
Recognizing Integrality of Weighted
Rectangles Partitions
Paul Deuker∗ Ulf Friedrich†

November 25, 2024

Given a grid of active and inactive pixels, the weighted rectangles parti-
tioning (WRP) problem is to find a maximum-weight partition of the active
pixels into rectangles. WRP is formulated as an integer programming problem
and instances with an integral relaxation polyhedron are characterized by
a balanced problem matrix. A complete characterization of these balanced
instances is proved. In addition, computational results on balancedness
recognition and on solving WRP are presented.

Keywords Partition Problem, Rectangles, Integer Programming, Balanced
Matrix

Mathematics Subject Classification (2020) 90C10, 90C05, 05C50

1 Problem Description
We begin by formally defining the two-dimensional Weighted Rectangles Partitioning
problem. For p, q ∈ N we consider a rectangular problem field Rp,q which is sub-divided
into p× q pixels. Each pixel of the problem field is either active or inactive as illustrated
in Figure 1 with p = 5 and q = 7. We say that a set of pixels is active if all contained
pixels are active, e.g., in the upper row of the problem field in Figure 1 there are active
sets consisting of 1× 2 active pixels and 1× 3 active pixels. An active set that consist of
k ≤ p and l ≤ q consecutive pixels is called an active rectangle. A problem field Rp,q is
fully defined by a matrix Q ∈ {0, 1}p×q, where each active pixel is represented by a one
and each inactive pixel is represented by a zero.

∗Tilburg University, Department of Econometrics and Operations Research,
P.Deuker@tilburguniversity.edu

†Otto von Guericke University Magdeburg, Faculty of Mathematics, ulf.friedrich@ovgu.de

1

Figure 1: Two di�erent rectangle partitions of a 5◊7 problem field. Active pixels
are displayed in gray in the upper picture, two sample partitions are displayed
in black and gray below.

a weight w(s) œ R. We consider a generic weight function. Depending on the
weights, it can be beneficial to split or merge rectangles to obtain a higher total
weight. For example, splitting a 2 ◊ 2 rectangle with a weight of 10 into two
2 ◊ 1 rectangles with a weight of 6 will result in a higher total weight.

Definition 1. Given a problem field Rp,q and a weight function w : Sp,q æ R,
the WRP problem is the task to partition all active pixels into disjoint rectangles
in Sp,q such that the sum of the weights of the used rectangles is maximal.

In Definition 1, partition means that all active pixels have to be covered
by rectangles without covering any inactive pixels and disjoint means that no
two rectangles share the same pixel. The problem is always feasible as a trivial
solution uses one 1 ◊ 1 rectangle for each active pixel. Two non-trivial solutions
for the above example setting are given in Figure 1. Both solutions consist of
eight disjoint rectangles, but can have a di�erent overall value depending on the
weight function.

1.1 Related Problems and Applications
The WRP problem is similar to several two-dimensional problems of the packing
or partitioning type. In what follows we relate WRP to problems already
discussed in the optimization literature. We refer the reader to the survey article
[15] for an in-depth comparison of the several variants and to the library of
instances and computational benchmarks in [11].

In general, WRP can be identified as a set partitioning problem [7]. Given
the set of all possible rectangles, the task is to find a partition that meets the
problem’s preconditions – in our case defined by the active pixels. If a brief,
informal description of WRP is sought, we can relate WRP to a two-dimensional
cutting stock problem [9, 12] with holes. In both problems, a collection of
rectangles is sought that yields the highest possible profit or the lowest possible
cost. The main di�erence is that in the cutting stock typically not all rectangle
types may be used, whereas in WRP the field has spaces not to be occupied.

Another optimization problem with many similarities to WRP is the two-
dimensional knapsack problem, see [16]. In both problems, rectangles have to be

2

Figure 1: Two different rectangle partitions of a 5× 7 problem field. The active pixels
are displayed in gray in the upper picture, two sample partitions are displayed
in black and gray below.

Let Sp,q be the set of all k × l rectangles that consist of k ≤ p and l ≤ q consecutive
pixels, i.e., all sub-rectangles built on the pixels of Rp,q. Each s ∈ Sp,q is assigned a
weight w(s) ∈ R.

Definition 1. Given a problem field Rp,q and a weight function w : Sp,q → R, the
Weighted Rectangles Partitioning (WRP) problem is to partition all active pixels into
disjoint active rectangles in Sp,q such that the sum of the weights of the rectangles in the
partition is maximized.

In Definition 1, partition means that all active pixels must be covered by rectangles
without covering any inactive pixels, and disjoint means that no two rectangles contain
the same pixel. The problem is always feasible, as a trivial solution uses one 1 × 1
rectangle for every active pixel. Two non-trivial solutions are shown in Figure 1. Both
solutions consist of eight disjoint rectangles, but they can have different total weights.
Depending on the weights, it may be beneficial to split or merge rectangles to obtain a
higher total weight. For example, splitting a 2× 2 rectangle with a weight of ten into
two 2× 1 rectangles with weights of six each will result in a higher total weight.

1.1 Motivation
Based on Definition 1, WRP is one of the countless variants of partition problems studied
in the optimization literature. As discussed in Section 1.2, partition problems have
various applications and their study led to numerous theoretical results over the years.
Indeed, in their survey on the topic, Balas and Padberg motivate studying partition
problems by stating that “Among all special structures in (pure) integer programming,
there are three which have the most wide-spread applications: set partitioning, set covering
and the traveling salesman (or minimum length Hamiltonian cycle) problem; and if we

2

were to rank the three, set partitioning would be a likely candidate for number one,” see
[2, page 712]. We agree wholeheartedly on the importance of partition problems for the
theory of integer programming, which we aim to extend by introducing a new variant in
the form of WRP.
In addition, the decision versions of many partition problems are known to be NP-

complete [10] and WRP is NP-complete as well [10, Problem SR25]. The original
NP-completeness proof [20] remains unpublished, as explained in [14]. Specifically, if
we consider a decision variant of WRP that asks whether there exists a solution with
fewer than K rectangles for a given K ∈ N, this problem is NP-complete. Our main
contribution is the characterization of balanced, and thus polynomially solvable, instances
of WRP in Section 2.2. Describing these easy instances within the set of all WRP
instances is a theoretical contribution that can hopefully be helpful for the solution theory
of more general integer programs as well.

For the characterization of WRP instances we apply results on balanced matrices. The
relevance of balancedness in the theory of integer programming has been emphasized
by awarding the 2000 Delbert Ray Fulkerson Prize [13] to the authors of [7]. Therefore,
our motivation for studying balancedness of WRP is, on the one hand, to establish
additional theoretic insights for balanced integer programs and, on the other hand,
provide algorithmic tools for their analysis.
Moreover, applications of partition problems in areas such as scheduling, logistics,

communication theory or political districting are abundant, see the list in [2], and
applications of our variant of the partition problem are discussed in Section 1.2 below.
Hence, studying WRP is relevant not only from a theoretical, but also from an applied
perspective.

1.2 Related Problems and Applications
We observe two major directions for comparing WRP with other problems discussed in
the optimization literature: First, focusing the geometric aspect of WRP, we discuss
research on rectangular decomposition and related problems. Second, emphasizing the
partitioning feature, we connect WRP to the literature on (two-dimensional) partitioning
and packing.
In the literature on rectangular decomposition, e.g., [17], [21], [24], the problem of

partitioning a given rectangular shape with or without holes into a minimum number of
smaller rectangles is studied. This has been extended to more general shapes, as surveyed
in [25]. We can reduce the decomposition problem to WRP by setting the weights of all
rectangles to -1. Definition 1 introduces WRP as a weight-maximization problem similar
to the maximum weight independent set of rectangles (MWISR) problem discussed in [5]
and [6]. Here, the task is to select a weight-maximal subset of disjoint rectangles from a
given set of feasible rectangles. We can interpret WRP as a special case of MWISR with
non-negative weights, where the set of feasible rectangles is defined by the active pixels in
the field. In addition, the authors of [6] discuss how MWISR, and therefore also WRP, is
related to graph-coloring and other combinatorial optimization problems. However, the
pixel-based setting of WRP is somewhat different from the general geometric perspective

3

of most rectangle decomposition algorithms.
A partitioning problem similar to WRP is studied from an approximation perspective

in [1]. The authors provide a summary of approximation algorithms and present a
quasi-polynomial approximation method based on dynamic programming.

Turning to the partitioning aspect of WRP, we observe that WRP can be classified as
a set partitioning problem [8] where the active pixels are partitioned into rectangles. We
can also relate WRP to a two-dimensional cutting stock problem with holes [11], [15].
While in the cutting stock problem not all rectangle types may be used, the WRP problem
field has inactive pixels that must not be occupied. Furthermore, we can interpret the
set of active pixels as empty space in which (weighted) rectangles must be packed. Thus,
WRP is also related to the many two-dimensional packing [18] or knapsack problems [19]
discussed in the optimization literature.
In theoretical computer science, rectangle partitions are important for studying the

communication complexity of a protocol since they define lower bounds on the determin-
istic communication complexity [16]. However, the notion of rectangles in the context of
communication complexity is more general than our definition of active rectangles above,
see [16, Definition 1.12]. Therefore, WRP cannot be applied to compute lower bounds on
the communication complexity in an obvious way.
Our study of WRP is originally inspired by an unusual application in a slot machine

game: The game has a playing field of size 5× 7 pixels, in which random pixels are active.
The goal of the game is to connect adjacent active pixels to rectangles with different
weights in order to maximize the sum of all weights.

We base our further analysis of WRP on the integer programming formulation of
the problem given in Section 2.1. To identify integral instances, we use the concept of
balancedness that has been introduced as a generalization of bipartite hypergraphs in
[3]. Balanced matrices, i.e., the incidence matrices of balanced hypergraphs, have many
interesting properties, most notably the fact that the polyhedron defined by a balanced
matrix is integral for all integer-valued right-hand sides. An introduction to balanced
matrices and their properties is given in [4].

1.3 Structure of this Work
In Section 2.1, we formulate WRP as an integer programming problem. Based on this
formulation, we investigate integral instances of WRP by checking the balancedness
of the system matrix. Our main result is the complete characterization of balanced
instances stated in Theorem 1. In the computational experiment of Section 3, we discuss
advantages of our specialized method for checking balancedness over two benchmark
algorithms from the software package [27]. Finally, we assess our findings in Section 4
and suggest possible directions for future research.
The data generated for the tests in Section 3 and implementations of the presented

algorithms are available in the following repository:
https://github.com/ulf-friedrich/WeightedRectanglesPartition.

4

2 Solving WRP
2.1 IP Formulation
To analyze the WRP problem, we first introduce an integer programming (IP) formulation.
Let B denote the set of active pixels, and let R = R(B) ⊆ Sp,q be the set of rectangles
that only contain active pixels b ∈ B. Only the rectangles in R can be used in a partition
of active pixels.
We write A = (ab,r) to represent the incidence matrix of all rectangles in R, where

the dependency on B is ignored in the notation. The columns of A are indexed by
the rectangles r ∈ R, and the rows of A are indexed by the active pixels b ∈ B, where
ab,r = 1 if and only if b ∈ r. We introduce a variable xr for all r ∈ R, and wr = w(r) ∈ R
represents the weight of the rectangle r.
Using the above notation, we formulate WRP as an IP:

max
∑

r∈R

wr xr

s.t.
∑

r∈R

ab,r xr = 1 ∀ b ∈ B

xr ∈ {0, 1} ∀ r ∈ R

(1)

This formulation resembles a typical set partitioning problem [2]. In this case, the size
of the formulation depends on |R|. By identifying each rectangle r ∈ R by its upper
left pixel and its size, all possible rectangles r can be determined: There are at most pq
active pixels that can be the upper left pixel of a rectangle. In addition, each of these
rectangles can have a size of at most p consecutive pixels in height (rows) and at most q
consecutive pixels in length (columns), giving pq possibilities for the size of the rectangle.
Therefore, |R| ≤ p2q2 applies.

2.2 Integral WRP Instances
Solving the IP (1) is easy when the polyhedron corresponding to the linear relaxation
of the feasible set has only integer vertices, i.e., when the instance is integral. One way
to verify this property is through the Hoffman-Kruskal Theorem [12], which states that
the total unimodularity of the system matrix A implies that Problem (1) is integral.
Alternatively, we can apply results on balanced matrices developed in [4, 7, 9] to obtain
a sufficient condition for the integrality of the polyhedron.

Definition 2 (21.5 in [23]). A balanced matrix is a {0,1} matrix that does not contain a
square submatrix of odd order with all row sums and all column sums equal to two. An
unbalanced matrix is a matrix that is not balanced. A WRP problem field is balanced if
its problem matrix A in Formulation (1) is balanced.

The polyhedron defined by the linear relaxation of Problem (1) is integral if the
system matrix is balanced, as stated in [23, Theorem 21.7]. We argue that checking
for balancedness is more efficient for WRP than testing for total unimodularity both

5

theoretically, see Section 2.3, and computationally, based on our experiment discussed
in Section 3. Furthermore, finding balanced instances provides a larger set of integral
instances compared to total unimodularity because every totally unimodular matrix is
balanced [23, Section 21.5].
Our next aim is to find a characterization of the balanced WRP instances among all

WRP instances. We use journeys as defined in Definition 3 to link pixels in the WRP
problem field to submatrices of A in Formulation (1).

Definition 3. A step in a WRP problem field is an ordered pair of two different pixels
(b1, b2) ∈ B ×B which are both contained in the same active rectangle r ∈ R. Every step
corresponds to two entries ar,b1 = 1 and ar,b2 = 1 in the problem matrix A. A journey in
a WRP problem field is a finite set of steps, such that the corresponding matrix entries
form a square submatrix with all row sums and all column sums equal to two. A journey
is odd if it has an odd number of steps.

The submatrix property in Definition 3 means that each pixel of a journey is contained
in exactly two steps. The definition states that every odd journey corresponds to a square
submatrix of odd order with all row sums and all column sums equal to two. Lemma 1
shows that the reverse is also true.

Lemma 1. For every square submatrix M of A that has odd order with row sums and
column sums equal to two, there is an odd journey in the WRP problem field such that
the pixels of the journey correspond to the submatrix M .

Proof. The columns of M define rectangles in the problem field and the rows of M define
pixels of the problem field. Each column defines a step because the column sum is two.
Since M has row sums and column sums equal to two, it defines a journey. Moreover,
this journey is odd because M is of odd order.

Definition 3 and Lemma 1 directly imply the following Proposition 1.

Proposition 1. A WRP problem field is balanced if and only if it does not contain an
odd journey.

Next, we construct three types of problem fields that are unbalanced. These examples
are the key observations for the complete characterization of balanced WRP fields in
Theorem 1.

Lemma 2. A problem field containing a 2 × 3 or 3 × 2 rectangle of active pixels is
unbalanced.

Proof. We only give the proof for 2× 3 rectangles because the transpose of a balanced
matrix is also balanced. Given a 2× 3 rectangle of active pixels as shown on the left in
Figure 2, consider the journey indicated by the arrows in the middle of Figure 2. We
prove that this journey leads to an unbalanced submatrix.
A matrix representation of the problem field is given on the right of Figure 2. The

matrix I6 is the identity matrix in 6 dimensions, containing the 6 one-by-one rectangles.

6

The first highlighted column of the matrix corresponds to the horizontal step of length
three, the second highlighted column corresponds to the step in the left 2× 2 rectangle,
and the third highlighted column corresponds to the step in the right 2 × 2 rectangle.
Thus, the gray matrix entries form a 3 × 3 submatrix which corresponds to the odd
journey shown in the figure. The WRP problem field is unbalanced by Proposition 1.

We can characterize balanced WRP problem fields with the help of journeys.
First note that each submatrix in Definition 2 corresponds to a journey.

Lemma 4. Every square submatrix M in Formulation (1) of odd order with
row sums and column sums equal to 2 corresponds to an odd journey in the WRP
problem field.

Proof. Every column of M represents one rectangle of the problem field and
each row of M represents one pixel of the problem field. Since M has row sums
and all column sums equal to 2, it defines a journey. Moreover, this journey is
odd because M is of odd order.

Next, we construct three types of problem fields that are unbalanced. These
examples are the key observations for the complete characterization of balanced
fields of WRP in Theorem 8.

Lemma 5. A problem field containing a 3 ◊ 2 rectangle of active pixels is
unbalanced.

Proof. Given the 3◊2 rectangle of active pixels in Figure 2, consider the journey
indicated by the arrows. We show that this journey leads to an unbalanced
submatrix. First, observe the corresponding matrix representation of the problem

Figure 2: An unbalanced combination of 6 active pixels

field Q
ccccca

1 1 1 1 1 0 0 0 0 0 0

I6
1 1 0 1 1 1 1 1 0 0 0
0 1 0 0 1 1 0 1 1 0 0
0 0 1 1 1 0 0 0 0 1 0
0 0 0 1 1 0 1 1 0 1 1
0 0 0 0 1 0 0 1 1 1 1

R
dddddb

,

where Id is the identity matrix in d dimensions. The gray fields above correspond
to a 3 ◊ 3 submatrix which is the representation of the journey described in
Figure 2. Clearly, this matrix is unbalanced.

In the same manner, we can prove that all problem fields that contain the
left or middle combination in Figure 3 are unbalanced. A possible journey is
defined by the arrows in the right image in Figure 3.

Lemma 6. The problem fields in Figure 3 and all fields containing them as a
subset are unbalanced.

Finally, we examine a third constellation inducing the unbalancedness of the
problem field.

Lemma 7. A problem field containing a connected set of active pixels with
inactive pixels inside is unbalanced.

5

We can characterize balanced WRP problem fields with the help of journeys.
First note that each submatrix in Definition 2 corresponds to a journey.

Lemma 4. Every square submatrix M in Formulation (1) of odd order with
row sums and column sums equal to 2 corresponds to an odd journey in the WRP
problem field.

Proof. Every column of M represents one rectangle of the problem field and
each row of M represents one pixel of the problem field. Since M has row sums
and all column sums equal to 2, it defines a journey. Moreover, this journey is
odd because M is of odd order.

Next, we construct three types of problem fields that are unbalanced. These
examples are the key observations for the complete characterization of balanced
fields of WRP in Theorem 8.

Lemma 5. A problem field containing a 3 ◊ 2 rectangle of active pixels is
unbalanced.

Proof. Given the 3◊2 rectangle of active pixels in Figure 2, consider the journey
indicated by the arrows. We show that this journey leads to an unbalanced
submatrix. First, observe the corresponding matrix representation of the problem

Figure 2: An unbalanced combination of 6 active pixels

field Q
ccccca

1 1 1 1 1 0 0 0 0 0 0

I6
1 1 0 1 1 1 1 1 0 0 0
0 1 0 0 1 1 0 1 1 0 0
0 0 1 1 1 0 0 0 0 1 0
0 0 0 1 1 0 1 1 0 1 1
0 0 0 0 1 0 0 1 1 1 1

R
dddddb

,

where Id is the identity matrix in d dimensions. The gray fields above correspond
to a 3 ◊ 3 submatrix which is the representation of the journey described in
Figure 2. Clearly, this matrix is unbalanced.

In the same manner, we can prove that all problem fields that contain the
left or middle combination in Figure 3 are unbalanced. A possible journey is
defined by the arrows in the right image in Figure 3.

Lemma 6. The problem fields in Figure 3 and all fields containing them as a
subset are unbalanced.

Finally, we examine a third constellation inducing the unbalancedness of the
problem field.

Lemma 7. A problem field containing a connected set of active pixels with
inactive pixels inside is unbalanced.

5

Figure 2: A set of 2× 3 active pixels, a journey using the pixels, and the corresponding
matrix on the right. The matrix entries highlighted in gray are in three different
columns which define the three steps.

In the same manner, we can prove that all problem fields that contain the left or
middle set of active pixels in Figure 3 are unbalanced.

Lemma 3. A problem field containing two 2× 2 active rectangles, whose intersection is
exactly one pixel, is unbalanced.

Figure 3: Left and middle: Two unbalanced combinations of active pixels. Right:
Illustration of a journey showing that the combinations are unbalanced.

Here, two pixels are connected if they define 2 ◊ 1 or 1 ◊ 2 active rectangle.

Proof. In a problem field with a set of connected active pixels with inactive
pixels inside it is straightforward to find a journey: The rectangles and active
pixels next to the inactive pixels can be used to define the steps of a journey.
This idea is exemplified in the rightmost problem field of Figure 4.

Since there is at least one inactive pixel inside of the set, one rectangle in
the journey has a side length of three or more active pixels. As one “big” step
in this rectangle can be divided into two “smaller” steps, every such journey can
be transformed into one with an odd number of steps. By Lemma 4 this journey
corresponds to a matrix of odd order with row sums and all column sums equal
to 2. Hence, the problem matrix is unbalanced.

Theorem 8. A WRP problem field is unbalanced if and only if it contains one
of the following pixel constellations

(a) a 3 ◊ 2 or a 2 ◊ 3 active rectangle,

(b) two 2 ◊ 2 active rectangles having exactly one pixel in common,

(c) a set of active pixels with inactive pixels inside.

Proof. If the problem field contains one of the listed constellations of active
pixels, it follows directly from the Lemmas 5, 6, and 7 that this field is not
balanced.

Next, let an arbitrary unbalanced problem field be given. We show that all
unbalanced problem fields that do not contain the constellations (a) or (b) must
contain a set of active pixels with inactive pixels inside. Choose any active pixel
of the unbalanced field and assume that options (a) and (b) do not apply. Then,
by assumption, the pixel is not contained in a rectangle of size 2 ◊ 3. This leaves
only rectangles of sizes 2 ◊ 2, 1 ◊ n, or n ◊ 1, where n œ N.

If the pixel is contained in a 2 ◊ 2 rectangle and this rectangle is connected
to another rectangle of the same size, the two rectangles cannot have pixels in
common as we have ruled out this constellation. Therefore, the only possible
constellation is the shape given in Figure 5, i.e., two pixels of the rectangles are
connected. By Lemma 4, it su�ces to find a journey using this constellation of
active pixels. In every such journey, a step from one of the two 2 ◊ 2 rectangles
to the other (such as the one highlighted in Figure 5) can only be used in one
direction, so every journey has to return using another set of steps, outside of
the shown constellation. Moreover, the two pixels prohibited in the figure have
to be inactive by assumption. Therefore, one of the two remaining pixels must
be inside the active set used by the journey.

6

Figure 3: Left and middle: Two unbalanced combinations of active pixels. Right: Illus-
tration of an odd journey with the following five steps: 2× 1 rectangle in first
column, 1× 2 rectangle in third row, 3× 1 rectangle in second column, 2× 2
rectangle in first and second row, 1× 3 rectangle in second row.

Proof. The journey with the five steps depicted in the right picture of Figure 3 implies
that the active set in the middle picture is unbalanced. The active set on the left is
obtained by transposing the WRP problem field.

Next, we examine locked pixels as the third pattern implying unbalancedness. In
Definition 4, we consider the eight directions relative to a pixel’s coefficients (i, j) in the
binary matrix representation Q of the problem field Rp,q, namely the two horizontal
directions (pixels in the same row i, but in a different column l 6= j, smaller or larger),
two vertical directions (pixels in the same column j, but in a different row k 6= i, smaller

7

or larger), and all four diagonal directions (pixels in a different row k 6= i and a different
column l 6= j, both smaller or larger).

Definition 4. An inactive pixel in a WRP problem field is called locked if there exist
active pixels in all eight directions of the problem field that are in a single journey. A set
of pixels is called locked if it contains only locked pixels.

The active pixels in the eight direction do not have to be adjacent to the locked pixel.
A set of seven locked pixels is shown in the left picture of Figure 4. By definition, a
locked pixel cannot be in the first row, in the first column, in the last row or in the last
column of a WRP problem field.

Lemma 4. A problem field containing a non-empty set of locked pixels is unbalanced.

Proof. Consider a non-empty set of locked pixels and the journey in Definition 4. If this
journey is odd, the problem field is unbalanced by Proposition 1.
Assume that the journey is even. Because the set of locked pixels is non-empty, one

rectangle in the journey has a side length of three or more active pixels. We can now
either substitute one step in this rectangle (of size at least three) by two smaller steps or
merge two smaller steps to one larger step in this rectangle. This way, we either decrease
or increase the number of steps by one. The resulting journey is always odd and the
result follows from Proposition 1.

So far, we have discussed three examples of unbalanced problem fields in the three
lemmas above. Peculiarly, the pixel sets discussed in the lemmas are also necessary for
the characterization of unbalanced WRP problem fields. Hence, Theorem 1 characterizes
all (un)balanced WRP problem fields.

Theorem 1. A WRP problem field is unbalanced if and only if it contains one of the
following pixel constellations

(a) A 3× 2 or a 2× 3 active rectangle,

(b) two 2× 2 active rectangles whose intersection is exactly one pixel,

(c) a non-empty set of locked pixels.

Proof. If the problem field contains any of the listed constellations of active pixels, it
follows directly from the Lemmas 2, 3, and 4 that this field is unbalanced.

Next, let an arbitrary unbalanced problem field be given. We show that all unbalanced
problem fields that do not contain the constellations (a) or (b) must contain a non-empty
set of locked pixels. Choose any active pixel of the unbalanced field and assume that
this pixel is not in an active set of type (a) or (b). Then, by assumption, the pixel is not
contained in a rectangle of size 2× 3. This leaves only rectangles of sizes 2× 2, 1× n, or
n× 1, where n ∈ N.

If the pixel is contained in an active 2× 2 rectangle, it cannot be contained in another
2×2 rectangle because (b) does not hold. Therefore, the only possible (up to transposition)

8

Next, let an arbitrary unbalanced problem field be given. We show that all unbalanced
problem fields that do not contain the constellations (a) or (b) must contain a set of
active pixels with inactive pixels inside. Choose any active pixel of the unbalanced field
and assume that options (a) and (b) do not apply. Then, by assumption, the pixel is not
contained in a rectangle of size 2 ◊ 3. This leaves only rectangles of sizes 2 ◊ 2, 1 ◊ n, or
n ◊ 1, where n œ N.

Figure 4: Sample field with the three di�erent cases in Theorem 8.

If the pixel is contained in a 2 ◊ 2 rectangle and this rectangle is connected to another
rectangle of the same size, the two rectangles cannot have pixels in common as we have
ruled out this constellation. Therefore, the only possible constellation is the shape given
in Figure 5, i.e., two pixels of the rectangles are connected. By Lemma 4, it su�ces to
find a journey using this constellation of active pixels. In every such journey, a step from
one of the two 2 ◊ 2 rectangles to the other (such as the one highlighted in Figure 5) can
only be used in one direction, so every journey has to return using another set of steps,
outside of the shown constellation. Moreover, the two pixels prohibited in the figure have
to be inactive by assumption. Therefore, one of the two remaining pixels must be inside
the active set used by the journey.

The same argumentation holds for rectangles of sizes 1 ◊ n or n ◊ 1.

Figure 5: The constellation of pixels in the proof of Theorem 8. Two pixels are prohibited.

From a computational perspective, it is important to discuss the complexity of the
criteria introduced above. Checking whether the lemmas used in Theorem 8 apply is
relatively easy: The Lemmas 5 and 6 can be checked in O(pq) for a field of size p◊ q. For
testing Lemma 7, a depth-first search algorithm is needed, which has a runtime of O(pq).
Thus, the total runtime for the detection of the balancedness is in O(pq). Moreover, it is
su�cient to check for circles with a length greater than 4.

We continue this section with a refinement of the balancedness property for WRP.

7

Figure 4: Sample field with the three different cases in Theorem 1.

constellation of two active 2× 2 rectangles in the WRP problem field is the shape given
in Figure 5, i.e., two active pixels of the rectangles are adjacent in the WRP problem
field.
By Lemma 1, there exists an odd journey on the set of active pixels. In every such

journey, a step from one of the two 2 × 2 rectangles to the other, such as the one
highlighted in Figure 5, can only occur once. Thus, every journey has to use another set
of steps, outside of the shown set of pixels. Moreover, the two pixels marked in the figure
have to be inactive as (a) does not hold. Therefore, one of the two remaining inactive
pixels must by locked. The argumentation also holds for pixels contained in rectangles of
sizes 1× n or n× 1 and the proof is complete.

Figure 5: The constellation of pixels in the proof of Theorem 1. The two marked pixels
must be inactive.

2.3 Complexity of the Balancedness Test
From a computational perspective, it is important to discuss the complexity of the
criteria introduced above. Checking whether the three lemmas for Theorem 1 apply is
straightforward. The Lemmas 2 and 3 can be checked in O(pq) for a field of size p× q.
For testing Lemma 4 we can use an algorithm which is similar to a deep-first search
algorithm and has a running time in O(pq): We start from any active pixel that has
a at least one non-active adjacent pixel. We then check the adjacent pixels in the two
horizontal directions and the two vertical directions. If they are active, they are also
taken into account. We repeat this process until we reach the same active pixel twice, or
until there are no more pixels to check. Thus, the total, theoretic worst-case runtime for
recognizing balancedness via Theorem 1 is in O(pq).

9

2.4 Valid Inequalities for Non-Balanced Instances
So far, we have been concerned with recognizing balanced instances of WRP. Next,
we focus on unbalanced, thus potentially non-integral, instances. The computational
performance of solution algorithms for non-integral instances of IP generally depends
on the problem formulation given by valid inequalities for the linear relaxation. Adding
additional valid inequalities (or cutting planes) to a formulation excludes non-integral
points from the linear relaxation and makes the IP formulation tighter [23]. We demon-
strate how valid inequalities can be deduced with the help of Lemma 2. In the same way,
the pixel structures of Lemma 3 and Lemma 4 can be used for defining valid inequalities.

r1

r2

r3 r4 r5

1

Figure 6: The rectangles that define the valid inequalities (2) and (3).

In Figure 6 five rectangles are highlighted, all of which use subsets of pixels of a 2x3
rectangle. Since WRP is a partition problem by Definition 1, none of the active pixels
can be in more than one rectangle used in the solution. Therefore, for each active 2x3
rectangle in the problem field, we can add the following valid inequalities to the IP
formulation (1) of WRP

3xr1 + xr3 + xr4 + xr5 ≤ 3, (2)

and
3xr2 + xr3 + xr4 + xr5 ≤ 3. (3)

The valid inequalities (2) and (3) express that either one of two 1x3 rectangles r1, r2
can be used in the solution or a combination of the three 2x1 rectangles r3, r4, r5 can
be used. On the one hand, if r1 or r2 are used in the solution, then xr1 = 1 or xr2 = 1,
respectively, which implies that xr3 = xr4 = xr5 = 0. On the other hand, if r1 and r2 are
not used in the solution, then xr1 = 0 and xr2 = 0, and therefore the right-hand sides of
value three in (2) and (3) do not impose any restriction on the remaining variables xr3 ,
xr4 , and xr5 .
Using the same reasoning, the two squares r6 and r7 in Figure 7 define the valid

inequality
xr6 + xr7 ≤ 1, (4)

for each active 2x3 rectangle in the problem field. Clearly, at most one of two 2x2 squares
can be used in a solution of WRP.

10

r6 r7

r3 r4 r5

r6 r7

1

Figure 7: The squares r6 and r7 define the valid inequalities (4).

We have tested the computational performance when solving improved formulations
of Problem (1), in which the valid inequalities (2), (3), and (4) have been added to the
formulation for all 2x3 rectangles of the problem field. However, we cannot report a
significant change in the solution times for the improved formulations in this proof-of-
concept implementation. In view of Theorem 1, it is also not to be expected that our
naive test leads to a large performance speed-up because only a subset of the possible
valid inequalities is added to the formulation. A structured computational analysis of
valid inequalities for WRP can potentially yield more insights, but diverts too far from the
focus of our presentation. The code and computational results of our tests are available
via the supplementary software repository.

3 Numerical Experiment
As observed in Section 2.2, the conditions of Theorem 1 can be checked efficiently. This
is an interesting feature when comparing an algorithm that recognizes balancedness in
WRP with other integrality conditions. We compare a balancedness test B-WRP based
on the results of Section 2.2 to the implementation of a total unimodularity test and
a recent implementation of a general balancedness test, both from [27]. We call these
benchmarks TU and B-gen in the following. The TU benchmark uses an implementation
of [26] for testing total unimodularity. The implementation of the general balancedness
test B-gen is based on a combination of enumerating subsets of rows and columns and a
polynomial-time algorithm [28].
The B-WRP algorithm uses a simple python implementation to check the conditions

of Theorem 1. Comparing this specialized approach to the general benchmark algorithms
is, of course, unfair considering that both are not focusing WRP instances. However,
to the best of our knowledge, the package [27] provides the only publicly available
implementations for integrality testing via unimodularity or balancedness.
Testing for integrality alone does not solve the IP formulation for WRP. Therefore,

we also compare solution times for balanced and unbalanced random instances. While
we do not claim that our results improve how integer programs are solved in practice,
we emphasize that algorithms for balancedness testing are crucial for the analysis of IP.
Based on balancedness testing, we explain why certain instances can be solved faster
than others. Moreover, the random balanced instances used in the runtime comparisons
have been found with the B-WRP algorithm, which can likewise be applied to create test
settings for other studies.

For the experiment, 100 random problem fields with the sizes 5× 5, 10× 10, 15× 15,

11

20 × 20, and 25 × 25 were generated. Each instance is solved five times on a desktop
computer and average runtimes are reported. There is a timeout of 10 seconds for each
problem run.
Since the three algorithms test for different conditions, different results are to be

expected. Because totally unimodular matrices are also balanced, the two balancedness
algorithms B-WRP and B-gen recognize more integral problem instances than TU, as
summarized in Figure 8. For the random data, the figure shows up to 2.5 times more
balanced instances than totally unimodular instances. This observation emphasizes that
testing integrality via balancedness is preferable to total unimodularity because more
instances can be recognized this way.

Figure 8: Number of integral instances found by the three algorithms.

As expected, there are pronounced differences in the runtimes reported in Figure 9 and
Table 1. The specialized balancedness test B-WRP clearly outperforms both the TU and
B-gen algorithm in terms of runtime. Moreover, Figure 9 illustrates that for larger problem
fields the runtime of the balancedness test B-WRP increases slower than the runtime
for the two benchmark algorithms. The observed differences in experimental runtimes
can be traced back to the different worst-case complexities of the three algorithms.
The balancedness recognition algorithm B-WRP has a worst-case runtime in O(pq), see
Section 2.3, while the TU algorithm runs in O((p2q2)5) worst-case time and the general
balancedness recognition algorithm B-gen in O((p2q2)9), as reported in [27]. However, the
algorithm B-WRP for balancedness testing is tailored specifically to WRP problem fields
while the two benchmarks check general matrices for total unimodularity or balancedness,
respectively, and hence solve a more general problem.

Turning to the practical numerical solution of WRP via Formulation (1), we can report
in Table 1 that for all sets of instances in our study, the average solution times for the
balanced instances (t-IPb) are shorter than the averages solution times of the unbalanced

12

10 5 10 4 10 3 10 2 10 1 100 101

Timeout (in seconds)

0

10

20

30

40

50

60

70

80

90

100
Nu

m
be

r o
f s

ol
ve

d
ex

am
pl

es
Number of Solved Instances Over Time for Multiple Runs

Figure 9: Number of solved instances using the TU algorithm (black lines), the general
balancedness algorithm B-gen (dark gray lines), and the B-WRP balancedness
test via Theorem 1 (light gray lines). For each algorithm, the five lines show
instances of sizes 5× 5, 10× 10, 15× 15, 20× 20, and 25× 25 from left to right.

instances (t-IPub). In addition, the runtime difference is more pronounced for the larger
problem fields with ratios increasing from 1.3 for the instances of size 5× 5 to 22.9 for the
largest problems of size 25× 25. This means that solving the largest balanced instances
via Formulation (1) is on average more than 22 times faster than solving the unbalanced
instances of the same size. We can conclude that the strong theoretical property of
balanced WRP instances implies significant runtime improvements for the solution of
WRP as well.

From a practical perspective, it is not necessary to run an integrality test first before
applying an IP solver to a given WRP instance. In fact, this observation is true for any
problem with an integral IP formulation that can be solved via its LP relaxation. In this
regard, our computational study is in-line with the typical experiments used to analyze
IP algorithms.

13

Table 1: Summary of the computational results, columns from left to right: field sizes of
the tested instances (size), number of totally unimodular instances (TU), number
of balanced instances (bal), total runtime for the TU benchmark (t-TU), total
runtime for the specialized balancedness test (t-B-WRP), total runtime for the
general balancedness test (t-B-gen), average runtime when solving formulation
(1) for the balanced instances (t-IPb), average runtime when solving formulation
(1) for the unbalanced instances (t-IPub), and the ratio of the solution times
t-IP-unb/t-IP-bal (ratio). All times in seconds, all IP formulations solved with
gurobipy and a timeout of 10 seconds. Times marked with an asterisk contain
instances that have been stopped by the timeout.

size TU bal t-TU t-B-WRP t-B-gen t-IPb t-IPub ratio
5× 5 38 62 26 0.005 55 0.11 0.14 1.3

10× 10 21 33 195∗ 0.010 395∗ 0.09 0.21 2.3
15× 15 17 34 252∗ 0.019 418∗ 0.15 0.74 4.9
20× 20 10 25 352∗ 0.022 538∗ 0.13 2.33 17.9
25× 25 17 29 317∗ 0.030 491∗ 0.27 6.18 22.9

4 Conclusion and Possible Extensions
Starting from the IP formulation (1) of WRP, we defined balanced WRP fields to
characterize integral instances. In addition, we argued why this approach is more suitable
than checking for total unimodularity. The results proved in Section 2.2 characterize all
balanced WRP problem fields. The computational experiment in Section 3 shows that
balancedness testing is possible and fast in practical computations. Solutions times for
the IP formulation decrease significantly for balanced instances.
Several aspects of the problem setting motivate future research. We discussed WRP

with a general weight function, but assuming that the weight function is, e.g., monotone
or submodular seems reasonable and may lead to specialized solution algorithms or
approximation schemes as in [1]. Furthermore, we have limited our discussion to rectangles.
Allowing more general shapes such as polyominoes might be an interesting extension of
WRP. However, the concept of journeys used in our proofs does not carry over to more
general shapes in an obvious way. Further research on valid inequalities for WRP, such
as those described in Section 2.4, can potentially reveal more insights on fast solution
strategies for non-integral instances of WRP.

Finally, we conjecture that more general pixel sets than those used in Theorem 1 can
be used to characterize WRP instances with a perfect system matrix, see [22]. This
characterization would yield a more general criterion for integrality testing. Since every
balanced matrix is also perfect, these pixel sets have to be supersets of those described
in Theorem 1.

14

Acknowledgements
The authors would like to thank the anonymous reviewers for their insightful comments
that greatly helped to improve the manuscript. Matthias Walter kindly supported the
use of his software [27] in the numerical experiments. The second author acknowledges
the support of the Research Training Group 2297 Mathematical Complexity Reduc-
tion (MathCoRe), funded by Deutsche Forschungsgemeinschaft (DFG), grant number
314838170.

References
[1] Adamaszek, A., Wiese, A.: Approximation schemes for maximum weight independent set of

rectangles. In: 2013 IEEE 54th annual symposium on foundations of computer science, pp.
400–409. IEEE (2013)

[2] Balas, E., Padberg, M.W.: Set partitioning: A survey. SIAM Review 18, 710–760 (1976)

[3] Berge, C.: Sur certains hypergraphes généralisant les graphes bipartites. In: Combinatorial
Theory and its Applications I (P. Erdös, A. Rényi and V. Sós, eds.), Colloquia Mathematica
Societatis János Bolyai, vol. 4, pp. 119–133 (1970)

[4] Berge, C.: Balanced matrices. Mathematical Programming 1, 19–31 (1972)

[5] Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: Proceedings of
the twentieth annual ACM-SIAM symposium on discrete algorithms, pp. 892–901. SIAM
(2009)

[6] Chalermsook, P., Walczak, B.: Coloring and maximum weight independent set of rectangles.
In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
860–868. SIAM (2021)

[7] Conforti, M., Cornuéjols, G., Rao, M.R.: Decomposition of balanced matrices. Journal of
Combinatorial Theory, Series B 77(2), 292–406 (1999)

[8] Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer, Berlin (2014)

[9] Fulkerson, D.R., Hoffman, A.J., Oppenheim, R.: On balanced matrices. In: M.L. Balinski
(ed.) Pivoting and Extension: In honor of A.W. Tucker, pp. 120–132. Springer, Berlin (1974)

[10] Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman San Francisco
(1979)

[11] Gilmore, P.C., Gomory, R.E.: Multistage cutting stock problems of two and more dimensions.
Operations Research 13(1), 94–120 (1965)

[12] Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. Linear
Inequalities and Related Systems pp. 223–246 (1956)

[13] Jackson, A.: The 2000 Fulkerson Prize. Notices of the AMS 47(9), 1086 (2000)

[14] Johnson, D.S.: The NP-completeness column: an ongoing guide. Journal of Algorithms 6(3),
434–451 (1985)

[15] Kenyon, C., Rémila, E.: A near-optimal solution to a two-dimensional cutting stock problem.
Mathematics of Operations Research 25(4), 645–656 (2000)

15

[16] Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press,
Cambridge (1997)

[17] Liou, W., Tan, J.M., Lee, R.C.: Minimum rectangular partition problem for simple rectilinear
polygons. IEEE transactions on computer-aided design of integrated circuits and systems
9(7), 720–733 (1990)

[18] Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey. European
Journal of Operational Research 141(2), 241–252 (2002)

[19] Lodi, A., Monaci, M.: Integer linear programming models for 2-staged two-dimensional
knapsack problems. Mathematical Programming 94(2), 257–278 (2003)

[20] Masek, W.J.: Some NP-complete set covering problems. Unpublished manuscript (1979)

[21] Nahar, S., Sahni, S.: Fast algorithm for polygon decomposition. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 7(4), 473–483 (1988)

[22] Padberg, M.W.: Perfect zero-one matrices. Mathematical Programming 6(1), 180–196 (1974)

[23] Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Chichester
(1998)

[24] Soltan, V., Gorpinevich, A.: Minimum dissection of a rectilinear polygon with arbitrary
holes into rectangles. Discrete & Computational Geometry 9(1), 57–79 (1993)

[25] Suk, T., Höschl IV, C., Flusser, J.: Decomposition of binary images—a survey and comparison.
Pattern Recognition 45(12), 4279–4291 (2012)

[26] Truemper, K.: A decomposition theory for matroids. V. Testing of matrix total unimodularity.
Journal of Combinatorial Theory, Series B 49(2), 241–281 (1990)

[27] Walter, M., Truemper, K.: Implementation of a unimodularity test. Mathematical Program-
ming Computation 5(1), 57–73 (2013). URL http://matthiaswalter.org/TUtest/

[28] Zambelli, G.: A polynomial recognition algorithm for balanced matrices. Journal of Combi-
natorial Theory, Series B 95(1), 49–67 (2005)

16

