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Abstract We study the two-stage stochastic infinity norm optimization problem with recourse based on a
commutative algebra. First, we explore and develop the algebraic structure of the infinity norm cone, and
utilize it to compute the derivatives of the barrier recourse functions. Then, we prove that the barrier recourse
functions and the composite barrier functions for this optimization problem are self-concordant families with
reference to barrier parameters. These findings are used to develop interior-point algorithms based on primal
decomposition for this class of stochastic programming problems. Our complexity results for the short-
and long-step algorithms show that the dominant complexity terms are linear in the rank of the underlying
cone. Despite the asymmetry of the infinity norm cone, we also show that the obtained complexity results
match (in terms of rank) the best known results in the literature for other well-studied stochastic symmetric
cone programs. Finally, we demonstrate the efficiency of the proposed algorithm by presenting some nu-
merical experiments on both stochastic uniform facility location problems and randomly-generated problems.
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1 Introduction

The core aim of this paper is to study, based on an algebraic treatment, the two-stage stochastic infinity norm
programming (SINP for short) problem with K scenarios:

K
min c'x+ Z P () where p®(x) £ min d®T y®
k=1 ey
st. Ax=b, st WOyH = g® 4 TOx k=1,2,.. K,
xe I yWerm k=1,2,..., K

Here, 1" is the nth-dimensional infinity norm cone of the first-stage decision variable x € R”, and 7" is
the mth-dimensional infinity norm cone of the second-stage decision variable y(k) eR"fork=1,2,...,K.
The function p®(x) is called the recourse function. We also assumed that A, W® and d®, k = 1,2,...,K, have
already absorbed the scenario probabilities.
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Figure 1.1: Graphs of the infinity norm cone (in light red) and the second-order cone (in light blue) in R3.
The picture to the left shows the graphs of two-dimensional unit spheres in infinity and 2-norms.

Many authors studied deterministic conic optimization problems including those over the infinity norm
cone (see, for example, [1-8]). Despite the need for studying the optimization problems in stochastic
environments, there are no algorithmic methods to specifically solve infinity norm optimization problems in
the stochastic setting. Taking this literature gap into account, we study in this paper two-stage stochastic
optimization problems over the infinity norm cone (also called the infinity-order cone), which is defined as

1>

X _ _ =
I {x = [ _0] eRXR"": x> ||x||m}, where |7l £ max_|xi],
X 1<i<n-1

and ¥ £ (xq,X2,...,%,-1)" € R"'. The dual cone of 7" is the nth-dimensional first-order cone, which is

defined as 1

X — =
cl s {x 2 [;] eRXR™:xp> ||x||1}, where [l = ) |xi.
i=1

The cone C7 is a special case of the p-th order cone of order 1, which is defined as

n-1 Lp
e 2 {[2] e mxrerixoz |, p>1, wohere ||xupé(2 |xi|P] .
i=1

Note that when p = 2, C}j reduces to the well-studied second-order cone C}. Like any p-th order cone Cj,
the infinity norm cone 7" is solid (i.e., its interior, int(Z"), is nonempty), pointed (i.e., 7" N —1" = {0}), closed
convex cone in R" (see Figure 1.1). Unlike the second-order cone C7, the infinity norm cone is non-self-dual
and hence is asymmetric.

Benders” decomposition has long been employed in the development of solution methodologies for both
two-stage stochastic linear and nonlinear programs [10-22]. The L-shaped method [9], for example, uses this
strategy to construct cuts by taking into account subgradients of the recourse function. Later on in the last
two decades, decomposition interior-point algorithms have been developed to find solution methodologies
for different classes of two-stage stochastic conic programs. These algorithms can be summarized as
follows. Zhao [10] derived logarithmic barrier interior-point methods for solving two-satge stochastic linear
programming using Benders’ decomposition. Alzalg [11] (see also [12-14]) derived decomposition-based
interior-point methods for two-stage stochastic second-order cone programming by generalizing the work of
Zhao [10]. Mehrotra and Ozevin [15] (see also Ariyawansa and Zhu [16]) generalized the work of Zhao [10]
for two-stage stochastic semidefinite programming. The work of Alzalg and Ariyawansa [17] generalizes
the results in [10,11, 15] to derive logarithmic barrier decomposition-based interior-point algorithms for



stochastic programming on all symmetric cones. Finally, Chen and Mehrotra [18] (see also Zhao [19]) derived
a prototype interior-point algorithm for stochastic convex programming.

To analyze the proposed algorithm, we develop a novel algebra associated with the undelying cone and
discuss its characteristics in great detail. We exploit this algebra to derive a logarithmic barrier primal interior-
point algorithm for the two-stage stochastic infinity norm programming (SINP) problem via a utilization of
the work of Chen and Mehrotra [18] for stochastic convex programming. While the explicit expressions for
the derivatives of the barrier function in [18] are not available, the merit of this work is sufficiently evinced by
explicitly computing such derivatives. These derivatives are used to prove the self-concordance properties
(see Nesterov and Nemirovskii [23]) of the barrier recourse function that guarantee nice performance of
Newton’s method used for the proposed algorithms. These findings are used to develop short- and long-step
interior-point decomposition algorithms for the two-stage SINP problem.

We will see that, for a two-stage stochastic program with K number of realizations over infinity norm
cones with ranks O(n + m), the short-step algorithm restores the proximity condition in one step, while the
long-step algorithm may perform several inner iterations. Let € be the desired accuracy of the final solution,
we will also see that we need at most O((n + Km)'/?In(u’/€)) outer iterations in the short-step algorithm to
follow the central path from a starting value of the barrier parameter u° to the terminating value €, and we
need at most O((n + Km) In(°/€)) outer iterations in the long-step algorithm for this recentering. We will see
that the above complexity results agree in terms of rank the best known results in the literature for two-stage
stochastic linear programming in [10], two-stage stochastic second-order cone programming in [11], and
two-stage stochastic semidefinite programming in [15]. This agreement is in spite of the fact that the infinity
norm cone is asymmetric.

The following is how the paper is structured. In Section 2, we study and establish algebraic structure of
the infinity norm cone. In Section 3, we introduce the barrier function associated with the infinity norm
cone, compute its derivatives, and prove its self-concordance complexity. Section 4 is devoted to explicitly
computing the derivatives of the composite barrier function and establishing its self-concordance analytical
properties. In Section 5, we state path-following interior-point algorithms for solving our problem and
present their complexity results. We present numerical experiments to show the efficiency of the proposed
algorithms in Section 6. Sections 7 draws some closing conclusions. The proofs of the complexity results are
given in Appendix A.

2 The algebraic structure of the cone

In this section, we dive into the commutative algebraic structure of the infinity norm cone. For applications
of commutative (and, more restrictly, Jordan) algebras in optimization, we refer the reader to [14,24-26].
Let x and y are vectors in R", we write

m =y = (%),

“u o

where “,” is used to adjoin vectors and matrices in a row, and “;” is used to adjoin them in a column. For
each vector x € IR” indexed from 0, we denote X the sub-vector comprising entries 1 through n — 1; therefore
x = (x0;%) € Rx R* 1,

By &" we mean the nth-dimensional real vector space R X R"™!. We use I, to denote the identity matrix of
order 1 and I” to denote a matrix of order n such that all its entries are zeros except the (i, i)th-entry which
is a one. By e, = (1,0) we mean the identity vector of &", by ufp we mean the vector in &" such that all its
entries are zeros except the ith-entry, whichisa one fori =1,2,...,n — 1, by O we mean the zero matrix of
appropriate size, and by 0 we mean the zero vector of appropriate dimension.

We introduce the following matrices in R™":

N = L[1 07 N b S LI
]n:|:n(_)1 In—l 7 ill>: n01 Iilizl 7 Rn: 0 Rilo: 0 _I<i> /1:1/2/.../71—1.

—in-1

Note that I, = Y5 J% and R,, = J, Yo RY.



For each x € &", we associate the vectors x, x@ ..., x1 where each vector x? € E" is defined as

X0
@ »| 0 | «— thezero vectorin R},
Pa— .
x;i | e (i + 1)th-entry,
0 | «— the zero vector in R* 1,

fori=1,2,...,n - 1. Note that each vector x € &" can be uniquely written as

n—-1 n-1

x=], Z X = Z ]ﬁl’)x(").

i=1 i=1

The spectral decomposition of each vector x{? € E" is defined as

| [ 1 )
X0 = w(i) [u:zl] +w(§) [_uflizl] '

Ay S~ Ay S~
ot (x() o™ (x0)

We call A¥(x?) and ¢*(x?) the eigenvalues and eigenvectors of x'*, respectively. The trace and determinant of x
are defined respectively as

trace (x<i>) 2 AF (x@) + A~ <x<i>) =2xg, and det (x<i>) 2AF (x@) AT <x<i>) =x5—xF

it

Note that any x € &" can be decomposed as

ot () ()
—_—— —_—
17 Co1
0 0
AT (xD) /\f(x<i>)
LR e Rt
=z =Jn — Yo TS 1 Yo=Y\ -1 «— the (i + 1)th-entry.
= 0 0
0 0

This leads us to define the spectral decomposition of each vector x € &" as

x=] rf‘ (x0 + xi) Bl + (x0 — x3) E P
IR A N VY ) (750 INNRA VY | ST D

A;'(x) S——— /\i_(x) S———

(%) c; (%)

We call A7 (x) and ¢} (x) the eigenvalues and eigenvectors of x, respectively. Note that A7(x) = A¥(x{?) and

that ¢F (x) = ¢*(x) foralli = 1,2,...,n — 1. We also call rk(Z") £ 2(n — 1) the rank of the cone I".
The determinant and trace of x are defined as

H
i
N

n-1 n—
det(x) = H AT (x) = | | det (x<i>) = (xé - x.z) ,
i=1

i

Il
—_
Il
—_

and

n—1
trace(x) = Z AT (x)= ) trace (x<i>) =2(n — 1)xo.
i=1 ‘



Before proceeding further, it worths mentioning that the eigenvalues and the determinant associated
to I" can also come from viewing 7" as a hyperbolicity cone [27-29]. In particular, the cone 1" is also
generated by the hyperbolic polynomial p(x) = |y (x5 — x?) taking (1, 0) as the hyperbolic direction. This
leads naturally to the eigenvalues )\f(x) defined above. Therefore, the eigenvalue functions, determinant,
and trace associated to 7" do indeed make sense even there is no inner product that may transform 7" into a
self-dual cone.

The square of x € &" is defined as x% £ [, Y7 9, where x@ £ (A*(x))2c+ () + (A~ ()2~ (xD). It can
be seen that

(n— 12+ L5 a2
2XOX1
=y 2x0%2 = Arw(x)x,

2xOxn—l

where Arw(x) denotes the arrow-shaped matrix of x defined as

n-Dxo x1 x2 Xp-1
X1 X0 0 e 0
Arw(x) £ ], X2 0 X 0

X1 0 0 0 x

for any x € &". Note that Arw(x) can be also redefined as

T
n—-1 ] n—1 " ) ) ) X0 xiufﬁl
Arw(x) = J, Z Arw® (x) = Z J Arw (x?), where Arw®(x) = Arw (x®) = | |
i=1 i=1 xium L X0 & )
n— n—

fori=1,2,...,n—1.
Let x € &" be such that det(x) # 0. We define the inverse of x € &" as

n

-1
1 0y R S
X =], L x" ", where x = )\*(x<f>)c (x )+
i=

o 1 % o
0\ _ N P N O
)\’(x<i>)c (x ) det(x®) [_xi“@ det(x®)" " <@

n-11
We define the multiplication 0 : & X &" — &" as

(n = 1) xoy0 + 15 xiyi]

n-1 n=1 XoY1 + X1Yo

xoy=]J, Z Arw (x)y? = Z I Arw (x@) vy =7, XoY2 + X2l/o = Arw(x)y,

i=1 i=1 :

X0Yn-1 + Xn-1Yo
for x,y € &". Therefore, x O e, = x. We also have

n—-1 n—-1

xoxt=], Z Arw® (x) X7 = In Zen =e, =(1,0;0;...;0),
i=1 i=1 —_—
(n—1)—times
and
n—1 n—1

xOx=], Z Arw® (x)x® = ], Z X0 = 22,
i=1 i=

1
The quadratic representation of x € &" is denoted by Q, and is defined as

n—1 n—1
Q= Ju Z fo> = Z ]§,i>0x<i>, 3)
i=1 i=1



where

AT
X5+ X7 2x0X; u<’>

N AT . .
Q<l> Q. = 260" _ det (xP)RY =
( ) " 2XoXiU <> (x + x? )I<1>

fori=1,2,...,n—1. One can easily find that
Qe = X, Q. 0 = 07 (hence Q7! - A0 = %), and Arw (x@fl) (),(<1'>Jc<">7l =e,,
fori=1,2,...,n—1. Therefore Qe, = x*>, Q,-1x = x~! (hence Q;}lx‘l =x),x'0Qx!=e¢,, and
x'oQlxT = e
We define the product m: & X & — R as
A 1 =T = n
xmy= Etrace (xOy)=m-1D)xyo+x 7, forx,y € &".

It is easy to find that

n-1
xmy=x"]ly= Z (x@Ty(i)), forany x,y € &".
i=1

(6)

Let x,y,z € &, and a,f € R. It is not hard to check that xO (ay + fz) = a(xOy) + f(xOz), and
(ax + By) Oz = a(xOz)+p(yOz), hence “ 0" is a bilinear map, and therefore the structure (&, O) is an algebra.
One can also see that x Oy = y Ox, which in turn implies that the algebra (&, O) is a commutative algebra.

Table 2.1 compares between the algebraic structures associated with the infinity norm cone and that with

the second-order cone.
Finally, we define the Frobenius norm of x € (£",0) as

n-1
lIx[[p = J ( /\+(X) )\ (x)) ) V2x W x.

=1
Let also y € (&", O), then
Il < el and | m y] < 2 el o]

This can be seen by noting that

n—-1 n—-1
1Ix2||F=JZ_1(A+<x> +(w)) < 1_1(A+(x) (A @)) = i,
and that
fomy = BT
= |72) 1
< sl 2yl

VT Y Ty
Vimx\ymy = % [1x|le )

where the last inequality was obtained using the Cauchy-Schwarz inequality.
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3 The barrier function associated with the cone

In this section, we introduce the logarithmic barrier function associated with the infinity norm cone, its
derivatives, and its self-concordance properties.

Following the standard way in defining the logarithmic barriers in convex programming, we define the
logarithmic barrier associated with the infinity norm cone as £(x) = — In det(x) for x = (xo; %) € int(J"). In our
setting, we have

:I

n— 1 n-1 n-1
£(x) = —Indet(x ln[ X —x? ] ln x —x 9 (x),
i=1 =1 i=1

where ‘
£9(x) £ —In (x(z) —xl.z), i=1,2,...,n—1.

Note that £(-) is a strictly convex function on int(Z") fori =1,2,...,n — 1. Since the sum of strictly convex
functions is strictly convex, the logarithmic barrier function £(x) is strictly convex.
The results in the following lemma are a handy tool for our subsequent development.

Lemma 3.1 Let x € int(I"). We have that
1. The gradient V. £(x) = =2],'x71, where x™! is defined in (2).

2. The Hessian V2, €(x) = 2],,'Q,-1, and hence Dyx™! = —Q1, where Q. is defined in (3) and D, is the Jacobian
matrix with respect to x.

3. For any vector h € (&",0), the third derivative V3, .£(x)[h,h,h] = —4s(x,h) m s*(x,h), where the vector
s25(x,h) =, Y s, h) € (&, 1), and

1 xXoho — x;h;
<l> 2 (i) y! 0710 i _ _
2 sO(x, h) = Arw (x@7 ) = P [(xOh ~ o) ? ] i=12,...,n—1.

Proof: Note that
V. Indet(x)

Vi [" ln ((xo + xi)(x0 — Xz‘))]

H”

= V; (In(xp + x;) + In(xp — x7))
i=1

,_.

n—

(xo + x;) + \Y x—xl)
x0+1 0 z) X0 — X x(O z)

1 1'
((x0 + ;) [ :)1] (xo — xi) [_”:il])
-

ML&M?“M

ZJC()
(%0 + x;)(x0 — x7) +x) xo - x;) |2l )

X0 L
(det(x<7>) [_xl 0 ]) = 2L,

This proves item (1). To prove item (2), it suffices to show that D,x" = -Q 1 fori=1,2,...,n—1. Note

[i

o\

|
N

i=



that
L 1 1 1 1
D" = D,f—n— — |
! (2<xo;xi>[,i ] 2<xo—xl>[ ﬁ,h])
0

2_ 2
- p.| fo7%
il PO
X3 —x? n-1
A T
_ -1 X2+ x? —2x0xiuf;:1
(detx)* [—2xox;u <’>1 (x% + xf)lfq'zl

_ -1 ng —2x0xiufj§ _( 2 2) 1 OT

- 2| RO 2 14 Yo=Y )g 1@
(detx®) 2x0x;u, 2x4T el

=[x J—det(x<'> JR?) = -a?,

where the last equality follows from (4).
Finally, the following sequence of equalities proves item (3).

Z V3 LOTh, I h]

Z V. (HTV2L9 (o)) [1]
i=1

n_—l

V3, L(x)[h, h, k]

™

[0 17|V, (m (G + )3 +12) - 4x0x1h0hi)]]

_ = —4 - (h% + hlz) (xg + 3xox2) — 2hoh; (x3 +3x x,)
- ; (det (x(™))’ [ ][ ((hé + hlz) (x? + 3x§x1) 2hoh; (x + 33012 )) ;<11>1D
n—1

[

oy (653560 30—+ 3530001+ 3h§hi))]

=
_

- F (s =30 (4 )5 ) - o)
i=1

+2 (xoh,- - x,‘ho) (hoh,‘ (Xé + Xlz) — XoXi (h2 + h2>) )

_ = —4 X()ho - xihi ' T ( 3 )<h2 + hz) 4x0xih0hi
(det (x<i>))3 [(xohi — x;hg) u;’il] (Zhoh ( ) 2X0X; (hé + hf)) u?

n—-1
n—-1

= -4 Z (s<i>TArW (s<i>) s@)
ol T 2

= —4Z(S<l> s ) = —4sms
i=1

The proof is complete. o

i=1

Now, we show that the function £(-) is a self-concordant barrier with complexity value 1.

Definition 3.1 (Definition 2.1.1 in [23]) Let V be a finite-dimensional real vector space, G be an open nonempty
convex subset of V, and let f be a C°, convex mapping from G to R. Then f is called a-self-concordant on G with the
parameter a > 0 if for every x € G and h € V, the following inequality holds

V3. f() [, 11, h]

== (s mm)”, )

An a-self-concordant function f on G is called strongly a-self-concordant if f tends to infinity for any sequence
approaching a boundary point of G.



Table 3.1: 1-self-concordant barriers for most well-known conic programs.

Linear program Second-order cone program Semidefinite program Infinity norm program
xeR! x €C} Xest xel”

0(x) = Zlnx, £(x) = - In(x2 - [1%I) £(X) = —Indet(X) 0(x) = —Zn“ln (2 -
i=1

The result in the following theorem is crucial to subsequent results in this paper. The result in this

theorem is the counterpart of very well-known results in the interior-point theory of conic programming (see
Table 3.1).

Theorem 3.1 The logarithmic barrier function £(-) is 1-strongly self-concordant on I".
Proof: Let h € (£€",0). From item (3) in Lemma 3.1, we have

V3 L), h,h] = —4s m &2,
where s = s(x, h) € (§",0) is given by

S0 2 Arw (7)1 = 1 [ Xoho = Xih;

det () | ol = xiho) ] = l2en

Note that

(A ©) + (@) = m (Groho = xii)? + (xohi = xiho)?), i = 1,2,...,m — 1.

From item (2) in Lemma 3.1, we also have

H

n—

HTV2, £(x)h

W2 69 (x)h

I’
3._.
._.

Il
N
r‘
¥l
\C/
=

T

— .
Il
—_

™

1l
— =

2 [h T] —ZxOxiuijTl [ho]
0 i i h
(det (x))” 2y “1 (x+22) 12 L7

2 w T ho x0+x 2xox:h;
e Tz v0) 2o a2 ]
2
(det (x®))?

=
|

g

.
[l
_—

™

Il
=

(h ( 2 4 ) 2xox;hoh; + h (xg + xlz) - 2xoxih0hi)]

=
|

™

1l
— =

(det (x0))? (G + 323 + 1) - 4xoxihoh1-))

2
(det (x@))?

=
|

™

I
=

((xoho — xihi)* + (xoh; — Xz‘ho)z))

B
|

= (A3s7) + A3(s))
i=1
= 25Hs = ||s||F.

The result immediately follows from the following;:

V2 €GO, I, 1] = 4] m 2] < 2 isle 2], < 21515 = 2 (V2,61 A1)

Since £(x) tends to co for any sequence approaching a boundary point of 7", we deduce that £(x) is 1-strongly
self-concordant. This completes the proof. O

10



4 The composite recourse function

In this section, we compute the derivatives of the Composite recourse function and its self-concordance
properties. The two-stage barrier SINP problem is defined as

K
min  n(x, u) = c'x— uIndet(x) + Z p(k)(x, ) st Ax=0b, xe€intI”,
k=1 8)

p®(x, 1) £ min d(k)Ty(k) — plndet (y(k)) st. WOy® = g® 4 7Oy 4 e int 1™, k=1,...,K,
where int 7" and int 7™ are the interiors of the infinity norm cones 7" and 1™, fork = 1,2, ..., K, the function
p(k)(x, w), fork=1,2,...,K, is called the barrier recourse function, n(x, u) is called the composite barrier function,
and p is positive scalar.

In the next sections, we study common properties of all barrier recourse functions p®(x, u), for k =
1,2,...,K. For this reason, we represent the barrier recourse function as

p®(x, 1) £ min {r (y(k), y) : Why® = g0 4 T(k)x}, where

r (y(k), y) = d(k)Ty(k) — pIndet (y(k)) .

For the rest of this paper, we define the feasibility sets

©)

LO = {x eR": Ax = b},

LOE) = {y(k) e RM; Why® = g0 4 T<k>x}, fork=1,2,...,K

Fh L {x €A LO: A LB() 2 @}, fork=1,2,...,K
A ~ (k)

F 2 Q F®.

We also make the following assumptions.

Assumption 4.1 The matrices A and W®, k=1,2,...,K, have full row rank.
Assumption 4.2 The feasibility set F is nonempty.

Assumption 4.1 is a standard assumption in linear and convex programming. Assumption 4.2 is the
Slater condition, and based on this assumption strong duality holds. We have the following proposition.

Proposition 4.1 Let x € int I N L. The barrier recourse function p®(x, u), k =1,2,...,K, is convex in x.

Proof: Leta+B=1, o, >0, and x,z € int 7" N LO. Then
ap ) + Bz, ) = d "y (3, ) - apndet (" () + ATy 2, ) - puin det (v 2, )
> a9 (ay®" (e, ) + By 2, ) - pn et (ay® (0 + By @ 1)
= p(k)(ozx + Bz, y),

where the first inequality follows from the convexity of the barrier function —Indet(-), and the second
inequality follows from the feasibility of ay®” (x, u) + By®" (z, u) for WP y® = g® + TO(ax + Bz). m

Based on Proposition 4.1, we conclude that is strictly convex in x.

11



Let x € int 7" N L£©, y®"(x, u) be the optimal primal solution for (9), u®" (x, 1) be the optimal Lagrange
multiplier, and define

49 2011 (490 )+ WOTuO(, )

S(x, ®x, 1), u®(x, 1), )é
Y (x, ) (x, p), p W(k)y(k)(x”u)_q(k) — T®y

Then the first-order KKT conditions $(x, y® (x, 1), u®(x, u), ) = 0 hold true for y® = y®" and u® = 1 ®".
That is, we have

40 — 20 (y" )+ WO (o) = 0,

WO O (x, 1) — g® — TOx I (10)

The solution y®" (x, 1) is unique because the map r(y®, p) is strictly convex of y® for a given (x, ).

Now, we compute the gradient, Hessian and partial derivatives of the barrier recourse function p® (x, )
and the composite barrier function 7(x, 1) associated with infinity norm cone J". These derivatives will be
used to prove fundamental properties of these functions.

Throughout this section and the rest of this paper, let g(yk) (x, u) and H(yk) (x, u) represent the gradient and
Hessian of the barrier function — In det(y®) with respect to y® at y® (x, u). Then, using Lemma 3.1, we have

* -1 A AT—
9y () = =27, (v (), and HP(x, 1) £ 27,1 Quirr oy k=1,2,..., K. (11)

Note that H(yk) (x, u) is positive definite since logarithmic barrier is strictly convex. Furthermore, the matrix
w® H(yk)_1 (x, ) W®' is invertible since W® has a full row rank (Assumption 4.1). In the rest of this paper,
we also let n

SV = WOHY “(r,p), k=1,2,...,K

T T -1 (12)
PP = 8P o (8P w 8P () 8P, k=1,2,..,K

1>

By applying the implicit function theoremto the KKT system (10), we conclude that the Lagrange
multiplier u®” (x, 1) can be uniquely determined. Particularly, we have

— (WO HY ) W) WOHE G, ) Vi (9 10, 1)

[l>

u®" (x, )

1 wten (13)
T - -1/2
~ (8% sy () 8P wHY (w0 (4 + g, )

For the second-stage problem (9), the Lagrangian function is given by
5 (x’ Yy, u® y) = 40T y® _ 4 1n det (yac)) £ u® WO 0 @7 g0 OT 0Ty (14)

From (10), we have

Vo g(x, y u®, IJ) - (d<k> o y® 4 W<k>u<k>)
y(k):y(k)* (x,p), uk) =y (> (%) y(k)=y(k)* (), u®) =y 0* () (15)
-1
= 2, (4 () + WO ) = 0
and
VoI (x, y®,u®, p) = (W(k>y(k) —q® - T(k)x)
yO=y®* (1), u®=u®* (x,u) y®=y®* (x,p1) (16)
= W(k)y(k)* (x, 1) —q® - T®x = 0.
Due to strong duality, we have
ECANE S(x, Yy (), u® (x, ), #)~ (17)

12



Throughout the rest of this paper, we let y® £ y®(x, u), u® 2 u®(x, p), H(yk) = Hg() (x, ), and Sﬁjk) = S;k) (x, ).
We need the following intermediate lemma.

Lemma 4.1 Let x € int 7" N LO, and y® (x, u) and u®” (x, u) be the optimal solutions of (9) and (14), respectively.
Then

-1
Dy’ () = HY 8P (sP8T) 7, (18)
-1
D,u®" (x, W) =-—u (Ssjk)Sg()T) T®, (19)
d 1,012 o\, 02k
S = —HY (1P g (20)
9 0 (x 1) = —(sP5®T) gBH®™ 4® o
@L{ (x/['l)__ y Py y My 9y ( )

()

where g,," and H(yk) are defined in (11), S(yk) and P(yk) are defined in (12).

Proof: Note that the Jacobian of 3(x, y®,u®, 1) with respect to (x, y®,u®) is

D(x,y(k),u(k)) S(xl y(k), u(k), ‘u)

[D(y(k),u(k)) S(x, y®,u®, y) © D, S(x, y®,u®, y)]

y(k):y(k)* ) =y 0> y(k):y(k)* ) =y 0>

_|uHP e ) Wi o
w® 0 LT

The matrix D w ;) S(x, y®, u(k)) is invertible since H(yk)(x, 1) positive definite and W® has a full rank. In
particular, one can verify that

-1
14072 ®) yg®O? GO a® (aba®’
LH( (I—Py)Hy HO gl (sy !

-1 -1
Y=y 0* 0= 0% Wk’ ()4 (k)72 _ GINGH
(Sy Sy ) Sy Hy H1Sy'Sy

-1
[D(y(m,u(k)) S(X, y®,u®, H)]

Since the hypotheses of the implicit function theorem are satisfied at (x, y®", u®") in (10), we have

v w0 N
DX M(k)* :—[D(y(k),u(k)) S(x,y , U ,[,l):l

giving us the desired results in (18) and (19).
To obtain the results in (20) and (21), note that the Jacobian of §(x, y®, u®, 1) with respect to (y®, u®, u) is

X Dy S(x, y(k), u®, y)

4
YOI =y®* 6 =y 0% YO =y®* )=, 0%

D y9,u0,11) S(x, y®,u®, y) Dyyo,ut) S(x, y®,u®, y) . D, S(x, y®,u®, y)]

YR=y®* 116 =0

_ ] '
uHY o) WO bogy )
w® o) : 0

Again, by the implicit function theorem, the mapping from (x, u) to y®" (x, u) and that from (x, u) to u®” (x, )
are differentiable in u with

(9 (k)* (x’ ) B
@ [Z(k)* (x, ﬁ)} = _[D(ym,mk)) s(x, y®,u®), y)]

giving us the desired results in (20) and (21). O

x Dy S(x, y(k),u(k), y)

7
YR=y®* 146 =y (0 YRI=y®* 140 =y (%

13



Lemma 4.2 Let x € int 7" N LO, and y® (x, u) and u®” (x, u) be the optimal solutions of (9) and (14), respectively.
Then

Ven(x, 1) = ¢ = 2uf;'x 7 + i (T<’<>T(S§,k>s‘yk>T)_1s(yk>H<y">‘”z(d<k> ¥ yg(yk))), (22)
k:; |

V200 ) = 20 ;' Qe + 1 Y | (T (k’T(S(J"SEJ")T) T(k’), (23)
k=1

0 K T T\! “12

33 Ve ) = =217+ (T“ (s¥si") siHy g‘ﬁ), (24)

9 S (T - -
3 G =200+ 5+ (T P )
k=1

where g(yk) and H(yk) are defined in (11), S(yk) and Pfjk) are defined in (12), and
N -1 T T -1
RY ) 2 HY () WO (8060108 (o)) T, k=1,2,0.K (26)

Proof: Using (8) and (18), and applying the chain rule, we have

. T T T\ ! “12
Vep s, 1) = (D™ (o 0) Ve pPe )] =TO(PSPT) SPHP (09 4 ugl?) @)

yo= y(k)*

Using (14), (15), (16), (17) and (19), and by applying the chain rule, we have

VW) = VAS(xy®,ut", )

= VX(VXS + Vy(k)Sny(k) + Vu(k>5Dxu(k))

Y=y ®* 0= 0>

28
- vx(—T<k>Tu<k>*(x, y)) (28)

-1
;
= —T® x Du®(x, ) _ HT<k>T(S<yk>ngk> ) na

u®) =y (* (o)

The gradient and Hessian in (22) and (23) are immediately obtained by plugging the results in (27), (28) and
Lemma 3.1 into the gradient and Hessian of the function n(x, u) = ¢'x — uIndet(x) + ¥, p®(x, ).

Next, we obtain the partial derivative in (24). Differentiating (22) with respect to y, and applying the
chain rule, we get

P) G v d o N ewT O e
oy (Ve ) = =21 + Y, @(vxp“)(x, u)) =2t =) T o Cm): (29)
k=1 k=1

The partial derivative in (24) is now immediately obtained by plugging (21) into (29).
Finally, we obtain the partial derivative in (25). Differentiating (23) with respect to y, using the first

14



equation in (12), and applying the chain rule, we get

ai( o) =2 [2u]n1Ox1+ZuT<’<>T(S;" s;">T)_1T<k>]

k=1

K -1 -1
_ - k O T Ba®T\(Lawag®) Tk
—Zjlex-l—Z(T() ( sy'sy) 5 ( sWs! )(ﬁsy ¢ ) T()]
k=1
K
:z]‘larl—Z(TW( SHE T 2 (#H(k)) w<’<>T( s¥sy’) 10
n ) — y !,[

K
= 2],'Q, + Z( RO ( HY) Rg<>)
K T p)
=2J;'Qu + (R(k) (MY + ) R(k))
; v Ty THG Y )Ry

K
T J ) "
=2[,'Qe1 + (R(k) (H(k) +uV (k)H(k>—y(k) )R( ))‘
; Y y Yy y 8[.1 y

The partial derivative in (25) is then immediately obtained by plugging (20) into (30). ]

(30)

The following corollary is a direct consequence of Lemma 4.2.

Corollary 4.1 The derivatives V2, 1(x, u) and %(Vxn(x, W) can be written as

. ] d .
V(e p) = IBi(x, )BT (x, ) T and @(Vxn(x, 1) =1 Bi(x, 1)Ba(x, t)gy(x, 1),

where gy (x, 1) = (—2J; %759 (v, w; 9P ()5 90, ), T2 [In L, - In] € R and By (x, u) and
Ba(x, 1) are the block diagonal matrices given by

1/2

(2]n_1Qx’1) o ©
-1/2
A 0 T(l)T(S;DS(yl)T) .. @)
Bilr,p) £ yE '
‘ ' ~12
o o e
- -1/2
(ngle_l) 9] O
) o (S(” Sa)T)_” 2S(1>H<1>-”2 - o)
B . 1 y Sy y oy
z(x/#) \/‘l_i
: : ’ —1:/2
®a®T (K) y(K)772
0 0 (sy S, ) S, H, |

Now, we are ready to state and prove the self-concordant properties of the family of composite barrier
functions {n®(x, u) : p > 0}. We have the following definition. This definition uses R, to denote the set of
all positive real numbers.

Definition 4.1 (Definition 3.1.1 in [23]) Let G be an open nonempty convex subset of R". Let also p € Ry, and
f 1Ry X G — R be a family of functions indexed by p. Let aq(u), ax(u), as(), as(p), as(u) : Ry — Ry be
continuously differentiable functions on u. Then the family of functions fuer,, is called strongly self-concordant with
the parameters a1, ap, a3, as, as, if the following conditions hold:

15



(i) The function f, is continuous on Ry, X G, and for fixed i € Ryy , f, is convex on G and has three partial
derivatives on G, which are continuous on R, X G and continuously differentiable with respect to 1 on R,

(ii) For any u € Ry, the function f, is strongly a1 (u)-self-concordant.
(iii) For any (i, x) € Ryr X Gand any h € R",

1/2

as((an () (1TV2fule 00

2a5(u) hTV2, fu(x, p) h.

IA

211V fux ) = 2 maas ) BTV 5, 0)
211V, 5 00— £ 0n 22 W7V 10 1

IA

The following theorem contains a fundamental result because it specifies appropriate barrier parameters
to comprise a self-concordant family from the set of composite barrier functions. This enables us to prove the
polynomiality of the proposed algorithms.

Theorem 4.1 The family {n(., 1) : p > 0} is a strongly self-concordant family with the following parameters

2((n = 1) + K(m - 1)) 1+2%2+m -1
ar(p) =y, ap)=as(u) =1, ay(p)= v cas) = ——— ——
¢ s
The proof of Theorem 4.1 depends on a sequence of some intermediate lemmas that we state and prove
below.

Lemma 4.3 For any fixed u > 0, the barrier recourse function p®(x, u) is strongly p-self-concordant on F® for
k=1,2,...,K

Proof: Let u > 0 be fixed, y® = y®(x, u) € &", and h € R™. Then

V340 ®x, )k, b, 1|

V3 (d©Ty O, 1) = o In et (yOx, 1)) U, b, 1|
= Vy(k o (4®Ty® — 1n det (y®)) [Dey®@n, Dyy®n, D y(k)h”
= d V:;(k)y(k)y(k) ( k)) [D y®h,D,y®h, D yk)h]|

H( () [D yac)h D yac)h]) N
2_ ( M@( d®Ty® — pindet(y <’<>))[D 41, D, ykm])
7 ( (d(k ® _ jiindet (y<k>)) [h,h])

( 2 09wl 1),

IA

where the inequality holds since £(-) is a self-concordant barrier of complexity value 1 (see Theorem 3.1).
Therefore, the inequality in (7) holds for p® (x, ). Finally, for any sequence {x;}°, in ¥ ® approaching a point
from boundary of ¥®, the map p®(x;, 1) approaches infinity. Thus, p®(x, y) is strongly u-self-concordant on
F® fork=1,2,...,K O

Lemma 4.4 For any fixed u > 0, the composite barrier function 1(-, u) is strongly u-self-concordant on ¥ .

Proof: Recall that n(x, 1) = ¢'x — pIndet(x) + Y r_, p®(x, u). It is trivial to show that the linear map c'x is
strongly u-self-concordant on 7" N £© (both sides of the inequality in (7) are simply zeros). Theorem 3.1
shows that the barrier —u In det(x) is strongly u-self-concordant on 7" N £®, and Lemma 4.3 shows that the
map p®(x, p) is strongly p-self-concordant on F®. The result then immediately follows from [23, Proposition
2.1.1(i1)]. o
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Lemma 4.5 Forany u > 0,x € ¥ and h € R", we have

‘%(hwx”(x' “)) = \/ A= LK(m =D R, win i, (31)
d 1+232m—1
‘@(Vim(x, w [, h])’ < % V2n(x, 1)k, Bl (32)

Proof: This proof uses the block vector g, = g,(x, 1), the block-diagonal matrices I, Bi £ Bi(x, w) and

B, = By(x, ) defined in Corollary 4.1, and the orthogonal projection matrix P(yk) defined in (12). To prove (31),
by using Corollary 4.1, we have

(%Vxn(x,[u))T(Vﬁxr](x,y))_l( 5V y)) (1 Blegy)T(fBlBI fT)_l(f Blegy)

= g (x, B2 (x, 1)Ba(x, 1)gy (¥, 1)

o (e (@t t) 4 3 (O (KO g
2oy e ) D e
1 K
=—|2x"m ((Qu) ' x —1 + ]mg m (HO™ g® ]
A CRRAMECALICES)
K
:% trace(en)+Ztrace(em)] 2((n - 1)+K(m—1)),
k=1

where the inequality follows from the fact that F’(yk) is an orthogonal projection matrix, and the third and
forth equalities follow from (6) and (5), respectively. It is easy to show that the inequalities (33) and (31) are
equivalent. This proves (31).

To prove (32), leth € R" and R, k) 2 R(k)h where R(k) is the matrix defined in (26). Then, using (20) and (25),
one can show that

K

<o Quh+ ) (Ry;k)Tch)Ry(k) 49 /gac)TH(k) 'gR,OTHOR (k) (34)

k=1

‘ 20 HTVEn(x, wh )
. T
Note that W(")ch) ‘wh’ = S(yk)S(yk) , hence

-1 -1 -1
BT ® _  Tr®T (a®a®T Oy oT (a®a®T ®1 _ 1 TR (a®a®T ®
Ry HPR,W = nTT®" (8PP ) WOHP Wk (s¥8®) 10k = pTT®" (SPSPH" ) 10,

Using (23), it follows that

K -1
20T Qe+ Y ((1 +2(ugl) m (HO" g@’”)) W (88" T(k)h)

1

’% (HTVZn(x, 1) h)’

=~
I

ngle

-1
= W7+ ((1+2 trace(en)) 'O (S;k>s<yk>T) T<’<>h)

k=1
K _
= 20TQuh+ Y ((1 +22(m = 1)) KT (Sg‘)sg‘)T) 1 T(k)h)
k=1
14220 =1
< SR TG o

Proof of Theorem 4.1: Condition (i) in Definition 4.1 is satisfied. Lemma 4.4 satisfies Condition (i7), and
Lemma 4.5 shows that Condition (iii) holds. m|
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5 The algorithm and its complexity

In this section, we present a path-following primal interior-point algorithm for the two-stage SINP problem
and see that the short- and long-step versions of the proposed algorithm obtain an e-optimal solution in
polynomial number of first-stage Newton iterations. This analysis assumes that the second stage barrier
problems are solved exactly, and hence V,1n(x, 1) and V2,1(x, 1) are computed exactly as shown earlier in
Lemma 4.2.

The first-stage Newton step Ax is defined at a feasible solution x of the problem {min 1(x, 1) | Ax = b} as

-1
x 2 =V, ) Ve, ) + (Ve 1) AT(A (Ve i) AT) A (Ve ) Vi), (35)
where (35) is a closed solution of the system:

V2n(x, wax + ATav = =Vn(x, ),

36
Arx =0. (36)

We also define

o(x, p) = \/ iAxTVixn(x, [)AX. 37)

The algorithm is formally stated in Algorithm 1 and is graphically visualized in Figure 5.1.

Algorithm 1: The primal interior-point decomposition algorithm for two-stage SINP problem.

Initialize: i = 0,x°, 1%, @, €;
Ensure: ’yo,cD €(0,1),e € (0,1), 2" is feasible, 5(x, u°) < x;

1: while y’ > e do

5 [Ji+1 20 [Ji,.

3 j20,x0 2

4 fork=1,2,...,Kdo

5: | solve subproblems p®(x, u™*1) to obtain y®" (x/, u'*1) and u®" (x'/, u'*1y;
6 end for

7. | compute V,n(x', i'*!) using (22) ;

8 compute V2, n(x", u'*1) using (23) ;

9. | compute the Newton direction A”/x using (35) ;

10: | compute 6(x', u'*1) using (37);

11: | while 5(x/, u*1) > x do

12: perform line search 6(> 0) to minimize n(x" + OAYx) ;
13: x0+D 2 ¥ 4 OAly ;

14: fork=1,2,...,Kdo

15: | solve subproblems p® (x'/, u**1) to obtain y®" (x'/, u*1) and u®" (x'/, u'*1);
16: end for

17: compute V,n(x', u'*1) using (22);

18: compute V2 n(x"/, p*!) using (23) ;

19: compute the Newton direction A'/x using (35) ;

20: compute §(x', u'*1) using (37) ;

21: j=j+1;
22: end while
23 xi+1 Y xij ;
24: iZi+1;

25: end while
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Begin algorithm

Initialize
i=0,xu o€

I

verify
o, @€ (0,1),
€ € (0,1),
20 is feasible,
(0, w0 < x

I

while ‘u" > €
#i+1 = @#i

NO
J ] — lei[] — xi

YES

0 (i] it
So,iquz(x’”K)’ izi+l

I

compute the
gradient and
the Hessian
of r](xif, [,liﬂ)

l

compute the New- j=j+1
ton direction AYx

l

compute 6(x'/, ui*1)

check

ol @) < ¥+ =« + Oalx
, <

E

YES

End algorithm Xt & i

Figure 5.1: A flowchart of Algorithm 1.

Algorithm 1 starts with (x, u°), where x° satisfies 6(x°, u°) < x £ (2 — V3)/2. It generates a sequence of
(x*, yF) with u**1 = @p* until % < . The algorithm needs to ensure that the proximity condition of x* to
x*(¢¥) is maintained by using the criteria 5(x¥, u¥) < x. The process of updating (¥, p¥) to (x**1, u¥*1) is called
an outer iteration. The value uN = @u° < € is achieved after N outer iterations, where

V< in(5) (o)1
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Table 5.1: Comparison of some features between the short- and long-step algorithms for SINP.

Feature Short-step algorithm Long-step algorithm
Factor @ @=1-1/Vn+Km, 1 <0.0755 Constant rate @ € (0, 1)
Inner iterations Single inner iteration Several inner iterations
Outer iterations O(Vn + KmIn(u®/¢)) O((n + Km) In(u°/¢))

Let x*0 = x*. The long-step algorithm generates a sequence x/, j = 1,2,..., M, till ¥ satisfies the desired
condition 6(x*M, u**1) < x. The process of updating (x*/, u*+1) to (x*/*1, u**1) is called an inner iteration. After
updating ku*, the short-step algorithm restores the proximity condition in only one step, but the long-step
algorithm may perform many steps to restore this proximity. The following theorem states the complexity
result for the short-step algorithm.

Theorem 5.1 Let u° be the initial barrier parameter, u**! = @u*, and ¢ be the target precision. If 5(x°, u%) < x =

2- \/5)/2, ® =1-1/Vn+ Km, where 0 < 1 < 0.0755, then the short-step algorithm terminates with (xN, yN)
satisfying S(xN, uN) < x, and uN < ¢ in O(Vn + KmIn(u®/¢)) outer iterations. Each inner iteration requires

calculation of a single Newton direction by solving (36).

Proof: See Sub-appendix A.1. ]

The long-step algorithm takes a constant value for @, say @ = 0.1, and may perform several inner
iterations to restore the condition 6(x™, u"*!) < «. The following theorem states the complexity result for the
long-step algorithm.

Theorem 5.2 Let u° be the initial barrier parameter, u**! = @u*, and ¢ be the target precision. If 5(x°, u%) < x =

(2 - V3)/2, and the long-step algorithm reduces u* at a constant rate @, where 0 < @ < 1, then the long-step algorithm
terminates with (xN, uN) satisfying 5(xN, uN) < x, and uN < € in O((n + Km) In(u®/¢)) outer iterations. Each inner
iteration requires calculation of a single Newton direction by solving (36).

Proof: See Sub-appendix A.2. O

Table 5.1 compares some features between the two variants of the algorithm. From Theorems 5.1 and
5.2, it is clear that the dominant terms in the complexity expressions are given in terms of the number of
realizations, and, most notably the ranks of the underlying infinity norm cones. The complexity results in
Theorems 5.1 and 5.2 are the counterparts of those in Theorems 1 and 2 in [10] for two-stage stochastic linear
programs with recourse those in Theorems 4.1 and 4.2 in [11] for two-stage stochastic second-order cone
programs with recourse, and those in Theorems 4.1 and 4.2 in [15] for two-stage stochastic semidefinite
programs with recourse. It is interesting to note there is a complete matching in terms of rank between our
complexity results and their counterpart’s complexity results found in [10,11, 15] for other stochastic conic
programming (see Table 5.2). This matching is despite that the asymmetry of the infinity norm cone when it
is compared with the symmetry of the three other cones shown in Table 5.2.

Table 5.2: Comparing long-step algorithm complexities of some two-stage stochastic conic programs with K
number of realizations.

Two-stage stochastic conic program Cone rank Complexity of the long-step algorithm
Nonnegative orthant cone: x € R?, y® € R”"  rk(R") = O(n) O((rk(R") + K rk(R™)) In(u°/ e))
Second-order cone: x € CJ, y® e cy rk(C5) = 0(1)  O((rk(C}) + Krk(CY')) ln(yo/s))
Semidefinite cone: X € 8", Y® € S k(S1) = 0(m)  O((rk(S%) + Krk(ST)) In(u/¢))
Infinity norm cone: x € 7", y® € I™ rk(Z™) = O(n) O((rk([“) + K rk(Z™)) In(u° /g))
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6 Numerical results

In order to see how the algorithm proposed in this paper works, it has been implemented to solve numerical
examples. In this section, we present two numerical examples to show the computational performance
of the long-step algorithm. In Example 6.1, we test the proposed algorithm on the two-stage stochastic
facility location problem. In Example 6.2, we test the proposed algorithm on randomly-generated problems.
Numerical results were obtained using MATLAB R2018a (Version: 9.4.0.813654) and on Windows XP
Enterprise 64-bit operating system.

Example 6.1 (Stochastic uniform facility location problems) We consider instances of the stochastic uni-
form facility location problem formulated as an SINP problem. One way of classifying facility location
problems is based on the distance measures. There are three distance measures: Manhattan distance
(measured by I;-norm), Euclidean distance (measured by I;-norm), and Chebyshev distance (measured by
I-norm). In this paper, we are interested in the so-called uniform facility location problem which uses the
Chebyshev distance (see Figure 6.1).

Assume that we are given f existing fixed facilities with coordinates represented by fixed points,
say ai,dy,...,4f € R", and r random fixed facilities with coordinates represented by random points, say
bi(w), ba(w), ..., br(w) € R", whose realizations depend on underlying outcomes w in an event space Q with
a known probability measure P. In the two-stage stochastic uniform facility location problem, we plan to
add a new facility in R” among the existing (fixed and random) facilities so that the sum of its weighted
Chebyshev distances to the fixed facilities and the sum of its weighted expected Chebyshev distances to the
realizations of the random facilities are both minimized.

Assume that we do not know the realizations of » random facilities at present time, and that these
realizations become known at some point in the future. Assume also that the location of the new facility is to
be determined so that the total sum is minimized. This decision must be made before the random facility
realizations become available. Consequently, when the random facility realizations do become available, the
new facility location that has already been determined, say by the point ¥ € R”, may or may not minimize
the sum of its weighted expected distances to the realized random facilities. In order to make the location
of the new facility minimizing the total sum of all weighted distances described above, we are allowed to
change its location, say to the point x© + x(w) € R", depending on the realized outcome w € Q, if necessary.
Given this, we are interested in a two-stage stochastic model of the form

x©0)

f
min )" &k - afle + EIQE, w)], (38)
i=1

where E[Q(x©), w)] £ f“ o, Q@) P(dw), and Q(r®, w) is the minimum value of the unconstrained
minimization problem

min ; Ci(@) Ik + x(@) = bj(@)lle, (39)

where &; > 0 is the weight associated with the distance between the new facility and the i existing facility
fori=1,2,...,f,and C j(a)) > ( is the weight associated with the expected distance between the new facility
and the realization of the j random facility for j = 1,2,...,r.

Y —_—- Chebyshev distance: deo(x, y) = max{|x; — y1l, [x2 — v2l}.

-------------- Euclidean distance: d(x, y) = \/(xl —11)? + (2 — 12)%

Pad
.
.
x

-------- Manbhattan distance: di(x, y) = |x1 — y1| + [x2 — v2l.

=

Figure 6.1: A geometric representation of Chebyshev, Manhattan and Euclidean distances.
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The two-stage stochastic facility location model (38, 39) with K scenarios is written as

f K
i 1. 5®) (1(0)
min Z Eiup + Z; P (x™) (40)

1 =
s.t. ;> “x(o) - “i”oo , i=12,....f

where p®(x@),k =1,2,...,K, is the minimum value of the constrained minimization problem

.
min Z C;k) v;k)
=1 (41)
s.t. vi.k) > Hx(o) +x — b;.k)” , j=12,...,r
Algorithm 1 is performed with an accuracy € = 10~ for a number of two stage SINP problems. By “Iter”
we denote the required inner iteration numbers, and by “CPU(s)” we denote the CPU time (in s) required to
obtain an e-approximate optimal solution of the underlying problem.
We run Algorithm 1 to solve the SINP problem (40) and (41), where the dimensions of this problem
take the values n = 4;12; 20, the numbers of scenarios take the values K = 5;10; 15; 20, the number of fixed
facilities take the values f = 3;10; 20, and the number of random facilities take the values r = 2;10; 20. For

each quadruple (1, f, 7, K), we generate 36 instances each with 4; and b§k) chosen at random from the standard

normal distribution. Finally, we choose the distance weights &; and C;k) randomly from a uniform distribution

on [0, 1]. The numerical results of Algorithm 1 are displayed in Table 6.1 and are graphically visualized in
Figure 6.2.

Table 6.1: The numerical results of Algorithm 1 for the stochastic uniform facility location problem.

n f r f+r K Iter. CPU(s) n f v f+r K Iter. CPU(s)
4 3 2 5 5 5 1.1719 12 10 10 20 15 53 102.0140
4 3 2 5 10 5 1.2125 12 10 10 20 20 55 152.500
4 3 2 5 15 6 1.3344 12 20 20 40 5 29  120.6250
4 3 2 5 20 17 2.4219 12 20 20 40 10 49  128.8281
4 10 10 20 5 13 71719 12 20 20 40 15 56  93.2031
4 10 10 20 10 23 7.6250 12 20 20 40 20 60  99.0091
4 10 10 20 15 22 17.7656 20 3 2 5 5 57 91.1871
4 10 10 20 20 23 17.8938 20 3 2 5 10 65  23.1406
4 20 20 40 5 23 26.0781 20 3 2 5 15 44 93.2031
4 20 20 40 10 24 267355 20 3 2 5 20 84 987813
4 20 20 40 15 23 452188 20 10 10 20 5 45  107.2656
4 20 20 40 20 33  52.6406 20 10 10 20 10 10 112.6520
12 3 2 5 5 27 7.0625 20 10 10 20 15 61  120.5010
12 3 2 5 10 31 6.8281 20 10 10 20 20 77 140.4008
12 3 2 5 15 35  13.1563 20 20 10 30 5 75  100.0101
12 3 2 5 20 41  96.4036 20 20 10 30 10 56 119.9630
12 10 10 20 5 28 58.3906 20 20 20 40 15 56 130.2250
12 10 10 20 10 48  78.3594 20 20 20 40 20 88  135.3012
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Figure 6.2: Dot plots of the numerical results obtained for the stochastic uniform facility location problem.

Example 6.2 (Randomly-generated problems) We run Algorithm 1 on random instances of K scenarios
of the SINP problem (1) with values K = 5;15;25;35. We assume that ¢ € R",d® € R",b € R®,q® ¢ R
and q(k) € R?, where the dimension of the problem takes the values n = 10;20;...;120, m = 5;10;...;60,
s =5;10;...;60, and I = 6;12;...;72. The parameters of Algorithm 1 are given as € = 1075, yo,m € (0,1),
with u® > e. For each quintuple (m,1,s,1, K), we generate 48 instances each with A, ¢, b, W®, T® g® and g®
chosen at randomly generated values fork=1,2,...,K.

Algorithm 1 is performed with an accuracy € = 107 for a number of two stage SINP problems. By “Inn.
Iter” we denote the required inner iteration numbers, by “Out. Iter” we denote the required outer iteration
numbers, and by “CPU(s)” we denote the CPU time (in s) required to obtain an e-approximate optimal
solution of the underlying problem. The numerical results of Algorithm 1 are displayed in Table 6.2 and are
graphically visualized in Figure 6.3. The initials of x? and y®’, for k = 1,2, ..., K, were taken to be the unit
vectors.
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Table 6.2: Numerical results of Algorithm 1 for randomly-generated problems.

(m, n) (s, K Out. Iter. Inn. Iter. CPU(s)
(5,10) (5,6) 5 4 2 0.0312
(5,10) (5,6 15 6 4 0.3125
(5,10) (5,6) 25 7 6 0.5000
(5,10) (5,6) 35 9 7 0.6468
(10,20) (10,12) 5 13 10 0.2806
(10,20) (10,12) 15 16 12 0.7343
(10,20) (10,12) 25 18 13 1.6406
(10,20) (10,12) 35 24 15 4.6718
(15,30) (15,18) 5 25 11 0.3906
(15,30) (15,18) 15 31 17 2.9062
(15,30) (15,18) 25 38 17 5.3750
(15,30) (15,18) 35 39 21 11.2812
(20,40) (20,24) 5 21 15 2.8280
(20,40) (20,24) 15 30 19 5.8106
(20,40) (20,24) 25 35 13 12.4610
(20,40) (20,24) 35 38 21 14.7969
(25,50) (25,30) 5 32 30 1.3562
(25,50) (25,30) 15 40 36 6.7975
(25,50) (25,30) 25 48 39 15.2818
(25,50) (25,30) 35 50 41 32.1023
(30,60) (30,36) 5 46 41 2.2904
(30,60) (30,36) 15 49 43 7.7344
(30,60) (30,36) 25 53 46 16.0625
(30,60) (30,36) 35 56 47 33.0156
(35,70) (35,42) 5 50 43 3.5625
(35,70) (35,42) 15 58 48 10.1406
(35,70) (35,42) 25 60 53 25.2969
(35,70) (35,42) 35 67 56 36.8125
(40,80) (40,48) 5 58 52 3.4219
(40,80) (40,48) 15 57 58 13.6531
(40,80) (40,48) 25 58 63 27.9250
(40,80) (40,48) 35 63 67 40.0190
(45,90) (45,52) 5 65 59 7.5938
(45,90) (45,52) 15 75 61 15.9956
(45,90) (45,52) 25 80 71 40.8125
(45,90) (45,52) 35 83 80 62.0750
(50,100) (50,58) 5 78 63 11.1875
(50,100) (50,58) 15 89 69 29.7969
(50,100) (50,58) 25 93 75 53.7813
(50,100) (50,58) 35 110 84 114.4688
(55,110) (55,64) 5 80 79 17.8125
(55,110) (55,64) 15 93 84 33.9375
(55,110) (55,64) 25 98 84 52.4063
(55,110) (55,64) 35 121 89 117.6875
(60,120) (60,72) 5 104 82 29.8594
(60,120) (60,72) 15 116 95 66.7813
(60,120) (60,72) 25 129 96 109.2031
(60,120) (60,72) 35 136 87 126.6250
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Figure 6.3: Three-dimensional plots of the numerical results obtained for randomly-generated problems.
The number of iterations results are shown to the left (inner iter. is in light blue, and outer iter. is in light red).

The CPU(s) results are shown to the right.
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The implementation in Examples 6.1 and 6.2 shows Algorithm 1 is simple and efficient. From the
numerical results displayed in Tables 6.1 and 6.2 and visualized in Figures 6.2 and 6.3, we notice that the
number of iterations and the CPU(s) using Algorithm 1 are increasing when the number of scenarios K
increases. We also find that the increase in the number of iterations is not only influenced by the number
of scenarios, but also by dimensions of the underlying infinity norm cones. This totally agrees with the
theoretical findings stated in Theorems 5.1 and 5.2.

Finally, we point out that we have also used the solver CVX to solve Examples 6.1 and 6.2. We have found
that Algorithm 1 has no remarkable superiority to CVX in terms of number of iterations or running time. It
is our belief that this does not lower the academic and practical value of this paper. Furthermore, when the
number of realizations and the ranks of the underlying cones are large (typically, more than 50 each), we
have found that the results show a small tendency toward Algorithm 1. Since the observed tendency is small
and because we are keen to be cautious, we have decided not to include these results in this section.

7 Conclusions

In this paper, we have studied the two-stage stochastic infinity norm optimization problem. We have
developed a novel algebra specialized and associated with the infinity norm cone. This allowed us not only to
give explicit expressions for the derivatives of the logarithmic barrier functions associated with the cone, but
also to specify the explicit barrier parameters for the self-concordant family of the composite barrier functions.
These properties opened the door to develop primal decomposition-based interior-point algorithms for
solving our optimization problem. We have shown that the worst case iteration complexity of the developed
algorithms is the same as that for the short- and long-step interior-point algorithms applied to the two-stage
stochastic linear programming. More specifically, we have found from our complexity results that the
dominant complexity terms are linear in the number of realizations and linear in the ranks of the underlying
infinity norm cones. We have seen that this exactly matches in terms of rank the best known results in
the literature for stochastic second-order cone programming and stochastic semidefinite programming.
Numerical experiments on stochastic uniform facility location problems as well as randomly-generated
problems have demonstrated that the proposed algorithm not only has efficient worst case theoretical
complexity, but also gives a good performance in practice. Future work may be devoted to study the
two-stage stochastic first-order cone programming problem in which the underlying cone is C7.
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A Complexity proofs

In this appendix, we present proofs for the complexity results stated in Section 6 that bound the number of
iterations. The general scheme of our proofs follows the lines of the proofs from [18] and [14]. The proof of
Theorem 5.1 for the short-step algorithm is given in Sub-appendix A.1, and the proof of Theorem 5.2 for the
long-step algorithm is given in Sub-appendix A.2.

A.1 Complexity proof of the short-step algorithm

In this part, we show that the short-step algorithm takes only one inner iteration when ® =1 -t/ Vn + Km
where 0 < ¢ < 0.0755. This value for @ is derived by using the parameter functions a;(u), az(p), . . ., as(u) of
the self-concordant family {n(x, u) : 4 > 0} established in Theorem 4.1.
Let v be a positive parameter. Let also {f,}.er,, be a family of strongly self-concordant functions with the
parameters ai(u), a2(u), ..., as(u). The v-metric function associated with the family {f,} ,cr,, is denoted by
1 Y1 ()az(u)as(v)

@o(f; t,7) and is defined as [23]
a1 (v)aa (v)az(u) f; as(w) dw +‘ f; as(w) dwl.

Proof of Theorem 5.1: In the short-step algorithm, we update y' using u'*! = @', where ® = 1 -1/ Vn + Km,
and ¢ is a small positive constant. Firstly, we show that if 0 <« < 0.0755, then the proximity condition can be
restored with only one inner iteration. By Theorem 4.1, the 2x-metric function associated with the family
{p(x, 1) : 4 >0} is

@o(f;t,7T) = max

u,velt, 1]

1
+—
(%

Pax (77; Hi’ Hi+1) — %

fu’” V2((n—1) + K(m - 1))dw ' .
uw

i w

f“"” 1+2%2vVm—1 ;
u

i 2w w'

B \/2((n—1)+K(m—1))+1+23/2\/m—1 f —dw'
B 2K 2 o w
(2@ =D+Kmm-1) 1422 Vm-T) (@
- 2% 2 Uiﬂ
(N2 -D+Km-1) 1422 V-1 1n(l)
B 2K 2 @
B \/2((n—1)+K(m—1))+1+23/2\/m—1 ln( Vn +Km )
2x 2 Vi +Km -t
Assume we have that 1 ,
i : 1 Y Y A
o (x U ) <k, orequivalently > <1 21<6 (x U ) . (42)
By [23, Theorem 3.1.1], we deduce that
Coi i & (', i) Ca it
Qu(m ', 0™y <1 - 5 , which implies that 6(x', u"™") < 2«. (43)

From the right-hand side inequality in (43) and [23, Theorem 2.2.2(ii)], we have
‘ . 1 ,. .
i+1 i+l i+l
5 (x™1, i )§§6<x,y ). (44)
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Note that one Newton step can give 5(x'*!, u'*1) < x again if (44) is combined with the right-hand side
inequality in (43). Note also that the right-hand side inequality in (42) and

D V2 =1)+Km-1) 1+232vVm—1 Vi + Km 1
e (144, 1) = 5 + . In <2
Vn+ Km —1

ensure that the left-hand side inequality in (43) is satisfied. As a result, the inequality in (45) can give us an
upper bound of ¢. It is clear from (45) that

(45)

1< Vn+Km [1-exp VTR _11)) > (n + Km), (46)
n—1)+K(m -
+1+2%2Vm -1

K

where (-) is defined as

Yt = Vi [1- exp 1 il for t € [2, ).

211+2Vt=-1+ —
(+ + o

After a lengthy but not complex computation, one can find that ”’(f) < 0 on [2, o), 1'(2) > 0, and
lim;—, P(f) = 0. This means that 1(f) is an increasing function on [2, o), and hence y(t) > ¢(2) > 0.0755, for
any t € [2, ). In particular, ¢(n + Km) > ¢(2). Thus, for 1 < 0.0755, the left-hand side inequality in (46) is met

ensuring that the number of inner iterations equals one. Because In®~! = —In(1 — ¢t/ Vn + Km) =~ 1/ Vn + Km
and due to the fact that the number of outer iterations is given by N < In(u/¢)/In®~!, we conclude that

with O(Vn + KmIn(u°/¢)) outer iterations we can reduce p° to ¢ or less. The proof is complete. O

A.2 Complexity proof of the long-step algorithm

The complexity proof of the long-step algorithm makes use of Theorems 2.1.1(i) and 2.2.3 in [23] and Lemma
A.3in [18]. We also define

P, 1) = nx, @) — n(* (W), W), (47)

5x, ) = \/% AxXTV2.1(x, n)Ax, where Ax £ x — x*(u). (48)

The self-concordance family property of {n(x, u) : u > 0}, an upper bound on ¢(x, i), and lower bound on
the decrement of 7(x, 1) per inner iteration are all employed in the complexity analysis of long-step algorithm.
We give some technical lemmas that shall be used to derive the complexity result for the long-step algorithm.

Lemma A.1 Let 6 2 5(x, w) < 1and ¢(x, u) be defined in (47) and (48). Then

‘%cﬁ(x, u)’ < —42((n = 1) + K(m — 1)) ln(l - 5).

Proof: By using the KKT condition for the first-stage problem, and applying the fundamental theorem of
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calculus to %qb(x, i), we have

‘ %Wf ) ' = %n(x, ) - ain(x(u), Ok (Vxn(x(u)/ u))T %x(u) ‘

|2 n(x #)—inx(m#)‘

T

ou’!
= f Vi1 x(y) + alx, y)) A
< fl (%Vrn(x(y) + alx, y))T
f \/2( ), +K(m D) \/AxTV§xq x(y ) + alhx, y)Axd

2((n—1)+ K(m — 1)) Vb -
gfo \/ . < dy = —+2((n—1) + K(m - 1)) In(1-§),

1+ (@—-1)%

da

where we used Lemma 4.5 to obtain the second inequality, and Theorem 2.1.1(i) in [23] to obtain the third
inequality. The proof is complete. m|

Lemma A.2 If = 5(x, 1) < C, for C € (0,1), then

¢ (x, #i+1) (x ”1+1) (x <”i+1) , #iH) <O+ Km)[.iiH.

Proof: By differentiating (47), we have

Lot = Lo - L), 1) - (Ve )" 2w
8y2¢ W= 8”5277 ) = 5 ) ) = (V) ) 5 pau
< —8—Hzn(X(u),y)
ZK“ ? w
= =) 5P (W), u
b= Iu?
_ (k)Ta (k)* )
= gy, 3=y (v, )
1 ( 0T k)72 ®) y®™2 (k)
- - HO™ (1= POYHO ™" gl )
‘leZIzl
< LYot e)
‘ukI:<1
1 -1
- LX) = (70
‘ukI:<1
= thrace(em)z K(m = 1)
= u
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05,07 = 0 46) + (57 = )+ 5000 0)

From Lemma A.3 in [18], we have ¢(x, u') < (6/(1 = §) + In(1 — §))u'. It follows that
[J . .

L 1 2
i+f#i”£ ﬁqb(x,t) dtd,
=i
i

< (% +In(1- 5)) i = (' = ) V2((r = 1)+ K(m — 1)) In (1 = §) + 2K(m 1’fy,ﬂ f Fatd,

< (% +1n (1 - 5)) u - (‘Lli - yi“) V2((n =1) + K(m — 1)) In (1 - 5) +2K(m —1) (yi - /f“)ln ®.

The desired result is obtained since 6 < C, u™*! = @', and C and @ are constants. ]
Now, we are ready to prove Theorem 5.2. The focus of this complexity proof is on bounding the number

of inner iterations.

Proof of Theorem 5.2: We use an arbitrary constant factor @ € (0, 1) to decrease the barrier parameter p in
the long-step variant of the algorithm. Each outer iterate (x*, i) satisfies (x*, u¥) < k. Since @ is a constant,
the number of outer iterations required to reduce u° to € is equal to In(u°/€)/ In @™!. We bound the number
of inner Newton iterations. We assume that after updating u* to p**1, 5(x*, u¥) > «x, and that we start the
inner loop by letting x* = x*. From [23, Theorem 2.2.3], at any inner iterate x*/, if 5(x*/, u**1) > 2x, then

1 (xkj, ‘uk+1) _— (xk(j+1), [uk+1) > [uk+1 (5 (xkj’ Mk+1) _In (1 +6 (ij, Hk+1))) > 0'03/'1”1'
That is, the difference is decreased by at least O.OBMI‘Jr1 at each inner Newton iteration. On the other hand,
Lemma A.2 shows that n(x¥, u®*1) — n(x* (u**1), u**1) < O(n + Km)u**'. When the difference is equal to or less
than 2k, by [23, Theorem 2.2.3], one Newton iteration will produce XM with 6(x*M, yk+1) < k, then x**1 is
taken to be ¥** and the inner loop is thus terminated. Thus, each inner loop takes only O(n + Km) Newton
iterations. This therefore bounds the total number of Newton iterations at the order O((n + Km) In(u°/¢)).0
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