.

Keywords: Capacitated Vehicle Routing Problem; Stochastic Programming;
Distributionally Robust Optimization; Branch-and-Cut.



1 Introduction

The capacitated vehicle routing problem (CVRP;|Christofides 1976, originally coined the truck dis-
patching problem (Dantzig and Ramser} [1959), asks for the cost-optimal delivery of a single product
to geographically dispersed customers through a fleet of homogeneous and capacity-constrained ve-
hicles. It is one of the fundamental problems in logistics, and its variants have found manifold
applications, among others, in the delivery and collection of goods and waste, dial-a-ride services
as well as the routing of engineers, school buses and snow plow trucks (Toth and Vigo, [2014).
The classical CVRP assumes that all problem parameters, most notably the customer demands
and travel times or costs, are known precisely. In many applications, however, the customer de-
mands are unknown for aleatoric (e.g., in collection problems, where the waste to be collected is
unknown prior to arrival at the customer site) and/or epistemic reasons (e.g., in delivery problems,
where the actual demand for vehicle space induced by a customer’s order differs from the demand
predicted by simplified models). Likewise, the travel times (and hence, costs) are typically affected
by uncertain traffic conditions. In response to these challenges, and following a wider trend to inte-
grate data into the model building process of operations research, a wide variety of CVRPs under
uncertainty have been proposed in recent decades. In this paper, we focus on the CVRP with un-
certain customer demands and make the simplifying assumption that the travel times are known.
Research on the CVRP under uncertainty can be categorized along two dimensions: the avail-
able information about the uncertainty and the decision maker’s attitude towards the uncertainty.
To date, three of the predominant approaches for capturing the available information about the
uncertainty are stochastic programming (Birge and Louveaux) 2011} Shapiro et al., 2014), which
assumes that the uncertain parameters follow a known probability distribution, robust optimization
(Ben-Tal et al., 2009; Bertsimas et al., |2011), which stipulates that the uncertain parameters are
only known to be realized within an uncertainty set, and distributionally robust optimization (Delage
and Ye, [2010; Wiesemann et al. 2014), which assumes that the probability distribution governing
the uncertain parameters is only known to belong to an ambiguity set of rival distributions. The
decision maker’s attitude towards uncertainty is characterized by the choice of a risk measure (such
as the expected value or the value-at-risk), a satisficing measure or an expected disutility function,
all of which make random variables comparable in terms of their desirability by mapping them

to deterministic quantities. In distributionally robust optimization, where the precise probability



distribution is not known, a robust decision is sought that optimizes the worst risk or disutility
over all distributions contained in the ambiguity set. The combinations of different informational
assumptions and attitudes towards uncertainty have led to a plethora of papers that investigate
different variants of the CVRP under uncertainty and propose tailored solution approaches. This
wealth of alternative methods can easily overwhelm both researchers and practitioners.

In this paper, we develop a unifying framework for the uncertainty-affected CVRP that bridges
the paradigms of stochastic programming and distributionally robust optimization. Our framework
combines a versatile ambiguity set with a rich class of risk and satisficing measures as well as
disutility functions, all combinations of which can be solved by minor variations of a well-known
branch-and-cut scheme for the deterministic CVRP that eliminates subtours and capacity violating
routes through rounded capacity inequalities (Laporte and Norbert} [1983; |Lysgaard et al., [2004).
Contrary to the deterministic CVRP, where the right-hand sides of the rounded capacity inequalities
constitute cumulative demands over subsets of customers, the right-hand sides in our framework
are determined by the optimal values of efficiently solvable optimization problems. As a result, the
performance of our branch-and-cut scheme for the stochastic and distributionally robust CVRP is
broadly comparable to that of the standard branch-and-cut schemes for the deterministic CVRP.
This is in stark contrast to many existing solution approaches for the distributionally robust CVRP,
which account for uncertainty via model reformulations that scale primarily to small and medium
sized instances.

More specifically, the contributions of the present work can be summarized as follows.

(i) We study which classes of vehicle routing problems are (not) amenable to a solution via a pop-
ular branch-and-cut scheme based on rounded capacity inequalities, as well as how the right-
hand sides of these inequalities should be selected. This part of our investigation is generic and

may find applications in vehicle routing problems other than the CVRP under uncertainty.

(ii) We apply our findings to the CVRP under demand uncertainty. To this end, we consider an
ambiguity set that encompasses the stochastic CVRP, certain classes of moment-based distri-
butionally robust CVRPs as well as data-driven CVRPs over Wasserstein and ¢-divergence
based ambiguity sets, and we combine our ambiguity set with rich classes of risk and sat-
isficing measures as well as disutility functions. We show how the emerging variants of the

uncertainty-affected CVRP can all be solved by the same branch-and-cut scheme with only



minimal adaptations.

(i7i) We present numerical results which demonstrate that the considered classes of uncertainty-
affected CVRPs possess similar solvability characteristics as those of the deterministic CVRP.
The source code of our implementation is made available open source to facilitate reuse in

applications, extensions as well as computational comparisonsE

To our best knowledge, we propose the first framework for the stochastic and distributionally robust
CVRP that combines multiple ambiguity sets with different risk and satisficing measures as well
as disutility functions. Since we account for uncertainty via adaptations of the rounded capacity
inequalities, our formulations also appear to scale more gracefully to larger problem instances.

Our paper relates to the rich and rapidly growing area of vehicle routing under uncertainty.
For the sake of brevity, we restrict our review of the related literature to exact approaches for the
robust and distributionally robust CVRP; for reviews of the stochastic CVRP as well as heuristic
methods, we refer to Gendreau et al.| (2014, [2016) and |Oyola et al.| (2018).

The robust CVRP has first been studied by [Sungur and Ordénez| (2008), who assume that the
customer demands and travel times are uncertain. The authors determine vehicle routes that sat-
isfy the vehicle capacities and delivery time windows even when all customer demands and travel
times can attain their worst-case realizations simultaneously. Under this assumption, the problem
simplifies to a deterministic CVRP, which is computationally attractive but may result in overly
conservative solutions. Subsequent works have addressed this conservatism by specifying uncer-
tainty sets that preclude such pathological scenarios and solving the resulting robust optimization
problems via model reformulations, branch-and-cut schemes (Agra et al., |2013aj; Gounaris et al.,
2013)) as well as branch-and-cut-and-price schemes. We also note the related works of |Agra et al.
(2013b)) and Eufinger et al.| (2020), which study the robust CVRP with deterministic demands but
uncertain travel times, as well as Subramanyam et al.| (2021)), who study a variant of the robust
CVRP where the presence of customers is uncertain.

The distributionally robust CVRP appears to have been first studied by |Gounaris et al.| (2013)),
who extend their results for the robust CVRP to a distributionally robust chance constrained CVRP

over a moment ambiguity set. The authors reformulate the problem as a robust CVRP and solve it

!The source code and input data needed to reproduce the numerical results in this paper can be found as part of

the electronic companion.



approximately using a model reformulation. Results are reported for standard benchmark instances
with up to 23 customers. Major progress has been made by |Adulyasak and Jaillet| (2015), Jaillet
et al. (2016) and [Zhang et al.| (2019} 2021), who study the traveling salesman problem and the
CVRP with known demands but uncertain travel times. The authors propose stochastic and distri-
butionally robust models that minimize the violation of pre-specified time windows via a lateness, a
requirements violation, an essential riskiness and a service fulfillment risk index. The distribution-
ally robust formulations consider all probability distributions characterized by moment conditions
or the Wasserstein distance to a reference distribution. The resulting problems are solved via Ben-
ders decomposition, branch-and-cut schemes and a variable neighborhood search heuristic. While
the reported runtimes are difficult to interpret since the authors propose new instances, it appears
that the approaches are mainly suitable for small and medium sized problems. Dinh et al.| (2018)
study a stochastic and a distributionally robust version of the chance constrained CVRP where the
customer demands are uncertain and the vehicles’ capacity constraints need to be met with high
probability. Their distributionally robust formulation assumes that the unknown true distribution
is characterized through the means and the covariances of the customer demands. The authors
propose a branch-and-cut-and-price algorithm for both formulations, and they successfully solve a
large fraction of the standard benchmark instances. The distributionally robust chance constrained
CVRP with uncertain customer demands has also been studied by |Ghosal and Wiesemann, (2020)),
who characterize the distribution governing the customer demands through moment conditions and
develop a branch-and-cut solution scheme that performs well on the standard benchmark instances.
Similar to the present work, the algorithm of |Ghosal and Wiesemann| (2020) uses adaptations of
the rounded capacity inequalities to account for uncertainty. In contrast to this paper, however,
Ghosal and Wiesemann| (2020)) restrict themselves to two closely related moment ambiguity sets,
and their approach to compute the right-hand sides of the rounded capacity inequalities does not
seem to easily extend to other ambiguity sets or risk and satisficing measures. We also note the
related works of |Carlsson and Delage| (2013)), (Carlsson and Behroozi (2017) and Carlsson et al.
(2018)), which characterize the worst-case distributions of distributionally robust vehicle routing
problems where the customer locations are unknown i.i.d. realizations from a distribution that is
specified either through moment conditions or the Wasserstein distance to a reference distribution.

Finally, Hoogeboom et al.| (2021) consider a variant of the CVRP where both routes and time



window assignments need to be determined such that the expected travel times and the risk of
violating the time windows are minimized simultaneously.

From a computational perspective, we currently see three major paradigms to solve robust and
distributionally robust CVRP formulations to global optimality: model reformulations, branch-and-
cut schemes and branch-and-cut-and-price algorithms. Model reformulations have been proposed,
among others, by |Ordénez (2010), Agra et al.| (2012)) and |Gounaris et al. (2013). Model refor-
mulations typically employ duality results from robust optimization to reformulate a robust or
distributionally robust CVRP as a monolithic mixed-integer linear program that can be solved
with standard software (such as CPLEX or Gurobi) either as is or with the help of problem-specific
cutting planes. Model reformulations tend to result in large-scale mixed-integer programs without
any readily exploitable problem structure, and they thus apply primarily to small and medium
sized problems. Branch-and-cut-and-price algorithms, on the other hand, currently display the
best performance on large CVRP instances. A key step in these algorithms is the repeated solution
of robust shortest path problems with resource constraints (Pessoa et all [2015; [Pugliese et al.,
2019) to generate candidate routes. The efficient solution of these problems requires algorithms
that are tailored to both the uncertainty set and the side constraints of the CVRP, and thus a
large number of different algorithms have been devised in the literature (Lee et all [2012; Lu and
Gzaraol [2019; Munari et all |2019; |[Pessoa et al) |2021)). Branch-and-cut schemes, finally, tend to
display a performance somewhere between the model reformulations and branch-and-cut-and-price
algorithms. The aim of this work is to show that branch-and-cut schemes enjoy a major advantage
over branch-and-cut-and-price algorithms: they generalize more readily to larger classes of robust
and distributionally robust CVRP formulations. In fact, we will show that minor variants of the
same branch-and-cut scheme are able to solve a large variety of problem formulations in runtimes
that are competitive with the current state-of-the-art. Moreover, as has been demonstrated re-
cently by [Wang et al. (2022)), branch-and-cut schemes such as the one proposed in this work can
be combined with branch-and-cut-and-price algorithms designed for the deterministic CVRP to
combine the strengths of the branch-and-cut as well as branch-and-cut-and-price paradigms.

The remainder of the paper unfolds as follows. After defining the problem of interest in Section[2]
Sections 3| and [4] investigate which VRP variants are amenable to a solution with a branch-and-

cut scheme based on rounded capacity inequalities. Section [5|specializes our findings to the CVRP



under uncertainty, Section [6| reports numerical results, and we offer concluding remarks in Section[7}

Notation. We denote by R, R, and R, ; the sets of real numbers, non-negative real numbers
as well as strictly positive real numbers, respectively. For S < {1,...,n} we denote by 1g € {0,1}"
the vector that satisfies (1g); = 1 if i € S and (1g); = 0 otherwise. Moreover, e is the vector of all
ones, and e; is the i-th canonical basis vector; in both cases, the dimension will be clear from the
context. The p-norm of a vector, p > 1, is denoted by H-||p, and we use |||, to denote the infinity
(maximum) norm. We denote by [-]1 = max{-, 0} the non-negative part of a scalar, which we also

apply to vectors in a component-wise fashion.

2 Problem Formulation

Consider a complete, directed and weighted graph G = (V, A, ¢) with nodes V' = {0,...,n}, arcs
A ={(i,7) e VxV :i# j} and transportation costs ¢ : A — Ry. Here, 0 is the depot node
and Vo = {1,...,n} represents the set of customer nodes. The vehicle routing problem we wish to
study asks for a cost optimal route plan for a set K = {1,2,...,m} of vehicles starting and ending
at the depot node 0 such that a given set of constraints is met. Firstly, we require the route plan

to form an m-partition of the customer set Vi, that is, the route plan R has to belong to the set

B(Ve,m) = {R ={Ry,...,R,} Ry = (Rk,l, N ,kak) with n; > 1 and Ry;e Vo vk, 1,

Ry # Ry Y(k,i) # (1,5), | Re = VC}-
keK

Each route plan R is a set of m routes Ry, which are themselves nonempty ordered lists of customers
that the vehicles visit sequentially. Here and in the following, we apply set operations to lists
whenever their interpretation is clear. In particular, intersections and unions of ordered lists are
interpreted as the application of the respective operators on the sets formed from the involved lists.

In addition to the aforementioned partition requirement, we assume that each route Ry, of the
route plan R has to satisfy some (technological, economic, ecological, quality-related or other)

intra-route constraints (Irnich et all 2014} §1.3.3), which we describe by the set
Cc{R=(Ry,...,R) :v=1land Rie Vo Vi=1,...,v}.

Note that the set C constrains individual routes Ry = (Ry 1, ..., Ripn,) of a route plan R, which

we emphasize notationally through the use of an italicized symbol R. To be feasible, a route plan



has to reside in the set B(Ve,m) n Cpy, where C,, = {R = {Ry1,..., Ry} : R, € C VEk}. Note
that we do not consider inter-route (or global) constraints (Irnich et al.l 2014, §1.3.5) that tie the
feasibility of a route to the characteristics of other routes (as is the case, e.g., in the presence of
globally constrained resources or fairness considerations).

With the above notation, we are interested in solving the problem

g
minimize > > (R, Riis1)
keK 1=0 (VRP(C))

subject to R e P(Ve,m) n Cpy,.
Here we use the convention that Ry o = Rk, +1 = 0, which ensures that each vehicle starts and
ends at the depot. To avoid trivially infeasible problem instances, we assume throughout the paper
that for all customers i € V¢, there is R € C such that ¢ € R. In other words, every customer’s
demand can principally be served by a single vehicle in every problem instance.

For the results in this paper, we will typically impose the following two assumptions:

(D) C is downward closed, that is, if R € C for R = (Ry,...,R,), then S € C for all § =

(Riy,...,Ri,) withl<o<vand1<i <ig<...<i, <.
(P) C is permutation invariant, that is, if R € C then S € C for all permutations S of R.

Condition (D) implies that we cannot model problems that disallow routes in which vehicles serve
“too few” customers, since a subset of the customers of a feasible route can always be served as
well (modulo the requirement imposed by B (Ve, m) that the omitted customers need to be served
by the other vehicles). Condition (P) implies that the order of customers within a route does not
matter for its feasibility (but it will normally still matter in terms of its optimality). Here and in
the following, we say that a set S is contained in a set of lists S if and only if every permutation of
S, expressed as a list, is contained in S. Thus, condition (P) is equivalent to requiring that S € C

only if S € C for the set S formed from the elements of S.

Example 1 (Instances of VRP(C)). [VRP(C)| recovers the classical CVRP if we set

C:{RZ(R1,~--,RV)¢Z€I1‘<Q}, (1)

1€ER
where q; is the demand of customer i and Q) is the capacity of each vehicle. The set C satisfies

(P) by definition, and it satisfies (D) whenever the customer demands q are nonnegative. More



generally, we obtain a variant of the VRP with compartments if we set

C={R=(R1,...,R,,):Zq¢p<Qp szl,...,P}, (2)

i€ER
where g;p now denotes the demand of customer i for space in compartment p and Q, is the capacity
of compartment p in each vehicle. Again, both (D) and (P) are satisfied as long as q is nonnegative.
Similar arguments show that the CVRP with multiple capacity constraints (e.g., relating to weight,
space and volume), the CVRP with two-dimensional or three-dimensional loading constraints (as
long as they do not restrict the order in which items have to be picked up or delivered) as well as
CVRP variants that impose a mazimum number of customers per route satisfy (D) and (P).

We recover the chance constrained CVRP if we set

C={R=(R1,...,Ry) : P[ZQ@<Q] 21—6},

ER
where we assume that the customer demands ¢; are random variables that are governed by the
probability distribution P, and where € is a risk threshold selected by the decision maker. Both the
chance constrained CVRP and its extension to multiple compartments satisfy the assumptions (D)

and (P) as long as the customer demands satisfy ¢ = 0 P-almost surely.

While Example [1| shows that the CVRP and some of its variants satisfy the assumptions (D)
and (P), it is worth pointing out that several important VRP variants do not fall under our frame-
work. The distance constrained CVRP, for example, imposes the constraints >, t(R;, Ri41) < T
for some distance function ¢, and these constraints violate (P) since different permutations of the
customers along a route lead to different route lengths in general. For the same reason, the CVRP
with time windows, which requires each customer i € Vi to be visited at some time t; € [¢;,;],
violates (P), and it additionally violates (D) if we do not permit idle times. Likewise, the CVRP
with last-in-first-out loading constraints violates (P) and is thus not amenable to our framework.
The CVRP with heterogeneous vehicles, on the other hand, cannot be solved by our framework
since it imposes different intra-route constraints C for different vehicles. As we will see in Sec-
tion 5, however, the assumptions (D) and (P) are satisfied for a broad range of stochastic and
distributionally robust formulations of the CVRP, which form the focus of this paper.

To solve numerically, we consider its reformulation as the well-known two-index vehicle



flow model (Laporte and Norbert, [1983; Lysgaard et al., [2004)

minimize Z (i, 7) Tij
(i,7)eA
subject to Z Tij = Z Tji = 0; VieV
(hea (e (2VF(d))
D1 D =d(S) Vg £ S Ve
i€V\S jes
zij € {0,1} V(i,j) € A,

where §; = 1 for i € Vo and g = m. We call the function d : 2¢ — R, the demand estimator,
and the set of constraints involving d are called the capacity constraints. By writing the set S in
regular (non-bold) font, we emphasize that S is unordered (as opposed to the ordered list Ry, for
example). We assume that d(S) = 0 < S = ¢J. Note that the value of d(¢J) can be chosen freely
as it does not affect the formulation. Moreover, the choice d(S) > 0 for S # ¢J ensures that route
plans containing short cycles are excluded from the feasible region of

Solving [VRP(C)| via RVFE(d)| enjoys several potential advantages. Firstly, mature (and open
source) solvers are available to solve see, e.g., Lysgaard et al. (2004) and |Semet et al.

(2014). These algorithms introduce the capacity constraints iteratively as part of a branch-and-cut
algorithm. Thus, if we can show that is equivalent to for some demand estimator d,
then we can solve as long as we can evaluate d efficiently. Secondly, offers a unified
solution framework for different problem variants where only the demand estimator d needs to be
adapted. In other words, minor variations of the same branch-and-cut algorithm can be employed to
solve different variants of the problem. This is an important consideration for adoption in practice,
where it is unreasonable to expect that fundamentally different algorithms will be developed and
maintained to solve different variants of the same problem. Finally, the capacity constraints of
constitute an important building block in modern branch-and-cut-and-price algorithms,
and efficiently separable cuts for can be applied to that algorithm class as well.

We want to investigate when is equivalent to which is amenable to a solution

via standard branch-and-cut algorithms. To this end, we first formalize our notion of equivalence.

Equivalence. [VRP(C)|and 2VF(d)| are said to be equivalent whenever they satisfy:

(a) Every feasible route plan R in [VRP(C)| induces a feasible solution x in via

rij=1 < dkekK, dle {0,...,nk} = (4,7) = (Rk,l,Rkal). (3)

10



(b) Every feasible solution @ in [2VF(d)|induces a feasible route plan R in via (3).

Note that if [VRP(C)| and 2VF(d)| are equivalent, then any feasible route plan R in
induces a unique feasible solution x in 2VF(d)| via and vice versa. In the remainder of the

paper, we refer to these unique solutions as (R) and R(x), respectively. Note also that the
objective functions of VRP(C)| and RVF(d)| coincide, which justifies our notion of equivalence. The
next section will show that the equivalence of [VRP(C)| and RVF(d)| hinges on the satisfaction of
the assumptions (D) and (P) introduced earlier. On the other hand, we will see in Section 5| that

many variants of the uncertainty-affected CVRP readily satisfy both assumptions for a wide range

of risk and satisficing measures, disutility functions and ambiguity sets.

Remark 1 (Uncertain Transportation Costs). By applying standard techniques from robust and
distributionally robust optimization (Bertsimas and Sim, 2004; |Ben-Tal et al., |2009; Delage and
Ye, 12010; |\ Wiesemann et all, |2014), our analysis and solution framework readily extends to gen-

eralizations of the problems [VRP(C)| and RVF(d)| where the deterministic transportation costs c

are replaced with uncertain transportation costs that are contained in a pre-specified uncertainty
set (robust setting), or where the transportation costs constitute a random vector whose underlying
probability distribution is only partially known (distributionally robust setting). This is in stark
contrast to CVRP wvariants with time windows (see our discussion after Example , where the

transportation costs enter the definition of the set C of intra-route constraints.

Remark 2 (Flexible Fleet Size). While the standard formulation of the vehicle routing problem
stipulates that all m vehicles are to be utilized, this requirement is often absent in practice. All
findings of our paper extend to the setting where at most m wvehicles should be used if we replace

the constraint R € B(Ve,m) n Cpy in [VRP(C)| as well as the definition of d" in the next section
with R € Jy_y [P (Ve, k) nCi] and replace the constraints Y ;o\ Toj = X5ey Tjo = m in|2VE(d

with 3 ;e Toj < m and Y ey Toj = Dey Tjo-

3 Equivalence of [VRP(C)| and

We first show that the assumptions (D) and (P) are sufficient for VRP(C)|and [2VEF'(d)|to be equiv-

alent under a range of demand estimators d, which we characterize explicitly. We then demonstrate

11



that the assumptions (D) and (P) are tight in the sense that there are |[VRP(C)|instances violating
either assumption for which no demand estimator d results in an equivalent 2VF(d)|instance.
A seemingly natural choice for the demand estimator d in is

d"(s) =inf{J€N S c U Ry, for {Rl,...,RJ,...,Rm}E‘IJ(VC,m)mCm}
k=1,....J

for @ # S < Vo, as well as Em(@) = 0. This demand estimator records the minimum number
of vehicles required to serve the customers in S in any feasible route plan R € B(Vie,m) n Cp,.
Note that Em(S ) = o0 is possible if the problem instance is infeasible, which motivates our use of
the infimum operator. The capacity constraints under the demand estimator d" are commonly
referred to as generalized capacity constraints. Since d" is difficult to compute even for simple
sets C, however, it is not typically used in practice. Instead, research has focused on relaxations

(i.e., lower bounds) of this demand estimator that are easier to calculate while still tight enough

to establish an equivalence between [VRP(C)| and RVF(d). One such demand estimator is

dl(S)—min{IeN :Sc U Ry, forsomeRl,...,R[eC}

k=1,..,I

for @ # 5 < Vi, as well as 31( &) = 0. This demand estimator determines the minimum number
of vehicles required to serve the customers in S € Vg, but—in contrast to d" it ignores the
customers in Vo \S. Note that El(S ) is always finite by our earlier assumption that i € R for some
R e C, i € Vg, and thus the use of the minimum operator is justified. The capacity constraints
under the demand estimator d are commonly referred to as weak capacity constraints. Although
d" tends to be easier to calculate than 3m, its computation is still NP-hard for most commonly
employed sets C, and thus it is not normally used to identify violated capacity constraints in a

branch-and-cut scheme. On the other end of the spectrum, we have the naive demand estimator
0 if S=,
d(S)=41 if@g+Sec,
2 otherwise.

Remember that S € C if and only if S € C for every list .S that can be formed from the elements
of S, and under (P) we have S € C if and only if S € C. While the demand estimator d is

typically easy to compute, the resulting capacity constraints are weak and thus slow down the

12



branch-and-cut scheme significantly. In the remainder of this section, we will see that the above
three demand estimators characterize the range of demand estimators under which and
are equivalent; in the next section, we will discuss two demand estimators within this range
that are preferable to d d" and d due to their favourable tightness-tractability trade-off.

Under the assumptions (D) and (P), the three demand estimators form a natural order.

Proposition 1. Assume that (D) and (P) are satisfied. Then for any S < V¢, we have

Here (D) and (P) are necessary and sufficient for d < 31, whereas d- < d" holds by construction.

It is easy to construct instances where the three demand estimators in Proposition [1| produce
the same values for all S € V. The following example is inspired by |Cornuejols and Harche, (1993)

and shows that the inequalities in Proposition [I| can also all be strict.

Example 2. Consider the VRP(C)| instance with n = 5 customers, m = 5 vehicles and C = {(1),
..., (8), (1,5)}. For S =1{1,2,3,5}, we have d(S) = 2 since S ¢ C, EI(S) = 3 since S is covered by
the routes (2), (3) and (1,5), and d" (S) = 4 since no route plan can serve customers 1 and 5 in

the same route and at the same time utilize all 5 vehicles.

The natural ordering from Proposition [1| typically ceases to hold when the assumptions (D)
and (P) are violated. We now show that under the assumptions (D) and (P),[VRP(C) and RVF(d)

are equivalent essentially if and only if the demand estimator d satisfies d < d < d'. We qualify
this equivalence with ‘essentially’ as there are pathological cases in which demand estimators d * d

also result in equivalent formulations, as we will discuss further below in Proposition

Theorem 1. [VRP(C)| is equivalent to 2VF(d)| for any d satisfying d < d < d".

Note that while the assumptions (D) and (P) are not required for the statement of Theorem 1]

they are typically required for the function interval [d,d '] to be nonempty (cf. Proposition .
Proposition 2. Fiz any feasible VRP(C)| instance satisfying (D) and (P).
(i) If B(Ve,m) < Cp, and d < d", then[VRP(C)| is equivalent to [2VF(d)| even if d * d.

(ii) If B(Vo,m) &€ Coy and d < d, then there are d % d such that [VRP(C)| and RVF(d)| are
equivalent, but there are also d % d such that[VRP(C)| and RVE(d)| are not equivalent.

13



(iii) VRP(C)| fails to be equivalent to 2VF(d)| for every d £ d".

From Theorem [1| and Proposition [2| we conclude that under the assumptions (D), (P) and
d = d, the requirement d < d" is necessary and sufficient for the equivalence of and
In contrast, under the assumptions (D), (P) and d < d
sufficient but not necessary for the equivalence of the two formulations.

We close this section by showing that there are instances violating either (D) or (P)
for which no demand estimator d results in an equivalent instance. This establishes that

, the requirement d > d is

the assumptions (D) and (P) are not only sufficient, but also (in the aforementioned sense) tight.

Theorem 2. There are instances violating either of the assumptions (D) or (P) that
have no equivalent 2VF(d)| instances.

On the flipside, however, there are instances violating both (D) and (P) for which
there still exist demand estimators d under which [VRP(C)| and RVF(d)| are equivalent.

In summary, we have shown that under (D) and (P), we have d < a < d" (¢f. Proposition ,
and any demand estimator d € [d,d"] makes [VRP(C)| and 2VF(d)| equivalent (¢f. Theorem . In
contrast, if a instance violates either (D) or (P), then there may not be any demand
estimator d that leads to an equivalent formulation (cf. Theorem [2)). In the remainder of
this paper, we will focus on instances that satisfy both assumptions (D) and (P).

4 Demand Estimators for 2VF(d)

In this section, we represent the intra-route constraints as
C= {R: (Ri,....,R,) : v=1and R, e Vo Vi, ¢ (1) <B}, (4)

where ¢ : [0,1]" — R and B € Ry ;. To recover the classical CVRP, for example, we can choose
p(x) = Dey, ¢ivi and B = Q. Note that any class of intra-route constraints from Section [2| that
satisfies (P) admits a representation of the form ([4)), for example by selecting B = 1/2 and ¢(x) = 0
if x = 1 for some R € C, p(x) = 1 otherwise. However, we will be particularly interested in sets C
and functions ¢ that satisfy certain properties. First and foremost, the assumptions (D) and (P)

should be satisfied in order to ensure that the VRP(C)|instance has an equivalent instance.
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Proposition 3. A |VRP(C)| instance with intra-route constraints expressible in the form of

satisfies (P) by construction, and it satisfies (D) whenever ¢ is monotone.

Recall that ¢ is monotone if p(x) < ¢(y) for all x,y € [0, 1]" satisfying x < y.
We now consider two demand estimators that turn out to be of special interest due to their

tractability as well as their versatility. The summation demand estimator d° is defined as
d°(9) = max {1, [p(15) /Bl} V& #S< Ve,

as well as d5() = 0. For the classical CVRP with ¢(x) = Yiieve ¢ii and B = @, the use of the
summation demand estimator d% inreduces to the well-known rounded capacity inequalities.
Recently, Ghosal and Wiesemann| (2020) have used d°> with ¢(x) = WC-VaR(q'z), the worst-case
value-at-risk of the customer demands, to solve a formulation of the distributionally robust

chance constrained CVRP. The packing demand estimator d* is defined as
d"(S) =min{I e N : 31X € [0,1]™*/ such that Xe = 15, ¢(zx) < B Vk=1,...,I}

for all @& # S < V¢, as well as dP(@) = 0. Here, x; € R" is the k-th column of the matrix
X, k=1,...,1. To our best knowledge, the packing demand estimator d© has not been studied
previously. It can be interpreted as the optimal value of a fractional bin packing problem; this

interpretation is formalized in the following proposition.

Proposition 4. If ¢ is monotone and we restrict ourselves to binary assignment matrices X €

{0,131 in d¥, then d¥ coincides with the demand estimator d defined in Section B

The evaluation of the packing demand estimator d¥ requires the solution of an assignment
problem, which can become computationally prohibitive if d¥ has to be evaluated frequently. It

turns out, however, that d¥ admits a closed-form solution when ¢ is convex.
Proposition 5. If ¢ is convez, then the packing demand estimator d° evaluates to
d*(S) =min{leN : p(15/I) < B} VY@ #Sc V.

One can construct counterexamples which show that the statement of Proposition 5 ceases to
hold when ¢ is not convex. In summary, the summation demand estimator d° requires a single

evaluation of ¢. Assuming that ¢ is convex, the packing demand estimator d* requires O(logm)
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evaluations of ¢ since the the minimizer I* in Proposition |5 can be determined via a binary (if ¢
is also monotone) or trisection search. Thus, both demand estimators can be computed efficiently
whenever ¢ allows for an efficient evaluation. As we will see in the next section, this is the case for
a broad range of CVRP variants under stochastic and distributionally robust descriptions of the
uncertainty governing the customer demands.

We now study the applicability of the two demand estimators d° and d¥.
Theorem 3. Assume that ¢ is monotone.

(i) If ¢ is subadditive, we have d < S < d® <d". If ¢ is also positive homogeneous then

dS = dP; otherwise, d° = d¥ does not hold in general.

(ii) If ¢ is additive, we have d < d° = d¥ < d". Furthermore, VRP(C)| can be reformulated as

a deterministic CVRP instance, and every deterministic CVRP instance can be reformulated

as a [VRP(C)| instance with additive ¢.
(iii) If o is not subadditive, then d < d¥ < d", whereas d® < d" does not hold in general.

Recall that ¢ is subadditive whenever p(x + y) < ¢(x) + ¢(y) for all @,y € [0,1]" satisfying
x + y € [0,1]", and that ¢ is additive if the inequality holds as equality. Likewise, ¢ is positive
homogeneous if p(Ax) = A\p(x) for all A > 0 and all = € [0, 1]" satisfying Ax € [0, 1]". A subadditive
and positive homogeneous function is also called sublinear.

Theorem (3| shows that for a subadditive and positive homogeneous function ¢, the summation
and packing demand estimators coincide, and we should use the summation demand estimator
due to its favorable complexity. We will see in the next section that examples of subadditive
and positive homogeneous ¢ include all coherent risk measures (such as the conditional value-at-
risk and expectile risk measures) as well as the underperformance risk index under a stochastic
as well as a distributionally robust description of the uncertainty. If, on the other hand, ¢ is
subadditive but not positive homogeneous, then the packing demand estimator can result in tighter
capacity constraints. An example of a subadditive function ¢ that fails to be positive homogeneous
is the ramp disutility function (discussed in the next section) under a stochastic as well as a
distributionally robust description of the uncertainty. Figure |1] (left) illustrates how the packing
demand estimator can yield tighter capacity constraints than the summation demand estimator

for this measure. An example of an additive function ¢ is the expected loss over a stochastic

16



61 N 0
8-—A—dP "
54 ©-
5 5 7 IIE—-EI
g 4- g6 -
53 &s
2 Ca
© ©
§ 21 §3
[a) [a)
2
1-
1

o

Customer Sets Customer Sets

Figure 1. Demand estimators for a stochastic CVRP instance with n = 6 customers
and the demand distribution P[§ = 5e] = 0.05, P[§ = 16e] = 0.9 and P[g = 30e] = 0.05
using (a) the expected ramp disutility Ep[max{}}, ¢ ¢;, 30}] with B = 30 (left) and (b)
the entropic risk 10log Ep[exp(0.1)], ¢ ¢;)] with B = 17.2 (right).

description of the uncertainty. Examples of functions ¢ that fail to be subadditive include, as the
next section shows, the expected disutility, entropic risk measures, the essential riskiness index, the
service fulfillment risk index and the requirements violation index. Figure [l (right) illustrates that
in this case, we have to use the packing demand estimator as the summation demand estimator may
fall outside the interval [d, Em] and thus cut off feasible route plans. Since all of the aforementioned
risk and satisficing measures are convex, the packing demand estimator can be computed efficiently

for all of them.

5 under Risk and Ambiguity

From now on, we focus on the intra-route constraints of the distributionally robust CVRP, where

the uncertain customer demands ¢ can be governed by any distribution P from the ambiguity set
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P, and the feasibility of a route depends on its worst-case risk over all distributions P € P:

C= {Rz (Ry,...,R)) : v>=1and R; € Vo Vi, suppp [Z(L] <Q} (5)
Pe i€R

We call the collection p = {pp}pep of risk (or satisficing) measures an ambiguous risk (or satisficing)

measure, and we define

¢(x) = suppp [z G| (6)
PeP

for x € [0,1]™ as the worst-case risk. Each individual risk (or satisficing) measure pp maps scalar
random variables to real numbers with the interpretation that larger numbers correspond to greater
risks, and the ambiguous risk (or satisficing) measure p allows us to quantify the worst-case risk
over all distributions P € P. The upper bound @ represents either the homogeneous capacity of
all vehicles (if p measure maps to quantities that have the same unit as the customer demands,
such as the worst-case expectation or the worst-case (conditional) value-at-risk) or more generally
a bound on the acceptable risk (e.g., for the expected disutility). The intra-route constraints
are readily recognized as a special case of the intra-route constraints studied in Section |4 Note
that the intra-route constraints of the distributionally robust CVRP generalize those of the
stochastic CVRP, which correspond to instances of with singleton ambiguity sets, as well as
those of the robust CVRP, which emerge if the ambiguity set P contains all Dirac distributions
supported on a subset of R"} (the uncertainty set).

We assume that g = 0 P-almost surely for all P € P and that each individual risk or satisficing
measure pp, P € P, is monotone. This implies that the worst-case risk ¢ is monotone, that
is, p(x) < p(y) whenever x < y, and satisfies the assumptions (D) and (P) due to
Proposition [3| Additionally, we will be interested in cases where the worst-case risk is subadditive
and/or convex so that we can apply the demand estimators d® and d® from Section 4| to solve the
corresponding instance of Finally, we will be interested in worst-case risks that can be
evaluated quickly so that the resulting instances can be solved efficiently.

Throughout the remainder of the paper, we consider the scenario-wise first-order ambiguity set

[ N 3

P = {PePy(R} x W) :3s e Qsuch that [ Ywe W (7)
[
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proposed by Chen et al.| (2019) and |Long et al. (2020), and applied to multi-period inventory
routing problems with a single, capacity-unconstrained vehicle by |Cui et al. (2022). Here, w is a
random scenario supported on the set W = {1,..., W}, [¢",q"] is the support of the uncertain
demands g under scenario w € W, u* € (g%, ¢*) and v > 0 represent the expectation and the
mean absolute deviation of the demand vector under scenario w, respectively, s denotes the scenario
probabilities that are only known to be contained in the subset  of the probability simplex in R",
and Po(R". x W) is the set of all probability distributions supported on R x W. We allow for
the mean and mean absolute deviation conditions to be absent in , in which case some of the
computations considered below simplify. All of our results also extend to ambiguity sets in which
the mean absolute deviation is replaced by the expectation of a piecewise affine convex function
(¢f. Long et al.|[2020]), which allows us to stipulate, among others, approximate upper bounds on
the marginal variances or the Huber losses of the customer demands (Wiesemann et al.l 2014]).
As we show in the following, the ambiguity set is very versatile and allows us to model a

range of well-known ambiguity sets from the literature.

Example 3 (Ambiguity Set P). The ambiguity set @ recovers a stochastic CVRP
P = {PePy(RY) : Plg=¢"] =5, Ywe W}

if we set ¢¥ = q@¥ = ¢¥, we W, Q = {8} and disregard the expectation and mean absolute
deviation constraints. Likewise, we obtain a distributionally robust CVRP over the marginalized

moment ambiguity set (Ghosal and Wiesemann, |2020)

if we set W =1 and Q = {1}. We recover a distributionally robust CVRP over the type-oco Wasser-
stein ambiguity set (Mohajerin Esfahani and Kuhn, |2018; |[Kuhn et all |2019; |Bertsimas et al., |2023)

1
P = {Pe%(m) s dW (IP’, W > 541”) ge},

wew

where % D wew Ogw is the empirical distribution over the historical demands g',....,G" and

dW(JP’ Q) e é é./ II is a joint distribution over é and é’
o (P, = in -ess sup H —

o with marginals P and Q
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is the type-co Wasserstein distance with the co-norm as ground metric, by setting ¢ = [¢¥ — 0 - €],
andq=q4Y+0-e forallweW, Q= {% -e} and disregarding the expectation and mean absolute
deviation constraints, see Proposition 3 of Bertsimas et al.| (2023). A distributionally robust CVRP
over the Kullback-Leibler (KL) divergence ambiguity set (Bayraksan and Love, |2015, §3.1)

. . 1
P = {]P’e Po(R%) : supp(P) = {ql,...,qw}, dkE <IP’, W Z 6q“w) < 9},
wew
where supp(P) denotes the support of the distribution P and
p
dKL ( Z Pw '513“’7 Z qw '513“’) = Z Pw log <w>
wew weW quw
1s the KL divergence between two discrete distributions over the common support {cjl, R AW}, 18
recovered if we fix ¢V = q¥ = ¥ for allw e W, Q = {s eRY : D wew Swlog (s W) < 6, els= 1}
and disregard the expectation and mean absolute deviation constraints. We recover a distributionally

robust CVRP over the total variation ambiguity set (Bayraksan and Love, |2015, §3.1)

n R . 1
P = {]PEPO(R+) : supp(P) = {ql,..., W}, dtv <]P’, W Z (5qw> SQ},

wew

where supp(P) denotes the support of the distribution P and

p
dTV(Z Puw - Ogw, Y. qw-5qw) = > G- w—l‘
wew wew wew duw
1s the total variation between two discrete distributions over the common support {(jl, . ,th},

finally, if we fix q¥ = @* = §* forallweW, Q= {seRY : |[s—-el|, <0, e's=1} and

disregard the expectation and mean absolute deviation constraints.

Real-life logistics problems—especially those of consumer-facing businesses—tend to be large in
scale, and they are typically solved in two stages: In a first stage, a districting problem partitions the
overall problem into several smaller problems based on geographic proximity. Subsequently, each
smaller problem—which may contain of the order of 50-100 customers—is solved as a CVRP. Even
for such CVRP instances, however, a model-free characterization of the underlying probability
distribution using scenarios, be it in a stochastic programming or a data-driven framework (as
in the Wasserstein, KL-divergence and total variation ambiguity sets above), would require an

unrealistically large number of scenarios due to the curse of dimensionality. Instead, we propose
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to use the scenarios w € W in our ambiguity set to model macroscopic effects, such as demand
shocks that affect all customers in a particular region, and to characterize the residual variability
of the individual customer demands using the supports [¢", "] and the first-order information
(n”,v"). The resulting instances of the ambiguity set @ may then contain of the order of tens of
scenarios, and our numerical experiments in Section [6] will show that such problems can be solved
in runtimes that are comparable to those of the corresponding deterministic CVRP instances.
Section discusses how with the intra-route constraints can be solved via its
reformulationwhen the set of scenario probabilities §2 in the ambiguity set @ is a singleton,
that is, when Q = {8}. Section extends our results to the more general setting where € is a
convex subset of the probability simplex in RW . Section finally, discusses the chance constrained

CVRP, whose underlying risk measure is non-convex and thus requires a special treatment.

5.1 Ambiguity Sets With Known Scenario Probabilities

Long et al| (2020) optimize the worst-case expectation in two-stage distributionally robust op-
timization problems where the uncertain parameters affect the constraint right-hand sides of the
second-stage problem. They show that for ambiguity sets of the form with known scenario prob-
abilities §, the worst-case expectation is attained by a discrete distribution that does not depend
on the first-stage decisions, and thus the two-stage distributionally robust optimization problem
reduces to a two-stage stochastic program. Our setting differs from theirs in the following aspects:
(i) we consider the random quantity ' that is parametric in the weights @, rather than the opti-
mal value of a second-stage problem that is parametric in the first-stage decisions; (ii) we consider
a broad range of risk and satisficing measures, whereas [Long et al.| (2020) focus on the expected
value, the expected disutility and the optimized certainty equivalent; and (%) the random vector
g multiplies the parameters  in our context, whereas it is isolated on the constraint right-hand
sides in their setting. Nevertheless, we can adapt the arguments of Long et al.| (2020) to show that

the worst-case risk () is attained by a finite demand distribution that is independent of p and .

Theorem 4 (Long et al.| (2020)). Fiz an ambiguity set P of the form where Q = {8}, and
assume that p(x) can be represented as a worst-case expectation suppep Ep [f(:BTE]')] of a convex
function f : R — R. Then Algorithm |1| in Appendiz C identifies a W(2n + 1)-point worst-case
distribution P* = 3 1, Z?f{l SwPy; - Oqz, € P such that o(x) = Ep- [f(x"q)] for all x € [0,1]".
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Moreover, the parameters p’;uj and q;}j characterizing P* do not depend on f and .

The intuition underlying Theorem [4]is as follows. If we condition on the event w = w, then the

resulting ambiguity set P“ becomes rectangular in the customers ¢ € Vo in the sense that

P’UJ

{PePy(R}) : 3Q € P such that P[] = Q[-|w = w]}

X A{PeP®):Pqr <@ <a’| =1, Belal =ul', Eellg—nlll<ui}. (8)

€Vo

One can then verify that for a convex function f, suppepw Ep [ f (azch)] is attained by a distribution
P* that only places positive probability on demand realizations q € X ieVe {g;i“, i, G;”}, and that
these probabilities do not depend on f or @. This, however, only allows us to conclude that there
is a worst-case distribution with an exponentially large number 3" of realizations. Next, fix any
worst-case distribution P* supported on the demands q € X ieVe {gz", [T @;”}, and assume that
P*[q], P*[q'] > 0 for an unordered pair of demands g and ¢, that is, g and ¢’ satisfying neither
q < ¢ nor q > ¢'. In that case, we can move equal amounts of probability mass from the demand
realizations q and ¢’ to their join max{q, ¢’} and meet min{q, ¢’} without affecting the marginal
distributions of P* and thus guaranteeing, by the rectangularity of P*, that the new distribution is
also in P™. On the other hand, the convexity of f and the fact that @ > 0 implies that the mapping
q—f (a:Tq) is supermodular, and hence the new distribution has a weakly larger expected value
since f(x' max{q, ¢'}) + f(z" min{q, ¢'}) = f(x"q) + f(x'q'). We can repeat this procedure
iteratively until P* no longer places positive probability on any unordered pairs, in which case all
probability is concentrated on at most 2n + 1 demand realizations. Of course, this iterative mass
transportation procedure is impractical as it may require exponentially many iterations depending
on the initial distribution. Instead, Algorithm [I]in Appendix C computes a worst-case probability
distribution over P¥ in O(n) iterations. Applying the same principle to each marginal ambiguity
set PY, w € W, we obtain in O(Wn) iterations a W (2n + 1)-point distribution P* that maximizes
the expectation of f(x'q) over all P € P. Since P* does not depend on x, it only needs to be
computed once for each instance.

Theorem [4 implies that for suitable ambiguous risk and satisficing measures p, the distribution-
ally robust CVRP over the ambiguity set with known scenario probabilities Q = {8} reduces
to a stochastic CVRP over a probability distribution that does not depend on p or . Note, how-

ever, that the risk itself depends on the choice of p and «, and hence the feasible region of the
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distributionally robust CVRP varies for different risk and satisficing measures p.
In the remainder of this section, we review a number of popular risk and satisficing measures,
we show how their worst-case risk can be computed efficiently, and we discuss which of the demand

estimators d> and d¥ can be employed in their associated reformulations 2VF(d

Theorem 5 (Expected Disutility-Based Measures). Fiz an ambiguity set P of the form with
0 = {8}

1. Expected Disutility. The worst-case expected disutility ¢rp(x) = suppep P-ED(z'§) with
P-ED(z'q) = Ep[U(z"q)],

where the disutility function U is monotonically non-decreasing and convex with U(0) = 0,
affords a W (2n + 1)-point worst-case distribution that can be computed with Algom'thm and

that is independent of x. Moreover, orp is monotone, convexr and not subadditive.

2. Essential Riskiness Index (Zhang et al.l 2019). The essential riskiness index @grr1 with
vEri(x) = inf {a >0 : sup Ep [max{de -7, fa}] < O} ,
PeP

where p is the acceptable demand threshold, can be computed in time O(n*W +nW lognW).

Moreover, pgRr1 s monotone, conver and not subadditive.

3. Expectiles. The worst-case expectile risk measure g with
. T~ 2 T ~12
¢gp(x) = argmin< «-sup Ep [[:1; q-— u]+] + (1 —«)-sup Ep [[u —x q]+] ,
ueR PeP PeP

where o € [1/2,1), can be computed in time O(n*W + nW lognW). Moreover, ¢ is mono-

tone, convexr and subadditive.

4. Entropic Risk. The worst-case entropic risk @ent(T) = suppep P-ent(x'q) with

P-ent(z'q) = % log Ep [exp (0-2"q)],

where 6 > 0, affords a W(2n + 1)-point worst-case distribution that can be computed with
Algorithm [1] and that is independent of . Moreover, peny is monotone, conver and not

subadditive.
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5. Requirements Violation Index (Jaillet et al., 2016|) The requirements violation index pry with
prv(z) = inf{a>0: Cu(z'q) <7},
where Cy, is the worst-case certainty equivalent under an exponential disutility,

T~
. E}ug alog Ep [exp <93aq>] ifa>0
Ca(m Q) = €

lim C’W(ch(j) if a =0,
7—0
and p is the acceptable demand threshold, can be computed to e-accuracy via bisection search.

Moreover, pry is monotone, convexr and not subadditive.

Since the worst-case expectiles are subadditive as well as positive homogeneous (Bellini and
Bignozzi, 2015, Theorem 4.9(b)), Theorem [3| (4) implies that both demand estimators d° and d*
can be applied and yield the same results. We thus prefer d® for its ease of computation. In contrast,
the other risk and satisficing measures of Theorem [5| fail to be subadditive, and Theorem [3| (%)
implies that we have to use the demand estimator d©. Fortunately, since all of these measures are
convex, d¥ can be computed efficiently thanks to Proposition

Two commonly used risk measures are variants of the worst-case expected disutility. The worst-
case expected demand suppep Ep|-] emerges as a special case of the worst-case expected disutility if
we set U(z) = x. Since the worst-case distribution P* from Theorem 4] does not depend on  and
the expectation Ep«[z ' §] is linear in &, Theorem [3| (4i) implies that the corresponding worst-case
distributionally robust CVRP instance reduces to a deterministic CVRP. The worst-case expected
ramp disutility suppep Ep[max{-, 7}], where 7 € Ry is a parameter, is monotone, subadditive and
not positive homogeneous. While both demand estimators d> and d¥ are applicable in this case,
we prefer to use d as it can offer tighter bounds, see Theorem [3| (i) as well as Figure [1] (left). The

convexity of the expected ramp disutility allows us to evaluate d* efficiently.
Theorem 6 (CVaR-Based Risk Measures). Fiz an ambiguity set P of the form with = {8}.

1. Conditional Value-at-Risk. The worst-case conditional value-at-risk (CVaR) at level 1 — €,
¢wcovar(®) = suppep P-CVaRy_(z'§) with
1

— €

Ep[z"q — u]

T... o
P-CVaRi_((z'q) = Qltgﬂt%u—i— 1 4

where € € [0,1), can be computed in time O(n*W + nW lognW). Moreover, pcvar s mono-

tone, convex and subadditive.
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2. Service Fulfillment Risk Index (Zhang et al., 2021). The service fulfillment risk index @srr
with

gpSRI(mTij) = inf {a =>0: ;ug P-CVaRq_« (max {a:T(j -7, —a}) < O} ,
€

where p is the acceptable demand threshold and the worst-case CVaR is evaluated at level 1 —e
with € being the service level, can be computed in time O(n*W +nW lognW). Moreover, psgri

is monotone, conver and not subadditive.

Since the worst-case CVaR is subadditive and positive homogeneous (Rockafeller and Uryasev),
2002, Corollary 12), Theorem [3| (i) implies that we can use either d¥ or d%, and the values of
both demand estimators coincide. We thus prefer d° as it is easier to evaluate. In contrast, the
service fulfilment risk index is not subadditive, and Theorem [3| (#4i) implies that we have to use d".

Fortunately, d¥ can be evaluated efficiently since the service fulfilment risk index is convex.

Theorem 7 (Other Satisficing Measures). Fiz an ambiguity set P of the form (7)) with = {8}.
The underperformance risk index purr (Hall et al., 2015) with
. 1 T~ _
pur(@) = inf{ L : sup e (a (€7G-7)) <0, a> 0},
@ pep
where Pp is a monotone, translation invariant and convez risk measure satisfying ¥p(0) = 0 that can
be expressed as the expectation of a convex function and p is the acceptable demand threshold, can be

evaluated to e-accuracy via bisection search. Moreover, ¢ygr1 s monotone, convex and subadditive.

Since the underperformance risk index in Theorem [7] is subadditive and positive homogeneous
(cf. Hall et al.|2015, Definition 3), Theorem [3| (4) implies that d> and d® are both applicable and
yield the same results. We thus prefer d5 for its ease of computation.

One readily verifies that when the expectation and mean absolute deviation conditions in the
ambiguity set are absent, all the worst-case risk and satisficing measures in this section are
optimized by the W-point distribution P* = >, ), 8, - dgw under which the customer-wise largest
demands are attained almost surely in each scenario w € W. Since this worst-case distribution is
supported on W instead of W(2n + 1) points (cf. Theorem , the computational complexity of

evaluating the worst-case risks in Theorems reduces accordingly in this case.

Remark 3 (Incremental Evaluation of Risk and Satisficing Measures). In branch-and-cut imple-

mentations, p(x) rarely needs to be computed from scratch; instead, it is computed iteratively for
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vectors x that differ in one or a few components. In this case, incremental evaluations of the
worst-case risks in Theorems [JH7 can significantly reduce the runtime. Details are provided in

Appendiz B.

5.2 Ambiguity Sets With Ambiguous Scenario Probabilities

We now consider a more general setting where the set 2 of scenario probabilities in the ambiguity

set (7)) is one of the following convex subsets of the probability simplex Ay = {s € RKV cels=1}:
1. 1-Norm Ambiguity Set. Q ={se€ Ay : |s— 8|1 <0} with # e R, and § € Ayp.
2. w-Norm Ambiguity Set. Q ={se€ Ay : |s— 8|xn <0} with # e R} and § € Ay.

3. Ellipsoidal Ambiguity Set. Q = {se Ay : (s—38)'27 (s —38) <0} withdeR, ,, >0

and § € Ay .
4. Awis-Parallel Ellipsoidal Ambiguity Set. Ellipsoidal ambiguity set with 3 = diag(o?,...,0%,).
5. Entropy Ambiguity Set. Q = {s € Aw : X, ey Sw108(Sw/5w) < 0} with 0 e Ry and § € Ay

Norm-based and ellipsoidal ambiguity sets are used extensively to characterize the scenario prob-
abilities in robust Markov decision processes (Lyengar} 2005} Nilim and El Ghaoui, 2005; Wiesemann
et al., [2013) and, more broadly, distributionally robust optimization (Erdogan and Iyengar} 2006;
Zhu and Fukushimaj [2009). Norm-based and entropy-based ambiguity sets are frequently used
to characterize distances between probability distributions in data-driven optimization (Ben-Tal
et al.l 2013; [Bayraksan and Love, 2015). Indeed, the total variation and KL divergence ambiguity
sets from Example (3| are special cases of the 1-norm and the entropy ambiguity sets, respectively,
if we set q¥ =¢q¥ =q4¥, we W, § = % - e and disregard the expectation and mean absolute
deviation constraints. Finally, ellipsoidal uncertainty sets are used to characterize the uncertain

customer demands (as opposed to their probabilities) in the classical robust CVRP, see |Gounaris

et al.| (2013), Subramanyam et al. (2020) and |Wang et al.| (2022).

Proposition 6. Fiz an ambiguity set P of the form , and assume that the worst-case risk o(x)
defined in @ can be represented as

= max/mln f( sla( x)) Va e [0,1]" (9)

seN SeN
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for f : R — R monotonically increasing and {s m(x) : s € Q} < dom(f). If w(x) € RV is known,

then o(x) can be computed:
1. in time O(Wlog W) for the 1-norm and the co-norm ambiguity set;

2. to e-accuracy in time O(W log[7/e]) for the entropy ambiguity set, where T = max{m,(x) :

w e W}
3. to e-accuracy in time O(WlogW -loge™') for the axis-parallel ellipsoidal ambiguity set;

4. to e-accuracy in polynomial time via FISTA, the Fast Iterative Shrinkage-Thresholding Algo-
rithm (Beck and Teboullé, |2009), for the ellipsoidal ambiguity set.

Proposition |§| provides the time complexities of evaluating the worst-case risk ¢(x) of a generic
form @ It is worth noting that these time complexity results assume 7(x) € R" is known.
That is, @ is fixed, which occurs at every iteration of the branch-and-cut schemes or branch-and-
cut-and-price algorithms. To evaluate ¢(x) for any « € [0,1]" (including the cases where x is
binary), one can use the results in Theorems to first evaluate m(x), and then apply the results
in Proposition [6] to compute ¢(x). We elaborate on the use of FISTA (Beck and Teboulle, [2009)

in the proof of Lemma [I4] in the appendix.

Corollary 1. The expected disutility and the entropic risk satisfy the conditions of Proposition [0
In the case of the expected disutility, we have f(x) = x and w(x) € RW where

Tw(x) = Psug Ep, [U(a:Tq'()] , for w=1,2... W
we w

As for case of the entropic risk, we have f(z) = %log(x) with 8 > 0 that is defined in Theorem@
and w(x) €e RV where
Tw(x) = sup Ep, [exp(0-z'§)], for w=12,...,W.
PypePw

The proof of Corollary (1| shows that the components 7,,(x) in Proposition |§| relate to the worst-
case risk over the marginal ambiguity sets P%, w € W, and those quantities can be computed from
Theorems In practical applications (cf. Section |§[) we expect the number W of scenarios to be
small, in which case the overhead caused by the incorporation of ambiguous scenario probabilities

can be considered to be a constant factor for the expected disutility and the entropic risk.
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Proposition 7. Fiz an ambiguity set P of the form , and assume that the worst-case risk o(x)
defined in @ can be represented as
L
e(x) = inf /argmin < fo(u) + Z max fy (8" mo(x,u), u) Va € [0, 1]"
uelU weld =1 seQ)
or

L
p(x) = inf/argmin {g(u) 2 folu) + Z max fe (sTﬂ'g(m,u),u) < O} Ve € [0,1]",
(=1

uel weld
where U < R is a left-bounded, right-bounded or unbounded interval, u — g(u) is a monotonic
mapping, and u — fo(u) and v — foi(s"mp(x,u),u), £ = 1,...,L, are convexr mappings. Assume
further that the embedded mazimization problems over s € Q0 can be solved in time O(T) for any

fived values of € and u. Then @(x) can be computed to e-accuracy in time O(LT loge1).

Sufficient conditions for u > fy(s'ms(x, u), u) to be convex are that (i) each f is jointly convex
and non-decreasing and 7y is convex in w; (ii) each f; is jointly convex and non-increasing and 7y

is concave in u, see (Boyd and Vandenberghel 2004, Page 86).

Corollary 2. The essential riskiness index, the expectiles, the requirements violation index, the
CVaR, the service fulfilment index and the underperformance risk index satisfy the conditions of

Proposition [ In particular, we have the following:

1. Essential Riskiness Index. Setting U = Ry, g(u) = u, fo(u) =0, L =1, fi(x,u) = = and

m(x,u) € RW where

Tiw(T,u) = IEDsug Ep, [max{a:th—ﬁ, —u}], for w=12...,W.
wEPY

2. Expectiles. Setting U = R, fo(u) =0, L =2, fi(z,u) = a -z, fo(z,u) = (1 —«)- -2 and

m(x,u), mo(x,u) € RY where

Tw(x,u) = sup Ep, [[de—u]i], for w=1,2,...,W,
PyePw
T ~12
Tow(T,u) = sup Epw[[u—m q]+], for w=12,...,W.

P,ePw
3. Requirements Violation Index. Setting U = Ry, g(u) = u, fo(u) = —p, L =1, fi(z,u) =

u-log(z) and mi(x,u) € R where

x'q
Tiw(@,u) = sup Ep, |exp|— )|, for w=1,2,..., W
P,ePw U
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4. CVaR. SettingU =R, fo(u) =u, L =1, fi(z,u) = 2/(1 —€) and 71 (x,u) € RV where

Tiw(®,u) = sup Ep, [mT(j—uL, for w=1,2,...,W.
PypePw

5. Service Fulfillment Index. Settingld = Ry, g(u) = u, fo(u) = —(1—¢€)-u, L =1, fi(z,u) ==

and 1 (x,u) € RV where

Tiw(T,u) = sup Epw[mT(j—ﬁ—l—uL, for w=1,2,...,W.
PyePw

6. Underperformance Risk Index. SettingU = Ry, g(u) = 1/u, fo(u) =0, L =1, fi(z,u) ==z

and 71 (x,u) € RY where

Tiw(T,u) = ]Psggw Ep,, [f (u [wT(f—ﬁ])], for w=12...,W.

For the risk and satisficing measures considered in Corollary [2] the representation in Proposi-
tion [7] satisfies L € {1,2}. The computational overhead caused by the incorporation of ambiguous
scenario probabilities thus amounts to a multiplicative factor of O(loge™!) in the computation of

the demand estimators.

5.3 The Chance Constrained CVRP

In this section, we consider the ambiguous chance constrained CVRP with technology sets

Cccz{Rz(Rl,...,R,,) cv=1land R; € Vo Vi, P[ZfbéB
i€ER

>1—c€ VIP’EP},

where the ambiguity set P is of the form , B denotes the vehicles’ capacities and € € (0,1) is a
risk threshold selected by the decision maker.

Observation 1. For any S < Vo, we have

IP’[ZQ}'<B

€S

>1—¢€ VPeP <— SDVaR(]-S)<37

where pvar(x) = suppep P-VaRi—¢ [x7q| and P-VaR,_. denotes the (1 — €)-value-at-risk (VaR).

Observation (I whose statement is well known and immediately follows from the properties
of the value-at-risk, allows us to use technology sets of the form with ¢ = @var to model
the ambiguous chance constrained CVRP. Recall that in order to solve the corresponding

formulation, pv,r has to satisfy certain properties as outlined in Section 4] We examine this next.
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Observation 2. For an ambiguity set of the form , VvaR 1S monotone and positive homogeneous,

but it is neither subadditive nor conver in general.

The discussion surrounding Theorem [3] implies that we cannot use the demand estimator d° in

conjunction with pv,r, and the demand estimator d¥ is difficult to evaluate.

Example 4. Consider an ambiguous chance constrained CVRP instance with n = 2 customers
and m = 2 vehicles. Fiz an ambiguity set of the form (7)) with W = 3, § = %e, expectation and
mean absolute deviation constraints disregarded as well as gl =q' = (1,37, g2 =q>=(8,3)" and
¢’ =¢* = (1,11)". Fore= 0.4 and B = 3, we have Ccc = {(1),(2)} and thus d" (Vo) = 2, while
the technology sets with ¢ = pvar yield dS(Vo) = max{1, [11/3]} =4 > d (Vg). On the other
hand, note that Y with y; = (1,0)T and yo = (0,1)7 is a feasible solution for d*, which implies
that d¥* (Vo) <2 =d" (Vo).

Laporte et al| (1989) use the demand estimator d° in conjunction with oy.g for chance con-
strained CVRPs where the customer demands follow independent normal distributions. This ob-
servation has later been generalized to normally distributed customer demands (that are not nec-
essarily independent) by Dinh et al.| (2018). Theorem (3| reveals why this is possible: one readily
verifies that in these specific cases, pvar is subadditive, and part (i) of the theorem shows that
dS is indeed admissible. |Ghosal and Wiesemann (2020) combine d® with pvar to solve ambiguous
chance constrained CVRPs over moment ambiguity sets. Again one can show that in this special
case, pvar is subadditive, and Theorem 3| (i) offers a justification for the use of dS. Our theory
from Sections |3| and [4] thus provides a theoretical understanding of why the value-at-risk is appli-
cable under these specific circumstances. In contrast, our scenario-wise ambiguity sets require
a different approach, which we develop in the following.

Following [Dinh et al.| (2018), we define the modified VaR ¢nvar : [0,1]" — R as

Ymvar(x) = B - Il?e%? a(z, k)
where a(x,1) = 1 and a(z, k) = min{k, [suppep IF’—VaRl_(k_l)E(:cT(j)/B]} otherwise, as well as
Cvar = {R=(Ry1,...,R)) : v=1and R; € Vo Vi, pnvar(x) < B}.

Note that 1—(k—1)e can be non-positive, in which case we stipulate that suppep P-VaR_(,_1)(-) =
—0o0. Although we have Ynvar # @var, it turns out that both worst-case risk measures lead to the

same technology sets.

30



Proposition 8. We have Ciyvar = Coc.
In contrast to pvar, however, pnvar has desirable features in view of our demand estimators.

Proposition 9. The function pmvar s monotone and subadditive, but it is neither convex nor

positive homogeneous in general.

The monotonicity of ¢pmvar guarantees via Proposition [3| that the technology sets with
¢ = @mvar satisfy (D) and (P). Since pmvar is subadditive but not positive homogeneous,
Theorem [3| implies that d8 < d¥ and that d8 = d© does not hold in general. However, d* appears

difficult to evaluate due to the non-convexity of wn,var, and we thus prefer to use ds.

Example 4 (cont’d). We have a(1ly,,1) =1 by definition and a(1y,,2) = min{2, 4} = 2, implying
that omvar(1v,) = 2B = 6 and thus d5(1y,) =2 = a".

Dinh et al.| (2018)) introduce @nyar as a valid lower bound for the minimum number of vehicles
required to serve a set of customers in the context of stochastic chance constrained CVRPs with
normally distributed customer demands as well as ambiguous chance constrained CVRPs over
moment-based ambiguity sets where the chance constraints admit deterministic representations
as individual second-order cone constraints. Their justification of ¢nvar is derived from first
principles, whereas our derivations in this section leverage Theorem |3[to apply ¢mvar to a broader
class of ambiguity sets that comprise, among others, scenario-based as well as Wasserstein and
¢-divergence based representations of the ambiguous demand distribution.

In the remainder, we discuss how d5 can be evaluated efficiently for the technology set Crvar.

Theorem 8. For an ambiguity set of the form @ with Q = {8}, vmvar(x) can be evaluated to

k-accuracy in time O(Wn -logm -logn -log k1),

We note that the accuracy x in Theorem [§| is measured relative to the maximally possible
demand; to obtain a complexity estimate for an absolute accuracy, the term logx~! has to be
increased to log(ﬁ_1 - MaXyeWy eTGw). We close this section with the computation of ¢nvar for

instances of the ambiguity set where the scenario probabilities are ambiguous.
Proposition 10. For an ambiguity set of the form , ©mvar () can be computed to k-accuracy:

1. in time O((Wnlogn + Wlog W) -log k=1 -logm) for the 1-norm and the co-norm ambiguity

set;
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2. in time O((Wnlogn + Wlog[7/k]) - logk™! - logm) for the entropy ambiguity set, where

T = max{m,(x) : we W},

3. in time O((Wnlogn + WlogW -logk™!) - logk™! - logm) for the axis-parallel ellipsoidal

ambiguity set;
4. in polynomial time via FISTA for the ellipsoidal ambiguity set.

For ease of notation, Proposition [10| again uses a relative accuracy k.

6 Numerical Experiments

Our numerical experiments use the standard CVRP benchmark instances compiled by [Diaz (2006).
Fach instance label ‘X-nY-kZ’ indicates the literature source X of the instance, the number Y of
nodes (including the depot) as well as the number Z of vehicles. Since our ambiguity set construc-
tion below is based on geographic information, we disregard instances that do not provide Euclidean
coordinates for the nodes. Following the literature convention, we identify the transportation costs
ci; with the 2-norm distance between ¢ and j, rounded to the nearest integer number.

The customer demands in the CVRP benchmark problems are deterministic. To construct
stochastic demands whose distribution is characterized by an ambiguity set of the form , we
subdivide each instance into 4 quadrants (northwest, northeast, southwest and southeast) according
to the nodal coordinates. We then create W = 4 scenarios with equal probabilities § = e/4, each
of which is associated with one of the quadrants. In each scenario we set the expected demands of
the customers in the associated quadrant to 110%, of the customers in the horizontally or vertically
adjacent quadrants to 100%, and of the customers in the diagonally opposite quadrant to 90%
of the nominal demands from the deterministic instance. The lower and upper demand bounds
undercut and exceed these expected demands in each scenario by 10% of the nominal demands.
The mean absolute deviations of the customer demands are set to those of a Normal distribution
that is centered at the mean demands and that places 90% of its probability mass onto the demand
interval. Since the CVRP benchmark instances tend to have little slack in the vehicle capacities, we
follow (Gounaris et al.| (2013) and |Ghosal and Wiesemann (2020) and increase the vehicle capacities

Q by 20% to ensure that the distributionally robust instances are feasible.
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Figure 2. Runtimes and optimality gaps for our branch-and-cut schemes. Shown are
the runtimes (left graph) and optimality gaps after 12 hours (right graph) for the de-
terministic branch-and-cut scheme (blue and red) as well as the distributionally robust
branch-and-cut schemes with known (orange) and unknown (green) scenario probabili-

ties.

We implemented a ‘vanilla’” CVRP solution scheme that augments the branch-and-cut capacility
of CPLEX Studio 20.1.0 with an RCI cut separation procedure that follows the tabu search algo-
rithm outlined by |Augerat et al.| (1998). Our method is implemented in C++, and the source code
is available on the electronic companion (see Footnote . All problems are solved in single-core

mode on an Intel Xeon 2.66GHz processor with 8GB main memory and a runtime limit of 12 hours.

6.1 Runtime Comparison

In our first experiment, we compare the runtimes and optimality gaps of our branch-and-cut al-
gorithm for the deterministic CVRP with those of our algorithm for the distributionally robust
CVRP under the 90%-CVaR risk measure. To this end, we consider two variants of the determinis-
tic CVRP: one (‘deterministic’) where the original vehicle capacities are employed, and another one
(‘relaxed deterministic’) where the vehicle capacities are increased by 20% as in the uncertainty-
affected CVRP. We also consider two variants of our ambiguity set : in the ‘stochastic’ case, the
scenario probabilities are known to be § = e/4, whereas in the ‘ambiguous’ case these probabilities

are only known to be contained in a 1-norm ambiguity set of radius # = 0.1 that is centered at the
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nominal probabilities §. The ambiguous setup thus models a total variation ambiguity set with a
uniform empirical distribution (or ‘prior’), see Example [3| The results are summarized in Figure
and presented in further detail in Table [2] in Appendix D.

The results show that, as expected, increasing the vehicles’ capacity by 20% in the deterministic
CVRP substantially simplifies the problem instances. If the price to be paid by accounting for
uncertainty was to be small, we would expect the runtimes and optimality gaps for the stochastic
and ambiguous instances to be contained in the interval spanned by the deterministic and relaxed
deterministic instances. In fact, although the stochastic and ambiguous instances enjoy a capacity
increase of 20% (akin to the relaxed deterministic instances), the incorporation of demand variability
and distributional ambiguity as well as risk and ambiguity aversion reduce the factually available
vehicle capacity. On the other hand, our construction of the stochastic and ambiguous instances
guarantees that the uncertain customer demands never exceed 20% of their nominal values from
the deterministic instances. The results show that, broadly, the runtimes and optimality gaps for
the stochastic and ambiguous instances are upper and lower bounded by those of the deterministic
and the relaxed deterministic instances, which indicates that the computational price to be paid is
mainly determined by the slack in the vehicle capacities and less so by the incorporation of risk and
ambiguity. We thus conclude that the same branch-and-cut algorithm can solve all three problem

classes in runtimes and optimality gaps that are of the same order of magnitude.

6.2 The Impact of Risk Aversion

In our second experiment, we focus on the benchmark instance A-n32-k5 and solve the distri-
butionally robust CVRP associated with the family of exponential disutility functions U,(q) =
(exp(aq) — 1)/a, a > 0, and Up(q) = q. The scalar parameter a € R, controls the risk aversion
of the decision maker: ¢ = 0 reflects a neutral stance towards demand variability, whereas larger
values correspond to an increasing risk aversion. For every value of a, we set the budget B in to
B = U,(1.2Q), where @ is the nominal vehicle capacity from the deterministic CVRP instance and
the factor 1.2 corresponds to the 20% capacity increase described earlier. This choice ensures that
the feasibility of route plans for deterministic demands is unaffected by the choice of the risk aver-
sion a and coincides with that of the deterministic instance (apart from the 20% capacity increase).

Figure 3| visualizes how the minimum number of vehicles required to serve the customer demands,
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Figure 3. Minimum number of vehicles and optimal transportation costs for A-n32-k5

with an exponential class of disutility functions parameterized by a. The vertical lines

indicate the parameter ranges covered by 5, 6, ..., 11 vehicles (from left to right).

Figure 4. Optimal route plans for A-n32-k5 with exponential disutilities a = 0 (left; 5
vehicles), a = 3.41E-3 (middle; 7 vehicles) and a = 7.81E-3 (right; 9 vehicles).

as well as the resulting transportation costs, vary as a function of the risk aversion a. Moreover,
Figure [4] illustrates the optimal route plans for three different choices of a. We observe that higher
degrees of risk aversion require larger numbers of vehicles to serve the customer demands, which in
turn tends to increase the transportation costs (apart from two dips where the necessity to increase

the number of vehicles results in smaller overall costs).

6.3 A Data-Driven Experiment

Our third and final experiment assumes that the demand distribution is no longer known and
instead has to be estimated from 50 pairs of quadrant scenarios (NW, NE, SW or SE) and associ-

ated demand vectors. The goal is to determine a route plan that minimizes the expected overall
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Reduction Increase Failures Detours

deterministic — 6.46% 0.62 5.87%
stochastic 1.46% 4.27% 0.47 4.27%
ambiguous 3.71% 1.39% 0.16 1.34%

Table 1. Summary statistics of our data-driven experiment across the problem instances
listed in Appendix D. From left to right, the columns report the expected out-of-sample
cost reduction relative to the deterministic route plans, the post-decision disappointment
measured by the difference between average out-of-sample costs and average predicted
in-sample costs, the average number of route failures per instance run, as well as the

average out-of-sample detour costs (measured as percentage of the overall costs).

transportation costs out-of-sample, where we assume that a vehicle has to return to the depot
for restocking whenever a customer’s demand cannot be satisfied from the remaining vehicle load.
While our deterministic model has no hyper-parameters, we tune the risk aversion (in this case,
the level € of the CVaR) of the stochastic and the ambiguous model as well as the ambiguity set of
the ambiguous model (in this case, the radius 6 of the 1-norm ball) via 5-fold cross-validation.
Table [I) summarizes the out-of-sample performance of the three models on 500,000 test samples
across 100 statistically independent runs on a range of problem instances; the details are relegated to
Appendix D. We observe that the deterministic route plans lead to a post-decision disappointment
of 6.46%, which is caused by the frequent presence of unplanned detours to the depot (on average
0.62 per route plan across the instances). In contrast, the stochastic and ambiguous policies result
in significantly lower detour costs as well as post-decision disappointment, which enables them to

reduce the overall out-of-sample transportation costs by up to 3.71%.

7 Conclusions

The use of ambiguity sets and risk or satisficing measures to reflect different degrees of knowl-
edge and attitudes towards ambiguity and risk is well established in stochastic programming and
distributionally robust optimization. In this paper, we propose a framework that studies a broad
variety of ambiguity sets and risk and satisficing measures for the CVRP. An attractive feature of

our framework is that all emerging combinations can be solved with minimal adaptations of the
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same branch-and-cut scheme, and the resulting algorithms perform broadly on par with those for
the deterministic CVRP, thus allowing practitioners to incorporate uncertainty without incurring
an excessive computational burden.

In the stochastic and distributionally robust CVRP, uncertain demands are qua definitione high-
dimensional, and therefore the standard model-free characterizations of the underlying probability
distribution result in optimization problems that can be overly conservative (e.g., if pure moment-
based descriptions are being employed) or computationally prohibitive (e.g., if pure data-driven
characterizations are being used). Our framework attempts to alleviate this issue by combining a
scenario-based description (which characterizes systematic effects that affect multiple customers)
with moment information (that describes the idiosyncratic variability of individual demands). A
promising avenue for future research, in our view, is the study and comparison of alternative
model-based ambiguity sets for the uncertainty-affected CVRP that offer realistic descriptions of
the uncertain customer demands while avoiding the curse of dimensionality that plagues direct

characterizations of high-dimensional probability distributions.
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Appendix A: Proofs

Proof of Proposition In view of the first inequality, we note that d(¢J) = 0 = 81(@) by
definition and d(S) = 1 < 31(5’) for any ¢§ # S € C since at least one route R € C is required in
d' to cover a non-empty set S. To see that d(S) = 2 < EI(S) for & # S ¢ C, we observe that
S ¢ C implies that there is at least one list S formed from the elements of S such that S ¢ C.
Assumptions (D) and (P) then imply that C cannot contain any route R that contains all of the
customers of S (in any order). We thus conclude that S ¢ R for any R € C and thus EI(S ) = 2.

To show that (D) and (P) are necessary for the first inequality, assume first that assumption
(D) is violated. Then there is R € C such that S ¢ C for some subsequence S of R. One readily
verifies that d(S) = 2 but 31(5 ) = 1 for the set S formed from the elements of S; the latter holds
since the route covering R in the definition of d" also covers S. If assumption (P) is violated, on
the other hand, then there is R € C such that S ¢ C for some permutation S of R. One again
verifies that d(S) = 2 yet 31(5 ) = 1 for the set S formed from the elements of S; the latter holds
since the route covering R in the definition of d" also covers any permutation of R.

As for the second inequality, assume that Em(S ) = 6 for some J # S < Vi; the case S = (J is
trivial. The definition of d " implies that there is {Ry,...,Ry,... R} € B(Ve,m) n Cy, such that
SSC RyuU...uU Ry. Since Ry,..., Ry € C by definition of C,,, we have gl(S) < 0 as desired. O

Proof of Theorem Fix any demand estimator d. The statement follows if we show that:
(i) Any R € B(Ve, m) N Cp, induces a solution x(R) feasible in RVF(d)|if d < d".
(7i) Any solution x feasible in 2VF(d)|induces R(x) € P(Ve,m) N Cp, if d = d.

In view of (i), fix any R € P(Vo,m) n Cp,. The definition of x(R) in implies that x(R)
satisfies the binarity and degree constraints of 2VF(d)l To see that x(R) satisfies the capacity
constraints of 2VF(d), we note that for any ¢f # S < Vo, we have that

d(S) < d"(S)= infSJeN:Sc | ] Rjfor {R},....,R),....R,} e P(Vo,m)nCn
k=1,..,J
< inf{JeN: Sc U R, for ji,...,j7€{l,...,m}
k=1,....J
= |keK: RnS+# J| < Z inj(R)v

i€V\S jes
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where the second inequality holds since R € B(V, m) nCp,. The second equality is due to the fact
that the minimum number of routes in R required to cover S is precisely the number of routes Ry,
= 1,...,m, that have a nonempty intersection with .S. In view of the last inequality, finally, fix
ke K with R, nS # ¢ and let ji € R NS be the first customer on the route R; that is contained
in S. By definition of jg, we have ZiEV\S zij, (R) = 1. The inequality now follows from the fact
that there are |k € K : Ry n S # | different customer nodes ji with this propertyﬂ In summary,
we have shown that (R) satisfies the capacity constraints—and thus all constraints—of
As for (i), fix any feasible solution x in We construct a route plan R(x), in the
following abbreviated as R, satisfying as follows. Since )] jeve Toj = m, thereis ji, ..., jm € Ve,

J1 < ... < jm,such that zg; = ... =z, = 1. For each route Ry, k € K, we set Ry 1 < j; and

Jm
ng < 1. Since ZjeV TRy, g = 1, we either have TRy j = 1 for some j € Vi or TRy, 0 = 1. In
the former case, we extend route R by the customer Ry ,, 11 < j, we set nj < ni + 1 and we
continue the procedure with customer j. In the latter case, we have completed the route Rj. By
construction, the route plan R thus created satisfies .

We show that R € B(Ve, m). Note that ng > 1 due to the existence of the customers ji, ..., jn.
The degree constraints in ensure that Ry, # R;; for all (k,i) # (I,7). It remains to be
shown that | J, Rr = Vc. Imagine, to the contrary, that there is a customer j € Vi such that
J ¢ U, Ri. By construction of the above algorithm, j must lie on a short cycle S < Vi that is not
connected to the depot node 0. Since S # (J, its associated capacity constraint would require that
2iien\s 2jes Tij = d(S) = d(S) = 1. However, >\ g 2jes %ij = 0 because S is a short cycle not
connected to the depot node 0. Thus, the capacity constraint associated with .S would be violated.

We finally show that {Ry,..., Rp} € Cp as well. We have 31\ g, 2 zij = 1> d(Ry) >

jER),
d(Ry,) for all k € K, where Ry, is the set formed from the customers in Ry. Here, the equality follows
from the construction of the routes Ry, and the two inequalities hold due to the feasibility of x in
and the fact that d > d, respectively. Since Ry # (J, we thus conclude that d(Ry) = 1,
that is, Ry € C, for all k € K. This implies that {R,..., R} € C»,, and consequently we have

R € B(Ve,m) n Cp, as desired. O

Proof of Proposition In view of assertion (%), fix any [VRP(C)|instance and demand estimator

2Note that the same vehicle may enter and leave the set S multiple times, hence we cannot strengthen the inequality

to an equality in general.
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d as described in the statement. The first part of the proof of Theorem [I] implies that any route
plan R feasible in induces a solution x(R) that is feasible in Thus, we only need
to show that any solution x feasible in also induces a route plan R(x) that is feasible in
Indeed, the route plan R(x) considered in the second part of the proof of Theorem
satisfies ny > 1 due to the degree constraint for the depot node and Ry ;(x) # R;j(x) for all
(k,i) # (I,7) by virtue of the degree constraints for the customer nodes, respectively. Moreover, we
have  J,, Ri(x) = V¢ since our earlier assumption that d(S) > 0 for all nonempty S < V¢ disallows
any short cycles in @. We thus conclude that R(x) € P(Vie, m). Since P(Ve,m) < Cpp, it follows
that R(x) € C,, as well.

As for assertion (7i), we first show that for any instance with P(Ve,m) & Cp, the
demand estimator d defined through d(S) = 0 if S = ¢ and d(S) = 1 otherwise satisfies d * d and
implies that [VRP(C)| and RVFE(d)| are not equivalent. To see that d % d, we note that d(Vo) > 1

since otherwise Vo € C, which would in turn imply by (D) that S € C for all S € V¢ and hence
PB(Ve,m) € Cp, in contradiction to our assumption. To see that [VRP(C)| and RVF(d)| are not
equivalent, fix any R € B(Ve,m)\Cpr,. We show that the solution x(R) defined through is
feasible in RVF(d)], which implies that [VRP(C)| and RVF(d)| are not equivalent. Indeed, x(R)
satisfies the binarity and degree constraints in by construction, and it satisfies all capacity

constraints since Y ;11 g 2jeg 2ij(R) = 1 = d(S) for all nonempty S < Ve.

We now show that for any instance with P(Ve,m) &€ Cp, the demand estimator d
defined through d(S) =1 if S = Vi and d(S) = d(S) otherwise satisfies d # d and makes
and 2VF (d)| equivalent. To see that d * d, we note that d(Ve) = 1 whereas d(Ve) = 2 according to

our discussion from the previous paragraph. To see that [VRP(C)|and 2VF(d)| are equivalent under

d, the first part of the proof of Theorem [I] implies that we only need to show that any solution
x feasible in induces a route plan R(x) that is feasible in The route plan R(x)
constructed in the second part of the proof of Theorem (1] satisfies ny > 1, Ry ;(x) # Ry (x) for
all (k,7) # (I,7) and |, Ri(x) = V. Thus, we have R(x) € B(V, m). To see that R(x) € Cp,
we first note that no single route Ry (x) can contain all customers since otherwise m = 1 and the
assumption that P(Ve, 1) & C; implies that the instance is infeasible, which contradicts
the assumptions of the theorem. Next, we note that Ry(x) € C for all k € K as the capacity

constraints Y ,;c\n g, (z) 2ujeRy (@) Tij = 1 = d(Ri(@)) = d(Ry(x)) are satisfied; the last equality
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follows from the fact that Rj(x) does not contain all customers. By definition of C,,, we have
R(z) € Cp,, that is, [VRP(C)| and RVF(d)| are indeed equivalent.

In view of assertion (i), fix any instance and demand estimator d as described in
the statement. We prove the assertion by constructing a route plan R’ feasible in such
that the associated solution x(R’) is not feasible in To this end, fix S < Vi such that
d(S) > d"(9), and let R = {Ry,...,R,,} be such that S < Uk=1,...,a’"(5) Ry.. Such a route plan
exists since the feasibility of implies that d" (S) # c. We now construct the desired route

plan R' = {R},..., R} } from R as follows. We set R; = Ry, for any route k satisfying R;nS = &.

For the other routes Ry, we obtain R} by reordering the customers in Ry, such that those in Ry NS
appear first (in any order). The assumption (P) implies that R’ € B(Ve, m) n Cp, as well. For the
solution &(R’) constructed from (3)), however, we observe that

2 xw®) = > > X w®) = ) 3 ) w(R)

i€eV\S jes i€V\S keK: jeSnR] keK: ieV\S jeSnR
SAR,#J SAR,#J

Y1 = [keK:SaR, g = d"(9),
keK:
SNR#QJ

where the third equality follows from the reordering of the customers in R/. Since d(S) > d" (S),

the solution x(R’) is infeasible in 2VF(d)|even though R’ is feasible in [VRP(C O
We split the proof of Theorem [2] into the following two lemmas.

Lemma 1. There exist instances violating (D) but satisfying (P) such that|VRP(C)| and
2VFE(d)| are not equivalent under any demand estimator d.

Proof. Consider the instance with n = 4 customers, m = 2 vehicles and C consisting of
all routes that comprise 1, 3 or 4 customers. This instance satisfies the assumption (P), but it
violates the assumption (D) since, for example, (1,2) ¢ C even though (1,2,3) € C. The feasible
route plans of are all partitions in B(V, 2) where one vehicle serves one customer and the
other vehicle serves the remaining three customers.

We claim that there is no demand estimator d such that has the same set of feasible
solutions. Indeed, note that any admissible d must satisfy d(S) < 2 for all S € V¢ in order to
result in a feasible instance. Moreover, to allow for the feasible solutions x({(1,2,3), (4)})
and z({(1),(2,3,4)}), any admissible d must satisfy d(S) < 1 for all nonempty subsets of {1,2,3}
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and {2,3,4}. This implies, however, that any admissible demand estimator must result in a

instance that also allows for the infeasible solution x({(1,2), (3,4)}). O

Lemma 2. There exist[VRP(C)| instances violating (P) but satisfying (D) such that[VRP(C)| and
2VF(d)| are not equivalent under any demand estimator d.

Proof. Consider the instance with n = 2 customers, m = 1 vehicle and C = {(1), (2),
(1,2)}. This instance satisfies (D), but it violates (P) since (2,1) ¢ C even though (1,2) € C. The
only feasible route plan for [VRP(C)|is {(1,2)}.

We claim that there is no demand estimator d such that has the same set of feasible
solutions. Indeed, for the solution x({(1,2)}) to be feasible in any admissible demand
estimator d must satisfy d({1}), d({2}), d({1,2}) < 1. However, any such demand estimator d

would then also allow the infeasible route plan x({(2,1)}). O

Proof of Theorem The proof follows immediately from Lemmas [T] and O

Proof of Proposition For any permutation S of R € C, we have 1g = 1gr and thus
v(1ls) = p(1r) < B, implying that S € C, that is, assumption (P) is satisfied. To prove that C
satisfies (D) whenever ¢ is monotone, consider any R = (Ry,...,R,) € C and S = (R;,,..., R;,)
suchthat 1 <o <vandl1<i <i2 <...<i, <v. Wethen have 1g¢ < 1g, and the monotonicity

of ¢ implies that ¢ (1g) < ¢ (1r) < B. Thus, S € C, and assumption (D) holds. O

1

Proof of Proposition We have d¥ () = d (F) = 0, and any J # S < Vi satisfies

81(5’) = mins [ eN: Sc U Ry, for some Ry,...,R;eC

k=1,..,I

= min{IeN: Sc U Ry, such that ¢ (1g,) < Bforallk=1,...,1

k=1,..,I
= min{7 e N :3X € {0,1}"* such that Xe > 1g, ¢(zy) <B Vk=1,...,I}
= min{7 e N :3X € {0,1}"* such that Xe = 1g, ¢(z;) < B Vk=1,...,I}

= dP(S)a

where the second identity follows from the definition of C in . The union on the right-hand side

of the second identity corresponds to the constraint Xe > 1g where @, € {0,1}" for k =1,...,1
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so that a customer can be assigned to more than one route. Choose any X that is feasible in the
right-hand side of the third identity. Since ¢ is monotone, for each i € S, we can arbitrarily choose
one of the k’s for which z;; = 1 and set x;;» = 0 for all ¥’ # k. The monotonicity of ¢ guarantees

that this new solution @y, k = 1,...,1, is also feasible, which leads to the fourth identity. ]

Proof of Proposition We denote the two expressions for the packing estimator db as
d1(S) =min{l e N : 3X € [0, 11" such that Xe = 1g, @(x) < B Vk=1,... I}

and

da(S) =min{l e N : p(1g/I) < B},

where J # S € Vio. We want to show that d;(S) = da(S) for all & # S < V. One readily verifies
that dq(S) < da(S) since for any I € N feasible in the minimization problem that defines da(S5),
(I') X') = (I, 1ge' /I) is feasible in the minimization problem that defines d; () and achieves the
same objective value I. To see that d;(S) > da(S), fix any solution (I, X)) that is feasible in the
minimization problem that defines d;(S). In the following, we prove that ¢(1g/I) < B, which
shows that I is also feasible in the minimization problem that defines da(.5).

Let IT be the group of all permutations 7 : {1,...,I} — {1,...,I} of the set {1,...,I}, and
define 7(X) = (Tr(1),---»®x(p)) for m € Il. By construction, (I, 7(X)) is feasible in d1(S) for any
7 € II. Moreover, since for any fixed I € N the projection of the feasible region of d;(S) onto X is

convex by assumption, (I, X') with

is also feasible in d;(S). However, the k-th column of X’ satisfies

1 1
zwm:}g Xt =

mell

'\4‘}—&

T
where the first and penultimate equalities follow from the fact that a set with ¢ elements admits ¢!

permutations, and the last identify holds since Xe = 1g as X is feasible in d; (5). O

Proof of Theorem We first show that d < dF < d, irrespective of whether  is sub- or
superadditive. The fact that d¥ <d" follows from Proposition 4 which implies that d¥ < El, and
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Proposition |1} which shows that d" <d™. To see that dP > d, we note that d*(S) > 1 = d(S) for
all & # S e C by construction, while d*(S) = 2 = d(S) for all & # S ¢ C since p(1g5) > B.
As for statement (i), we note that d° > d by construction. To see that d5 < d¥ when ¢ is

subadditive, we observe that for any (J # S € V¢ and any I € N, we have

I>d"(S) < 3X €[0,1]" such that Xe = 1g, @(xy) < B Vk=1,...,I
— 3X €[0,1]™ such that Xe = 1g, @(x1) +...+¢(x;) <I-B
— ¢(1g)<I-B

— I>d9).

Here, the first line holds by construction of d*. The third line follows from the subadditivity of ¢
and the fact that Xe = 1g, and the last line holds by definition of d° and since I € N.

If ¢ is subadditive and positive homogeneous, then it is indeed convex, and for any ¢J # S < Vo
and [ € N, Propositionimplies that I > d¥(S) if and only if ¢(1s/I) < B, that is, ¢(15) < I- B.
By definition of d° and since I € N, we thus have I > d(S) if and only if I = d5(S).

To see that d¥ = d° does not hold in general when ¢ is subadditive but not positive homo-
geneous, consider the instance with n = 3 customers, m = 3 vehicles and a set C of the
form with p(z1, 22, x3) = /21 + 2 + 23 as well as B = 1. Note that ¢ is subadditive but not
positive homogeneous. One readily verifies that d¥ (Vo) = 3 but d°(Vg) = 2.

In view of statement (i), we first show that d° = d¥ whenever ¢ is additive. We know
from statement (i) that d8 < d¥ in this setting, so we only need to show that d> > db as well.
Imagine, to the contrary, that d5(S) = I’ < d¥(S) for some § # S < V. In that case, we have
¢(1g)/B < I'. The additivity of ¢ implies that I’ - ¢(1s/I') = ¢(1g) < I’ - B, however, and the
solution (I, X) = (I’, 1ge' /I') is feasible in the minimization problem that defines d*. We thus
have d¥(S) < I', which contradicts the assumption that d>(S) < d¥(S).

When ¢ is additive, we have ¢(1g) = >._q(e;). Thus, any instance with additive
¢ can be reformulated as a deterministic CVRP instance with customer demands ¢; = ¢(e;) and
vehicle capacity Q = B. Likewise, one readily verifies that any deterministic CVRP instance can
be formulated as an instance of with o(z) = q'x and B = Q.

As for statement (i), we only need to show that d5 < d" does not hold in general when ¢ is

not subadditive. Indeed, consider the instance with n = 3 customers, m = 3 vehicles and
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the set C of the form with ¢(x1,x9,x3) = exp(x; + x2 + x3) — 1 as well as B = 2. Note that ¢
is not subadditive. One readily verifies that d®(Vg) = 10 but d" (Vo) = 3. O

Proof of Theorem Fix any « € [0,1]". Since f is convex and x > 0, it follows from
Theorem 2.2.6(a) of Simchi-Levi et al.| (2005)) that the mapping q — f(xq) is supermodular. The
rectangularity of P then allows us to re-express the worst-case expectation as

sup Ee [f(@7)] = o wezwéw-lﬁzm, [f@Tq)] = wezwéw'ﬂmigw Ep, [f(z'®],  (10)

where PY is defined in and the first identity holds because € is a singleton set.

We can then apply Proposition 3 of Long et al.| (2020)) to evaluate supp cpw Ep, [ f (mT(j)] for
each w € W. Note that this proposition assumes that the function inside the worst-case expectation
constitutes the second-stage cost of a two-stage distributionally robust optimization problem; since
the proof of that result only makes use of the supermodularity of the second-stage cost function,
however, the proposition extends to our setting. We thus conclude that supp cpw Ep, [ f (a:Tij)] =
Z?ZJ{lp;j : f(qu:Uj), where pj,;, g;,; are obtained from Algorithm j=1,....2n+1and we W.
Combining this with , we obtain

2n+1
sup Ep [f(:cT(j)] = Z Sw Z DProj ° f(qu:Uj)v
Pep wew  j=1
which implies the statement of the theorem. ]

Many of the results from Section [5.1| rely on properties that the worst-case risk ¢ inherits from

its constituent measures pp, P € P. We summarize those findings next.

Lemma 3. The worst-case risk ¢ is (i) monotonic, (ii) positive homogeneous, (iii) subadditive or

(iv) convexr whenever each of its constituent risk/satisficing measures pp, P € P, is.
Proof. In view of (i), we note that any x,y € [0, 1] with & < y satisfy
T= T~ T= T=
pp(x q) < pp(y q) VPeP = pp(x q) < Sup pp(y q) VPeP
€
— suppp(z'q) < swpp(y'd = o=@ < oY),
PeP PeP

where the first inequality follows from the monotonicity of pp for all P € P.
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As for (i), we observe that any A > 0 and « € [0, 1] satisfy
p(Az) = sup pp(\-z'q) = A-suppp(z'q) = A-p(z),
PeP PeP
where the second identity follows from the positive homogeneity of pp for all P € P.

In view of (iii), we observe that any @,y € [0, 1] satisfy

pr((x+y)'d) < pp(z'q) +pp(y'q) VP e P
= pp((z+ y)Tij) < ;ug {p]p(scTrj + ,op(yth)} YPe P
(S
—  pp((z+y)'d) < sup pp(x' ) +sup pp(y' 4 VP e P
PeP PeP
= sup pp((x +¥)'q) < suppp(z'q)+sup pp(y'q)
PeP Pep Pep

— pE+y) < o)+ e(y),
where the first inequality follows from the subadditivity of pp for all P € P and the second impli-
cation is due to the subadditivity of the supremum operator, respectively.

As for (iv), finally, we note that any A € [0,1] and x,y € [0, 1]" satisfy

ppAz G+ (1-Ny'q) < Mpp(z'@) +(1—N) - pp(y'q) VP e P
— ppAx’g+(1-Ny'§) < ;ug {Npp(x"@) +(1=N) - pp(y' @)} VP e P
(S
= ppAx'@+(1-Ny'q) < A-sup pp(z'q) + (1 —\) -sup pp(y' q) VPeP
PeP PeP
«— sup pp(Az G+ (1-Ny'§) < A-sup pp(x'§) + (1 — ) -sup pp(y ' §)
PeP PeP PeP

— ez +(1-Ny) < A-o@)+(1-2) ¢(y),
where the first inequality follows from the convexity of pp for all P € P and the second implication

is due to the subadditivity of the supremum operator, respectively. O
We split the proof of Theorem [5 into the following five lemmas.

Lemma 4 (Expected Disutility). Fiz an ambiguity set P of the form with Q = {8}. The

worst-case expected disutility pep(x) = suppep P-ED(x'§) with
P-ED(z'q) = Ep[U(z'4)],

where the disutility function U is monotonically non-decreasing and convex with U(0) = 0, af-
fords a W (2n + 1)-point worst-case distribution that can be computed with Algom'thm and that is

independent of x. Moreover, prp is monotone, conver and not subadditive.
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Proof. The first part of the statement directly follows from Theorem [4] which applies since U is
convex. In view of the second part, Lemma [3| implies that ¢ inherits monotonicity and convexity
from Ep[U(-)], P € P. To see that ¢gp is not subadditive, consider an ambiguity set of the form
with W =2, § = (0.3,0.7)7, ¢' =@ = (5,7)" and ¢*> = ¢*> = (6,3)", and assume for ease of
exposition that the expectation and mean absolute deviation constraints in the definition of P are

absent. For U(z) = 22, x = (1,0)" and y = (0,1)T, we have

vEp() + vED(Y) < YED(T +Y),
- — N —_—

- -
=32.7 =21 =99.9
which shows that ggp is indeed not subadditive. O

Lemma 5 (Essential Riskiness Index). Fixz an ambiguity set P of the form with Q = {8}. The
essential riskiness index prrr with
¢eri(x) = inf {a >0 : sup Ep [maX {:L'TQ -7, —a}] < 0} ,
PeP
where p is the acceptable demand threshold, can be computed in time O(n*W +nW lognW). More-

over, YgER1 S monotone, conver and not subadditive.

Proof. Note that the worst-case expectation embedded in the expression for @ggrr satisfies the
conditions of Theorem 4| since the mapping x — max{z, —a} is convex. We can thus express the

essential riskiness index as

2n+1
epri(z' §) = inf{a >0 : Z S Z Drpj - MAX {mTq;j —p, —a} < O},

wew 7=1
where pj ;. and q;j, weWand j=1,...,2n+ 1, do not depend on « or . The expression
2n+1
2 Sw Z Py © MAaX {qu;j -p, —a} (11)
wew 7j=1

is piecewise affine and monotonically non-increasing in a with breakpoints p — a:Tq;]j, w € W and
j=1,...,2n + 1. We can calculate these breakpoints in time O(n?W) (since there are O(nW)
breakpoints and the complexity of computing each breakpoint is O(n) due to the term a:Tq;Jj),
sort them in time O(nW lognW) and conduct a binary search over them to determine the smallest

root of the expression . The binary search requires O(lognW) iterations, and the evaluation
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of in each iteration requires time O(nW). Note that since the worst-case distribution P* is
independent of o and @, the parameters p;j and q;j can be determined once per instance.

Convexity of ¢grr follows from Proposition 3 of |Zhang et al.| (2019)). One readily verifies that
@ERI is monotone since ¢ = 0 P-a.s. for all P € P. To see that pggrr is not subadditive, finally,
consider an ambiguity set of the form (7)) with W =2, 5 = (0.2,0.8)T, gl =q' = (5,10)" and gQ =
@® = (10,5)7, and assume for ease of exposition that the expectation and mean absolute deviation

constraints in the definition of P are absent. For p = 12, z = (1,0)" and y = (0,1)7, we have

ver1(z) + ¢ERI(Y) < @ERI(T +Y),
—_—— —— | S —
=0 =0 =+

which shows that pggr; is indeed not subadditive. ]

Lemma 6 (Expectiles). Fiz an ambiguity set P of the form with Q = {8}. The worst-case
expectile risk measure g with
. T~ 2 T ~12
¢p(x) = argmin< «-sup Ep [[:L' q-— u]+] + (1 —a)-sup Ep [[u —x q]+] ,
ueR PeP PeP

where o € [1/2,1), can be computed in time O(n*W + nW lognW). Moreover, pg is monotone,

convex and subadditive.

Proof. Both worst-case expectations in the definition of ¢p satisfy the conditions of Theorem

which implies that the expression inside the minimum defining g simplifies to

S S Qgp;j [a (Jo"a, - uL_)Q +(1-a)([u- qu;jL)Q] , (12)
wew 7j=1

where p;j and q;j, j=1,...,2n+ 1 and w € W, do not depend on u or . The expression (|12])
is piecewise affine and convex in u with breakpoints ZBTq;j, weWand j=1,...,2n+ 1. We can
calculate these breakpoints in time O(n?W) (since there are O(nW) breakpoints and the complexity
of computing each breakpoint is O(n) due to the term :DTq:Uj), sort them in time O(nW lognW)
and conduct a trisection search over them to determine a value of u that minimizes . The
trisection search requires O(lognW) iterations, and the evaluation of in each iteration requires
time O(nW) since the breakpoints have been computed previously. Note that since the worst-case

distribution P* is independent of v and @ by Theorem {4 the parameters p;j and q;j can be

determined once per [2VF(d)| instance.
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The above discussion implies that
T~ : T~ 2 -1 )
vp(@'q) = argmin {Ew [a (27— ul,) ] + Eps [(1 ~a)([u-="d],) ]}
ue
for the worst-case distribution P* of Theorem {4l Proposition 6 of Bellini et al. (2014]) then implies

that g is coherent and thus, a fortiori, monotone, convex and subadditive. O

Lemma 7 (Entropic Risk). Fiz an ambiguity set P of the form (7) with Q = {8}. The worst-case

entropic Tisk Pent () = suppep P-ent(x'§) with

Pont(27d) = o logEs [exp (6-27q)],

where 6 > 0, affords a W (2n+1)-point worst-case distribution that can be computed with Algom'thm

and that is independent of x. Moreover, Yent s monotone, conver and not subadditive.

Proof. Since x — log(x) is monotonically increasing, we can exchange the order of the supremum
and logarithm operators in the definition of @ent and conclude that
pun(@) = glog (sup B fexp (0-279)] ).
PeP
The worst-case expectation embedded in the above expression satisfies the conditions of Theorem [4]
which implies the first part of the statement.

By Definition 2.3 of |[Follmer and Knispel (2011)), P-ent is monotone and convex for every P € P,
and Lemma [3| implies that both properties carry over to the worst-case entropic risk en. To see
that went is not subadditive, finally, fix 6 = 1 and consider the ambiguity set from the proof of
Lemma 4| together with = (1,0)" and y = (0,1)". We then have

Pent(®) + Pent(y) < Pent(T +y),
Z N/ NG

—_ —_—

=5.79 =5.84 =17.81

which shows that @ent is indeed not subadditive. O

Lemma 8 (Requirements Violation Index). Fiz an ambiguity set P of the form with Q = {8}.

The requirements violation index @ry with

prv(@) = inf{a>0: Cu(z'q) <p},
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where Cy, is the worst-case certainty equivalent under an exponential disutility,

T~
sup «logEp [exp <M>] ifa>0
Ca(mT(}') =4 P “

lim C,(z'q) if =0,

v—0
and p s the acceptable demand threshold, can be computed to e-accuracy via bisection search.

Moreover, pry is monotone, convexr and not subadditive.

Proof. Following similar arguments as in the proof of Lemma [7] one can show that the worst-case
certainty equivalent C, can be computed for any fixed value of « in time O(nW), with an initial
computation of time O(n?W) to compute the worst-case distribution P* as well as the expressions
a:Tq:Uj. Note that the worst-case certainty equivalent C, is monotonically non-increasing in «
(Jaillet et al., 2016, Lemma 1). We can thus conduct a bisection search to determine the smallest
value of a that satisfies C,(z§) < p. The bisection search can be started with the lower bound
a = ¢, where € is a sufficiently small positive quantity, and any upper bound @ satisfying o > :DTq:U j

forallwe Wand j=1,...,2n+ 1 as well as

2n+1
eXp _2 Z Sw Z pw] CC qwj)
_ wew 7=1
a = 2n+1 ’
_ A * T *
= 2w ), Py gy
wew 7j=1

which guarantees that Cz(x"q) < p. Details are omitted for the sake of brevity.

As for the second part of the statement, the convexity of pry follows from Proposition 1 of Jaillet
et al| (2016). One readily verifies that @gry is monotone since § > 0 P-a.s. for all P € P. To see
that ¢ry is not subadditive, finally, fix p = 12 and consider the ambiguity set from the proof of
Lemma 5| together with & = (1,0)" and y = (0,1)". We then have

SORV( ) + ©rv(y ) < @(ﬂ? +_yz7

—_—

ey inra =+
which shows that Ry is indeed not subadditive. O
Proof of Theorem The proof directly follows from the Lemmas O

We split the proof of Theorem [f] into the following two lemmas.
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Lemma 9 (CVaR). Fiz an ambiguity set P of the form with Q@ = {8}. The worst-case condi-

tional value-at-risk at level 1 — €, povar(T) = suppep P-CVaRi_(x'§) with

P-CVaRy-c(e'q) = inf u+ Ep [z G — u]
Ue.

1—c¢ +’

where € € [0,1), can be computed in time O(n?W + nW lognW). Moreover, pcvar 5 monotone,

convex and subadditive.

Proof. Proposition 3.1 of [Shapiro and Kleywegt (2002) implies that

1
sup P-CVaR;_(x'q) = sup inf u + Eple'G—u]l, = inf u+ sup Ep[z"q — u],.
Pep pep ueR 1—e ueR — € pep

Since the worst-case expectation in the right-most expression above satisfies the conditions of

Theorem [4] the worst-case CVaR further simplifies to

1 2n+1

. A~ * T %

QILIEIH%U—’— 1_6w;/\/8w Jz—]l = [w qwj_U]Jr’

where py ; and ¢y, we Wand j = 1,...,2n + 1, do not depend on u or . The function inside

the above minimization is piecewise affine and convex in u with breakpoints qu:Uj, w e W and
j=1,...,2n+ 1. We can thus obtain a minimizer by computing the breakpoints in time O(n?W)
(since there are O(nW) breakpoints and the complexity of computing each breakpoint is O(n) due
to the term cch:Uj), sorting the breakpoints in time O(nW lognW) and performing a bisection
search over the breakpoints. The bisection search requires O(log nW) iterations, and each iteration
requires time O(nW) since the breakpoints have been computed previously.

By Corollary 12 of Rockafeller and Uryasev| (2002)), each constituent risk measure P-CVaR,
P € P, is coherent and thus, a fortiori, monotone, convex and subadditive. Lemma, [3| then implies

that these properties carry over to the worst-case CVaR ¢cvar- O

Lemma 10 (Service Fulfilment Risk Index). Fiz an ambiguity set P of the form with Q = {8}.
The service fulfillment risk index pgr1 with
@SRI(;ET{;') = inf {a >0 : sup P-CVaR4_. (max {:cT(j -0, —a}) < 0} ,
PeP
where p is the acceptable demand threshold and the worst-case CVaR is evaluated at level 1 — €
with € being the service level, can be computed in time O(n*W + nW lognW). Moreover, sr1 is

monotone, convex and not subadditive.
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Proof. Theorem 1 of Zhang et al.| (2021) allows us to equivalently express psrr as

osri(x) = inf {a >0 : sup Ep [ccT(j —-p+ Oz]+ < (1-—- e)a} ,
PeP

The worst-case expectation embedded in this expression satisfies the conditions of Theorem [}, and

the overall expression thus simplifies to

2n+1
wsri(z) = inf{a >0: 2 Sw Z Phy - [mTq;j _ﬁ+a]+ < (1- e)a},

weW 7j=1
where pj,; and q;j, weWand j=1,...,2n+ 1, do not depend on « or . The expression
2n+1
Z Sw Z P:Uj : [qusz —ﬁ+0¢]+ — (I -6
weWw 7=1
is piecewise affine and convex in « with breakpoints p — a:Tq:Uj, weWand j=1,...,2n + 1.

We can thus obtain the smallest root of this expression by computing the breakpoints in time
O(n?W) (since there are O(nW) breakpoints and the complexity of computing each breakpoint
is O(n) due to the term :ch;j), sorting the breakpoints in time O(nW lognW) and performing
bisection searches over these breakpoints. The bisection search requires O(logn) iterations, and
each iteration requires time O(nW) since the breakpoints have been computed previously.

Proposition 1 of Zhang et al.| (2021) implies that ¢gry is convex. Moreover, only readily verifies
that pggrr is monotone. To see that ¢gry is not subadditive, finally, fix e = 1 and p = 12 and
consider the ambiguity set from the proof of Lemma [5| together with = (1,0)" and y = (0,1)7.
We then have

psri(®) + psri(y) < psri(z +vy),
— - —_—

i
=0 =0 =+
which shows that pgrr is indeed not subadditive. ]
Proof of Theorem [6} The proof directly follows from the Lemmas [0] and O

Proof of Theorem [7} By assumption, each risk measure ¢p, P € P, can be expressed as the ex-
pectation of a convex function and thus satisfies the conditions of Theorem [l We thus obtain that
inf 1 Sy * T« =
puri(z) = in {a : w;/\} 5w j; puj - fla- [z qp; —7p]) <0, a> O},
where pj,; and gy, w € W and j = 1,...,2n + 1, do not depend on « or x. Note that the

summation on the left-hand side of the first inequality above inherits convexity from f, and we
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can thus conduct a bisection search to determine the maximum « that satisfies the inequality. The
bisection search can be started with the lower bound a = €, where € is a sufficiently small positive

quantity, and any upper bound @ satisfying
Vg (6~ [eTg— ﬁ]) <0 for P satisfying P {(ji = max q;”] =1,i€e Vg,
wew

which can be determined once per 2VF(d)|instance via bisection search.
By Definition 3 of |[Hall et al.| (2015), ¢urr is monotone, convex and positive homogeneous, and

convexity and positive homogeneity of puyrr imply that urr is subadditive as well. O

The proof of Proposition [6] relies on five auxiliary lemmas which we state and prove first.

T

Lemma 11. For the 1-norm ambiguity set, the function s' w(x) in Proposition@ can be maximized

and minimized over s € Q in time O(W log W).

Proof. The problem amounts to solving

max /min s’ (x)

subject to s — 8|1 <6
els=1, se RKV,

and this problem has been studied in the literature (Petrik and Subramanian) 2014, Theorem 3.2).
In the remainder of the proof, we simplify the exposition and focus on the maximization case; the
minimization problem can be solved by a straightforward adaptation of the arguments below.

The core idea behind the algorithm is to start with the initial solution s = § and then iteratively
shift probability mass from the smallest components of 7(x) to the largest one (respecting non-
negativity of all probability weights) until the uncertainty budget 6 has been exhausted. This
algorithm requires the components of 7(x) to be sorted in ascending order. This sorting, which

dominates the runtime of the algorithm, can be achieved in time O(W log W). O

T

Lemma 12. For the co-norm ambiguity set, the function s'(x) in Proposz'tz'on@ can be mazximized

and minimized over s € Q in time O(W log W).

Proof. The problem amounts to solving

max /min s' 7 (z)

subject to |8 — 8] < 0

e's=1, seR+W,

57



and this problem has been studied in the literature (Megiddo and Ichimori, 1985, page 3). In
the remainder of the proof, we simplify the exposition and focus on the maximization case; the
minimization problem can be solved by a straightforward adaptation of the arguments below.
The core idea behind the algorithm is to start with the initial solution s = [§ — fe] and then
iteratively increase these probability weights, starting with the weight corresponding to the largest
component of 7(x) and moving towards the weight corresponding to the smallest component of

m(x), until either e’

s = 1 or the uncertainty budget 6 has been exhausted for the particular
weight. This algorithm requires the components of 7 (x) to be sorted in ascending order. This

sorting, which dominates the runtime of the algorithm, can be achieved in time O(W logW). O

T

Lemma 13. For the azis-parallel ellipsoidal ambiguity set, the function s'w(x) in Proposition@

can be mazimized and minimized over s € Q to e-accuracy in time O(W logW -loge™!).

Lemma 2 of Pessoa and Poss| (2015)) and Corollary 4 of Ghosal and Wiesemann (2020) study the
related problems of maximizing a linear function over the intersection of a 2-norm ball with an co-
norm ball as well as the intersection of an axis-parallel ellipsoid with a hyperrectangle, respectively.
Both of those approaches consider the Lagrange relaxation of the co-norm and hyperrectangle
constraints (while keeping intact the ellipsoidal constraint), which admits a closed-form solution.
In our context, this approach would require the dualization of both the non-negativity and the
probability simplex constraints, which would result in two sets of Lagrange multipliers that appear

difficult to handle. Instead, our proof below relies on a reduction of the dual problem.

Proof of Lemma The problem amounts to solving

max /min s’ 7 (z)
subject to (s —38) X7 l(s—3) <0 (13)
els= 1, se RKV.
In the remainder of the proof, we simplify the exposition by suppressing the dependence of 7 (x) on «
and focusing on the maximization case; the minimization problem can be solved by a straightforward

adaptation of the arguments below.

Strong convex duality, which is guaranteed by the existence of a Slater point due to the as-
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sumptions ¢ > 0 and ¥ > 0, implies that

. T A Ty—1 A T T
+alf—(s—3)'% —38)| + -1
max aeRIE}%eR, s'm+alf—(s—3) (s—8)]+B(e's—1)+~'s
'yERKY
. Te-1 T 14 AT —14

= — b + 2a% +a(0—-8'% — B, 14

aeﬂg}geR max —as s+s (m+pPet+y+2a87"8) +a(f—3 8) -5 (14)

VERKV

where the dual multipliers «, S and ~ correspond to the ellipsoidal, the probability simplex as
well as the non-negativity constraints in , respectively. We conduct a case distinction that
determines the best solutions to problem ((14) under the additional constraint that o = 0 or o > 0,
respectively. The lower of the two corresponding optimal values then coincides with the optimal
value of problem , which in turn is equal to the optimal value of problem .

Under the additional constraint that a = 0, problem reduces to

minimize —f
subject to w4+ fe+~v =0
BeR, veRY.

Eliminating the slack variables « from this problem, the first constraint becomes —f3 > max{m,, :
w € W}, and the optimal objective value is thus readily identified as max{m,, : w e W}.
Under the additional constraint that « > 0, the first-order necessary optimality conditions of

the maximization problem embedded in imply that

1
20X "+ 4+ fe+y+2aT 15 =0 — s = 2—2(71' + Be + v +2ax713).
a

Substituting this solution into the outer minimization problem in ((14), we obtain

1
aﬁT&Ran+Be+7+%&T%f2h+ﬂe+7+&ﬁf%y+aW—gkfﬁ)—5
'yERKV

1
= min —(r+Pfe+y)'S(r+PBet+)+(r+Pet+y) 5+al—p
aeR, BeR, 4o
—yeRY

) 1 T Ta
= i > 0.
aeﬂ{?}%eR, 4a(ﬁ+ﬂe+7) (mtfety)+(mty)dta
~eRY
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Since ¥ = diag(o?), the above problem reduces to

2

) . o R
min _ af+w' 8+ Z 7w(77w+6+7w)2+'7w5w
aeR, BeR, W 4o
R we
T o 2
= min of+7w' S5+ min  — (7, + B+ Yw)® + Ywdw
aeR,, BeR yweR; 4o
wew
. T 0'120 2c0 2 2a0 ~
= min o + 1 s—i—ZZ 7Tw+,3+ _ﬂ'w_ﬁ_jsw + —Ww_ﬁ_jsw Sws
aeRy, BeR e « (o) + w +

where the last equality holds since for any fixed a € Ry and § € R, the optimal solution v* satisfies
Yoy = —Tw — B — g—géw if mp + 0+ g—géw < 0 and 7}, = 0 otherwise. For any fixed a € Ry, the
above optimization problem is convex in § with at most W breakpoints, which can be solved using
a trisection search. The trisection search requires O(log W) iterations of complexity O(W) each.

By applying an outer trisection over a we obtain the overall complexity O(W logW -loge~!). O

T

Lemma 14. For the ellipsoidal ambiguity set, the function s' m(x) in Proposition@ can be maxi-

mized and minimized over s € §) to e-accuracy in polynomial time via FISTA.

Theorem 7 of |Ghosal and Wiesemann| (2020) studies the related problem of maximizing a linear
function over the intersection of an ellipsoid with a hyperrectangle. Our proof of Lemma [14] follows
a similar strategy as that result: We dualize the optimization problem, simplify the dual through

a variable elimination and subsequently solve the simplified problem with FISTA.

Proof of Lemma We focus on the maximization variant and follow the same strategy as in
the proof of Lemma We dualize the optimization problem and distinguish the two cases where

a =0 and o > 0. In the latter case, the dual problem is

- 1 T T
— 3 5 0
aenin 4a(w+ﬁe+7) (m+Be+~)+ (m+7) 5§+ ab,
‘yERK/

and the first-order necessary optimality conditions as well as the non-negativity of o imply that

(7r+ﬁe+'y)T2(7r+6e+'y)+9=0 — a*z\/l(w+ﬁe+7)T2(w+Be+7).

4(a*)? 46

Eliminating «, the problem thus simplifies to
minimize V6 HE%(ﬂ' + fe + ‘y)H2 +(m+v)'5

: w
subject to BeR, veRY.
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The objective function of this problem constitutes the sum of a non-smooth norm expression and
a smooth function of (/3,7). By moving the non-negativity constraints to the objective function
through indicator functions and applying a Moreau proximal smoothing (Beck and Teboulle, 2012)

to the norm term in the objective function, we obtain

minimize V8- Hy (S (7 + fe+ 7)) + (m+7)78 + 11320,
subject to BeR, veRW,

where 1(>0; is an indicator function which returns 0 if v > 0 and +o0 otherwise, and

(V1)

Iyl if |yl < x,

Hy(y) = 2
lyl2 — % otherwise,

is the Huber function and is the Moreau proximal smoothing of 2-norm; see Example 4.1 of |Beck
and Teboulle| (2012). Then, we can solve the problem using FISTA (Beck and Teboulle, [2009)) with
adaptive restarts (O’Donoghue and Candes, 2015]). 0

T

Lemma 15. For the entropy ambiguity set, the function s' mw(x) in Proposition@ can be maximized

and minimized over s € ) to e-accuracy in time O(W log[7/€]), where T = max{m,(x) : we W}.
Proof. The problem amounts to solving

max /min s’ 7 (x)

subject to Z Sw log (fw> <40

weW Sw
els=1, se R+W,
and this problem has been studied in the literature (Nilim and El Ghaoui, 2005, Section 6.2). In
the remainder of the proof, we simplify the exposition and focus on the maximization case; the
minimization problem can be solved by a straightforward adaptation of the arguments below.
The core idea behind the algorithm is to dualize the problem and simplify it to the form
min \lo Z Swex L(:D) + 0
A>0 5 w eXP A '
weW
The objective function of this problem is convex, and we can thus conduct a trisection search to
obtain an e-optimal solution A\*. Section 6.3 of Nilim and El Ghaoui (2005) shows that the optimal

solution \* satisfies \* < [7 — m(z) " 8]/6, which implies the stated complexity estimate. O
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Proof of Proposition[6 Since f is monotonically increasing, we can first determine the optimal
value 0* of the problem maxgcq/mingen s'm(x) and then compute p(x) = f(6*). The proof of

the statement then follows directly from the Lemmas O

Proof of Corollary In view of the expected disutility, we note that the rectangularity of the

scenario-wise ambiguity sets P¥, w € W, allows us to rewrite ppp as

pep(x) = max sup > su-Ep, [U(@'§)] = max } su- sup Ep, [U(z'q)],
seN) P,ePY: W seN) weW PePw
weW ~

— (@)

which satisfies the conditions of Proposition [] if we set f(z) = z.

As for the entropic risk, similar arguments allow us to rewrite the risk measure as

1
pep(z) = max sup log > sy -Ep, [exp(f-z'§)]
s€Q p,epw. 0
%EW weW

1
= Z1 . E 0 -x'G
max - log wEZW su- sup Ep, [exp(6 -z q)],

v

= w:(w)

which satisfies the conditions of Proposition |§| if we set f(z) = % log(x). O

Proof of Proposition [7, Under the stated assumptions, one can minimize the convex function

L

fo(u) + ;1 max fo (3771-5(:1:, w), u)

over u € U in O(loge™!) iterations of complexity O(LT) each using a trisection search. This shows
the statement for the first worst-case risk .

In view of the second worst-case risk ¢, we can first employ the aforementioned trisection
search to minimize the left-hand side of the inequality constraint. This establishes whether or not
the minimization problem is feasible, and it provides a lower (if g is monotonically decreasing)
or upper (if g is monotonically increasing) bound on the constrained minimizer of g. We can
subsequently identify the constrained minimizer of g by a bisection search. Both the trisection and

the bisection search require O(log e~1) iterations of complexity O(LT) each. O
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Proof of Corollary In view of the essential riskiness index, we note that the rectangularity
of the scenario-wise ambiguity sets PY, w € W, allows us to rewrite the satisficing measure as
. . T~ —
e(x) = inf{wu>0:max sup Z Sw - Ep, [max{ac q-—7, —u}] <0

S€Q pepw.
T’le}EW wew

= inf {u >0 : r?eag w;/\) Sw * leelgw Ep, [max {a:T[j - P, —u}] < 0},

-~
=T1w(®,u)

which satisfies the conditions of Proposition |7 if we set U = R4, g(u) = u, fo(u) =0, L = 1 and
filz,u) = .

As for expectiles, similar arguments allow us to rewrite the risk measure as

p(x) = argmin<{ a-max sup Z Sw - Ep,, [[mTq — u]i] +
ueR sef Pwe%v: e
we

2
(1—a)- IEE%X sup. Z Sw - Ep, [[u — qu]+] }
gy wew

= argmin{a~max Z Sy sup Ep, [[mT(j—u]i]—i-

weER EIEY) iyt Iﬁij’P“’ !
=T1w(®,u)
T ~12
(l—a)-maﬂxz:sw- sup Ep, [u—w q]+ ,
ElS weW ]:E)wepw

~-
= T2w (:r,u)

which satisfies the conditions of Proposition [7]if we set U = R, fo(u) =0, L = 2, fi(z,u) = a-x
and fo(z,u) = (1 — ) - x.

In view of the requirements violation index, we observe that

T~
o) = inf{u>0:max sup wulog Z Sw - Ep, {exp <M>] <p
s€l pepw: iyt u
weW
x'q
= inf{u>0: —p+ max ulog st~ sup Ep, [exp | — <0y,
seq) o Py,ePw u

= Wlu;(zvu)

and the convexity of the log-sum-exp function, together with the fact that convexity is preserved
under affine compositions as well as perspectives, shows that the last expression satisfies the con-

ditions of Proposition [7] if we set U = R4, g(u) = u, fo(u) = —p, L =1 and fi(z,u) = u - log(z).
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As for the CVaR, we note that

seQ) p ecpw. ueR
weWw wew

1_6wEW

. 1 .
o(x) = max sup inf {u—i— < Z Sw - Ep,, [aqu—u]+}

. 1 -~
= inf max sup <u-+ Z sy - Ep,, [ach — u]
ueR s p, cpw. +
wew

1
= inf { 4 + max Sw- sup Ep, [27q—u ,
ueR { se 1 —e€ wEEVV v Pwegw Pu [ q ]+ }

—
=mw(z,u)

which satisfies the conditions of Proposition [7]if we set U = R, fo(u) = u, L = 1 and fi1(z,u) =
xz/(1 —e).

In view of the service fulfilment index, similar arguments show that

o(x) = inf {u >0 : sup P-CVaR;_, (max{:chji — P, —u}) < O}
PeP

= inff{u>0:—(1-¢€u+max sup st-Epw[a:T&—ﬁ+u]+<0
sel2 Pwe%ﬂ: wew
we

sef)

= inf{u>0:—(1—-e)u+max Z Sw - Sup Epw[mT(j—ﬁ—i—uLgO ,
wew PoyEP

which satisfies the conditions of Proposition [7|if we set U = R, g(u) = u, fo(u) = —(1 —€) - u,
L=1and fi(z,u) = x.

For the underperformance risk index, finally, we note that

. 1 .
ol@) = jaf 4o mas s 3B, [f (ufa’d 7)) <0
Z))EW wew
o | _
- uéﬁi{u AP [ (u]z"q p])]1<0}7
:ﬂlg(w,u)

which satisfies the conditions of Proposition [7|if we set U = Ryy, g(u) = 1/u, fo(u) =0, L =1

and fi(z,u) = z. O

Proof of Observation The proof is immediate and left out for the sake of brevity. O
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Proof of Observation The constituent risk measures P-VaR, P € P, are monotone and
positive homogeneous (Follmer and Schied, [2010, p. 3), and Lemma [3|implies that both properties
carry over to @var. 1o see that pyagr is neither convex nor subadditive, note that ambiguity sets of
the form with ¢ = @", w € W, and expectation as well as mean absolute deviation conditions
absent constitute singleton sets that contain single distributions, and that the value-at-risk is known

to violate convexity and subadditivity in that case (Follmer and Schied| 2010} p. 3). O

Proof of Proposition We show that R € Ccc if and only if R € Cyyvar. Indeed,

Reloe = P[Zq}éB]Zl—e vPe P
i€ER
«— supP-VaR,_(1g'q) < B
PeP
— supIP—VaRl_e(lRTd)/B—‘ <1
PeP
— supIP’—VaRl_(k_l)E(lRT(j)/B] <1 for k =2
PeP
— ;)ug P—VaRl_(k_l)e(lRT(j)/B} <1 Vke K : k=2
€

<= min {k, [supIP’—VaRl_(k_l)e(lRT(j)/B]} <1 VkeK:k=>2
PeP

1 k) <1 1. k) =1
— kerQlja-}fma( R, k) — rl?ez}g(a( R, k)

— Ymvar(lr) = B <= R e Cphvar,

where the first two equivalences follow from the definition of the set Ccc and Observation
respectively, while the fifth equivalence holds since the worst-case value-at-risk is monotonically non-
decreasing in its risk threshold and suppep P-VaR_(;_1)(1r ' q) = —o0 whenever 1 — (k—1)e < 0.
The eighth equivalence holds since a(1g,1) = 1 by definition, the penultimate equivalence follows

from the definition of pnvar, and the last equivalence holds since any R € Cpvar must satisfy

¢mvak(1r) = B as a(1lg,1) = 1. O
The proof of Proposition [J relies on five auxiliary results, which we state and prove first.

Lemma 16. Let k* = minargmax{a(x,k) : k€ K}. Then a(x,k*) = k*.

Proof. 1f k* = 1, then we have a(x,k*) = 1 by definition of a, and the statement follows. For the
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remainder of the proof, we thus assume that k* > 2. Define
Zp = {sup P-VaR;_ (1) (" q) /BW
PeP
so that a(x,k) = min{k, Z;}, and note that 1 — (k* — 1)e > 0 since otherwise Zp+ = —o0, in
contradiction to our assumption that £* > 2. The statement of the lemma follows if we show that
k* < Zyx.

Assume to the contrary that Zg« < k*, which implies that a(x, k*) = Zg». Then Zp» < k* — 1
because Zp+ € Z, as well as Zp« < Zp»_1 since the worst-case value-at-risk is monotonically non-
decreasing in its risk threshold. We consider two possible cases, both of which will lead to a
contradiction: If k* — 1 < Zp+_q, then a(x,k* — 1) = k* =1 = Zpr = a(x, k*). T k" — 1> Zpe_q,
on the other hand, then a(x,k* — 1) = Zj»_1 = Zj» = a(ax, k*). Either case, however, violates the

assumption that k* is the smallest maximizer of a(x,-). O
Lemma 17. Let k* = minarg max{a(z, k) : k€ K}. Then suppep P-VaR;_j«(z'§) < k*B.
Proof. Note that

alz,k*+1) = min{k‘* +1, [sup IP—VaRl_k*E(mT(j)/Bw} < a(x, k*) = k¥,
PeP
where the first identity holds by definition, the inequality holds since k* maximizes a(x, -), and the
second identity follows from Lemma Since k* + 1 > k*, the above equation implies that
[sup IP’—VaRl_k*E(mT(j)/B} < K,
PeP

which immediately implies the statement of the lemma. O

Lemma 18. For any two random variables X, and Xy and risk thresholds €1, ey € (0,1) satisfying

€1+€2 < 1, we have suppep P-VaR1_¢, e, (X14X2) < suppep P-VaR;_c, (X1)+suppep P-VaR; _, (X2).

Proof. Define ¥; = suppep P-VaR;_, (Xl) for i = 1,2. We need to show that P(Xl +X5 <4 +19) =
1 — €1 — ey for all P e P. To this end, fix any P € P and observe that

[P(Xl + XQ <+ 292) = ]P)(Xl < 1 and XQ < 192) =1- P(Xl > 1 or XQ > 192)
> 1- [P(Xl > 191) +IP)(X2 > 192)] = 1—¢€] — €9,

where the second inequality is due to Bonferroni’s inequality. Since P € P was selected arbitrarily,

the statement of the lemma follows. O
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Lemma 19. The worst-case risk measure pmvar 1S monotone.

Proof. Fix any x,y € [0,1]" with < y and define Z, = [suppep ]P’—VaRl,(k,l)e(a:T(j)/B] as well
as Zj, = [suppep P-VaRy_(4_1)(y ' q)/B]. Note that Zj, = —o0 and Z;, = —oo for all (k —1)e > 1
< k > 1+ 1/e. For the other values of k, the monotonicity of P-VaR (Follmer and Schied} 2010,
p. 3), the fact that g > 0 P-a.s. for all P € P and Lemma 3| imply that

1
Zy < Z, VYkeK :k<1l+- <= min{k, Z;} < min{k, Z;} VkeK : k<1412
€
< min{k, Zx} < max min{k, 7z VkeK k<141
€

< max min{k, Z;} < max min{k, 7} },

and the last inequality immediately implies that ¢nvar (€) < pmvar(y). Here, the last equivalence
follows from the fact that Z; = —oo and Z; = —oo for all k € K with & > 1 + 1/e, which implies

that none of those values of k attain either of the maxima in the last line. O
Lemma 20. The worst-case risk measure pnvar 1S subadditive.

Proof. Assume to the contrary that ¢pvar is not subadditive, that is, there are @1, x2 € [0,1]",

x1 + T2 < e, with corresponding maximizers kj, k3 of function a (c¢f. Lemma such that

Omvar(T1 + 22) > @mvar (1) + Pmvar(T2)

— B-%lz}?a(a:1+m2,k:) > B- (ki +k3)
€

— max a(x) + x2, k) > ki + k3
keK
— a(xzy + x2, k') > kI + k3 for some k' € {k + k5 +1,...,m}

— min {k/, {sup P-VaR_(r/—1)e ((z1 + wg)T(j) /B}} > kT + k5

PeP
< [Esnug }P’-VaRl_(k/_l)e ((ml + $2)T(j) /B] > k’f + k‘;
€
— ;ugP—VaRl_(k/_l)e ((x1+x2)"q) > B- (k] +k3), (15)
€

where the third equivalence follows from the fact that a(ax + @2, k') < ¥ for all k' € K. Note that

this is only possible if 1 — (k' — 1)e > 0, for otherwise suppep P-VaRy_(pr_1) (21 + x2)'q) = —o
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whereas B - (k] + k3) = 0. Define €; = kje and ez = kje. We have

sup P-VaR_(w_1)c (@1 + 22) "' §) < supP-VaRy_ (s yp)e (w1 + 2) ' G)
PeP PeP

= supP-VaR;_,_, ((:Bl + ZEQ)T(f)
PeP

< supP-VaR_, (mlT('j) +supP-VaR;_, (a:;(j)
PeP PeP

< B- (k] +k3),

where the first inequality holds since 1— (k' —1)e < 1—(k} +k3)e, the second one is due to Lemma/[1§]
and the fact that (k] +k3)e < (K’ —1)e < 1 due to our earlier observation that 1 — (k' —1)e > 0, and
the last inequality follows from Lemma Since this inequality chain violates , the statement
follows. O

Proof of Proposition[9l The monotonicity and subadditivity of ¢mvar follow from Lemmas [T9]
and respectively. Moreover, ¢,var cannot be positive homogeneous since its image is restricted
to integer numbers. To see that ¢nvar is not convex either, consider an ambiguity set P of the
form (7) with W =1 and n =3, ¢' = (1,5,1)" and g' = (30,20,30)", p! = (16,10,16) " as well
as ' =(2,0.5,2)T. For e = 0.1, B = 20.6 as well as = (1,0,1)" and y = (0,1,0)7, we have

(PmVaR(O-67 -ax +0.33 - y) > 0.67 - SOmVaR(x) +0.33 - gomVaR(y),
~ ~~ —_— —
—92.B —2.B —B

which shows that ¢pvar is indeed not convex. ]

Proof of Theorem Define Zj, = [suppep P-VaR;_(;_1)c(x"§)/B] such that a(x,1) = 1 and
a(x, k) = min{k, [Zx|} for kK > 2. Let k* = minarg max{a(x,k) : k € K}. We claim that for all
ke K, (i) if k > Zy, then k > k*; and (i) if k < Zi, then k < k*. This will imply that &* can be
determined via binary search as long as we can compute Z, k € K, efficiently.

In view of (i), assume to the contrary that there is k' > Zj/ such that 1 < k¥’ < k*. We then
have Z < k' < k* < Zj», where the last inequality follows from Lemma This, however,
contradicts the fact that Zp < Zp since k' < k* by assumption and Z; is monotonically non-
increasing in k. As for (i), assume to the contrary that there is &’ < Zp such that &' > k*. We
then have k* < k' < Zp < Zj+, where the last inequality again holds since Zj is monotonically
non-increasing in k. This implies that a(x, k') = k' > a(x, k*), which contradicts the fact that

k* € argmax a(x, k).
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It remains to be shown how Z; can be evaluated efficiently. To this end, we note that

sup P—VaRl,(k,l)E(wT[j) = inf {u cinf Ple'g<u)=1— (k- 1)6}
PeP ueR PeP

. . ~ T~
irellté U'Pwlg:%w; E Sw-Py(®'g<u)=1—(k—1)e
wey weWw

= inf{u: D 4w _inf P@(deséu)>Il—(k——De},

ueR PyePw
weWw
where the first equality holds by definition and the other two identities are due to the law of total
probability as well as the rectangularity of the ambiguity set, respectively. Verifying whether a

fixed u under- or overestimates the worst-case value-at-risk thus reduces to computing the quantity

inf Py(x'g<u) = sup {1 — 0y : sup Pu-VaR;_g (z'q) < u}
Pypep 0.,€[0,1] Py, ePv
w : —w w 1 — 6y w w 1/;-“
= sup g1y s 3w (g min @ — g (== ) (=) o) <ups
Hwe[(),l] iEVO w w

for all w € W and verifying whether their §-weighted sum weakly exceeds 1 — (k — 1)e. Here,
the first identity follows from the definition of the value-at-risk, whereas the second identity is
due to Proposition 2 of (Ghosal and Wiesemann| (2020). Note that the sum embedded in the final
maximization problem above is monotonically non-increasing and piecewise smooth in 6,, with at
most 3n breakpoints (1’ —¢')/(@¥ — "), v/ (2[q¥ — i) and (2 — g v /2)/(u — 4", i € Ve
We can sort these breakpoints in time O(nlogn) and compute the maximizer via a binary search.
The binary search takes O(logn) iterations of time O(n). We can embed the binary searches over
0w, w € W, in a binary search over u € R to compute Z;. The outer binary search can be initialized
with the lower bound u = 0 and the upper bound & = maxyey e' g%, and it can be terminated
once the bounds differ by less than the accuracy k. Finally, we need to conduct a binary search

over the number of vehicles k € K to compute the maximizer of a(x, ). O

Proof of Proposition A similar reasoning as in the proof of Theorem [§] applies; the main

difference lies in the computation of suppep IP’—VaRl_(k_l)E(:cTﬁ). We now have

sup P—VaRl_(k_l)e(waj) = inf {u :min s'w(x,u) =1 — (k- 1)6} ; (16)
PeP ueR seQ)

where each component m,(x,u) = infp cpw Po(x'q < u), w € W, can be computed in time
O(nlogn) as detailed in the proof of Theorem [8| and Proposition |§| provides the complexity esti-

mates for the computation of mingeq STTF(:I:).
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A mathematical subtlety arises for the entropy and (axis-parallel as well as generic) ellipsoidal
ambiguity sets, where the quantities mingeq s' 7 (x) are only computed to a limited accuracy § > 0.
We need to choose é small enough so that for any u outside the k-neighborhood of a minimizer u*
in (T6)), the d-neighborhood of mingeq ' m(x, u) is either fully contained in the interval [0, 1 — (k —

1)e) or fully contained in the interval [1— (k—1)e, 1], as this guarantees that the bisection decisions

T

are not influenced by the inaccurate computation of mingeq s' (). Since 7 is monotonically non-

decreasing in u, any u outside the x-neighborhood of a minimizer u* satisfies

— 7w (X, u)

> K-
- du

— min s !
3, in s m(x,u)

min s ' 7 (z,u) — minsTﬂ(m,u*)‘ > K- min
seQ) seQ) ueR

min
ueR, weW
Straightforward but tedious calculations show that

min{yu; — g}” : je Vel

max{e’q" : we W}?

Tw(T,u) = m, =

du
uniformly across u € R, and it is thus sufficient to select § < k- min{m,, : w € W}, which implies

the stated complexity estimates. O
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Appendix B: Incremental Evaluation of Risk and Satisficing Mea-

sures

We describe for each of the risk and satisficing measures from the main paper (i) the standard
evaluation complexity as well as (ii) the incremental complexity if an existing value for vector
x € [0,1]" is updated to a new vector &’ € [0,1]" that differs from z in exactly one component.
One readily verifies that the same complexity applies in the more general case where &’ differs from

x in a constant number of components.
1. Expected Disutility: suppep Ep [U(z"q)].

e Standard Complexity: O(n?W +nWT), where O(T) is the time complexity of eval-
uating the function U, see Theorem [5] 1.

e Complexity with Incremental Evaluation: O(nWT) since the time complexity
O(n*W) relates to computing py,; and gy using Algorithm [1] as well as computing
a:Tq:Uj, weWand j=1,...,2n+ 1. In an incremental evaluation, all :BTq:Uj can be
updated in time O(nW) and all U(:an;j) can be computed in time O(nWT), w e W
and j=1,...,2n+ 1.

2. Essential Riskiness Index: inf {a >0 : suppep Ep [max{:cT[j -7, —oz}] < 0}.

e Standard Complexity: O(n?W + nW lognW), see Theorem 2.

e Complexity with Incremental Evaluation: O(nWW lognW) since the time complex-
ity O(n?W) relates to computing p;j and q,fuj using Algorithm (1| as well as computing
qu;j, weWandj=1,...,2n+ 1. In an incremental evaluation, all qu:Lj, weW
and j = 1,...,2n+1, can be updated in time O(nW), the breakpoints can be computed
in time O(nW) and sorted in time O(nW log nW), respectively, and the bisection search
takes time O(nW lognW).

3. Expectiles: argmin {a -sup Ep [[a:T('j — u]i] + (1 —a)-sup Ep [[u — de]i] }
ueR PeP PeP

e Standard Complexity: O(n?W + nW lognW), see Theorem 3.

e Complexity with Incremental Evaluation: O(nW lognW) since the time complex-

ity O(n?W) relates to computing D, ; and q;j using Algorithm |1 as well as computing
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:ch:Uj, weWandj=1,...,2n+ 1. In an incremental evaluation, all :L'Tq;j, weW
and j = 1,...,2n+1, can be updated in time O(nW), the breakpoints can be computed
in time O(nW) and sorted in time O(nW log nW), respectively, and the trisection search
takes time O(nW lognW).

4. Entropic Risk: élog Ep [exp (9 . :nch)].

e Standard Complexity: O(n?W), see Theorem 4.

e Complexity with Incremental Evaluation: O(nW) since the time complexity O(n?W)
relates to computing p;,; and gq;,; using Algorithm (1| as well as computing :I:Tq;j,
we Wand j =1,...,2n + 1. In an incremental evaluation, all a:Tq:Uj, w € W and
j=1,...,2n+1, can be updated in time O(nW) and the expectation can be computed
in time O(nW).

5. Requirements Violation Index: inf {a >0 : Co(z'q) < p} where

T~
( . | Hs)ugalong [exp <maq>] ifa>0
Co(z (i = €

;gb (2" qG) if @ = 0.

e Standard Complexity: O(n?W + nW loge 1), see Theorem 5.

e Complexity with Incremental Evaluation: O(nW loge™!) since the time complex-
ity O(n?W) relates to computing py,; and g;,; using Algorithm (1] as well as computing
a:Tq;j, weWand j=1,...,2n+ 1. In an incremental evaluation, all :BTq:Uj, we W
and j = 1,...,2n + 1, can be updated in time O(nW') and the bisection search takes
time O(nW loge™1).

1
6. Conditional Value-at-Risk: inf u + Ep [wT(j' — u] .
ueR 1—c¢ +

e Standard Complexity: O(n?W + nW lognW), see Theorem @1.

e Complexity with Incremental Evaluation: O(nW lognW) since the time complex-
ity O(n?W) relates to computing p}, ; and g;,; using Algorithm (1] as well as computing
a:Tq;j, weWand j=1,...,2n+ 1. In an incremental evaluation, all mTq:Uj, we W

and j = 1,...,2n+ 1, can be updated in time O(nW), the breakpoints can be computed
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in time O(nW) and sorted in time O(nW lognW), respectively, and the bisection search
takes time O(nW lognW).

7. Service Fulfillment Risk Index: inf {a >0 : sup P-CVaR;_, (max {wT(j -7, —a}) < 0}.
PeP

e Standard Complexity: O(n?W + nW lognW), see Theorem @2.

e Complexity with Incremental Evaluation: O(nW lognW) since the time complex-
ity O(n?W) relates to computing p;,; and g;,; using Algorithm (1] as well as computing
a:Tq:Uj, weWand j=1,...,2n+ 1. In an incremental evaluation, all qu;j, we W
and j = 1,...,2n+ 1, can be updated in time O(nW), the breakpoints can be computed
in time O(nW) and sorted in time O(nW log nW), respectively, and the bisection search
takes time O(nW lognW).

1
8. Underperformance Risk Index: inf { : sup Yp (a (:BT(} — ﬁ)) <0, a> 0}.
@ pep
e Standard Complexity: O(n?W +nWT loge '), where O(T) is the time complexity of
evaluating the convex function associated with 1p and € is the tolerance of the bisection

method (¢f. Theorem [7)).

e Complexity with Incremental Evaluation: O(nWTloge ') since the time com-
plexity O(n?W) relates to computing py,; and gy, using Algorithm [1] as well as com-
puting qu:Uj, weWand j =1,...,2n+ 1. In an incremental evaluation, all qu;j,
weW and j =1,...,2n + 1, can be updated in time O(nW') and the bisection search

requires O(log e~ 1) iterations of time complexity O(nWT) each.
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Appendix C: Worst-Case Distribution for Theorem

Algorithm (1| computes the worst-case probabilities (p;j)w,j with associated demand realizations
(@3);)w,; for Theorem {4 The intuition behind this algorithm is outlined in Section and the
correctness of the algorithm is proven by Long et al.| (2020).

Algorithm 1: Algorithm for determining the worst-case distribution (Long et al., [2020)
Input: (¢*,q"), p* and v*, w € W, for the ambiguity set [@.

for we W do
Compute for all customers 7 € Vi the marginal worst-case distribution:

~W
U

o P = 4] = sprgm

(@’ —q)
2(q — ") (1" —q%)

13

o PUlq = ] =1~

W

o PUla =] = s

2(GY — W) (U — gV
, where ﬁ}”:min{yfw (@ ) (s gl)}

Jw
v q; —q;

Set gy, ; = ¢ and m = (mi)ieve = (P13 = ¢ Dieve

{2
for j=1,2,...,2n do
Let k = minargmin{m; : i € V}

* * * *
Set Py = Mk Ay i1 = 4y, j a0d M =m — py e

* _ AW * _ w * _ AW
If Ty i1k = Dy then set Ty i1,k = Mk else set Ty jr1k = Tk

Set my, = P*[qy = qq’:}’jﬂ’k]

end

end

Output: Worst-case probabilities (p},;)w,; With associated demand realizations (g, ;)w,;-
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Appendix D: Detailed Numerical Results

Table reports the best feasible solution (‘Opt’; accompanied by an asterisk if it is confirmed to be
optimal) and the best lower bound (‘LB’; value in brackets unless solved to optimality) identified by,
as well as the runtime (‘¢’; unless not solved to optimality, in which case the runtime is 12h) incurred
by our branch-and-cut scheme for the deterministic CVRP (‘Deterministic’), the distributionally
robust CVRP with known (‘Stochastic’) and unknown scenario probabilities (‘Ambiguous’).

Table (3| reports details on the cut generation subroutine. For each instance, the table reports
the total time spent on RCI cut generation, the total number of generated cuts as well as the
number of successful cuts (i.e., the number of cuts that tighten a nodal solution).

Table 4 reports the detailed performance of the deterministic, the stochastic and the ambiguous
model in our data-driven experiment from Section We only list results for those instances for

which all three models (including cross-validation) terminated within 12h of CPU time.
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Deterministic Stochastic Ambiguous

t (sec) t (sec) t (sec)
Problem Opt LB Opt LB] Opt LB
A-n32-k5 745.0* 0.1 745.0* 0.32 747.0* 0.26
A-n33-kb 617.0* 0.09 639.0* 5.14 639.0* 4.85
A-n33-k6 703.0* 0.4 707.0* 31.94 711.0* 27.86
A-n34-kb 701.0* 0.1 701.0* 1.26 702.0* 1.34
A-n36-kb 732.0* 0.15 743.0* 13.35 758.0* 231.02
A-n37-k5 651.0" 0.16 653.0" 3.6 655.0" 4.22
A-n37-k6 861.0" 1.8 877.0* 232.77 879.0* 96.01
A-n38-k5 648.0* 0.07 654.0* 1.08 654.0" 0.98
A-n39-k5 735.0* 0.42 758.0* 47.12 762.0* 67.48
A-n39-k6 774.0* 0.6 774.0* 11.65 774.0* 11.1
A-n44-k6 891.0" 29.07 892.0* 692.84 897.0* 970.76
A-n45-k6 869.0" 1.93 872.0" 87.95 873.0" 26.96
A-n45-k7 1034.0* 5.42  1051.0* 514.83  1064.0* 2226.95
A-n46-k7 851.0% 0.52 871.0* 43.66 874.0* 59.06
A-n48-k7 967.0* 0.91 967.0* 10.91 979.0* 57.31
A-n53-k7 954.0* 2.22 959.0* 159.08 968.0* 423.89
A-n54-k7 1051.0* 65.48 1068.0* 3821.02 1080.0* 19054.7
A-n55-k9 985.0* 1.2 992.0* 21.01 1013.0* 195.39
A-n60-k9 1202.0* 24.35 1214.0" 4693.07 1228.0" 29396.3
A-n61-k9 939.0* 5.48 942.0* 257.96 948.0* 589.91
A-n62-k8 1132.0* 9.2 1153.0* 1283.46 1161.0* 1396.45
A-n63-k9 1446.0* 1975.6 1476.0  [1444.05] 1493.0  [1444.22]
A-n63-k10  1176.0* 34.68 1178.0* 234.11 1219.0 [1206.15]
An64k9 12000 [1277.83]  1333.0  [1267.2]  1349.0 [1265.06]
A-n65-k9 1082.0* 56.79  1085.0* 1150.0 1089.0* 2614.33

A-n69-k9  1076.0* 190.54 1082.0  10061.2  1091.0 [1083.65]
A-n80-k10  1612.0  [1587.4]  1641.0  [1587.1] no-feas [1587.42]

Table 2. Runtimes and optimality gaps for the benchmark instances of |Diaz (2006).
Optimally solved instances are highlighted with an asterisk and accompanied by the

runtime ¢. For all other instances, we report the upper and lower bound after 12 hours.
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Deterministic Stochastic Ambiguous

t (sec) t (sec) t (sec)
Problem Opt LB Opt LB Opt LB
B-n31-k5 645.0* 0.08  651.0* 0.82  651.0" 0.84
B-n34-k5 703.0* 0.18  737.0* 0.62  740.0* 1.34
B-n35-k5 866.0* 0.04  866.0* 0.11  866.0" 0.03
B-n38-k6 726.0* 0.09  730.0* 18.46  731.0" 23.29
B-n39-k5 517.0* 0.14 521.0* 0.17 521.0* 0.64
B-n41-k6 786.0* 0.08 786.0* 4.26 789.0" 1.78
B-n43-k6 655.0" 0.87 662.0* 717.52 678.0* 9.81
B-n44-k7 819.0* 4.5 835.0* 1598.4 841.0* 81.71
B-n45-k5 630.0* 0.11  666.0* 3.61  669.0" 2.81
B-n45-k6 616.0* 042  626.0" 6.2  626.0" 9.77
B-n50-k7 657.0* 0.13  661.0* 0.83  661.0" 0.27
B-n50-k8 1145.0* 2.62 1202.0 [1158.33] 1212.0 [1179.61]
B-n51-k7 913.0* 0.06 917.0* 0.32 921.0* 1.28
B-n52-k7 673.0" 0.14 673.0" 0.53 674.0* 0.79
B-n56-k7 621.0* 0.43 622.0" 14.44 622.0* 6.52
B-n57-k9 1511.0* 9.16 1535.0* 5829.33  1538.0" 3979.0
B-n63-k10 1347.0* 137.91 1361.0" 8751.78  1364.0* 4281.32
B-n64-k9 790.0* 1.06  796.0 10.3  797.0* 24.36
B-n66-k9 1170.0* 573.06  1202.0* 32405.8  1206.0* 4203.8
B-n67-k10 946.0* 3.01  974.0* 1499.96  978.0* 3519.29
B-n68-k9 1114.0* 20.66 1117.0* 394.49 1124.0* 6341.28
B-n78-k10 1079.0* 28.7 1101.0 [1089.5] 1105.0* 17351.5
E-n101-k8 780.0* 159.12 787.0 [783.05] 797.0 [780.978]
E-nl01-kl4  1012.0 [991.132]  1048.0 [984.161]  1057.0 [984.503]
E-n22-k4 370.0* 0.01  370.0* 0.25  370.0* 0.07
E-n23-k3 564.0* 0.0  564.0* 0.0 564.0* 0.0
E-n30-k3 475.0* 0.02  475.0* 0.02  475.0* 0.02
E-n33-k4 791.0* 0.15  791.0* 0.36  791.0* 0.41
E-n51-k5 510.0* 4.77 514.0% 364.7 515.0" 614.99
E-n76-k7 656.0" 97.12 660.0* 10538.1 661.0* 16929.2
E-n76-k8 699.0* 6245.56 703.0 [694.866] 704.0 [694.913]
E-n76-k10 772.0 [769.85] 784.0  [759.652] 790.0 [761.586]
E-n76-k14 939.0 [912.383] 960.0  [900.633] 959.0  [904.464]
F-n135-k7 1069.0* 348.29 1076.0* 4619.5 1081.0* 14412.2
F-n45-k4 706.0* 0.16 710.0* 1.11 711.0* 0.52
F-n72-k4 232.0* 0.28 232.0* 0.43 232.0* 0.59
M-n101-k10 795.0* 4.71 798.0* 108.72 798.0" 255.62
M-n121-k7 962.0 [949.444]  981.0 [949.303]  975.0 [951.297]
M-n151-k12  no-feas  [935.76] no-feas [932.814] no-feas [932.771]

Table 2. (Continued from previous page.)
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Deterministic Stochastic Ambiguous

t (sec) t (sec) t (sec)
Problem Opt LB Opt LB] Opt LB]
P-n19-k2 195.0* 0.0 195.0* 0.0 195.0* 0.0
P-n20-k2 208.0* 0.0 208.0* 0.01 208.0* 0.01
P-n21-k2 208.0* 0.0 208.0* 0.01 208.0* 0.0
P-n22-k2 213.0* 0.01 213.0* 0.02 213.0" 0.03
P-n22-k8 549.0* 0.01 549.0* 0.02 549.0* 0.02
P-n23-k8 486.0* 0.19 491.0* 15.09 491.0* 12.08
P-n40-k5 448.0* 0.23 449.0* 1.52 449.0* 1.86
P-n45-k5 496.0* 0.52 496.0* 15.73 500.0* 414
P-n50-k7 531.0* 3.56 539.0* 480.6 540.0* 483.5
P-n50-k8 580.0* 19.7 584.0* 748.81 585.0* 860.38
P-n50-k10 649.0* 25.32 652.0" 1221.82 657.0" 2681.08
P-n51-k10 686.0" 19.01 688.0" 1116.65 688.0" 526.73
P-n55-k7 539.0* 0.71 543.0* 120.47 548.0* 678.55
P-n55-k8 571.0* 3.01 572.0* 276.58 573.0" 273.35
P-n55-k10 656.0* 43.25 658.0* 1719.87 659.0* 3215.28
P-n55-k15 868.0* 176.34 871.0* 6372.02 872.0* 4492.75
P-n60-k10 703.0* 434.76 704.0* 14903.3 709.0* 35829.7
P-n60-k15 904.0* 275.71 911.0* 34400.8 921.0 [908.389]
P-n65-k10 750.0* 449.65 757.0  [748.853] 760.0  [748.066]
P-n70-k10 773.0  [769.264] 781.0  [760.688] 776.0  [760.304]
P-n76-k4 588.0* 1.61 588.0* 21.87 588.0* 20.13
P-n76-k5 608.0* 8.49 612.0* 4477.6 613.0" 5235.28
P-n101-k4 673.0" 0.99 673.0" 25.56 673.0" 21.65
att-n48-k4  38634.0* 0.59 38637.0* 7.58  38637.0* 16.07

Table 2. (Continued from previous page.)
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