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Abstract
Symmetry handling inequalities (SHIs) are a popular tool to handle

symmetries in integer programming. Despite their successful application
in practice, only little is known about the interaction of SHIs with opti-
mization problems. In this article, we focus on SST cuts, an attractive
class of SHIs, and investigate their computational and polyhedral conse-
quences for optimization problems. After showing that they do not in-
crease the computational complexity of solving optimization problems, we
focus on the stable set problem for which we derive presolving techniques
based on SST cuts. Moreover, we derive strengthened versions of SST
cuts and identify cases in which adding these inequalities to the stable set
polytope maintains integrality. Preliminary computational experiments
show that our techniques have a high potential to reduce both the size of
stable set problems and the time to solve them.

Keywords: symmetry handling, stable set, totally unimodular

1 Introduction
The handling of symmetries in binary programs has the goal to speed up the
solution process by avoiding the regeneration of symmetric solutions. To fix
notation, consider the binary program max {c>x : Ax ≤ b, x ∈ {0, 1}n}, where
A ∈ Zm×n, b ∈ Zm, and c ∈ Zn. Let Sn be the permutation group on [n] :=
{1, . . . , n}. A permutation γ acts on x ∈ Rn by permuting its coordinates, i.e.,
γ(x) := (xγ−1(1), . . . , xγ−1(n)). A subgroup Γ ≤ Sn is a symmetry group of the
program if every γ ∈ Γ maps feasible solutions onto feasible solutions preserving
their objective values. That is, for x ∈ Zn, Aγ(x) ≤ b if and only if Ax ≤ b,
and c>x = c>γ(x).

Different techniques have been suggested for symmetry handling such as iso-
morphism pruning [16, 17, 18] or adding symmetry handling inequalities (SHIs)
[3, 8, 9, 10, 11, 12]; also see Margot [15] for an overview. SHIs are systems of
inequalities that turn symmetric solutions infeasible, while keeping at least one
(optimal) solution intact.
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One particular way of handling symmetries is by the addition of inequalities
based on Schreier-Sims Tables (SST). This has been proposed by Liberti and
Ostrowski [13] and Salvagnin [22]. The main idea is that by iteratively comput-
ing group stabilizers, one can handle symmetries by adding so-called SST cuts
of the form xi ≤ xj , where variable xi appears in the orbit of variable xj , see
Section 2 for a detailed explanation.

This approach motivates our main question:

What is the impact of adding SST cuts on the complexity of the
underlying binary program?

Clearly, one would hope that neither the computational nor polyhedral com-
plexity increases. The answer to this question is not immediate in general, since
SST cuts might change the structure of the underlying problem, in particular,
if the problem is polynomially solvable.

In this direction, we first prove in Section 3 that computing an optimal
solution that satisfies SST cuts can be done in polynomial time, if the underlying
problem is solvable in polynomial time. In the remaining part of the paper,
we use stable set problems (and polynomial time solvable special cases) for
investigating the above question. In Section 4, we elaborate on the fact that
if i and j are in a common clique, then the SST cut xi ≤ xj can be used
to fix xi = 0. Otherwise, the SST cut can sometimes be strengthened using
cliques in the orbit of j. Our main technical contribution is to prove that if the
underlying graph is trivially perfect, i.e., a laminar interval graph, then adding
a carefully selected set of (strengthened) SST cuts and removing fixed variables
retains total unimodularity of the constraint matrix. Hence, these SST cuts
do not increase the polyhedral complexity of the problem. Interestingly, there
are families of SST cuts for which total unimodularity is not preserved. In
particular, this implies that different SHIs may have significant impact on the
polyhedral structure of the resulting problem. We also study the computational
impact of these inequalities in Section 6. The results indicate that the techniques
of Section 4 are a powerful tool to reduce graph sizes and running times for
symmetric stable set problems.

We note that related results as the ones in this paper can be obtained, e.g., for
matching or maximum flow problems. Furthermore, Section 4 shows that SST
cuts indeed preserve the structure of stable set problems. From this we derive
presolving techniques that can drastically reduce the problem size. We also find
that SST cuts preserve persistency of the edge relaxation, a helpful property
exploited in presolving. For general independence systems, more research is
need to see how our results for stable set generalize to independence systems by
considering their conflict graph.

2 Schreier-Sims Table Inequalities
SST cuts are SHIs derived from Schreier-Sims tables using the following al-
gorithm. Define the stabilizer stab(Γ, I) := {γ ∈ Γ : γ(i) = i for i ∈ I} of
sets I ⊆ [n] and orbits orb(Γ, i) = {γ(i) : γ ∈ Γ} for i ∈ [n]. These sets can
be computed in polynomial time if Γ is given by a set of generators [23]. The
algorithm performs the following steps, starting with Γ′ ← Γ, L← ∅: (i) select
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a leader ` ∈ [n] \ L and compute O` ← orb(Γ′, `); (ii) update L ← L ∪ {`},
and Γ′ ← stab(Γ′, L); (iii) repeat the previous steps until Γ′ becomes trivial.

We say that each element ` ∈ L is a leader and f ∈ O` \ {`} is a follower
of `. Unless stated otherwise, we relabel the leaders such that L = {1, . . . , k},
where j ∈ L is the jth leader selected by the algorithm. One can show [13, 22]
that SST cuts

−x` + xf ≤ 0, ` ∈ L, f ∈ O`, (1)

define a system of SHIs. We usually refer to a single cut by a pair (`, f) where
` ∈ L and f ∈ O`. Also, we define a round as a set of SST cuts (`, f) given by
a single leader ` ∈ L and all its followers f ∈ O`. Moreover, we denote by S the
set of all pairs (`, f) for every ` ∈ L and f ∈ O`.

A set S of SST cuts defines a symmetry handling cone via (1) that we denote
by C(S). This cone has attained recent attention [25], for example, it has O(n)
facets and defines the closure of the set of vectors that are lexicographically
maximal in their orbits, providing the best polyhedral approximation of lexi-
cographically maximal vectors. In particular, every lexicographically maximal
vector in Rn satisfies the SST cuts based on the same order of the leaders.

3 Complexity
One drawback of symmetry handling inequalities enforcing a total lexicographic
order is that their separation problem is coNP-hard, cf. [7, 14]. However, SST
cuts are weaker, as explained at the end of the last section. Thus, there is hope
that they do not increase the computational complexity of solving a symmetry
reduced problem compared to the original problem. This is indeed true:

Theorem 3.1. Let X ⊆ Rn and c ∈ Rn. Let Γ ≤ Sn be a symmetry group of
the problem (P) max {c>x : x ∈ X}. Let S = {(`, f) : ` ∈ L, f ∈ O`} denote a
set of SST cuts derived from Γ. If (P) can be solved in O(T (n)) time, then an
optimal solution of the problem (P ′) max {c>x : x ∈ X ∩ C(S)} can be found
in O(T (n) + poly(n)) time.

Proof. Let x be an optimal solution of (P). We construct an optimal solu-
tion x′ of (P ′) in polynomial time. Consider the first leader ` = 1 and let
i1 ∈ argmax {xi : i ∈ O1} and γ ∈ Γ be such that γ(i1) = 1. Then, γ(x)
satisfies the SST cuts −x1 +xf ≤ 0 for f ∈ O1. By replacing Γ by the stabilizer
of ` = 1 and x by γ(x), we can iterate the procedure for the remaining orbits to
find a point x′ ∈ orb(Γ, x) that satisfies all SST cuts. Since x is optimal, x′ is
optimal too. As pointwise stabilizers can be computed in polynomial time [23],
x′ can be constructed in polynomial time.

Note that we assume Γ to be given by a set of generators. Computing
symmetries for integer programs is NP-hard [15], however, so-called formulation
groups can be computed relatively fast in practice, see, e.g., [21].

4 Presolving Reductions
In the remainder of this article, we focus on whether SST cuts preserve problem
structure. We start by investigating how the implications of SST cuts can be
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used in presolving routines. To this end, we consider stable set problems: For
an undirected graph G = (V,E) with node weights c ∈ ZV , find a set I ⊆ V
of maximal weight such that the elements in I are pairwise non-adjacent. The
corresponding edge formulation is

α(G) := max
{∑
v∈V

cv xv : xu + xv ≤ 1 ∀{u, v} ∈ E, x ∈ {0, 1}V
}
.

Note that all inequalities in this formulation have {0, 1}-coefficients. Thus,
adding SST cuts changes the problem structure since SST cuts have {0,±1}-
coefficients. To overcome this issue, we want to derive an alternative stable set
problem on a graph G′ = (V ′, E′) that incorporates some implications of SST
cuts.

Lemma 4.1. Let G = (V,E) be an undirected graph. Let S be a set of SST cuts
for α(G). Define V ′ = V \ {v ∈ V : v = f and {`, f} ∈ E for some (`, f) ∈ S}
and G′ = (V ′, E[V ′]), the induced subgraph. Then, α(G) = α(G′).

Proof. Let (`, f) be a leader-follower pair. If xf = 1, the SST cuts imply x` = 1
as well. Since at most one of them is contained in a stable set if {`, f} ∈ E, xf
can be fixed to 0, which is captured by G′.

This means that we remove followers from G = (V,E) that are contained in
a common edge with their leaders. We call this operation the deletion operation.

Note that this operation does not incorporate implications of SST cuts (`, f)
if ` and f are not adjacent. To take care of this, we modify the graph G further.
The addition operation adds {v, f} for every neighbor v of ` to E. Doing so,
setting xf = 1 forces xv = 0 for all neighbors v of `.

Proposition 4.2. Let G = (V,E) be an undirected graph with weights c ∈ ZV .
Let G′ = (V ′, E′) arise from G by applying deletion and addition operations for
a set of SST cuts. Suppose cv 6= 0 for all v ∈ V . Then, every weight maximal
stable set in G′ is weight maximal in G and satisfies all SST cuts.

Proof. Since the deletion operation incorporates implications of SST cuts intoG′,
it cannot remove all optimal solutions. The missing implications of SST cuts
are that setting xf = 1 for a follower f implies x` = 1 for the correspond-
ing leader `. If xf = 1, then the edges introduced by the addition operation
cause xv = 0 for all neighbors v of `. Hence, if c` > 0, x` = 1 in an optimal
solution if xf = 1. Moreover, if c` < 0, then xf is not set to 1 in an optimal
solution, since cf = c` < 0 because ` and f are symmetric. Finally, note that
setting xv = 1 for some neighbor v of ` causes xf = 0 and x` = 0. Thus, ex-
actly the implications of SST cuts are incorporated by the deletion and addition
operation, which keeps at least one optimal solution intact.

The previous result has an important implication for the edge formulation:
SST cuts preserve persistency. Persistency is an important property, which says
that if an optimal solution of the LP relaxation of the edge formulation has an
integral coordinate, there exists an optimal integral solution of the stable set
problem with the same integral coordinate [19]. This property can be used as
a presolving routine for stable set problems to remove some nodes and edges.
On top of this, the deletion and addition operations can be used as another
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symmetry-based presolving routine, SST presolving. While the deletion opera-
tion decreases the problem size, which is expected to have a positive impact on
solving time, the addition operation introduces new edges. Since these edges
handle symmetries, one might expect that the addition operation has a positive
impact on solving time, which is confirmed computationally in Section 6.

5 Strengthened SST Cuts
The edge formulation is known to provide a poor LP-bound on the true weight of
a maximum stable set. To strengthen this formulation, many cutting planes such
as odd cycle or odd wheel inequalities have been derived [20]. One of the most
important classes of inequalities, however, are clique inequalities

∑
v∈C xv ≤ 1

for all cliques C ⊆ V in G. These inequalities define facets of the stable set
polytope P (G) if and only if C is an inclusionwise maximal clique [6]. The aim
of this section is to investigate the following strengthening of SST cuts:

Lemma 5.1. Let G = (V,E) be an undirected graph and let (`, f) for f ∈ O`
be SST cuts derived for P (G). Then, the following SST clique cut is an SHI
for every clique C ⊆ O`:

− x` +
∑
f∈C

xf ≤ 0. (2)

Proof. If xf = 1 for some f ∈ C, the SST cuts imply x` = 1. Since C forms a
clique, at most one follower f can have xf = 1, concluding the proof.

Note that SST clique cuts generalize SST cuts, because a single follower
always defines a clique.

One can show for a single round of SST cuts S that an SST clique cut defines
a facet of P (G,S) := conv{x ∈ {0, 1}V : x ∈ P (G) ∩ C(S)}, the symmetry-
reduced stable set polytope, if the clique is maximal in O` and no f ∈ C is
adjacent with `. Moreover, SST clique cuts are applicable to general indepen-
dence systems by defining them based on the conflict graph Ḡ.

Since SST clique cuts are based on cliques, we restrict our investigation to
graphs G for which P (G) is completely described by clique and non-negativity
inequalities: perfect graphs [5]. In general, adding SST clique cuts does not
provide a complete description of P (G,S), e.g., if G is a 4-cycle and S contains
all possible SST cuts. Therefore, we restrict ourselves to perfect graphs G
such that P (G) is described by a totally unimodular constraint matrix: interval
graphs [5].

An undirected graph G = (V,E) is called interval graph if, for all v ∈ V ,
there is a real interval Iv such that, for all distinct u, v ∈ V , we have {u, v} ∈ E
if and only if Iu ∩ Iv 6= ∅. A graph is called trivially perfect (TP) if it is an
interval graph whose interval representation can be chosen to be laminar, i.e., if
the intervals intersect, one is contained in the other. Let C = C(G) be the set of
maximal cliques of the undirected graph G. Then, the clique matrix M(G) of G
is the C×V -dimensional clique-node incidence matrix of G. The clique matrix of
interval graphs, and thus trivially perfect graphs, is totally unimodular [5]. For
a given graph G, let ΓG be its automorphism group. Similarly, Γ denotes the
symmetry group of the stable set program for graph G as defined in Section 4.
Note that Γ is a subgroup of ΓG whose permutations also preserve node weights.
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Figure 1: Example for (non-) stringent
SST cuts.

` f

Figure 2: An interval graph and
SST cut (`, f).

W.l.o.g. we assume that all intervals in the interval representation (Iv)v∈V of
a TP-graph are pairwise different. We derive a rooted forest representation TG =
(V,A) for a TP-graph G = (V,E), where (u, v) ∈ A if and only if Iv ( Iu and
there is no w ∈W with Iv ( Iw ( Iu.

One natural question is whether adding SST clique cuts to a complete de-
scription of P (G) provides a complete description of P (G,S) if G is a TP-graph.
In the remainder of this section, we give an answer by providing a sufficient crite-
rion on when adding SST clique cuts preserves total unimodularity of the clique
matrix of TP-graphs. Moreover, for TP-graphs, the number of maximal cliques
is linear in the number of nodes. Picking up our motivational question from
the introduction, this shows that there is a polynomial sized complete linear
description of P (G,S) and thus the polyhedral complexity is not increased.

To derive our sufficient criterion, we introduce the notion of stringent SST
cuts. Let L = {1, . . . , k} be the leaders of a family of SST cuts S. Note that the
orbits O1, . . . , Ok define a laminar family. For ` ∈ L, letM(`) ⊆ {O1, . . . , O`}
be the collection of inclusionwise maximal sets in {O1, . . . , O`}. The family S
of SST cuts is called stringent if the orbit O` of leader ` ∈ L is computed using
the group stab(Γ, [`− 1]) ∩ stab(Γ,O`), where O` =

⋃
O∈M(`−1):`/∈O O, that is,

the group must also stabilize all maximal orbits not containing `.
That is, stringent SST cuts not only require to stabilize previous leaders,

but also entire orbits if they do not contain the current leader.

Example 5.2. Figure 1 shows the tree representation of a TP-graph. The set
of SST cuts for orbits O1 = {1, . . . , 6} and O7 = {7, . . . , 14} with leaders L =
{1, 7} (without relabeling) is not stringent, because 7 /∈ O1. Hence, O1 needs
to be stabilized, which reduces O7 to {7, 8} for stringent SST cuts. Another
example of stringent SST cuts is given by the leaders 1, 3, 5 (in that order) and
orbits O1 = {1, . . . , 6}, O3 = {3, . . . , 6}, O5 = {5, 6}, because 3, 5 ∈ O1.

Although stringency seems to be restrictive, we can implement the algorithm
in Section 2 so that it always generates stringent SST cuts. Indeed, we can
maintain the following property: if in Step (i) a given leader ` is selected, then
the following leaders need to be selected from O` first. Once all elements of O`
have been considered as leaders, the group stab(Γ, [`]) stabilizes O`, and we can
continue with a next leader `′ ∈ [n] \ O`. Hence, we obtain stringent SST cuts
by choosing leaders in a depth-first search fashion.

We are now able to formulate the main result of this section.
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Theorem 5.3. Let G = (V,E) be a TP-graph. Consider a set S of stringent
SST cuts. The matrix that arises by applying the following two operations is
totally unimodular:
1. adding all SST clique cuts derivable from S;

2. deleting columns whose nodes get deleted by the deletion operation.

In general, this theorem does not hold if we drop stringency, because exper-
iments with the code from [26] show that the non-stringent SST (clique) cuts
from Example 1 do not preserve total unimodularity when adding them to the
clique matrix of the corresponding TP-graph. Moreover, since SST clique cuts
dominate SST cuts, it is necessary to replace SST cuts by clique cuts. Also, the
requirement of TP-graphs and to apply the deletion operation are necessary for
the validity of the theorem: Figure 2 shows an interval graph that is not TP
and an SST cut such that the extended clique matrix is not totally unimod-
ular; if there is an edge {`, f} in G for an SST cut (`, f), then the extended
clique matrix contains a 2 × 2-submatrix with rows [1, 1] and [−1, 1], i.e., with
determinant 2.

To prove Theorem 5.3, we proceed in two steps. We reduce the case of SST
clique cuts to SST cuts, and then show that the result holds for this simple case.

5.1 Reduction to a Simple Case
We exploit the symmetry group structure of TP-graphs to reduce the discussion
of SST clique cuts to SST cuts. Consider a TP-graph G = (V,E) with auto-
morphism group ΓG and forest representation T . A chain in T is a directed
path c with terminal node u such that the out-degree δ+

T (v) with respect to T
equals 1, for every node v of c \ {u}.

Lemma 5.4. Let G = (V,E) be a TP-graph. For any node v ∈ V , the induced
subgraph of TG in orb(ΓG, v) decomposes into chains of the same length and ΓG
acts independently on each chain like the symmetric group.

Proof. The nodes w in a chain c are pairwise interchangeable as exchanging their
corresponding intervals Iw does not change the adjacency structure. Therefore,
ΓG acts on c as the symmetric group, while fixing the remaining nodes of G.
Moreover, if a path c is not a chain, then there exist two distinct nodes u and v
in c with out-degree at least 2. If v appears before u in c, the degree of v in G
is larger than the degree of u. Hence, they cannot be symmetric. Therefore,
for any v ∈ V , orb(ΓG, v) decomposes into chains. They need to have the same
length because the corresponding paths need to be symmetric.

When applying SST cuts to the stable set problem, we are using a subgroup
Γ ≤ ΓG that also preserves node weights. In this case, we can sort the nodes
along each chain consecutively by their node weights because ΓG acts like the
symmetric group on each chain. That is, Lemma 5.4 also holds for the sub-
group Γ. We use this observation to define an auxiliary graph GS for a family
of SST cuts S. Whenever we compute an orbit O`, we also compute its chain
decomposition according to the current stabilizer group. After computing all
decompositions, GS arises from G as follows. Each chain computed in the de-
composition of the orbits is contracted into a single node. If the chain contains
a leader, then we give the contracted node the lowest label of a leader within
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the chain. Otherwise, we give the contracted node an arbitrary label within the
chain.

The interpretation of this graph is as follows. If a chain contains a leader,
the deletion operation allows us to remove all nodes except for the leader from
the graph. If a chain contains several leaders, it is only necessary to keep the
leader considered first. For a chain c that does not contain a leader, the columns
for v ∈ c of the clique-node adjacency matrix are identical. This is true, because
we never compute subchains of already considered chains, because the symmetry
group acts independently like the symmetric group on each chain, i.e., we can
always exchange all nodes within a chain if none of them is stabilized. They
are in particular still identical if we add SST clique cuts to the matrix, because
chains in T correspond to cliques in G. Hence, for deciding total unimodularity,
we can remove symmetric columns.

We can now reduce Theorem 5.3 to the case of simple SST cuts by applying
the following lemma.

Lemma 5.5. Let G = (V,E) be a TP-graph and let S be a set of SST clique
cuts. Then, the matrix obtained by
1. adding SST clique cuts for S to the clique matrix M(G) and

2. deleting columns contained in SST cuts for S such that the corresponding
leader and follower are adjacent,

is totally unimodular if and only if the matrix AS obtained by extending M(GS)
with the simple SST cuts corresponding to S in GS is totally unimodular.

Proof. By the previous discussion, the matrix AS is a submatrix of the extended
clique matrix A of G. Thus, if A is totally unimodular, so is AS .

For the other direction, assume AS is totally unimodular. To see that also A
is totally unimodular, select an arbitrary square submatrix B of A. If B does not
contain a row corresponding to an SST clique cut, B is a submatrix of M(G),
and thus totally unimodular. For this reason, assume B contains a row corre-
sponding to an SST clique cut. Select an SST clique cut in B whose leader `
has the largest value. Let C be the corresponding clique. If B contains two
columns corresponding to nodes v and w in C, then these columns are identical
by the previous discussion. Consequently, det(B) = 0.

Thus, suppose B contains only one column corresponding to a node v in C.
If the column corresponding to ` is not present in B, we expand det(B) along the
row corresponding to the SST clique cut. Since this row contains exactly one 1-
entry, we find det(B) ∈ {0,±1} by applying the above arguments inductively.
Therefore, we may assume that, for each selected SST clique cut in B, there
is at most one column v that contains a node from the corresponding clique
of the SST clique cut. Hence, B is a submatrix of AS and det(B) ∈ {0,±1}
follows.

5.2 Proving the Simple Case
Consequently, Theorem 5.3 holds if the following theorem holds.

Theorem 5.6. Let G = (V,E) be a TP-graph. Consider a set of stringent SST
cuts for leaders L = [k] and orbits O1, . . . , Ok. If no orbit contains an edge
from E, then the clique matrix M(G) extended by the simple SST cuts is totally
unimodular.
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In the remainder of this section, we prove Theorem 5.6. Let T = TG be the
forest representation of a TP-graph G. We denote the set of all paths in T that
connect a root node r with a leaf by P. The paths in P that contain v ∈ V are
denoted by Pv and are in a one-to-one correspondence with the cliques Cv ⊆ C
in G that contain v. We call a set of nodes S ⊆ V path-disjoint if Pu ∩ Pv = ∅
for all distinct u, v ∈ S. Note that there is a one-to-one correspondence between
path-disjoint sets in T and stable sets in TP-graphs G.

We define a reduction operation as follows: For a set S ⊆ V and v ∈ S, let d
be a node on the unique r-v-path, where r is the unique root of the connected
component containing v in T . If we delete d from T , then T decomposes into
connected components that are rooted trees. The reduced graph Td(S) is the
graph defined by the connected components whose roots are children of d and
that do not contain any node from S. We also need the following property. A
family of path-disjoint sets S1, . . . , Sk ⊆ V has the recursion property if

(RP1) S1, . . . , Sk are pairwise disjoint, and

(RP2) for every i ∈ [k − 1], there exists di ∈ V such that Si+1 ⊆ Tdi(
⋃i−1
j=1 Sj).

If S = {S1, . . . , Sk} is a laminar family of subsets of V , we define, for S ∈ S,
SS := {S′ ∈ S : S′ ( S}. We say that the laminar family S has the laminar
recursion property if

(LRP1) for all S ∈ S, there is uS ∈ S not contained in any set of SS , and

(LRP2) the inclusionwise maximal sets in S have the recursion property.

Similarly, S has the (laminar) recursion property with respect to a TP-graph G,
if it has the same property for its tree representation TG. Using these concepts,
we can prove Theorem 5.6. In fact, we show a stronger result for general ordering
inequalities xu ≥ xv that are not necessarily based on symmetries.

Theorem 5.7. Let G = (V,E) be a TP-graph and let S1, . . . , Sk ⊆ V be stable
sets satisfying the laminar recursion property. For each i ∈ [k], let ui ∈ Si
adhere to (LRP1). Then, the clique matrix M(G) extended by the ordering
inequalities xui ≥ xv for all i ∈ [k] and v ∈ Si \ {ui} is totally unimodular.

To prove this theorem, we need the following lemmata and concepts.
Let P be the set of root-leaf paths of a rooted forest T = (V,A). We identify

each path in P by its unique leaf node. For a node v ∈ V , we denote by succ(v)
the set of direct successors of v in T , i.e., succ(v) = {w ∈ V : (v, w) ∈ A}.
If P ⊆ P is a set of paths, we denote by Pv the set of all paths containing v ∈ V .
Note that, if v is a leaf, then Pv = {v}. Otherwise, Pv =

⋃
w∈succ(v) Pw.

An equicoloring (equitable bicoloring) of P ⊆ P is a partition P+ ∪P− of P
such that, for every v ∈ V , δv := |P+

v | − |P−v | ∈ {0,±1}. Due to the forest
structure of T , for each v ∈ V that is not a leaf, we have δv =

∑
w∈succ(v) δw.

Lemma 5.8. Let T = (V,A) be a rooted tree with root r and let P ⊆ P.
Let S ⊆ V be non-empty, path-disjoint and suppose that Pv 6= ∅ for each v ∈ S.
Then, there exists an equicoloring P+ ∪ P− of P such that

∑
v∈S

δv ∈

{
{−1}, if δr = −1,

{0, 1}, if δr ∈ {0, 1}.
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Proof. We proceed by induction on the height h of T . If h = 1, then T consists
just of the root node r and S ⊆ {r}. Moreover, if r ∈ S, then S = {r} since
every path in P contains r. In both cases, we can choose P− = {r} and P+ = ∅
and the assertion holds.

If h > 1 and r /∈ S, consider the forest T ′ that arises by removing r and all its
outgoing arcs from tree T . The height of T ′ is h−1. Thus, if T ′ is connected, the
assertion follows by induction. Otherwise, T ′ has k > 1 connected components
which are rooted trees. Let r1, . . . , rk be the corresponding root nodes and,
for i ∈ [k], let Si be the nodes in S that are descendants of ri. By the inductive
hypothesis, we can find for every connected component i ∈ [k] an equicoloring
such that

∑
v∈Si

δv = δri , or
∑
v∈Si

δv = 0 and δri = 1, or
∑
v∈Si

δv = 1
and δri = 0.

Let C− be the connected components i with δri = −1, let C+ be the con-
nected components i with δri =

∑
v∈Si

δv = 1, let C0 be the connected com-
ponents i with δri = 1 and

∑
v∈Si

δv = 0, and let C0 be the connected compo-
nents i with δri = 0 and

∑
v∈Si

δv = 1. After possibly changing the two classes
of the equicoloring for some components, we can assume |C+| − |C−| ∈ {0, 1}.
Combining these equicolorings for the components in C+ and C− gives us an
equicoloring of C+ ∪ C− with

∆ :=
∑

i∈C+∪C−

δri =
∑

i∈C+∪C−

∑
v∈Si

δv ∈ {0, 1}.

First, suppose C0 = ∅. If C0 6= ∅, let C1, . . . , C` be an ordering of the compo-
nents in C0 with corresponding roots r(1), . . . , r(`). We distinguish whether ∆ =
0 or ∆ = 1. If ∆ = 0, we flip the two classes of the equitable partitions in C0

with an even label; if ∆ = 1, we flip the classes for partitions with an odd label.
Then,

k∑
i=1

δri = ∆ +
∑̀
i=1

δr(i) =

{
0, if ∆ = 0 and ` is even, or ∆ = 1 and ` is odd,
1, if ∆ = 1 and ` is even, or ∆ = 0 and ` is odd.

That is,
∑k
i=1 δri ∈ {0, 1} and

∑k
i=1

∑
v∈Si

δv ∈ {0, 1}.
Second, if C0 6= ∅, we proceed as before to find an equicoloring of the compo-

nents in C̄ := C+∪C−∪C0 with
∑
i∈C̄ δri ∈ {0, 1} and

∑
i∈C̄

∑
v∈Si

δv ∈ {0, 1}.
Since the connected components from C0 do not affect the value of

∑
i∈C̄ δri ,

we can flip the classes of the bicoloring of every second component in C0 to
maintain the property that

∑k
i=1

∑
v∈Si

δv ∈ {0, 1}.
To conclude the proof, we extend the equicolorings of the individual con-

nected components of T ′ to an equicoloring of T by associating each path in T ′
by the corresponding path in T . Then, for every v ∈ V \ {r}, δv ∈ {0,±1} fol-
lows trivially. Moreover, since δr =

∑k
i=1 δri , also δr ∈ {0,±1}. In particular,

δr has the desired relation with
∑
v∈S δv by the above argumentation.

Lemma 5.9. Let T = (V,A) be a rooted tree, let S1, . . . , Sk ⊆ V have the
recursion property, and let P ⊆ P. If Pv 6= ∅ for each v ∈

⋃k
i=1 Si, then there

exists an equicoloring P+∪P− of P such that
∑
v∈Si

δv ∈ {0,±1} for all i ∈ [k].

Proof. We prove the assertion by induction on k. If k = 1, the statement
follows from Lemma 5.8. Inductively, we can thus assume that there is an
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equicoloring P+∪P− of P that has the desired properties for S1, . . . , Sk−1, and
show that we can adapt it to such an equicoloring for S1, . . . , Sk.

Let dk−1 adhere to (RP2), and let Tk = Tdk−1(
⋃k−2
i=1 Si). W.l.o.g. we can as-

sume that Tk consists of a single connected component. Otherwise, we show the
result for the graph T ′ in which we replace the arcs from dk−1 to the roots of Tk
by a single arc (dk−1, d′) and connect d′ with the roots of Tk. The equicoloring
found for T ′ is then also an equicoloring for T with the same properties.

Let rk be the root of Tk. The equicoloring P+∪P− derived for S1, . . . , Sk−1

yields δrk ∈ {0,±1}. If |Prk | is even, then δrk is necessarily 0 in every equi-
coloring. Analogously, if |Prk | is odd, then δrk = ±1 in every equicolor-
ing. By Lemma 5.8, there exists an equicoloring of Prk with δk-values such
that

∑
v∈Sk

δkv ∈ {0,±1}. By the previous observation, δkrk = 0 if and only
if δrk = 0. Thus, after possibly flipping the two classes found in the equicoloring
of Prk , δkrk = δrk . Consequently, if we change the equicoloring P+ ∪ P− on Prk
such that it coincides with the bicoloring found for Tk, it is still an equicoloring
for T . It satisfies

∑
v∈Sk

δv ∈ {0,±1}, and the values of
∑
v∈Si

δv for i ∈ [k− 1]

did not change, because Tk does not contain any node from
⋃k−1
i=1 Si. That is,

we have found the desired equicoloring.

Proof of Theorem 5.7. We may assume that G is connected and that no node
involved in an ordering inequality is the root node of the tree representation
of G: Otherwise, we introduce a node w that is connected with all nodes in G,
yielding a graph G′. Moreover, we can recover the assertion for G from G′,
because the extended clique matrix of G is a submatrix of the extended clique
matrix of G′.

In the following, we work with the tree representation of G. Let P ⊆ P be
a set of paths in the tree representation. Let D be a set of ordering inequalities
encoded via the leader-follower pair (u, v), and let U := {u1, . . . , uk}. That
is, Du,v is the inequality xu ≥ xv. To show that M(G) extended by ordering
inequalities is totally unimodular, we use Ghouila-Houri’s equicoloring crite-
rion [4]. That is, we need to find partitions P+ ∪ P− of P and D+ ∪D− of D
such that

∆w = |P+
w | − |P−w |+

∑
u∈V

(|D+
u,w| − |D−u,w|) +

∑
v∈V

(|D−w,v| − |D+
w,v|) ∈ {0,±1}

for all w ∈ V . Our strategy is to show the statement for the case that all
sets S1, . . . , Sk are pairwise disjoint first. Afterwards, we will use this result
as an anchor for the general case. The anchor allows us to derive a result for
the inclusionwise maximal sets among S1, . . . , Sk. The corresponding equitable
partition will then be modified by taking also non-maximal sets into account.

Suppose that all sets S1, . . . , Sk are pairwise disjoint. From Lemma 5.9 we
derive an equicoloring P+ ∪ P− of P with δw = |P+

w | − |P−w | ∈ {0,±1} such
that

∑
w∈Si

δw ∈ {0,±1} for all i ∈ [k]. Note that the lemma only applies to the
nodes w in Si for which Pw 6= ∅, however, it trivially extends to the general case.
In the following, we extend this equicoloring of P to an equicoloring of (P,D)
by assigning a suitable partition of D. That is, we need to partition D such
that

∆w =

{
δw +

∑
v∈V (|D−w,v| − |D+

w,v|), if w ∈ U,
δw +

∑
u∈V (|D+

u,w| − |D−u,w|), otherwise,
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is contained in {0,±1} for every w ∈ V . In particular, if w is a follower, there
is a unique leader u such that its ∆-value reduces to δw = δw + |D+

u,w| − |D−u,w|
by the assumption that the sets Si are pairwise disjoint.

Note that, if δw = 1 for some follower w, then we necessarily need to assign its
leader-follower pair (u,w) to D− to ensure ∆w = 1 + |D+

u,w| − |D−u,w| ∈ {0,±1}.
Analogously, if δw = −1 for some follower w, then (u,w) ∈ D+. For followers w
with δw = 0, however, we have two choices and we will specify later on how to
assign these ordering inequalities to D+ and D−. Denote these not yet assigned
inequalities (identified by their followers w ∈ V ) by D̄.

Until now we have guaranteed that ∆w ∈ {0,±1} for all w ∈ V \ (U ∪ D̄).
For a leader-follower pair (u, v), observe that assigning (u, v) ∈ D with δv = 1
toD− increases ∆u by 1, since u has a positive coefficient in the negated ordering
inequality −(−xu + xv ≤ 0); analogously, assigning (u, v) ∈ D with δv = −1
to D+ decreases ∆u by 1. That is, for each ui ∈ U , the current assignment
of D+ and D− implies

∆ui
= δui

+
∑
v∈V :

(ui,v)∈D

δv =
∑
w∈Si

δw,

where the last equation holds since δw = 0 for all w ∈ Si for which Pw = ∅. By
Lemma 5.9, we thus conclude that ∆ui

∈ {0,±1}.
To conclude the first case, we need to assign the ordering inequalities in D̄

to D+ and D−. Since δw = 0 for each w ∈ D̄, we can assign them arbitrarily
to D+ and D− to achieve ∆w = ±1. The only restriction we need to take
into account is the coupling of all ordering inequalities via their corresponding
leaders ∆u. Because ∆u ∈ {0,±1} if we do not consider D̄, we can easily
maintain ∆u ∈ {0,±1} by assigning the relevant ordering inequalities in D̄
alternatingly to D+ and D−. Consequently, (C,D) admits an equicoloring and
the assertion follows for the first case.

Note that we can choose the alternating sequence such that is has the follow-
ing property, which will be exploited in the remainder of the proof: For each Si,
let R1, . . . , Rj ⊆ Si \ {ui} be pairwise disjoint. Then, the alternating sequence
of D̄ can be chosen such that

∑
w∈R`

∆w ∈ {0,±1} for all ` ∈ [j]. Indeed, this
property holds, by first iterating over the elements in R1 ∩ D̄, then over the
elements in R2 ∩ D̄, and so on.

In the second case, suppose we have relabeled the sets Si such that S`+1, . . . , Sk
are inclusionwise maximal. If we apply the previous arguments to S`+1, . . . , Sk,
we derive a bicoloring such that, for each i ∈ {`+ 1, . . . , k} and w ∈ Si \ {ui},

∆w =

{
0, if Pw 6= ∅,
±1, if Pw = ∅.

Moreover, if S1, . . . , Sj are the inclusionwise maximal sets among S1, . . . , S`,
then no leader u`+1, . . . , uk is contained in any of the sets S1, . . . , Sj by (LRP1).
Thus, we can select the equicoloring such that

∑
w∈Si

∆w ∈ {0,±1} for all i ∈ [`]
by the previously derived property.

We continue by assigning the ordering inequalities with leaders u1, . . . , uj
to D+ and D−. Note that this does not change the ∆-value of any node w out-
side

⋃j
i=1 Si. Again, if a follower w has ∆w = 1, we need to assign its ordering

12



Table 1: Comparison of effect of presolving of different SST variants.

graph reductions solving times

orbit rule nodes edges edges+ presol cut clique presol+ cut+ clique+

minimum 0.90 0.81 0.85 0.55 0.56 0.56 0.43 0.50 0.47
maximum 0.80 0.60 0.65 0.36 0.29 0.30 0.25 0.31 0.30

inequality to D− and if it has ∆w = −1 to D+. As above, this gives the corre-
sponding leader ui a ∆-value of

∑
w∈Si

∆w, which is 0 or ±1 by the derived prop-
erty. Hence, we can assign the remaining ordering inequalities whose follower
has ∆w = 0 in an alternating order to D+ and D− to maintain ∆ui

∈ {0,±1}.
We thus find an equitable partition such that, for all i ∈ [j],

∆w =

{
±1, if Pw 6= ∅,
0, if Pw = ∅.

Using the same arguments as above, we can proceed iteratively until we also
assigned the ordering inequalities of inclusionwise minimal sets in S1, . . . , Sk.

Theorem 5.6 is now a special case of Theorem 5.7 as we sketch next.

Proof of Theorem 5.6. We briefly sketch the proof’s idea. If there is no edge
contained in an orbit, the orbits form stable sets in G. Moreover, the stabi-
lizer computations guarantee that the inclusionwise maximal orbits are disjoint.
Stringency implies that the inclusionwise maximal orbits have the recursion
property. Since the SST leaders are not contained in succeeding orbits, the set
of all orbits have the laminar recursion property. The result follows then by
Theorem 5.7.

6 Preliminary Computational Results
In this section, we discuss the impact of SST presolving, cuts, and clique cuts
for the edge formulation of the maximum cardinality stable set problem. Our
test set consists of all graphs from the Color02 symposium [1] and all comple-
mented graphs from the max-clique DIMACS challenge [2] for which we could
find symmetries using SageMath 9.1 [24] within one hour. This gives us a test
set of 105 graphs. For all graphs, we computed at most 50 rounds of SST cuts,
where we selected an orbit of either minimal or maximal size; the leader is the
variable of smallest index in each orbit.

The left part of Table 1 shows the proportion of nodes and edges that remain
in the graph after applying the deletion operation of SST presolving. Column
“edges+” gives the proportion of edges after additionally applying the addition
operation. SST cuts based on minimum orbits reduce the number of nodes
and edges by roughly 10 % and 20 %, respectively. Selecting maximum orbits
even reduces these quantities by 20 % and 40 %; the biggest reduction can be
achieved for the instance latin_square_10 from Color02, where the number of
nodes drops by 75 % and of edges even by 94 %. Using the addition operation
increases the number of edges by five percentage points again.

In a second experiment, we investigated the impact of SST presolving and
cuts on running time. These experiments have been conducted using SCIP 8.0.0.1
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(githash a4eeac7) with SoPlex 5.0.1.3 as LP solver; all symmetry handling
methods in SCIP have been disabled to get a fair comparison. No time limit
has been imposed and all experiments were run on a Linux cluster with Intel
Xeon E5 3.5 GHz quad core processors and 32 GB memory. It turns out that
SCIP can solve most of these selected instances, easily even without symmetry
handling. Therefore, we extracted the instances that need at least one second
to be solved, which leads to a reduced test set of 26 instances.

Without any symmetry handling, the geometric mean running time is 10.3 s.
The right part of Table 1 shows the proportion of solving time needed by the
remaining methods for graphs obtained by the deletion operation (presol), and
additionally adding SST cuts (cut) or SST clique cuts (clique). The postfix “+”
indicates that we additionally apply the addition operation. To generate clique
cuts, we take the set of followers F of a leader and greedily compute a clique
covering of F within the subgraph induced by F . Again, the maximum orbit
rule performs better. Even just applying the deletion operation reduced the
running time by 64 %, adding either type of cuts reduces running time by 70 %.
Additionally using the addition operation performs best and leads to a running
time reduction of 75 %.
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