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Abstract

We introduce a novel incremental network design problem motivated by
the expansion of hub capacities in package express service networks: the in-
cremental network design problem with multi-commodity flows. We are given
an initial and a target service network design, defined by a set of nodes, arcs,
and origin-destination demands (commodities), and we seek to find a transition
from the initial service network to the target service network. In the target ser-
vice network design, the capacity of a subset of arcs has been increased (hub
capacities can be modeled as arcs in the network). In each period, the capacity
of a single arc can be increased and the cost in a period is given by the solution
to an unsplittable multi-commodity flow problem. Our objective is to find a
sequence of arc capacity expansions such that the total cost during the transi-
tion is minimized. We model the problem as an integer program, propose and
analyze greedy heuristics and develop an exact solution approach. We provide
worst-case analyses for the greedy heuristics and compare the efficacy of the al-
gorithms to solving the integer programming formulation of the problem using
a commercial solver.

keywords: Incremental optimization; Capacity planning; Transportation.

1 Introduction

Less-than-truckload and package express transportation carriers regularly evaluate
the design and operations of their service network. This can be prompted by a change
in (forecast) demand or simply by a desire to identify cost savings (e.g., in the shuttle
and line haul transportation costs or in the operational cost at hubs). However,
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changing the design and operations of an existing service network is not trivial and
typically proceeds in two steps. First, planners decide where upgrades or expansions
are introduced (e.g., where additional hubs will be located and where sorting capacity
of existing hubs will be increased). Second, planners decide when to implement
these upgrades and expansions. Given that a service network redesign may result in
significant changes in the operations, the transition to a new target design typically
occurs gradually, in a number of phases. Another reason for a gradual transition is
that the change of the service network may require significant investments and budgets
may force these investments to be made over a period of time. Given that there will
be a gradual transition from an existing service network to a target service network, it
becomes important to properly sequence the changes as this sequence directly affects
the operational costs and the profit during the entire transition period. In incremental
service network design problems, we assume that an initial service network design and
a target service network design are provided, and we seek, in a fixed number of steps,
to transition from the initial service network design to the target network design,
where the goal is to maximize or minimize an objective function defined over the
entire transition period (e.g., we want maximize the sum of the profits made in each
of the transition periods).

In this paper, we introduce a novel incremental network design problem motivated
by the expansion of hub capacities in package express service networks: the incremen-
tal network design problem with multi-commodity flows. We are given an initial and a
target service network design, defined by a set of nodes, arcs, and origin-destination
demands (commodities), and we seek to find a transition from the initial service net-
work to the target service network. In the target service network design, the capacity
of a subset of arcs has been increased (hub capacities can be modeled as arcs in the
network). In each period, the capacity of a single arc can be increased and the cost
in a period is given by the solution to an unsplittable multi-commodity flow problem
modeling the transportation costs in the network. Our objective is to find a sequence
of arc capacity expansions such that the total cost during the transition is minimized.

We model the problem as an integer program, propose and analyze greedy heuris-
tics and develop an exact solution approach. In the greedy heuristics, we determine
the sequence of expansions by selecting arcs based on: (1) the size of expansion
(static), and (2) the largest immediate reduction in flow cost (dynamic). For finding
optimal solutions, we propose a depth-first search partial enumeration algorithm that
explores partial sequences of expansions in a depth-first search manner, where, for
each partial sequence, we compute: (1) the cost associated with the partial sequence,
and (2) upper and lower bounds on the costs of the remaining transition periods,
which are used to curtail the enumeration of all partial sequences. We provide worst-
case analyses for the greedy heuristics and compare the efficacy of the algorithms
to solving the integer programming formulation of the problem using a commercial
solver. The contributions of this research are summarized as follows:

e A new incremental network design problem is introduced, motivated by multi-

phase hub capacity expansion in package express service networks;

e A number of greedy heuristics and an exact algorithm are designed, imple-



mented, and analyzed, and;
e A computational study using instances derived from real-world data of a large
package express carrier is conducted;

The remainder of this paper is organized as follows. In Section [2, we review rele-
vant prior research on incremental network design and capacity expansion problems.
In Section (3] we provide a formal description of (general) incremental network design
problems and of the incremental network design problem with unsplittable multi-
commodity flows. In Sections [4] and [5] we propose greedy heuristics to quickly obtain
high quality solutions and an exact approach to obtain optimal solutions, respectively.
In Section [6] we present and interpret the results of an extensive computational study.
Finally, in Section [7], we finish with final remarks.

2 Literature Review

Since we are not aware of any literature addressing the incremental network design
problem with multi-commodity flows, we briefly review literature on capacity expan-
sion problems and on incremental network design problems.

There is a wide variety of capacity expansion problems covered in the literature for
different types of service networks. For example, in the context of telecommunication
networks, |Gendreau et al.| (2006]) proposes a heuristic approach for finding the least
cost alternative of installing additional concentrators at the nodes and cables on the
links of the network in order to meet an increasing demand. In the context of water
distribution systems, Hsu et al.| (2008]) proposes capacity expansion alternatives to
an existing water distribution system in order to improve the efficiency of water sup-
ply. For large urban transportation networks, Mathew and Sharmal (2009) and Marin
and Jaramillo| (2008) propose different strategies for opening new links and adding
capacity to existing links in the network in order to minimize congestion. In gas trans-
portation networks, Andre et al. (2009) presents techniques for finding the optimal
location of pipeline segments to be expanded and the optimal size of these expansions
such that investment costs on an existing gas transportation network are minimized.
There is also a fair amount of literature purely focused on facility expansion problems
concerned with the timing of facility expansions to meet increasing demand (see, e.g.
Jablonowski et al.| (2011) and [Wang and Lin| (2002))). These problems, however, are
focused almost exclusively on finding the set of necessary expansions/changes in the
service network design in order to meet the desired goals, and do not investigate how
to gradually transition from the current state of the network to a provided target
network design. For a more broad survey on capacity expansion problems covered in
the of field Operations Research, see Luss| (1982).

Incremental network design problems, which integrate both network design and
scheduling problems, were originally introduced in |[Nurre et al.| (2012)) and |Jeong and
Culler| (2004)). In the context of electrical power grids, there is a fair amount of
literature on incremental network design problems where the objective is to convert
the current design of an electrical power grid into a smart grid, where resource and
budget constraints allow only a limited number of upgrades per time period (see, e.g.



DeBlasio and Tom| (2008)) and |Farhangi (2009)). Another example of incremental
network design problems often studied in the literature is the one faced by managers
of critical civil interdependent infrastructure systems of restoring essential public
services after a non-routine event causes disruptions in the system. In this context,
the objective is to determine a set of tasks to be completed, assign these tasks to work
groups, and then determine the schedule of each work group to complete the tasks
assigned to it such that a quality measure over the entire horizon of the restoration
plan is maximized (see, e.g. |(Cavdaroglu et al.| (2013) and Celik| (2016))).

In a setting more similar to the one we consider, Kalinowski et al.| (2015) studies
an incremental network design with maximum flows problem where, given a current
network design defined over a set of nodes and arcs with fixed integer capacity, the
goal is to build new arcs in the network from a set of fixed potential arcs, one at a
time, such that the maximum flow in the network increases and the cumulative perfor-
mance, i.e., the sum of the performance measures of the networks in all time periods,
is maximized. The authors propose different integer programming formulations for its
solution and a set of greedy heuristics to find a good sequence of arcs to build in the
network and meet the desired goal. The worst-case analyses for the greedy heuristics
are also presented. Other incremental network design problems where, in each period,
one or more arcs from a set of potential arcs are built in the network and classical
network problems have to be solved with the overall goal of minimizing or maximizing
performance metrics over the entire transition period include: incremental network
design with shortest paths [Baxter et al.| (2014]) and incremental network design with
minimum spanning trees |[Engel et al. (2017). In these settings, the network opti-
mization problems solved in each period are all polynomially solvable. However, the
incremental network design version may be NP-complete (e.g., Baxter et al.| (2014))
and Nurre and Sharkey| (2014))). When a single arc is built in each period, the au-
thors in Engel et al.| (2017)) show that the incremental network design problem with
minimum spanning trees can be solved efficiently using a greedy heuristic.

3 Problem Statement

We start by illustrating the concepts of incremental network design problems mathe-
matically. Let = be a decision vector representing a service network design (e.g., the
location and type of facilities, the shipment flow paths, etc.). Let p - x represent the
profit of a design = and let Ax < b represent feasibility constraints (i.e., constraints
on the service network design). Finally, let 2° and 2T represent an initial and a target
network design, respectively, and let 7" be the number of transition periods (e.g., we
want transition from an initial design to a target design in T quarters, or if a target
network design has 7' additional hubs, we want to add the new hubs one by one).
Then, we are seeking intermediate network designs 2* such that
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Each step 2771 — 27 of the transformation process corresponds to a separate design
problem with constraints

Az < b
’mj - x];l’ < Aa

where the constraint |27 — 277! < A reflects that only limited adjustments to design
277! can be made. Importantly, the objective covers the entire transition period, i.e.,

mapr-xi

i=1

This captures the fact that we want to maximize the profit over the entire transition
period, which is not necessarily the same as maximizing the profit in each individual
transition period. By maximizing the increase in profit in a single period, we may put
ourselves in a position that makes it difficult to achieve additional profit in the next
period (because we are restricted in the changes we can make to the design in each
period). Additional constraints can be added to the model representing company
goals/policies, e.g., p-x/ > p- 2771 (profits are not allowed to decrease in any step).

Next, we provide a formal description of the incremental network design prob-
lem with multi-commodity flows. Let 2° be the initial design representing a multi-
commodity flow solution for a commodity set K to be served on a directed network
G° = (N, A) with node set N and arc set A. For each arc a € A, ¢, € R, represents
the cost of sending one unit of flow through the arc and u, € Z, is the (integer)
capacity of the arc. Furthermore, let 27 be the target design, representing a multi-
commodity flow solution for the same commodity set K on the directed network
GT = (N, A) with the same set of nodes and arcs as G°, but with a subset of arcs
A C A with expanded capacity u, + w,, where w, € Z, represents the additional
capacity of arc a € A. For each k € K, let o, € N denote the commodity’s origin, let
d, € N denote the commodity’s destination, and let ¢, € R, denote that quantity
that needs to be routed from the origin to the destination of the commodity £ along
a single path (i.e., we consider the unsplittable variant). We assume that ¢, < u, for
all k € K. Finally, let T = |A| be the length of the transition period.

We will seek for the optimal transition of the initial network design to the target
network design in T steps where, in each step, we expand the capacity of exactly
one arc in A and record the multi-commodity flow costs in the modified network.
The objective is to minimize the total multi-commodity flow costs over the transition
period:

Z* =min Y z(z") (1)

where z(x') denotes the multi-commodity flow cost in the intermediate design at
period t. Note that we do not consider the multi-commodity flow costs in the initial
and target network designs since these are sunk costs.



The problem can be formulated as an integer program. Let xfm be a binary
decision variable representing sending all units from a commodity & € K through the
arc a € A at a time period t (2, = 1) or not (2!, = 0). Let 3. be another binary
decision variable indicating that the arc a € A has its capacity increased by w, units
at time ¢ (y. = 1) or not (y. = 0). We formulate the incremental network design
problem with multi-commodity flows as the following integer program:

(INCMCF) min Z_: DD (ak-ca) -l

t=1 acA keK
1,
>ooab— Y ali=14-1, z—dk Vie NNke K,t=1,...,T -1
a€5+ l) a€d~ (Z O’ O.W.
(2)
qu~xz,k§ua, Vi=1,...,T—1,ac A\ A (3)
ke
qu~x27k§ua+y2-wa, Vi=1,....,T—1, ac A (4)
kek
<yt o Wi=1,....T—2 acA (5)
Zya:t, Vi=1,...,T—1 (6)
acA
zh,€{0,1}, Vt=1,....T—1, acA keK (7)
yt e {0,1}, Vt=1,....T—1,acA (8)

Constraints and are the typical integer multi-commodity flow constraints,
where the flow assignment decision variables are also indexed by time period. For
every arc a € A and time period t, Constraints ensure that the capacity of the arc
is increased by w, units if the arc is selected for expansion at or before time period t.
Constraints ensure that if the capacity of the arc a € A is selected for expansion
by time ¢ (y. = 1), then all decision variables y! for ¢t < £ < T — 1 will also be set
to one (i.e. yfl“ = 1,92 =1,...,y77t = 1). Constraints @ ensure that exactly
one arc a € A is selected for expansion at each time period. The objective function
aims to minimize the total transition costs from the initial network design to the
target network design, where the associated cost for each time period ¢ is given by
the solution of a integer multi-commodity flow problem. The integrality constraints
of the !, decision variables (constraint [7)) ensure unsplittable flows for commodities.

We denote this formulation by INCMCF'.

Proposition 1. Let z2(2°) and z(zT) be the multi-commodity flow costs of the initial
and target network designs, respectively, and let z* be the optimal transition costs from

the initial to the target network design (representing the T — 1 intermediate transition
periods). Then, (T —1)z(2T) < 2* < (T — 1)z(2°).



Proof. Given that z(z') is a monotonic non-increasing function with respect to the
multi-commodity flow costs in the intermediate designs along consecutive transition
periods (which follows from w, € Z, ), then the lowest and highest possible values
for z(z) are achieved in 7 and 29, respectively. Thus, both sides of the inequality
represent trivial lower and upper bounds for z*. O

4 Greedy Heuristics

4.1 By size of expansion

Expanding the capacity of arcs by size of expansion, from highest to lowest, is a nat-
ural greedy strategy (GREEDYSIZEEXP-HL). A large increment in capacity suggests
that more commodity paths can benefit from using the expanded capacity, which can
reduce the current flow costs, but also future flow costs (i.e., in subsequent transition
periods). We start by sorting the arcs in A by size of expansion, from highest to
lowest. For each transition period ¢, we expand the capacity of a single arc in the
network following the order in the sorted list and re-compute the multi-commodity
flow costs in the modified network. That is, we solve T' — 1 multi-commodity flow
problems, one for every transition period. The greedy heuristic is described in Algo-
rithm GREEDYSIZEEXP-HL break ties by selecting the arc with largest number
of commodity paths using the arc and, if that does not resolve a tie, by selecting an
arc at random (with equal probability).

Algorithm 1 GREEDYSIZEEXP-HL

input:/l - set of candidate arcs for expansion
output: ¢- upper bound on the total transition costs
c+0

. Sort A by size of expansion, from highest to lowest
. for each transition period t =1,...,7 — 1 do

i — {A}

Ug — Ug + Wy

T < SolveMCF(-)

¢+ c+z2(x)
end for
return c

© PN g Wy

Figure [lal shows an example of an instance representing the worst case scenario
for GREEDYSIZEEXP-HL. In the figure, the cost of each arc is shown in black, the
original capacity of each arc is shown in blue, and the size of the expansion for the
three arcs to be expanded is shown in red (i.e., for arcs AB, BC and CD). There
are three commodities with unit demand and origin-destination pairs: AD, BD, and
CD. The initial and target network designs are depicted in Figures [1b] and [1d, with
flow costs 3L + 7e and L + 3¢, respectively (the arcs with flow are shown in green).
Increasing the capacity of arcs by size of expansion, from highest to lowest (CD, then



BC, then AB), yields a total transition cost of (3L + 5¢) + (3L + 3¢) = 6L + 8. The
cheapest transition costs, however, is to expand the capacity of arcs from lowest to
highest size of expansion (AB, then BC, then CD), resulting in a total cumulative
flow cost of (L + 9¢) + (L + 6¢€) = 2L + 15¢ (we assume L > 3¢). This example can
be generalized to a family of worst case instances for larger values of T' (and larger
sets K) by adding new small rectangles of side € to the base of the outer rectangle
of size L as shown in in Figure 2 Let zgy be the total cumulative flow costs by
expanding arcs by size of expansion, from highest to lowest. We can express z(z°),
z(zT) and zgg in terms of T', L and e, as follows:

T-1
2(2") =3L+ ) (k+2)e (9)
k=1
T—
z(x) =L+ Z ke (10)
k=1
T-1k-1
zeup = (T 3L+Zke +) 0> 2 (11)
k=1 i=1

Proposition 2. In the worst case, GREEDYSIZEEXP-HL gets arbitrarily close to
(T —1)z(2).

Proof. Consider the family of instances shown in Figure[2l By Proposition |1} we have
that z* < zgur < (T — 1)2(2%). From (9) and we obtain:

T—-1 k-1
ZGHL—( 3L+Z/€E +ZZ2E
k=1 =1
T—1 T-1 T-1 k-1
= (T—1)- 3L+Zk+2 2) + > ) 2
=1 k=1 k=1 i=1
T-1 T-1 T-1k-1
=T-1)-BL+ ) (k+2)¢e)—(T'—1) ) 2+ 2¢
k=1 k=1 k=1 i=1
T-1 T-1k—-1
= (T=1)2(a") — (T - 1)) 2e+ e
N k=1 k=1 i=1 ,

Finally, when € goes to zero:
. T . 0y
ll_I%ZGHL = 11_{% (T —1)z(a") — e
= (T —1)2(2")
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Figure 1: Worst case example for GREEDYSIZEEXP-HL with three
origin-destination pairs with unit demand each (AD, BD and CD), showing the
initial and target network designs and the intermediate designs obtained using the
greedy heuristic and in the optimal solution.
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Figure 2: Family of worst case instances for GREEDYSIZEEXP-HL

Figure |3| shows an example of the worst case scenario for choosing arcs for expansion
in the opposite sorting direction, from lowest to highest size of expansion, which
we do in GREEDYSIZEEXP-LH. We consider again three different origin-destination
pairs, with unit demand each (AD, BD and CD). Using a proof similar to the one for
Proposition 2, we can show GREEDYSIZEEXP-LH also achieves a tight upper bound
on the transition costs zqrg of 2zgry < (T —1)z(2°) in the worst case when ¢ goes to
Z€ero.

4.2 By largest reduction in flow costs

As we have seen, a weakness of GREEDYSIZEEXP is that there can be periods in which
there is little or no reduction in the period flow costs. In order to overcome this weak-
ness, we next explore a second greedy heuristic that focuses on the immediate reduc-
tion in flow costs rather than the size of the capacity expansion (GREEDYCOSTRED).
The main idea is to identify, for each arc for which we can expand the capacity, a set
of commodities that are likely to benefit from being able to use the added capacity
and then choose the arc that yields the (potential) largest anticipated benefit.

More specifically, for each transition period t, let At be the subset of arcs that is
still available for expansion at period ¢, p;—1 be the path assigned to a commodity
k € K at period t — 1 and f,:—1 be the flow going through a at period t — 1.
Furthermore, let p; , be the shortest path connecting the origin to the destination of

commodity k£ that uses arc a. For each candidate arc a € At and commodity k € K,
we start by computing the difference between the cost of py. ;1 and the cost of py ,, i.e.,
That = [C(Phi—1) — (P} q)]+- Once the values 7y, are computed for all commodities,
we compute for each arc a the sum s,; = > ry o4, starting from the highest to lowest
values of 7y, until the extra capacity of w, units has been consumed (see Algorithm
. We then choose for expansion the arc a = arg max, 4 Sq,¢, which indicates that
augmenting the capacity of a potentially yields the largest immediate reduction in
flow costs. Finally, before moving on to the next transition period, we re-compute
the multi-commodity flow costs in the updated network. GREEDYCOSTRED break
ties by selecting arcs with the highest size of expansion first, then by largest number
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Figure 3: Worst case example for GREEDYSIZEEXP-LH with three
origin-destination pairs with unit demand each (AD, BD and CD), showing the
initial and target network designs and the intermediate designs obtained using the
greedy heuristic and in the optimal solution. Arcs used by commodity paths are
highlighted in green.
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of commodity paths using the arc, and finally by randomly selecting an arc. Shortest
paths are pre-computed using Floyd-Warshall’s algorithm in O(|N|?) at the beginning
of the algorithm and stored in a table for quick access.

Figures [] and [5] illustrate the first iteration of GREEDYCOSTRED on the worst
case instances for GREEDYSIZEEXP, showing that the algorithm makes the optimal
selection for the first arc to expand in both cases. Figure [0 however, shows an
example where GREEDYCOSTRED fails to find the optimal transition sequence. We
consider again three different origin-destination pairs, with unit demand each (K=3,
AH, BF and LM) and three candidate arcs for expansion (7'=3, AB, BG and LM).
The initial and target network designs are depicted in Figures [6b] and [6d, with flow
costs 3L + 10e and L + 4e, respectively. Increasing the capacity of arcs based on the
largest immediate reduction in flow costs (LM then BG) yields a total cumulative
flow cost of 6L 4+ 10e. The cheapest transition sequence, however, for L > 4e, is to
expand the capacity of arcs BG then AB, resulting in a total cumulative flow cost of
AL + 16e.

Proposition 3. In the worst case, GREEDYCOSTRED gets arbitrarily close to (T —
1)z(2).

Proof. If we generalize the instance presented in Figure [6] for an arbitrary number
of transition periods such that we only see a large reduction in the flow costs within
a multiple of L at the very last intermediate transition period, then, in each of the
intermediate periods, the flow cost will decrease in multiples of €. As € goes to zero,
the transition costs will heavily depend on L and we will see a marginal difference
between the flow costs in the intermediate designs and in the initial network design, i.e.
z(z') ~ z(2) forallt = 1,...,T—1. Therefore, in the worst case, GREEDYCOSTRED
will get arbitrarily close to (T — 1)z(z?). O

5 Exact method

Next, we propose a depth-first search algorithm with partial enumeration (DFSPE)
for finding the optimal transition sequence of arc capacity expansions.

The algorithm enumerates transition sequences, exploring partial sequences of ex-
pansions in a depth-first search manner with a pre-specified order, where we compute,
for each partial sequence: (1) the cost associated with the partial sequence, and (2)
upper and lower bounds on the remaining cost of the transition sequence, used to cur-
tail the enumeration of all possible transition sequences. The main difference between
DFSPE and a standard IP-based branch and bound algorithm for solving INCMCF
is that, in each iteration, DFSPE solves the unsplittable multi-commodity flow prob-
lem for a single transition period and decides which arc to expand next following a
pre-defined order, rather than branching on a single integer variable and re-solving the
model considering all transition periods at once. Furthermore, given that DFSPE
only considers a single intermediate design at a time, it consumes far less memory
than branch and bound algorithms used in commercial solvers. This is especially true
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Figure 4: First iteration of GREEDYCOSTRED on the worst case example for
GREEDYSIZEEXP-HL, showing that the algorithm chooses arc AB to expand first.
Commodities that benefit from the arcs in the sequence of expansions have their
original paths highlighted in blue and the shortest paths using the expanded arcs in
green. arcs belonging to both paths are kept in blue.
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3 |2L
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v ci(oco, dep) =5L
@ cicplocp,dep) = L
3 D repep = 4L

Figure 5: First iteration of GREEDYCOSTRED on the worst case example for
GREEDYSIZEEXP-LH, showing that the algorithm chooses arc CD to expand first.
Commodities that benefit from the arcs in the sequence of expansions have their
original paths highlighted in blue and the shortest paths using the expanded arcs in
green. arcs belonging to both paths are kept in blue.
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Figure 6: Bad example for GREEDYSIZECOSTRED with three origin-destination
pairs with unit demand each (AH, BF and LM) showing that the algorithm fails to
find the optimal transition sequence. Arcs used by commodity paths are highlighted
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Algorithm 2 GREEDYCOSTRED

input: A - set of candidate arcs for expansion
output: ¢ - upper bound on the total transition costs
1: ¢+ 0
2: Al — 121
3: for each transition period t=1,...,7 — 1 do

4:  for each arc a € A" do

5: for each commodity £ € K do
6: That < [C(Pri-1) — c(PFq)]+
7 end for

8: Sat < 0

9: Ug < Ug + Wq — fa,t—l

10: for each commodity k € K, sorted by ry 4, from highest to lowest, do
11: if u, — g > 0 then

12: Sat £ Sait + Tkat

13: Ug < Ug — qk

14: end if

15: end for

16:  end for

17: a4 argmax,. i Sa
18: Uy < Ug + Wy

19: T < SolveMCF(-)
20 ¢+« c+2(x)

21 A AP\ {a}

22: end for

23: return ¢

when commercial solvers keep copies of the model and of the fractional solutions at
every node in the branch and bound tree. In DFSPE, the multi-commodity flow
solution on an intermediate design resulting from specific subsets of A are computed
on-demand and stored in tables for quick look-up. We do so in order to avoid re-
computing the flow costs for intermediate designs resulting from the same subset of
expanded arcs (i.e. although the transition costs may differ, the multi-commodity
flow solution for an intermediate design resulting, for example, from the sequence of
expansions a, as and as is the same as the one resulting from the sequence as, ay, as.
That is, the multi-commodity flow solution is the same regardless of the order in
which the arcs were chosen for expansion). Hence, during the execution of the al-
gorithm, we only keep track of the flow costs on each intermediate design and use
compact and sparse data structures to store the flow information on each arc.

As in branch and bound methods, DFSPE consists of a systematic enumeration
of the candidate solutions for INCMCF'. The set of complete sequences of expansions
are encoded in the leaf nodes of a solution tree, where the cost associated to each
node at a depth D(7) from the root node in the tree represents the transition costs
from periods ¢t = 1,...,D(i) considering the partial sequence of arcs selected for
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expansion in that branch. Nodes at a depth d in the tree serve as root for up to
T — d new branches, where each branch represents a different selection for the next
arc to expand from the subset of 7' — d remaining candidate arcs. When processing
a node i at depth D(i), we start, if necessary, i.e., when there is no entry in the
table associated to that specific intermediate design, by computing the unsplittable
multi-commodity flow costs on the intermediate design.

Before creating new branches rooted in node i, we compute lower and upper
bounds on the transition costs for the remaining subsequent periods to decide if we
should continue the search down that branch or not. Let ub(:) and lb(i) be lower
and upper bounds on the costs for the t = D(i) + 1,...,7 — 1 remaining transition
periods, respectively. Also, let ¢(i) be the transition costs of the solution associated
to the partial sequence encoded in node ¢ and ub* be the best upper bound on the
optimal solution found so far. If ¢(i) + (b(i) > ub*, then we stop the search in the
current branch. If, on the other hand, ¢(i) + (b(i) < wb*, then the next step is to
return to P;, the parent node of node 7, select one of the remaining arcs to expand
following the pre-defined order and continue the search in a depth-first manner. In
order to do so, we choose the arc that potentially results in the largest immediate
reduction in the multi-commodity flow costs, using the same procedure described in
Section[4.2] The algorithm break ties by choosing the arc that yields the lowest upper
bound on the remaining transition costs.

Whenever there are no more branches to explore in a given node, the algorithm
then resumes the search from the parent node following the pre-specified order of
arcs considered for expansion. The pseudo-code for the recursive implementation of
DFSPE is shown in Algorithm [3] The heuristic procedures for obtaining upper and
lower bounds are described next.

5.1 Computing upper and lower bounds

The effectiveness of DFSPE depends on the efficient determination of lower and
upper bounds, both in terms of the quality and speed, which can lead to an exhaustive
search in the solution tree when no branches of the tree are pruned. The challenge
of obtaining fast high quality bounds is twofold: (1) choosing a good sequence of the
remaining candidate arcs to expand, and (2) obtaining a fast and good approximation
on the optimal solution for the unsplittable multi-commodity flow problem in the
intermediate designs along the remaining transition periods. Next, we present fast
heuristic approaches for obtaining such bounds.

5.1.1 Upper bounds

By assuming a specific remaining transition sequence of arcs selected for expansion,
and by heuristically solving the multi-commodity flow problem in each of the inter-
mediate designs, we obtain an upper bound on the cost of the remaining transition
periods.

For each of the remaining transition periods t = D(i)+1,...,T—1 in a node i, we
will use the same policy for deciding the next arc to expand next, i.e. by the potential
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Algorithm 3 Depth-first search algorithm with partial enumeration (DFSPE)
input: i- node index
AP - set of remaining candidate arcs for expansion
c(P;) - solution cost at the parent node
1: if |A?{ =1 then
if ¢(P;) < ub* then
ub* < c(P;)
end if
return
else
for each arc a € A’ sorted by potential immediate reduction in flow costs, from
highest to lowest do
Ug $— Ug + Wy
: z < SolveMCF(+)
10: c(i) < c(P;,) + =(x)
11: ub(i) < UB-H(2(z), A"\ {a})

'~

12 Ib(i) + LB-H(A"\ {a})

© *»

13: if c(i) + ub(i) < ub* then
14: ub* < c(i) + ub(7)

15: end if

16: if c(i) 4 1b(i) < ub* then
17: j < create child node
18: DFSPE(j, A\ {a}, ¢(i))
19: end if

20: Ug 4 Ug — Wy

21: end for
22: return
23: end if

largest immediate reduction in flow costs. Once an arc is selected for expansion, the
next step is to obtain an upper bound on the multi-commodity flow costs in the
resulting intermediate design.

For each commodity & € K and period ¢, let us consider again p; ;1 as the path
assigned to k at period ¢t — 1, py , as the shortest path connecting the origin to the
destination of k going through the arc a, and f,;_1 as the flow going through a at
period t — 1, where the arc a represents the arc selected for expansion at period t.
Let us also consider p; as the shortest path connecting the origin to the destination
of k. The heuristic is divided in two parts: Phase 1 and Phase 2. In Phase 1, we
first compute 744+ = [c(Pri—1) — c(ga,’;a)]Jr for all commodities k € K. We then start
pushing commodities through pj, ,, starting from the highest to lowest values of 7 4.,
whenever possible, until the expanded arc becomes saturated. When doing so, we
always update the residual capacities of the arcs throughout the network. That is, a
flow of size gy, is removed from all arcs in pg; 1 and added to all arcs in pj .

Let K be the subset of K that contains the commodities that, either: (1) could
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not fit in one or more arcs in p,, or (2) satisfy c(pri—1) < c(p,). Note that
when we successfully push commodities in cheaper paths using arc a in Phase 1,
new and cheaper paths may become available for the commodities in K. Therefore,
in Phase 2, for each commodity k € K sorted by the highest to lowest values of
Thiw = [c(Pri—1) — c(pi)]+, we try to push the commodity in the shortest path pj,
connecting the origin to the destination of k where we only consider arcs with enough
residual capacity left to accommodate k at period ¢, always updating the residual
capacities of the arcs throughout the network and recording the difference 74, =
eprit) — e

Let s, and s;, be, respectively, the sum of the values of 7, ;, and rj, only consid-
ering the commodities that were successfully pushed in the cheaper paths in Phase
1 and Phase 2. Therefore, an upper bound on the optimal solution cost for the
multi-commodity flow problem on the intermediate design at period ¢ is given by:

Z2(z) = 2(2"7Y) — s0s — 8¢

We repeat Phase 1 and Phase 2 until all transition periods have been processed,
where, at the beginning of each period, a single arc a € A is selected for expansion.
The upper bound on the remaining transition costs at a node ¢ is then defined as:

-1
ub(i) = Y z(a")
t=D(i)

The step-by-step of this procedure is outlined in Algorithm [} Although the shortest
paths p; , and pj, can be pre-computed, in the worst case one additional shortest path
is computed for every commodity k and period t using Bellman-Ford’s algorithm in
O(|N|-|A|) steps. Therefore, the algorithm runs in O(T'-|K|-|N|-|A|) steps. Observe
that UB-H is also a greedy heuristic; arcs are selected for expansion based on a greedy
policy and commodities are pushed in new paths starting from the ones that could
benefit the most from being re-routed in the network. The algorithm assures that
the solution obtained for the multi-commodity flow problem in each transition period
is feasible, given that the commodity paths either remain the same or are replaced
by cheaper paths, always respecting the arc capacity constraints. In the worst case,
when both the sequence of expansions and the order of commodities processed in each
period are poorly chosen, then the total transition costs will get arbitrarily close to
the worst case bound of (T — 1)z(z?).

5.1.2 Lower bounds

We obtain a lower bound, by (1) assuming a best-case scenario, i.e., in each of the
remaining transition periods the multi-commodity flow cost of the target design is
achieved, and (2) computing the linear relaxation of INCMCF only considering the
remaining transition periods.

In the linear relaxation of INCMCEF, we relax the integrality constraints of the
decision variables x ; and y/ and only consider the T'— D(i) — 2 remaining transition
periods. The initial network design is set to be the current network design associated
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Algorithm 4 Upper bound heuristic (UB-H)

input: ¢ - flow costs on the current intermediate design

A - set of remaining candidate arcs for expansion

output: ub - upper bound on the transition costs

1: ub+ 0
2: Z2 4 C
3t 1
4: while |[A| > 1 do
5:  a < choose arc for expansion based on the largest immediate flow cost reduction
6: A« A\ {a}
7 Ug $— Ug + Wq
8:  for each commodity k£ € K do # Phase 1
9: That < [(Pri-1) — Pk )]+
10: Thotr < [C(Pri—1) — c(Pp)]+
11:  end for
122 K<+ {}
13: Sat 0
14:  for each commodity k£ € K, sorted by 74 4, from highest to lowest, do
15: if k fits in all arcs of py , then
16: push & in pj , and update residual capacities of the arcs in py,
17: Sat < Sat + Tk,a,t
18: else
19: K + K U{k}
20: end if
21:  end for
22: 5+ 0
23:  for each commodity k € K, sorted by ;. from highest to lowest do #
Phase 2
24: if k fits in all arcs of p; , then
25: Tt <= [c(Pri—1) — c(Pro)]+
26: push £ in pj , and update residual capacities of the arcs in py ;1
27: St ¢ S+ Tkt
28: end if
29: end for
30: 24— 2 — Sat — St
31 ub<—ub+z
32: t+—t+1

33: end while
34: return ub

20



to the node i and the set of candidate arcs of expansion is limited to the arcs not yet
selected for expansion by period ¢t = D(i). That is, we solve smaller linear programs
adjusting the variables and constraints accordingly.

Let z(2PO+LT=1)LP he the optimal solution cost of the linear relaxation of IN-
CMCF for the remaining transition periods, starting from the current intermediate
design 2”@ . From Proposition , we saw that a valid lower bound on the transition
costs for the (T — 1) transition periods is (T — 1) - z(z7). Therefore, given that the
integrality gap of the linear relaxation of INCMCF may be large, we set the lower
bound [b(7) as:

1b(7) = max{z(x!POFLI=INEL (7 _ D) = 2) - z(2T)}

that is, we take the maximum between the lower bound obtained by solving the linear
relaxation of INCMCEF and the transition costs assuming the best case scenario where
we obtain the cheapest possible flow costs in all subsequent periods.

6 Computational Study

6.1 Instances

The proposed algorithms were used to solve a set of randomly generated instances
representing different initial and target network designs.

For a given number of nodes n = |N|, we start by randomly sampling the z and
y coordinates of the nodes in N on a grid of size 4n x 4n. Arcs between nodes are
only created if the euclidean distance between nodes is within a given threshold of
the largest euclidean distance between any pair of nodes. The capacity of an arc
is chosen uniform randomly from [Q,2Q]. The number of commodities is chosen
uniform randomly from ["(”T_l), n(n — 1)]. The origin and the destination nodes of
each commodity k& are chosen randomly and the quantity ¢, associated with the
commodity is chosen uniform randomly from [1, Q)].

For each instance, we obtain the target network design by solving the integer pro-
gramming model below, where z, and y, are integer decision variables representing,
respectively, sending commodity k through arc a (z,; = 1) or not (x,, = 0) and the
size of the capacity expansion of arc a:

(TND) minz Ca " Ya

acA
1, 1= Ok
st Y Tap— > Tax=4-li=d VieNkeK (12)
a€dt (i) a€d—(7) 0, o.w

qu ok < Uy + Yo, YVa €A (13)
kek
Z Z(qk Ca)  Tag < O 2(2%) (14)
a€A keK
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Yo <20 w,, Vae A (15)

Zza <n (16)

acA

Tor €{0,1},Vac A ke K (17)
Yo €Z. ,VacA (18)
2, €{0,1},Vae A (19)

The per-unit cost of using an arc, c,, is set to be a fraction of its length (the euclidean
distance between its tail and its head) and the per-unit cost of expanding the capacity
of an arc, ¢,, is set to pc, with p > 1. Constraints and are the typical multi-
commodity flow constraints, where now the capacity of each arc a can be expanded
by y, units. Constraint restricts that the multi-commodity flow costs in the
target design resulting from the arc capacity expansions must be at most a fraction
a € (0,1) from the flow costs in the initial network design. Finally, constraints
limit the maximum increase in capacity for each arc to 2() units and constraint
limits the number of arcs that can have increased capacities.

Table [1| summarizes the characteristics of the thirteen instances generated. We re-
port: the number of nodes (|IN|]), the number of arcs (| A|), the number of expanded
arcs in the target design (|A|), the number of commodities (|K|), the average di-
rect distance between connected nodes (Avgp), the longest direct distance between
connected nodes (Lp), the cost of the initial design (z(z?)), the cost of the target
design (z(2T)) and the time it takes to solve the unsplittable multi-commodity flow
problem to obtain the initial design, in seconds (T'T}(z0)).

Table 1: Instances generated for the incremental network design problem with
multi-commodity flows

Instance | |[N| | [A] | |A| | |K| | Avgp | Lp | z(z°) | 2(zT) | TTio)

S1 8 57 | 6 44 5.93 | 10.05 68.17 61.35 0.07
52 10 | 65 9 ol 8.09 | 13.00 || 165.80 155.64 0.14
S3 12 | 125 | 6 79 | 11.12 | 19.31 | 290.21 261.13 0.38
S4 12 1 99 | 17 | 124 | 1045 | 17.26 || 468.35 448.38 0.72
M1 16 | 219 | 10 | 183 | 12.61 | 23.02 | 769.11 692.19 3.12
M2 16 | 223 | 22 | 227 | 15.77 | 28.32 || 1,027.26 | 924.47 4.12
M3 16 | 233 | 18 | 203 | 17.02 | 28.32 || 930.68 837.25 5.75
M4 16 229 | 22 | 216 | 18.38 | 32.02 | 1,271.06 | 1,143.96 5.14
L1 16 | 183 | 35 | 208 | 12.48 | 20.62 || 999.05 948.97 8.37
L2 16 | 209 | 35 | 229 | 15.26 | 29.21 || 1,201.41 | 1,087.00 2.97
L3 20 | 341 | 17 | 370 | 14.92 | 27.78 || 1,736.65 | 1,566.17 | 109.41
L4 20 | 283 | 55 | 321 | 16.82 | 28.46 | 2,133.74 | 2,035.60 | 179.27
L5 32 | 893 | 58 | 384 | 33.21 | 57.69 || 7,507.12 | 7,132.49 | 120.42
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6.2 Analysis

The goal of our computational study is twofold. First, we want to compare the perfor-
mance of the proposed greedy heuristics, namely GREEDYS1ZEEXP-HL, GREEDYSIZEEXP-
LH, and GREEDYCOSTRED. Second, we want to compare the performance of DF-
SPE and solving the integer programming formulation using a commercial solver.
The algorithms were coded in C++ and use IBM CPLEX Optimizer 12.7 to solve
integer programs. All experiments were conducted in a single thread of a dedicated
Intel Xeon ES-2630 2.3GHz with 250GB RAM, running Red Hat Enterprise Linux
Server 7.6.

Table [2| reports the following statistics for the solutions produced by the greedy
heuristics: the cost of the first intermediate design (z(x')), the cost of the last inter-
mediate design (z(xzT~1), the average cost per period (z(x)), the average running
time per period (TT), and the total running time of the algorithm (T'T). We ob-
serve that GREEDYSIZEEXP-HL outperforms GREEDYSIZEEXP-LH for all instances,
which confirms our intuition that selecting arcs for expansion based on size of expan-
sion, from highest to lowest, produces better solutions than selecting arcs in the
opposite order. However, we observe too that choosing arcs for expansion based on
the potential immediate flow cost reduction, as in GREEDYCOSTRED, results in even
better solutions (with the best performance in ten out of the thirteen instances). We
note that the flow costs in the first intermediate designs in the best solutions found are
all equal or lower than the ones in the solutions with higher cost. It is also interesting
to observe how the sequence of arc capacity expansions affects the running time of the
algorithms. In instances M4, 1.3 and L4, for example, the time required for evaluating
the complete sequence of expansions determined by GREEDYSIZEEXP-LH takes, on
average, 2.65 times longer than evaluating the sequence of expansions determined by
GREEDYCOSTRED. This is due to differences in the unsplittable multi-commodity
flow problems that need to be solved for different sequences of expansions.

Next, we assess the performance of the exact methods. In Table [3 we report
following statistics for the solutions produced by CPLEX: the average cost per pe-

riod of the solution to the linear relaxation of INCMCF (z(w)LP), the integrality
gap (i.e., 2@)°FT —2(2)"" [;(z)LP), as a percentage (Grnt(%)), the number of nodes ex-
plored in the search tree (# N odes), the number of integer solutions found (#Sols),

—1
the average cost per period of the first integer solution found (z(x) ), the average
cost per period over all integer solutions found (Awvg z(x)), the average cost per

period of the best integer solution found (MB), the optimality gap between the
best bound z(x)B? and the best integer solution found as reported by CPLEX (i.e.,
2(@)P = 2(2)PP [)BF), as a percentage (Gopr(%)), and the total time of the algorithm
(T'T), where we set a time limit of 24 hours (86,400 seconds).

We observe that CPLEX was not able to find the optimal solutions for four out
of the five large instances (L1, L2, L4 and L5) within the time limit of 24 hours. In
fact, no integer feasible solutions were found for three out of these four instances (L1,
L2 and L4), and a single integer solution was found for instance L5. We also observe
that the integrality gaps (when available) are generally small, 2.70%, on average.
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Table 2: Computational results for the greedy heuristics. The best solutions are
highlighted in bold.

Instance H Algorithm z(x1) ‘ z(xT-1) ‘ z(x) ‘ TT ‘ TT
GREEDYSIZEEXP-LH 68.17 64.22 66.67 0.05 0.25

S1 GREEDYSIZEEXP-HL 66.68 61.55 64.21 0.05 0.26
GREEDYCOSTRED 66.68 61.55 63.34 0.05 0.27
GREEDYSIZEEXP-LH 165.55 158.47 162.03 0.07 0.57

S2 GREEDYSIZEEXP-HL 161.35 155.89 158.87 0.07 0.52

GREEDYCOSTRED 161.35 155.89 158.87 0.07 0.54
GREEDYSIZEEXP-LH | 284.23 271.85 279.43 0.22 1.09
S3 GREEDYSIZEEXP-HL | 278.51 265.01 272.27 0.20 0.99

GREEDYCOSTRED 278.51 265.01 272.27 0.21 1.05
GREEDYSIZEEXP-LH | 468.35 451.72 462.50 0.39 6.55
S4 GREEDYSIZEEXP-HL | 466.21 448.98 455.84 0.52 8.77

GREEDYCOSTRED 466.21 448.98 455.63 0.47 8.03
GREEDYSIZEEXP-LH | 766.21 708.40 742.43 2.03 18.31
M1 GREEDYSIZEEXP-HL | 751.23 695.02 717.33 1.55 13.94

GREEDYCOSTRED 751.23 695.02 717.23 1.90 17.08
GREEDYSIZEEXP-LH | 1,027.26 937.63 986.35 3.26 68.41
M2 GREEDYSIZEEXP-HL | 1,015.37 924.90 967.88 3.47 72.77

GREEDYCOSTRED 1,022.84 926.61 976.00 3.65 76.71
GREEDYSIZEEXP-LH | 930.67 856.61 906.55 2.83 48.04
M3 GREEDYSIZEEXP-HL | 913.53 839.27 868.24 2.30 39.09

GREEDYCOSTRED 913.53 841.25 865.98 1.82 30.99
GREEDYSIZEEXP-LH | 1,271.06 | 1,189.10 1,250.69 3.81 80.11
M4 GREEDYSIZEEXP-HL | 1,227.00 | 1,144.54 | 1,161.17 | 1.70 35.6

GREEDYCOSTRED 1,227.00 | 1,144.54 1,165.11 1.95 40.97
GREEDYSIZEEXP-LH | 999.06 956.26 983.75 3.88 131.81
L1 GREEDYSIZEEXP-HL | 993.91 949.52 964.46 3.19 108.46

GREEDYCOSTRED 993.91 950.90 963.11 3.17 107.69
GREEDYSIZEEXP-LH | 1,200.64 | 1,090.16 1,156.62 2.28 77.5
L2 GREEDYSIZEEXP-HL | 1,196.83 | 1,088.05 1,119.25 2.32 78.83

GREEDYCOSTRED 1,192.39 | 1,096.41 | 1,115.92 | 2.06 70.01
GREEDYSIZEEXP-LH | 1,731.99 | 1,597.81 1,685.09 | 18.65 | 298.45
L3 GREEDYSIZEEXP-HL | 1,696.38 | 1,571.54 1,604.68 7.82 125.16

GREEDYCOSTRED 1,696.38 | 1,567.74 | 1,601.57 | 7.07 113.08
GREEDYSIZEEXP-LH | 2,133.74 | 2,037.12 | 2,101.08 | 39.50 | 2,133.10
L4 GREEDYSIZEEXP-HL | 2,129.30 | 2,036.63 | 2,065.49 | 22.36 | 1,207.39

GREEDYCOSTRED 2,126.44 | 2,036.27 | 2,059.09 | 11.47 | 619.22
GREEDYSIZEEXP-LH | 7,507.12 | 7,188.57 | 7,417.02 | 16.94 | 965.37
L5 GREEDYSIZEEXP-HL | 7,455.29 | 7,143.49 | 7,225.52 | 9.70 552.88
GREEDYCOSTRED 7,455.29 | 7,143.49 7,232.27 | 10.68 | 608.88
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Table 3: Computational results when solving the integer programming formulation
using CPLEX.

Instance H z(a:)LP ‘ GinT (%) ‘ # Nodes #Sols ‘ z(:z:)1 ‘ Avg z(=z) ‘ z(:z:)B ‘ Goprt (%) ‘ TT
S1 61.92 2.29 3 1 63.34 63.34 63.34 0.00 0.46
S2 156.57 0.90 3 1 157.98 157.98 157.98 0.00 0.86
S3 250.58 7.50 1 1 269.39 269.39 269.39 0.00 0.94
S4 423.09 0.95 230 5 427.26 427.18 427.13 0.00 63.8
M1 690.84 3.48 1,412 8 718.91 716.73 715.78 0.00 179.53
M2 923.49 2.96 322,791 18 952.13 951.87 951.74 0.00 82,017.62
M3 835.26 3.21 4,282 7 880.20 867.09 862.11 0.00 979.96
M4 1,143.98 1.35 857 4 1,161.28 1,160.32 1,159.43 0.00 245.17
L1 952.02 - 113,963 0 - - - - 86,400.00
L2 959.39 - 168,321 0 - - - - 86,400.00
L3 1,566.01 2.13 31,678 9 1,599.96 1,599.63 1,599.50 0.00 13,616.60
L4 2,054.56 - 17,162 0 - - - - 86,400.00
L5 7,151.46 - 51,719 1 7,316.06 7,316.06 7,316.06 1.77 86,400.00

For the instances where more than one integer solution was found, we see that the
difference between the cost of the first solution found and the cost of the last solution
found is very small, 0.4% on average, which is true in part because of the small
integrality gaps. We also observe that the relationship between the running times
and the size of the instances in terms of the number expanded arcs is not that clear.
For example, instance M2 has roughly the same number of nodes, arcs, expanded arcs
and commodities as instance M4, but CPLEX takes roughly 334 x longer to find its
optimal solution than for M4. Instance L3, on the other hand, is larger than M2 in
all aspects, but CPLEX finds its optimal solution roughly 6 times faster.

The results for DFSPE are summarized in Table [l We report: the percent-
age of nodes (partial sequences) explored, out of the 24l — 2 nodes in the tree
(#PS (%)), the number of complete sequences explored, i.e., the number of solu-
tions found (#Sols), the percentage of time spent solving LPs (TTrp(%)), the
percentage of time spent computing upper bounds (TTy (%)), the percentage of
time spent solving IPs (T'Trp(%)), the average cost per period of the first complete

—1
sequence explored (z(x) ), the average cost per period over all complete sequences

explored (Avg z(x)), the average cost per period of the best solution found (%B),
and the total running time of the algorithm (T'T'), where we again set a time limit of
24 hours (86,400 seconds).

The first thing to notice is that the algorithm takes considerably more time for
finding the optimal solutions for the small and medium size instances than CPLEX.
Recall that DFSPE explores partial sequences of expansions, where, in each itera-
tion, the algorithm selects a single arc for expansion based on a pre-defined order and
computes the unsplittable multi-commodity flow problem in the current intermediate
design, as well as lower and upper bounds on the remaining transition costs. There-
fore, the first complete sequence of expansions is only explored after solving 7" — 1
integer and linear programs, which directly affects the running times especially for
the small instances. Looking at the total percentage of partial sequences explored for
the instances where an optimal solution was found in under 24 hours, we see that the
lower and upper bounds computed at each node manage to eliminate big portions of
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Table 4: Computational results for DESPE.

Instance H #PS(%) ‘ #Sols ‘ TTr (%) ‘ TTy g (%) ‘ TTrp (%) ‘ z(z)1 ‘ Avg z(=z) ‘ z(m)B ‘ TT
S1 72.59 1 13.61 1.48 84.91 63.34 63.34 63.34 1.34
S2 36.67 93 25.59 1.78 72.63 158.58 158.14 157.98 16.59
S3 80.64 29 16.71 1.26 82.04 272.27 270.61 269.39 11.3
S4 28.21 1219 40.37 0.77 58.86 428.84 427.53 427.13 817.6
M1 71.03 179 25.10 2.92 71.98 717.23 716.11 715.78 1,309.14
M2 0.97 6,663 39.12 5.54 55.34 974.85 968.10 951.74 86,400.00
M3 5.00 5,973 37.67 8.96 53.37 865.98 864.03 862.11 86,400.00
M4 0.67 1,265 46.99 8.29 44.72 1,165.08 1,162.21 1,160.82 86,400.00
L1 <0.01 3,277 38.05 5.60 56.34 962.86 962.36 962.20 86,400.00
L2 <0.01 1,671 59.39 2.63 37.97 1,115.27 1,110.96 1,110.16 86,400.00
L3 6.77 91 39.08 1.26 59.66 1,601.58 1,600.38 1,599.50 86,400.00
L4 <0.01 717 64.23 2.21 33.56 2,059.09 2,058.87 2,058.70 86,400.00
L5 <0.01 591 56.04 7.39 36.58 7,231.98 7,230.75 7,223.08 86,400.00

the solution tree. For instances S2 and S4, for example, around 63% and 72% of the
nodes in the solution tree were pruned, respectively. We also observe that the algo-
rithm takes a considerable amount of time solving linear programs when computing
lower bounds (38% on average, with up to 64.23% for instance L4). On the other
hand, the percentage of time spent computing upper bounds is small (less than 10%).
Even though the algorithm finds a large number of feasible solutions (especially for
the large instances), we observe that, for all instances, the gaps between the costs of
the first solutions found and of the average solutions are small (0.23%, on average).
This suggests that there are likely many solutions (unsplittable flows) that either have
the same cost or have only a small cost difference.

Next, we analyse the quality of the upper and lower bounds computed by DFSPE
during the exploration of the partial sequences that lead to the optimal solution z*
for instance M1, which is representative of what happens for the other instances. We
report: the number of remaining arcs for expansion at period ¢ (| A?|), the cost of
the unsplittable multi-commodity flow solution at period ¢ (2*(x*)), the average cost
per period of the remaining transition periods (z*(xlt+1T—1)) the upper bound on
the average cost per period in the remaining transition periods (U Bpy1,7—1]), the
gap, in percentage, between the upper bound and the true costs for the remaining
transition periods (Gupy,,,r_,;(%)), the lower bound on the average cost per pe-

riod in the remaining transition periods (LBj41,7—1]), and the gap, in percentage,
between the lower bound and the true costs for the remaining transition periods
(GLBjy1.r1)(%0)). The results are shown in Table . We note that the gaps between
both the upper and lower bounds and the optimal solution found (z* = 6,442.00)
are relatively small throughout the exploration of the partial sequences (0.42%, on
average). In particular, when half of the complete sequence was explored, the values
of GuBy,r_,y (%) are all less or equal than 0.05%. The gaps for the lower bounds
are, in most part, higher, but still relatively small (1.60%, on average).

Finally, in Table [6, we summarize and compare the performances of the best
variant of the greedy heuristics (GREEDYCOSTRED), the branch and bound algorithm
used in CPLEX (B&B) and DFSPE, where we also report the gap, in percentage,
between the best solutions found by the algorithms and the best known solution found
amongst all methods (Gprs(%)). The optimal solution for each instance is marked
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Table 5: Upper and lower bounds for instance M1.

t | A || 2*(z?)

z* (xlt+1,T-11) ‘ UBjiy1,7-1 ‘ GuBy 1, r_1 (%) ‘ LBsy1,7—1] ‘ GLB 1,71 (%)

0 10 769.11 715.78 723.49 1.06 690.84 3.48
1 9 751.23 711.35 719.86 1.18 692.18 2.69
2 8 738.10 707.52 717.46 1.38 692.18 2.17
3 7 725.62 704.51 710.78 0.88 692.18 1.75
4 6 717.76 701.86 702.08 0.03 692.18 1.38
5 5 710.58 699.68 699.95 0.04 692.18 1.07
6 4 704.75 697.99 698.35 0.05 692.18 0.83
7 3 701.04 696.46 696.59 0.02 692.19 0.61
8 2 697.90 695.02 695.02 0.00 692.19 0.40
9 1 695.02 - - - - -

with an asterisk.

Although the costs of the first solutions found by DFSPE are, in some cases,
more expensive than the first solutions found by CPLEX, we note that, for the larger
instances, DFSPE finds better solutions overall than both CPLEX and GREEDY-
CoSTRED. Recall that in DFSPE, arcs are selected for expansion based on a
pre-defined order following the same policy used in GREEDYCOSTRED (i.e. by the
potential largest immediate reduction in flow costs). This explains why many of
the first solutions found by DFSPE are the same as the ones found by GREEDY-
CosTRED. However, the policies for breaking ties in these methods are different;
GREEDYCOSTRED break ties by selecting arcs with the highest size of expansion
first, then by largest number of commodity paths using the arc and finally by ran-
domly selecting an arc. DFSPE, on the other hand, break ties by selecting the arc
that yields the lowest upper bound on the remaining transition costs. Therefore, we
see that some of the first solutions found by DFSPE are better than the ones found
by GREEDYCOSTRED. The results also show that the best variant of the greedy
heuristics was only able to find the optimal solution for L1, which is the smallest in-
stance in the set. The average gap between the solutions found by GREEDYCOSTRED
and the optimal solutions found for the small and medium size instances is of only
0.6%, which is relatively small. Overall, DFPSE outperformed both CPLEX in all
but one of the larger instances, both in the quality of the best solutions found and in
the number of feasible solutions found.

7 Final Remarks

We have introduced a new incremental network design problem motivated by the
expansion of hub capacities in package express service networks, where the cost of
each period is given by the solution to an unsplittable multi-commodity flow problem.
This is the first time in the literature where the period problem in an incremental
network design problem is NP-hard. We proposed an integer programming formula-
tion for its solution, as well as a set of greedy heuristics and an exact method that
explores partial sequences of arc capacity expansions in a depth-first manner. We
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Table 6: Computational results for the various algorithms. The best first and
overall solutions found are highlighted in bold.

Instance H Algorithm ‘ #Sols ‘ z(:c)l ‘ Avg z(x) ‘ z(w)B ‘ Gers(%) ‘ T
GREEDYCOSTRED - 63.34* - 63.34* 0.00 0.25
S1 B&B 1 63.34* 63.34 63.34* 0.00 0.46
DFSPE 1 63.34™ 63.34 63.34* 0.00 1.34
GREEDYCOSTRED - 158.87 - 158.87 0.56 0.54
S2 B&B 1 157.98* 157.98 157.98* 0.00 0.86
DFSPE 93 158.58 158.14 157.98* 0.00 16.59
GREEDYCOSTRED - 272.27 - 272.27 1.06 1.05
S3 B&B 1 269.39* 269.39 269.39* 0.00 0.94
DFSPE 29 272.27 270.61 269.39* 0.00 11.30
GREEDYCOSTRED - 428.84 - 428.84 0.40 8.03
S4 B&B 5 427.26 427.18 427.13* 0.00 63.80
DFSPE 1219 428.84 427.53 427.13* 0.00 817.60
GREEDYCOSTRED - 717.23 - 717.23 0.20 17.08
M1 B&B 8 718.91 716.73 715.78* 0.00 179.53
DFSPE 179 717.23 716.11 715.78* 0.00 1,309.14
GREEDYCOSTRED - 976.00 - 976.00 2.47 76.71
M2 B&B 18.00 952.13 951.87 951.74* 0.00 82,017.62
DFSPE 6,663 974.85 968.10 951.74* 0.00 86,400.00
GREEDYCOSTRED - 865.98 - 865.98 0.45 30.99
M3 B&B 7 880.20 867.09 862.11* 0.00 979.96
DFSPE 5973 865.98 864.03 862.11* 0.00 86,400.00
GREEDYCOSTRED - 1,165.11 - 1,165.11 0.37 40.97
M4 B&B 4 1,161.28 1,160.32 1,159.43* 0.00 245.17
DFSPE 1,265 1,165.08 1,162.21 1,160.82 0.12 86,400.00
GREEDYCOSTRED - 963.11 - 963.11 0.10 107.69
L1 B&B 0 - - - - 86,400.00
DFSPE 3277 962.86 962.36 962.20 0.00 86,400.00
GREEDYCOSTRED - 1,115.92 - 1,115.92 0.52 70.01
L2 B&B 0 - - - - 86,400.00
DFSPE 1,671 1,115.27 1,110.96 1,110.16 0.00 86,400.00
GREEDYCOSTRED - 1,601.57 - 1,601.57 0.13 113.08
L3 B&B 9 1,599.96 1,599.63 1,599.50* 0.00 13,616.6
DFSPE 91 1,601.57 1,600.38 1,599.50* 0.00 86,400.00
GREEDYCOSTRED - 2,059.09 - 2,059.09 0.02 619.22
L4 B&B 0 - - - - 86,400.00
DFSPE 717 2,059.09 2,058.87 2,058.70 0.00 86,400.00
GREEDYCOSTRED - 7,232.27 - 7,232.27 0.13 608.88
L5 B&B 1 7,316.06 7,316.06 7,316.06 1.27 86,400.00
DFSPE 591 7,231.98 7,230.75 7,223.08 0.00 86,400.00
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provide worst-case analyses for the proposed greedy heuristics and compared the ef-
ficiency of the algorithms on a set of artificial instances against traditional branch
and bound methods used in commercial solvers. The results showed that the partial
enumeration heuristic outperforms commercial solvers for large instances, where no
feasible solutions could be found by the branch and bound algorithm under a time
limit of 24 hours.

A variant of the incremental network design problem with multi-commodity flows,
in which it is possible to temporarily expand the capacity of arcs, i.e., expand the
capacity of arcs that are not are not expanded in the target design for part of the
transition period, will be tackled in a future research. We show that using temporary
arc expansions, even if it means reaching the target design in more periods (i.e.,
lengthening the transition period), can result in lower transition costs.

More practical aspects and constraints need to be incorporated in the model pre-
sented in this chapter to be able to develop effective real-world decision support for
package express carriers. A more thorough investigation of temporary capacity expan-
sions may also be needed and beneficial before developing practical decision support
tools to better understand the trade-offs between operating profits and the timing
and size of investments in additional capacity.
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