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Abstract. Developing solution methods for discrete bilevel problems is known to be
a challenging task—even if all parameters of the problem are exactly known. Many
real-world applications of bilevel optimization, however, involve data uncertainty. We
study discrete min-max problems with a follower who faces uncertainties regarding the
parameters of the lower-level problem. Adopting a Γ-robust approach, we present an
extended formulation and a multi-follower formulation to model this type of problem. For
both settings, we provide a generic branch-and-cut framework. Specifically, we investigate
interdiction problems with a monotone Γ-robust follower and we derive problem-tailored
cuts, which extend existing techniques that have been proposed for the deterministic
case. For the Γ-robust knapsack interdiction problem, we computationally evaluate and
compare the performance of the proposed algorithms for both modeling approaches.

1. Introduction

In the last years and decades, bilevel optimization problems have gained increasing
attention due to their ability to model hierarchical decision making processes that occur in
various applications such as transportation (Ben-Ayed et al. 1992; Migdalas 1995), energy
markets (Arroyo 2010; Grimm et al. 2019), or pricing (Dempe and Zemkoho 2012; Labbé
et al. 1998). In bilevel problems, the decision maker on the upper level (the leader) makes a
decision anticipating the reaction of the lower-level player (the follower). In this paper, we
consider discrete linear bilevel problems of the form

min
x

c>x+ d>y (1a)

s.t. Ax ≥ a, (1b)
x ∈ X ⊆ Znx , (1c)

y ∈ arg max
y′

{
d>y′ : y′ ∈ Y (x) ⊆ Zny

+

}
, (1d)

where Y (x) denotes the lower-level feasible set that is parameterized by the leader’s variables x.
The set X is used to denote integrality constraints. Moreover, we have c ∈ Rnx , d ∈ Rny ,
A ∈ Rk×nx , and a ∈ Rk. We refer to (1a)–(1c) as the upper-level and to (1d) as the
lower-level problem. Note that Problem (1) is a min-max problem. Hence, the follower’s
response yields the worst-possible outcome for the leader, which is why there is no need to
distinguish between the optimistic and the pessimistic approach; see, e.g., Dempe (2002).
Let us further point out that we do not consider coupling constraints in the upper level,
which is crucial for the validity of the branch-and-cut methods we propose in the following
sections. In particular, this type of problem covers the important classes of interdiction
(G. Brown et al. 2006; Cormican et al. 1998; DeNegre 2011; Fischetti, Ljubić, et al. 2019;
Furini, Ljubić, Malaguti, et al. 2021; Israeli and Wood 2002; Wood 2011) and blocking
problems (Bazgan et al. 2013; Furini, Ljubić, Malaguti, et al. 2020; Golden 1978; Pajouh
2020; Pajouh, Boginski, et al. 2014; Pajouh, Walteros, et al. 2015; Zenklusen et al. 2009)
that arise in various real-world applications such as in critical infrastructure defense, network
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disruption, or marketing. A recent survey on network interdiction models and algorithms
can be found in Smith and Song (2020).

Due to their nested structure, even linear bilevel problems are strongly NP-hard in general;
see, e.g., Hansen et al. (1992). Moreover, merely checking feasibility for mixed-integer
bilevel problems is an NP-hard problem. Thus, it is a difficult task to develop solution
methods—especially for bilevel problems that involve discrete variables. In the seminal work
by Moore and Bard (1990), the first branch-and-bound method for solving mixed-integer
linear bilevel problems is discussed. The idea is extended by DeNegre and Ralphs (2009)
who provide a branch-and-cut approach that is based on techniques of standard integer
linear programming. In particular, this work can be considered as a turning point regarding
computational mixed-integer bilevel optimization that is followed by many influential works
on solution methods for bilevel problems; see, e.g., Fischetti, Ljubić, et al. (2017, 2018),
Tahernejad, Ralphs, and DeNegre (2020), and Xu and Wang (2014). For a detailed discussion
on further techniques for mixed-integer bilevel optimization, we refer to the recent survey in
Kleinert et al. (2021).

Throughout this paper, we say that an upper-level decision x is feasible if x ∈ X and Ax ≥ a
are satisfied. Moreover, we will hold on to the following.

Assumption 1. For every feasible decision x of the leader, the lower-level feasible set Y (x)
is non-empty.

Assumption 2. The shared constraint set {(x, y) : Ax ≥ a, x ∈ X, y ∈ Y (x)} is non-empty
and compact.

Assumption 3. All linking variables, i.e., all variables of the leader that appear in the
lower-level constraints, are bounded integers.

Assumptions 1–3 are necessary to ensure that Problem (1) has an optimal solution. For a
feasible upper-level decision x, we further define the lower-level optimal-value function

Φ(x) = max
y

{
d>y : y ∈ Y (x)

}
to re-write Problem (1) as the single-level problem

min
x∈X,η∈R

c>x+ η (2a)

s.t. Ax ≥ a, (2b)
η ≥ Φ(x). (2c)

Up to this point, we implicitly made the assumption that the input data of both players is
certain. However, in many practical situations, this is not the case and the players are forced
to make decisions under uncertainty. In mathematical optimization, there are two main
approaches to deal with data uncertainty—stochastic optimization (Birge and Louveaux
2011) and robust optimization (Ben-Tal et al. 2009; Bertsimas, D. Brown, et al. 2010; Soyster
1973). In stochastic optimization, it is assumed that the uncertainties can be described by
probability distributions that are known in advance. In this setting, the decision maker hedges
against uncertainties in a probabilistic sense, e.g., by optimizing over expected values, by
considering chance constraints, or some risk-averse models. In between stochastic and robust
optimization there is the further approach of distributional robustness; see, e.g., Goh and
Sim (2010). In this paper, however, we focus on a robust approach. In robust optimization,
the decision maker is interested in a solution that is feasible for all possible realizations of
the uncertain data that are assumed to take values in a given uncertainty set. Thus, one
pursues a worst-case-oriented philosophy. However, a major point of criticism regarding this
approach is the possible over-conservatism of solutions in the sense that ensuring robustness
can be very expensive. Addressing this matter, Bertsimas and Sim (2003, 2004) and Sim
(2004) propose a more flexible robust approach—the so-called Γ-robust approach—which
allows to control the level of conservatism of the solution. In this setting, it is assumed
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that the decision maker hedges against the cases in which only a subset of the uncertain
parameters will change as to adversely affect the solution of the problem at hand.

In the context of bilevel optimization, problems involving data uncertainties have been
investigated using both stochastic as well as robust approaches. Cormican et al. (1998) and
Israeli (1999) address stochastic network interdiction problems with uncertainties regarding
the interdiction success and uncertain arc capacities, respectively. A stochastic approach for
interdiction problems under uncertainty is also considered in the survey by Smith and Song
(2020). Further works that pursue a stochastic approach for more general bilevel problems
under uncertainty can be found, e.g., in Burtscheidt and Claus (2020), Burtscheidt, Claus,
and Dempe (2020), Dempe, Ivanov, et al. (2017), Ivanov (2018), and Yanıkoğlu and Kuhn
(2018). To the best of our knowledge, robust approaches to address data uncertainty in
bilevel optimization have been much less investigated. In the context of power markets,
a Γ-robust approach to deal with uncertain lower-level data is considered in Haghighat
(2014). Chuong and Jeyakumar (2017) consider problems with uncertain upper- as well
as lower-level constraints and solve the robust counterpart via a sequence of semidefinite
programming relaxations. In Zeng et al. (2020), a worst-case oriented approach for bilevel
problems with lower-level data uncertainty is addressed. Buchheim and Henke (2020) and
Buchheim, Henke, and Hommelsheim (2021) present complexity results for robust bilevel
problems with uncertainties regarding the lower-level objective function coefficients. For
a brief introduction to robust bilevel optimization, we refer to Beck, Ljubić, et al. (2022)
and for a general discussion on bilevel optimization under uncertainty, we refer to the recent
survey by Beck, Ljubić, et al. (2023).

Let us further mention that, in bilevel optimization, the sources for uncertainty are much
richer compared to classic, i.e., single-level, optimization. In bilevel optimization, uncertainties
may not only arise in the problem’s data but there may also be uncertainty regarding the
(observation of the) decisions of the two players. Despite being still in its infancy, there are
a few works that consider robust approaches to deal with decision uncertainty. Besançon
et al. (2019) propose a robust approach to hedge against near-optimal lower-level decisions.
In this context, complexity results are discussed in Besançon et al. (2021). A similar setting
in which the leader anticipates sub-optimal follower’s decisions due to lower-level algorithmic
uncertainty is considered in Zare et al. (2020). The authors consider the setting in which
the leader hedges against the Γth least damaging choices of the solution algorithm for the
lower-level problem, which is to some extent related to the notion of Γ-robustness proposed
in Bertsimas and Sim (2003). Lastly, robust optimization techniques are used in Beck and
Schmidt (2021) to model follower’s response uncertainty due to limited observability regarding
the leader’s decision.

The contributions of this paper are the following. We study discrete linear bilevel
problems involving a follower who faces uncertainties regarding the parameters of the lower-
level problem. In this context, we pursue the same idea as in Bertsimas and Sim (2003,
2004) and Sim (2004) so that the follower aims to only hedge against a subset of deviations
of uncertain parameters. In contrast to the aforementioned literature, we consider bilevel
problems that involve discrete variables on the lower level. Therefore, standard reformulation
techniques like replacing the lower-level problem by its Karush–Kuhn–Tucker conditions (see,
e.g., Fortuny-Amat and McCarl (1981)) cannot be applied anymore.

With regard to the uncertainties, we distinguish the following two cases. On the one hand,
we assume that the lower-level’s objective function coefficients are uncertain. Instead of di, we
consider the uncertain coefficients d̄i, where d̄i ∈ [di −∆di, di] for all i ∈ [ny] := {1, . . . , ny}.
We denote di as the nominal value of the ith coefficient of the lower-level’s objective function
and ∆di as its maximum deviation from the nominal value. For a feasible upper-level
decision x, the robust counterpart of the lower-level problem (1d) in which the follower
hedges against at most Γd ∈ {0, . . . , ny} deviations in the objective function coefficients is
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given by

Φd(x) = max
y∈Y (x)

{
d>y − max

{S⊆[ny ] : |S|≤Γd}

∑
i∈S

∆diyi

}
. (3)

The overall bilevel problem with a Γd-robust follower facing uncertain objective function
coefficients can thus be written as

min
x∈X,η∈R

c>x+ η s.t. Ax ≥ a, η ≥ Φd(x). (4)

On the other hand, we deal with uncertainties regarding the lower-level constraints.
Here, we focus on the specific case of a single packing-type constraint of the form
w̄>y + v>x ≤ C with v ∈ Rnx , C ∈ R, and w̄ ∈ Rny , where w̄i ∈ [wi, wi + ∆wi] for
all i ∈ [ny] with w,∆w ∈ Rny . For a feasible upper-level decision x, the robust counterpart
in which the follower hedges against at most Γw ∈ {0, . . . , ny} deviations in the constraint
coefficients is given by

Φw(x) = max
y∈Y (x)

{
d>y : w>y + v>x+ max

{S⊆[ny ] : |S|≤Γw}

∑
i∈S

∆wiyi ≤ C

}
(5)

such that the Γw-robust counterpart of Problem (2) can be written as

min
x∈X,η∈R

c>x+ η s.t. Ax ≥ a, η ≥ Φw(x). (6)

Let us mention that we focus on this specific case to ensure that both of the two approaches
we present in this paper to model discrete bilevel problems with a robust follower can deal
with uncertain lower-level constraints. Nevertheless, possible extensions are sketched in
Section 5.

Without loss of generality, we further impose the following.

Assumption 4. The deviations are non-negative, i.e., ∆di,∆wi ≥ 0 for all i ∈ [ny].

To model the two types of situations, we consider an approach using an extended for-
mulation. Additionally, we present an approach using a multi-follower formulation for the
special case in which all lower-level variables are binary, i.e., Y (x) ⊆ {0, 1}ny . However, the
multi-follower-based approach can be extended naturally to allow for additional non-binary
lower-level variables as long as the coefficients of the objective function or the constraints
corresponding to the non-binary variables are not subject to uncertainty. We present a
generic branch-and-cut framework to solve the value-function reformulation of the robustified
bilevel problem. Moreover, we derive problem-tailored cuts for interdiction problems that can
be used in the proposed branch-and-cut procedure. These cuts assume that Γ-robust follower
sub-problems satisfy a downward monotonicity property, which arises in many packing-type
applications. In this context, it is our aim to provide a natural extension of the results that
have been proposed in Fischetti, Ljubić, et al. (2019) for the deterministic case. The main
results of this paper are stated in Theorems 2–5 and form the core for the implementation of
the proposed solution methods.

The remainder of the paper is organized as follows. In Section 2, we provide an extended
formulation and a multi-follower formulation to model discrete linear bilevel problems with a
Γ-robust lower-level problem. We present a generic branch-and-cut method to solve these
problems. In Section 3, we focus on interdiction problems with a follower problem that
satisfies a downward monotonicity property. In Section 4, we evaluate the effectiveness of the
proposed approaches in a numerical study using the bilevel knapsack interdiction problem,
which is a prominent example of an interdiction problem that satisfies the monotonicity
property. Finally, we conclude in Section 5.

2. Generic Branch-and-Cut Frameworks

The aim of this section is to present generic branch-and-cut frameworks that can be used
to solve the Γ-robustification of Problem (2) as stated around (4) and (6). The methods are
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similar to a procedure proposed by Wood (2011), which resembles (generalized) Benders
decomposition (Benders 1962; Geoffrion 1972). To initialize the methods, we start by solving
the problem in which the integrality constraints on the variables x as well as η ≥ Φ(x) are
omitted. This means that we first consider the linear problem

min
x,η

c>x+ η

s.t. (x, η) ∈ Ω0 := {(x, η) ∈ Rnx × R : Ax ≥ a, x ∈ X̊, η ≥ η−}.
(P0)

Here, X̊ is a continuous relaxation of X, i.e., the integer points contained in X̊ coincide
with X. Furthermore, we use an a priori lower bound η− ∈ R on Φ(x) for all feasible leader’s
decisions x. In the following sections, we elaborate on how to obtain a valid lower bound in
our setting. After considering Problem (P0), we iteratively add valid inequalities or branch
to cut off integer-infeasible points and also add valid inequalities to cut off bilevel infeasible
points. Let

min
x,η

c>x+ η

s.t. (x, η) ∈ Ωj ⊆ Rnx × R
(Pj)

be the problem of node j of the branch-and-cut search tree. Here, the set Ωj contains all valid
inequalities that have been added previously to cut off integer-infeasible and bilevel-infeasible
points as well as all branching decisions. If either Problem (Pj) is infeasible or, if the
objective function value corresponding to an optimal solution (xj , ηj) exceeds the current
upper bound U , we can fathom node j. Otherwise, we do the following. First, we check
if the upper-level variables xj satisfy the integrality constraints, i.e., we check if xj ∈ X
holds. If this is not the case, we separate a fractional solution by either exploiting standard
cutting planes from mixed-integer linear optimization as elaborated in, e.g., Cornuéjols (2008),
or by branching. Otherwise, we proceed by checking for bilevel feasibility, i.e., we check
if ηj ≥ Φ(xj) is satisfied. For this purpose, we solve a reformulation of the robust counterpart
of the lower-level problem that is parameterized by the current leader’s decision xj ∈ X. In
the following sections, we will elaborate on how to obtain these reformulations. In particular,
we present two approaches—an extended formulation and a multi-follower formulation—that
are derived from Theorem 1 and 3, respectively, in Bertsimas and Sim (2003). Based on
the latter two types of formulations, valid cuts to separate bilevel-infeasible points can
be obtained. Nevertheless, the development of such cuts strongly depends on the specific
problem considered at the lower level. Hence, the branch-and-cut frameworks presented in
the remainder of this section remain fairly general and need to be adapted accordingly to
capture the application problem at hand. We will show such adaptations for the bilevel
knapsack interdiction problem in the following sections.

2.1. Extended Formulation. One possibility to reformulate the robust counterparts (3)
and (5) is to allow for an extended variable space of the follower that involves additional
continuous variables.

Lemma 1. For a feasible upper-level decision x, the robust counterpart of the lower-level
problem (3) can be solved as the mixed-integer linear problem

Φd(x) = max
y,z,θ

ny∑
i=1

diyi − Γdθ −
ny∑
i=1

zi (7a)

s.t. zi + θ ≥ ∆diyi, i ∈ [ny] , (7b)
(z, θ) ≥ 0, (7c)
y ∈ Y (x). (7d)

The extended formulation for the case of uncertainties in the lower-level constraint is
stated in the following lemma.
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Lemma 2. For a feasible upper-level decision x, the robust counterpart of the lower-level
problem (5) can be solved as the mixed-integer linear problem

Φw(x) = max
y,z,θ

ny∑
i=1

diyi (8a)

s.t.
ny∑
i=1

wiyi + Γwθ +

ny∑
i=1

zi ≤ C −
nx∑
i=1

vixi, (8b)

zi + θ ≥ ∆wiyi, i ∈ [ny] , (8c)
(z, θ) ≥ 0, (8d)
y ∈ Y (x). (8e)

Both lemmas can be shown in analogy to the proof of Theorem 1 in Bertsimas and Sim
(2003). Before we comment on how the previous reformulations can be embedded in a
branch-and-cut framework to separate bilevel-infeasible points, let us now provide valid lower
bounds that can be used in Problem (P0) to initialize the method.

Proposition 1. Let x be a feasible upper-level decision. Then, by Assumption 2,
there is a vector of finite upper bounds u ∈ Rny

+ for the follower’s variables such
that Y (x) ⊆ [0, u1]× · · · × [0, uny

] and such that

η− :=

ny∑
i=1

min {di, 0}ui − Γd max
i∈[ny ]

{∆diui} −
ny∑
i=1

∆diui

is a valid lower bound for the optimal objective function value of the x-parameterized prob-
lem (7).

All the proofs that we omit here can be found in Appendix A. In the following, we provide
a lower bound for the variant of the problem with uncertainties regarding the follower’s
packing-type constraint.

Proposition 2. Let x be a feasible upper-level decision. Then, by Assumption 2,
there is a vector of finite upper bounds u ∈ Rny

+ for the follower’s variables such
that Y (x) ⊆ [0, u1]× · · · × [0, uny ] and such that

η− :=

ny∑
i=1

min {di, 0}ui

is a valid lower bound for the optimal objective function value of the x-parameterized prob-
lem (8).

The method to process node j of the branch-and-cut search tree that exploits an extended
formulation (as stated in the last two lemmas) is formally stated in Algorithm 1. To deter-
mine Φ(xj) for the current leader’s decision xj in Step 9, we need to solve the xj-parameterized
robust lower-level problem. Depending on the considered uncertainty model, this can either
be Problem (7) or Problem (8) for which we set Φ(xj) = Φd(x

j) or Φ(xj) = Φw(xj) accord-
ingly. In Step 11, we generate a valid cut to exclude the bilevel-infeasible point (xj , ηj). To
this end, one can use generic cuts like (generalized) no-good cuts; see, e.g., Tahernejad and
Ralphs (2020).

2.2. Multi-Follower Approach. An alternative reformulation of the robust counterparts (3)
and (5) can be obtained under the following additional assumptions.

Assumption 5. All lower-level variables y are binary, i.e., Y (x) ⊆ {0, 1}ny .

Assumption 6. The indices are ordered such that the deviations are given in non-increasing
order, i.e., ∆di ≥ ∆di+1 or ∆wi ≥ ∆wi+1 for all i ∈ [ny] with ∆dny+1 = 0 and ∆wny+1 = 0.
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Algorithm 1 Processing node j using the extended formulation

1: Solve Problem (Pj).
2: if Problem (Pj) is infeasible then
3: Fathom the current node.
4: Let (xj , ηj) denote the solution of Problem (Pj).
5: if c>xj + ηj ≥ U then
6: Fathom the current node.
7: if xj /∈ X then
8: Either generate cuts valid for Ωj ∩ (X ×R), augment Ωj , and go to Step 1 or branch.
9: Determine Φ(xj) and set U ← min{U, c>xj + Φ(xj)}.

10: if ηj < Φ(xj) then
11: Generate a valid cut that excludes (xj , ηj) from Ωj , augment Ωj , and go to Step 1.

Note that Assumption 6 is w.l.o.g. as long as we do not have uncertainties in both the
objective function coefficients and the constraint coefficients on the lower level. Assumptions 5
and 6 are necessary to exploit Theorem 3 in Bertsimas and Sim (2003), which is what we do
in the following.

Lemma 3. Let x be a feasible upper-level decision. Under Assumptions 5 and 6, solving the
robust counterpart of the lower-level problem (3) is equivalent to solving ny + 1 problems of
the nominal type, i.e.,

Φd(x) = max
`∈{1,...,ny+1}

Φ`d(x) (9)

holds, where for all ` ∈ {1, . . . , ny + 1}, we have

Φ`d(x) = −Γd∆d` + max
y∈Y (x)

{
d̃(`)>y

}
(10)

with

d̃(`)i =

{
di − (∆di −∆d`), 1 ≤ i ≤ `,
di, `+ 1 ≤ i ≤ ny.

Note that the lower-level optimal-value function (9) is defined as the maximum of ny + 1
value functions. Thus, the robustification of Problem (1) can be interpreted as a single-
leader-multi-follower problem with ny + 1 many followers, which is why we refer to (9)
as multi-follower formulation. Moreover, we refer to (10) as the `th follower sub-problem
throughout this paper.

In the following, we provide a valid lower bound for the optimal objective function value
of (9) that can be used in Problem (P0).

Proposition 3. Let x be a feasible upper-level decision and let ` ∈ {1, . . . , ny+1} be arbitrary
but fixed. Under Assumption 5, a valid lower bound for the optimal objective function value
of the x-parameterized problem (9) is given by

η− := −Γd∆d` +

ny∑
i=1

min
{
d̃(`)i, 0

}
.

The multi-follower reformulation for the case of uncertainties in the lower-level constraint
is stated in the following lemma.

Lemma 4. Let x be a feasible upper-level decision. Under Assumptions 5 and 6, solving the
robust counterpart of the lower-level problem (5) is equivalent to solving ny + 1 problems of
the nominal type, i.e.,

Φw(x) = max
`∈{1,...,ny+1}

Φ`w(x)
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holds, where for all ` ∈ {1, . . . , ny + 1}, we have

Φ`w(x) = max
y∈Y (x)

{
ny∑
i=1

diyi : Γw∆w` +

ny∑
i=1

w̃(`)iyi +

nx∑
i=1

vixi ≤ C

}
(11)

with

w̃(`)i =

{
wi + (∆wi −∆w`), 1 ≤ i ≤ `,
wi, `+ 1 ≤ i ≤ ny.

Lemmas 3 and 4 can be shown in analogy to the proof of Theorem 3 in Bertsimas and
Sim (2003).

Note that, in the case of uncertainties regarding the follower’s inequality constraint,
we have ∆d` = 0 such that d̃(`) = d holds for all ` ∈ {1, . . . , ny + 1}. Using the latter,
Proposition 3 also provides a valid lower bound for the setting considered in Lemma 4.
Let us further note that we consider the same deterministic lower-level objective function
in the extended formulation as well as in the multi-follower formulation. Moreover, we
would like to point out that the fact that there are only binary variables corresponding to
uncertain coefficients on the lower level is a crucial point for the validity of the multi-follower
formulation.

In what follows, we omit the subscripts d and w that are used to denote the considered
uncertainty modeling for notational convenience. Further, we will hold on to an improvement
of the previous results that has been established in Álvarez-Miranda, Ljubić, et al. (2013) by
reducing the number of nominal problems to be considered to ny − Γ + 2, i.e.,

Φ(x) = max
`∈{Γ,...,ny+1}

Φ`(x). (12)

Note that a further reduction of the number of nominal problems to be solved has been
published by Lee and Kwon (2014). Since this is, however, not the core focus of this paper,
we stay with the version as published by Álvarez-Miranda, Ljubić, et al. (2013).

The method to process node j that exploits the multi-follower formulation for the robust
counterpart of the lower-level problem is formally stated in Algorithm 2. In contrast to
the approach using the extended formulation, in which a single cut is added at each node
of the branch-and-cut search tree in case of bilevel-infeasibility, a cut for each follower
sub-problem ` ∈ {Γ, . . . , ny + 1} that satisfies ηj < Φ`(xj) is added in Step 12 of Algorithm 2.
This means that up to ny − Γ + 2 cuts could be added at each node. However, it would also
be valid to consider, e.g., adding only the most violated cut for the given leader’s decision xj .
We will address this aspect in detail when we discuss various cut separation strategies in
Section 4.

Algorithm 2 Processing node j using the multi-follower approach

1: Solve Problem (Pj).
2: if Problem (Pj) is infeasible then
3: Fathom the current node.
4: Let (xj , ηj) denote the solution of Problem (Pj).
5: if c>xj + ηj ≥ U then
6: Fathom the current node.
7: if xj /∈ X then
8: Either generate cuts valid for Ωj ∩ (X × R), augment Ωj , and go to Step 1 or branch.
9: for all ` ∈ {Γ, . . . , ny + 1} do

10: Solve the `th lower-level sub-problem to obtain Φ`(xj).
11: if ηj < Φ`(xj) then
12: Generate a valid cut that excludes (xj , ηj) from Ωj , augment Ωj .
13: Set Φ(xj)← max`∈{Γ,...,ny+1} Φ`(xj) and U ← min{U, c>xj + Φ(xj)}.
14: If at least one cut was added in Step 12, then go to Step 1.
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Theorem 1. If we embed either Algorithm 1 or 2 into a usual branch-and-bound framework,
we obtain a correct method that terminates with an optimal solution (x∗, η∗) after a finite
number of nodes and after adding an overall finite number of cuts.

Proof. We first recall that all linking variables are bounded integers. We then observe that,
w.l.o.g., non-linking variables can be moved to the lower level; see also Bolusani et al. (2020).
Hence, the finite termination is due to the finiteness of the number of feasible upper-level
decisions, the finiteness of branch-and-cut methods to solve the lower-level sub-problems,
and from the fact that a leader’s decision cannot be selected twice. If (x, η) is a non-optimal
leader’s decision, i.e., η < Φ(x), adding a globally valid inequality excludes (x, η) from being
feasible for all subsequent considerations. If an upper-level decision were ever to occur
again, i.e., if there would exist solutions (xk, ηk) = (xj , ηj) of Problem (Pj) with j < k,
then ηj = ηk ≥ Φ(xj) would have to hold and the termination criterion would be satisfied.
Thus, an optimal solution cannot be overlooked. In particular, the number of cuts possibly
added to the problem formulation is finite and in O(2nx). �

Note that the sub-problems that are solved in Step 10 of Algorithm 2 are independent.
This means that the objective function and the constraints of a sub-problem only include
the upper-level decision x and the lower-level variables corresponding to the `th sub-problem
with ` ∈ {Γ, . . . , ny + 1}. Thus, the sub-problems can be solved in parallel. Further note that
we have not specified how the cuts that are added in Algorithm 1 and 2 are generated. For
an overview of various cutting planes that can be used for general classes of mixed-integer
linear bilevel problems, we refer to Tahernejad and Ralphs (2020). Nevertheless, stronger
formulations can be obtained for certain problems; see, e.g., Fischetti, Ljubić, et al. (2019)
and Furini, Ljubić, Segundo, et al. (2021). Thus, it is often essential to exploit specific
properties of the application problem at hand to derive valid cuts, which is what we do in
the remainder of the paper.

3. Interdiction Cuts for Monotone Γ-Robust Followers

In the following, we focus on interdiction problems with a follower problem that satisfies a
downward monotonicity property as in Fischetti, Ljubić, et al. (2019). We refer to this type
of problem as an interdiction problem with a monotone follower. In this setting, both players
share a common set of items indexed by i ∈ [n]. The leader has the ability to influence
the follower’s decision by prohibiting the usage of certain items by the follower. This is
established by either setting the leader’s variable xi = 1 to interdict item i ∈ [n] for the
follower or xi = 0, otherwise. For the ease of presentation, we assume the following.

Assumption 7. The number of variables on the upper and the lower level is the same, i.e.,
nx = ny = n holds.

In particular, this means that all variables of the leader need to be binary, i.e.,
x ∈ X = {0, 1}n. However, the following results can as well be adapted to account for
non-interdicting (and thus possibly non-binary) variables of the leader. The case in which the
lower-level problem also includes variables that are not subject to interdiction can be handled
by partitioning the follower’s variable set into interdicted and non-interdicted variables as it
is done in Fischetti, Ljubić, et al. (2019).

Assumption 8. For a feasible upper-level decision x, the x-parameterized lower-level feasible
set is of the form

Y (x) = {y ∈ Y : By ≤ b, yi ≤ ui(1− xi), i ∈ [n]} (13)

with Y ⊆ Zn+, B ∈ Rm×n+ , b ∈ Rm+ , and a vector of finite upper bounds u ∈ Rn+.

Assumption 8 ensures that the nominal lower-level problem (1d) satisfies a downward
monotonicity property, which we formally define in the following. Further note that the
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leader’s variables x are linked to the lower-level problem only via the interdiction con-
straints yi ≤ ui(1− xi). Both aspects are essential for the validity of the cuts we propose in
the remainder of this section.

Proposition 4 (Monotonicity Property). Let x be a feasible decision of the leader. Further,
let y ∈ Y (x) and let y′ ∈ Y be such that y′ ≤ y holds. Then, y′ is a feasible follower’s decision
for the given leader’s decision x, i.e., y′ ∈ Y (x).

It is noteworthy that, under Assumption 8, all items with non-positive objective function
coefficients are not chosen by the follower. Consequently, the leader does not need to spend
interdiction resources on these items and we could thus omit all items with non-positive
objective function coefficients in the problem formulation. This leads us to, w.l.o.g., making
the following assumption.

Assumption 9. All lower-level objective function coefficients are positive, i.e., di > 0 for
all i ∈ [n].

Finally, we will hold on to the following, which is reasonable in the interdiction setting.

Assumption 10. There are no terms depending on the leader’s decision in the upper-level
objective function, i.e., c = 0.

In the following sections, we show that the downward monotonicity property remains
satisfied when Γ-robust followers are considered, which we exploit to derive valid cuts.
In Section 3.1, we focus on the case of uncertainties in the follower’s objective function
coefficients. We derive two variants of interdiction cuts based on the two approaches discussed
in Section 2. We devote Section 3.2 to strengthened formulations for the proposed interdiction
cuts. Finally, the case of uncertainties in the lower-level constraint is addressed in Section 3.3.

3.1. Problems with Uncertain Objective Function Coefficients. According to the
notation considered in the previous sections, we assume that all lower-level objective function
coefficients may be subject to uncertainty and that the follower hedges against at most Γd
deviations in the objective function coefficients. The robust counterpart of the lower-
level problem and of the overall bilevel problem is given in (3) and (4), respectively. The
corresponding extended formulation and the multi-follower formulation have already been
stated in Section 2. For the extended formulation, we only need to replace (7d) with (13),
i.e., we consider the problem

Φ(x) = max
y,z,θ

n∑
i=1

diyi − Γdθ −
n∑
i=1

zi (14a)

s.t. zi + θ ≥ ∆diyi, i ∈ [n], (14b)
By ≤ b, (14c)
yi ≤ ui(1− xi), i ∈ [n], (14d)
(z, θ) ≥ 0, y ∈ Y. (14e)

For the multi-follower approach, we need to replace the feasible set in (10) with (13). Due to
Assumption 5, ui = 1 is a trivially valid upper bound for all i ∈ [n]. For ` ∈ {Γd, . . . , ny + 1},
we thus consider the sub-problem

Φ`(x) = −Γd∆d` + max
y

{
d̃(`)>y : By ≤ b, yi ≤ 1− xi, yi ∈ {0, 1}, i ∈ [n]

}
. (15)

Proposition 5. Let x be a feasible decision of the leader. Then, the x-parameterized
problem (15) satisfies the downward monotonicity property. Moreover, let (y, z, θ) be feasible
for the x-parameterized problem (14), and let y′ ∈ Y be such that y′ ≤ y holds. Then, (y′, z, θ)
is feasible for the x-parameterized problem (14) as well.

Due to Proposition 5 and for the ease of presentation, we also say that the extended
formulation (14) satisfies the downward monotonicity property. In what follows, we exploit the
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previous result to introduce penalized formulations for Problems (14) and (15) that are used to
derive valid interdiction cuts. To this end, we omit the interdiction constraints yi ≤ ui(1−xi)
in the problem formulation and instead add the penalty terms −diyixi to the objective
function for all i ∈ [n].

Proposition 6. Let x be a feasible upper-level decision. Then, Problem (14) and the
mixed-integer linear problem

Φ(x) = max
y,z,θ

n∑
i=1

diyi(1− xi)− Γdθ −
n∑
i=1

zi (16a)

s.t. zi + θ ≥ ∆diyi, i ∈ [n], (16b)
By ≤ b, (16c)
yi ≤ ui, i ∈ [n], (16d)
(z, θ) ≥ 0, y ∈ Y (16e)

admit the same optimal value.

For the multi-follower-based approach, we obtain the following similar result.

Proposition 7. Let x be a feasible upper-level decision and let ` ∈ {Γd, . . . , n + 1} be
arbitrary but fixed. Then, Problem (15) and the problem

Φ`(x) = −Γd∆d` + max
y∈Y

{
n∑
i=1

d̃(`)iyi(1− xi)

}
(17)

with
Y = {y ∈ {0, 1}n : By ≤ b}

admit the same optimal value.

The feasible set of Problem (16) and of each sub-problem (17) is independent from the
leader’s decision. Moreover, the objective functions are linear for fixed x. Thus, an optimal
solution is attained at a vertex of the convex hull of the respective feasible set. We set

Ψ = {(y, z, θ) ∈ Y × Rn × R : (y, z, θ) satisfy (16b)–(16e)} .

In what follows, we use Ψ̂ and Ŷ to denote the set containing the finite number of vertices of
the convex hull of Ψ and Y , respectively. Further, let (x, η) be feasible for Problem (2) with
the lower-level optimal-value function (3). Due to Proposition 6, we have

η ≥ Φ(x) ≥
n∑
i=1

diŷi(1− xi)− Γdθ̂ −
n∑
i=1

ẑi

for arbitrary but fixed (ŷ, ẑ, θ̂) ∈ Ψ̂. Consequently, the interdiction cuts

η ≥
n∑
i=1

diŷi(1− xi)− Γdθ̂ −
n∑
i=1

ẑi for all
(
ŷ, ẑ, θ̂

)
∈ Ψ̂ (18)

are valid for Problem (2). To derive valid cuts for the multi-follower-based approach, we do
the following. Under Assumptions 5 and 6, we have

η ≥ Φ(x) = max
`∈{Γd,...,n+1}

Φ`(x)

≥ Φ`(x) = −Γd∆d` + max
y∈Ŷ

{
n∑
i=1

d̃(`)iyi(1− xi)

}

≥ −Γd∆d` +

n∑
i=1

d̃(`)iŷi(1− xi)
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for arbitrary but fixed ŷ ∈ Ŷ and for all ` ∈ {Γd, . . . , n + 1}. The first equality follows
from (12) and the second one holds due to Proposition 7. As a result, the cuts

η ≥ −Γd∆d` +

n∑
i=1

d̃(`)iyi(1− xi) for all ŷ ∈ Ŷ, ` ∈ {Γd, . . . , n+ 1} (19)

are valid for Problem (2). In particular, we may obtain different valid cuts for
each ` ∈ {Γd, . . . , n+ 1}. Finally, we exploit the previous results to equivalently refor-
mulate the interdiction problem with a Γd-robust follower facing uncertain objective function
coefficients.

Theorem 2. Problem (2) with the lower-level optimal-value function (3) can be equivalently
reformulated by replacing Constraint (2c) with (18). Under Assumptions 5 and 6, an
equivalent reformulation can be obtained by replacing Constraint (2c) with (19).

3.2. Cut Strengthening and Enhanced Formulations. In this section, we provide
enhancements and techniques to strengthen the cuts proposed in the previous section. First,
we introduce the notion of maximal packings.

Definition 1. A follower’s decision (ŷ, ẑ, θ̂) ∈ Ψ̂ is a maximal packing w.r.t. the extended
formulation (16) if there is no (y′, ẑ, θ̂) ∈ Ψ̂ \ {ŷ} such that ŷ ≤ y′ holds.

We exploit this notion to avoid the generation of unnecessary cuts.

Proposition 8. Let (ŷ, ẑ, θ̂) ∈ Ψ̂ be a non-maximal packing for Problem (16) and
let (y′, ẑ, θ̂) ∈ Ψ̂ \ {ŷ} be chosen such that ŷ ≤ y′ holds. Then, the interdiction cut (18)
associated with (ŷ, ẑ, θ̂) is dominated by the interdiction cut associated with (y′, ẑ, θ̂).

Here and in what follows, domination between two cuts is understood in the sense that
the feasible set induced by the dominating cut is contained in the feasible set induced by the
dominated one. Due to the previous result, it is sufficient to only consider the interdiction
cuts that correspond to maximal packings of the follower.

Definition 2. A follower’s decision ŷ ∈ Ŷ is a maximal packing w.r.t. the multi-follower
formulation (17) if there is no y′ ∈ Ŷ \ {ŷ} such that ŷ ≤ y′ holds.

Note that there is no need to specify ` ∈ {Γd, . . . , n + 1} in the previous definition
since, in each sub-problem, we consider the same set Ŷ , which is independent from `. To
obtain a dominance result for interdiction cuts associated with maximal packings in the
multi-follower setting, we need to further study the properties of the modified objective
function coefficients d̃(`) for each ` ∈ {Γd, . . . , n + 1}. Note that the modified objective
function coefficients can be non-positive for certain items in some follower sub-problems.
If d̃(`)i ≤ 0 holds for all ` ∈ {Γd, . . . , n+ 1}, the ith item will not be chosen in any of the
follower sub-problems. Thus, the leader does not need to spend interdiction resources on
the ith item and xi = yi = 0 can be fixed. This is equivalent to completely omitting the ith
item in the problem formulation. However, if there is an item i ∈ [n] with non-positive
modified objective function coefficients only for some follower sub-problems, i.e., d̃(k)i ≤ 0

for all k ∈ S ⊂ {Γd, . . . , n + 1} and d̃(l)i > 0 for all l ∈ {Γd, . . . , n+ 1} \ S, the ith item
might be part of an optimal solution. Therefore, we introduce the following notation. For
each ` ∈ {Γd, . . . , n+ 1}, we define the set

D`
+ := {i ∈ [n] : d̃(`)i > 0}.

Proposition 9. The interdiction cuts (19) can be replaced with

η ≥ −Γd∆d` +
∑
i∈D`

+

d̃(`)iŷi(1− xi) for all ŷ ∈ Ŷ, ` ∈ {Γd, . . . , n+ 1}. (20)

In particular, the cuts (20) dominate the basic interdiction cuts (19).
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With the previous considerations, we can finally state a dominance result for interdiction
cuts associated with maximal packings in the multi-follower setting.

Proposition 10. Let ŷ ∈ Ŷ be a non-maximal packing for Problem (17) and let y′ ∈ Ŷ \ {ŷ}
be such that ŷ ≤ y′ holds. Then, the interdiction cuts (20) associated with ŷ are dominated
by the interdiction cuts associated with y′.

Note that the previous result is not valid for the basic interdiction cuts as stated in (19)
since, in general, d̃(`)iŷi(1− xi) ≤ d̃(`)iy

′
i(1− xi) does not hold for all i /∈ D`

+. Moreover, we
would like to mention that we also considered maximal packings for the leader. However,
preliminary computational tests revealed that this does not improve the performance of
the overall solution method. Thus, we decided to refrain from using this ingredient in our
computational study in Section 4. However, we exploit dominance properties among items
to obtain further enhancements. First, we introduce additional inequalities regarding the
leader’s decision x. In what follows, A·i denotes the ith column of A.

Theorem 3. For all s, t ∈ [n], s 6= t, chosen such that A·s > A·t, B·s ≤ B·t, us ≥ ut,
ds ≥ dt, and ds −∆ds ≥ dt −∆dt, the dominance inequality

xt ≤ xs (21)

is satisfied in at least one optimal solution of Problem (2) with the lower-level optimal-value
function (3).

Proof. Let (x∗, η∗) be an optimal solution of Problem (2) with the lower-level optimal-
value function (3). Without loss of generality, suppose that there are exactly two distinct
items s, t ∈ [n] that satisfy the requirements of the theorem but for which the dominance
inequality (21) does not hold, i.e., x∗s = 0 and x∗t = 1. Otherwise, we repeat the following
procedure as long as there are still items left that satisfy the requirements but violate the
corresponding dominance inequality. The idea is to construct an optimal leader’s decision
that satisfies the dominance inequality. To this end, we set

x′i =


x∗i , i ∈ [n] \ {s, t},
1, i = s,

0, i = t.

By construction, x′ is feasible for Problem (2) with the lower-level optimal-value function (3)
and satisfies the dominance inequality associated with s and t. Without loss of generality,
we show that x′ is also an optimal solution of Problem (2) using the extended formulation.
Let (y′, z′, θ′) be an optimal solution of Problem (14) for x′, i.e., we have y′s = 0. More-
over, z′i = max{∆diy′i − θ′, 0} holds for all i ∈ [n] due to Constraints (14b), (14e), and the
objective function. If y′t = 0 holds, (y′, z′, θ′) is also a feasible follower’s decision for x∗ and
we obtain

Φ(x′) =

n∑
i=1

diy
′
i − Γdθ

′ −
n∑
i=1

z′i ≤ Φ(x∗).

If y′t ≥ 1 holds, we consider the alternative follower’s decision (ŷ, ẑ, θ′) with

ŷi =


y′i, i ∈ [n] \ {s, t},
y′t, i = s,

0, i = t,

and

ẑi =


z′i, i ∈ [n] \ {s, t},
max{∆dsy′t − θ′, 0}, i = s,

0, i = t.
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By construction, (ŷ, ẑ, θ′) is feasible for Problem (14) given the leader’s decision x∗ and we
obtain

Φ(x′) =

n∑
i=1

diy
′
i − Γdθ

′ −
n∑
i=1

z′i

= ds y′s︸︷︷︸
=0

+dty
′
t +

∑
i∈[n]\{s,t}

di y′i︸︷︷︸
=ŷi

−Γdθ
′ − z′s︸︷︷︸

=0

−z′t −
∑

i∈[n]\{s,t}

z′i︸︷︷︸
=ẑi

= dty
′
t +

∑
i∈[n]\{s,t}

diŷi − Γdθ
′ −max{∆dty′t − θ′, 0} −

∑
i∈[n]\{s,t}

ẑi

=
∑

i∈[n]\{s,t}

diŷi − Γdθ
′ + min{(dt −∆dt)y

′
t + θ′, dty

′
t} −

∑
i∈[n]\{s,t}

ẑi

≤
∑

i∈[n]\{s,t}

diŷi − Γdθ
′ + min{(ds −∆ds)ŷs + θ′, dsŷs} −

∑
i∈[n]\{s,t}

ẑi

= dsŷs + dt ŷt︸︷︷︸
=0

+
∑

i∈[n]\{s,t}

diŷi − Γdθ −max{∆dsŷs − θ′, 0} − ẑt︸︷︷︸
=0

−
∑

i∈[n]\{s,t}

ẑi

=

n∑
i=1

diŷi − Γdθ
′ −

n∑
i=1

ẑi

≤ Φ(x∗).

Hence, the alternative leader’s decision x′ is optimal for Problem (2) with the lower-level
optimal-value function (3) and satisfies the dominance inequality associated with s and t.
This concludes the proof. �

Note that, in the case of only binary follower’s variables, the requirement us ≥ ut in the
previous theorem is trivially satisfied since ui = 1 for all i ∈ [n] is a valid upper bound.
Further note that the requirement A·s > A·t can be relaxed to A·s ≥ A·t if the matrix A has
only non-negative entries.

In the remainder of this section, we provide lifted cuts that dominate their respective
basic counterparts stated in (18) and (20). We start by lifting the basic interdiction cuts
corresponding to the extended formulation.

Theorem 4. For any arbitrary but fixed (ŷ, ẑ, θ̂) ∈ Ψ̂, let K ∈ [n], Sa = {a1, . . . , aK} ⊂ [n],
and Sb = {b1, . . . , bK} ⊂ [n] be such that Sa ∩ Sb = ∅, ŷak ≥ 1, ŷbk = 0, B·ak ≥ B·bk ,
uak ≤ ubk , ∆dak < ∆dbk , and dak −∆dak < dbk −∆dbk for all k ∈ [K]. Then, the following
lifted interdiction cut is valid for Problem (2) with the lower-level optimal-value function (3):

η ≥
n∑
i=1

diŷi(1− xi) +

K∑
k=1

((dbk −∆dbk)− (dak −∆dak)) ŷak(1− xbk)− Γdθ̂ −
n∑
i=1

ẑi. (22)

Proof. Let (x, η) be a feasible leader’s decision for Problem (2) with the lower-level optimal-
value function (3). If xbk = 1 holds for all k ∈ [K], we obtain the basic interdiction cut
as stated in (18), which is satisfied by x. Otherwise, we define K := {k ∈ [K] : xbk = 0}
and consider an alternative follower’s decision (y′, z′, θ̂), which is obtained as follows. For
all k ∈ K, we set y′ak = 0, y′bk = ŷak as well as z′ak = 0 and z′bk = max{∆dbk ŷak − θ̂, 0}. We
further define K̄ := [n] \ {ak, bk : k ∈ K} and set y′i = ŷi as well as z′i = ẑi for all i ∈ K̄.
By construction, we have (y′, z′, θ̂) ∈ Ψ. Since the interdiction cuts (18) are not only valid
for vertices contained in the set Ψ̂ but also for any lower-level feasible point, the leader’s
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decision x also satisfies the basic interdiction cut associated with (y′, z′, θ̂), i.e.,

η ≥
n∑
i=1

diy
′
i(1− xi)− Γdθ̂ −

n∑
i=1

z′i

=
∑
i∈K̄

di y′i︸︷︷︸
=ŷi

(1− xi) +
∑
k∈K

(dak y
′
ak︸︷︷︸

=0

(1− xak) + dbk y′bk︸︷︷︸
=ŷak

(1− xbk)︸ ︷︷ ︸
=1

)

− Γdθ̂ −
∑
i∈K̄

z′i︸︷︷︸
=ẑi

−
∑
k∈K

( z′ak︸︷︷︸
=0

+z′bk)

=
∑
i∈K̄

diŷi(1− xi)− Γdθ̂ −
∑
i∈K̄

ẑi +
∑
k∈K

(
dbk ŷak −max{∆dbk ŷak − θ̂, 0}

)
.

(23)

In particular, we have ẑak = max{∆dak ŷak − θ̂, 0} and ẑbk = 0 for all k ∈ [K]. Hence, we
can re-write Inequality (22) as

η ≥
n∑
i=1

diŷi(1− xi) +

K∑
k=1

((dbk −∆dbk)− (dak −∆dak)) ŷak(1− xbk)− Γdθ̂ −
n∑
i=1

ẑi

=
∑
i∈K̄

diŷi(1− xi) +
∑
k∈K

(dak ŷak(1− xak) + dbk ŷbk︸︷︷︸
=0

(1− xbk))

+
∑
k∈K

((dbk −∆dbk)− (dak −∆dak))ŷak(1− xbk︸︷︷︸
=0

)

+
∑

k∈[K]\K

((dbk −∆dbk)− (dak −∆dak))ŷak(1− xbk︸︷︷︸
=1

)− Γdθ̂

−
∑
i∈K̄

ẑi −
∑
k∈K

(ẑak + ẑbk︸︷︷︸
=0

)

=
∑
i∈K̄

diŷi(1− xi)− Γdθ̂ −
∑
i∈K̄

ẑi +
∑
k∈K

(
dak ŷak(1− xak)

+ ((dbk −∆dbk)− (dak −∆dak)) ŷak −max{∆dak ŷak − θ̂, 0}
)

=
∑
i∈K̄

diŷi(1− xi)− Γdθ̂ +
∑
k∈K

(
dbk ŷak −max{∆dbk ŷak − θ̂, 0}

)
−
∑
k∈K

(
dak ŷakxak + (∆dbk −∆dak)ŷak

+ max{∆dak ŷak − θ̂, 0} −max{∆dbk ŷak − θ̂, 0}
)

(24)

Note that the right-hand side of (24) corresponds to the right-hand side of (23) with the
additional term ∑

k∈K

(
dak ŷakxak + (∆dbk −∆dak)ŷak

+ max{∆dak ŷak − θ̂, 0} −max{∆dbk ŷak − θ̂, 0}
) (25)

subtracted. We now show that the latter term is non-negative. For all k ∈ K, we have

max{∆dak ŷak − θ̂, 0} −max{∆dbk ŷak − θ̂, 0}

=


(∆dak −∆dbk)ŷak , ∆dbk ŷak ≥ ∆dak ŷak ≥ θ̂,
−∆dbk ŷak + θ̂, ∆dbk ŷak ≥ θ̂ ≥ ∆dak ŷak ,

0, θ̂ ≥ ∆dbk ŷak ≥ ∆dak ŷak ,
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and we consequently obtain

dak ŷakxak + (∆dbk −∆dak) ŷak + max{∆dak ŷak − θ̂, 0} −max{∆dbk ŷak − θ̂, 0}

=


dak ŷakxak , ∆dbk ŷak ≥ ∆dak ŷak ≥ θ̂,
dak ŷakxak −∆dak ŷak + θ̂, ∆dbk ŷak ≥ θ̂ ≥ ∆dak ŷak ,

dak ŷakxak + (∆dbk −∆dak)ŷak , θ̂ ≥ ∆dbk ŷak ≥ ∆dak ŷak .

The latter is greater or equal to dak ŷakxak for all k ∈ K. In particular, we have dak ŷakxak = 0
if xak = 0 and dak ŷak > 0, otherwise. To sum up, the term in (25) is non-negative. This
means that feasibility w.r.t. Inequality (23) implies feasibility w.r.t. Inequality (24). Since (23)
is a valid inequality, this concludes the proof. �

In the next theorem, we consider lifted versions for the enhanced interdiction cuts stated
in (20).

Theorem 5. For any arbitrary but fixed ŷ ∈ Ŷ and ` ∈ {Γd, . . . , n + 1}, let K ∈ [n],
S`a = {a1, . . . , aK} ⊂ D`

+, and S`b = {b1, . . . , bK} ⊂ D`
+ be chosen such that S`a ∩ S`b = ∅,

ŷak = 1, ŷbk = 0, B·ak ≥ B·bk , and d̃(`)ak < d̃(`)bk hold for all k ∈ [K]. Under Assumptions 5
and 6, the lifted interdiction cut

η ≥ −Γd∆d` +
∑
i∈D`

+

d̃(`)iŷi(1− xi) +

K∑
k=1

(d̃(`)bk − d̃(`)ak)(1− xbk) (26)

is valid for Problem (2) with the lower-level optimal-value function (3).

Proof. Let (x, η) be a feasible leader’s decision for Problem (2) with the lower-level optimal-
value function (3). If xbk = 1 holds for all k ∈ [K], we obtain the enhanced interdiction cut
as stated in (20), which is satisfied by x. Otherwise, let us define K := {k ∈ [K] : xbk = 0}
as well as K̄ := D`

+ \ {ak, bk : k ∈ K} and consider the alternative decision of the follower
given by

y′i =


ŷi, i ∈ K̄,
1, i ∈ {bk : k ∈ K},
0, i ∈ {ak : k ∈ K}.

By construction, we have y′ ∈ Y . Since the interdiction cuts (20) are not only valid for vertices
contained in the set Ŷ but also for any lower-level feasible point, the leader’s decision x
satisfies the basic interdiction cut associated with y′ and `, i.e.,

η ≥− Γd∆d` +
∑
i∈D`

+

d̃(`)iy
′
i(1− xi)

= − Γd∆d` +
∑
i∈K̄

d̃(`)i y′i︸︷︷︸
=ŷi

(1− xi)

+
∑
k∈K

(
d̃(`)ak y

′
ak︸︷︷︸

=0

(1− xak) + d̃(`)bk y
′
bk

(1− xbk)︸ ︷︷ ︸
=1

)
= − Γd∆d` +

∑
i∈K̄

d̃(`)iŷi(1− xi) +
∑
k∈K

d̃(`)bk .

(27)
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Further, we can re-write Inequality (26) as

η ≥− Γd∆d` +
∑
i∈D`

+

d̃(`)iŷi(1− xi) +

K∑
k=1

(d̃(`)bk − d̃(`)ak)(1− xbk)

= − Γd∆d` +
∑
i∈K̄

d̃(`)iŷi(1− xi) +
∑
k∈K

d̃(`)ak ŷak︸︷︷︸
=1

(1− xak)

+
∑
k∈K

d̃(`)bk ŷbk︸︷︷︸
=0

(1− xbk) +

K∑
k=1

(d̃(`)bk − d̃(`)ak)(1− xbk)

= − Γd∆d` +
∑
i∈K̄

d̃(`)iŷi(1− xi) +
∑
k∈K

d̃(`)ak(1− xak)

+
∑
k∈K

(d̃(`)bk − d̃(`)ak) (1− xbk)︸ ︷︷ ︸
=1

+
∑

k∈[K]\K

(d̃(`)bk − d̃(`)ak) (1− xbk)︸ ︷︷ ︸
=0

= − Γd∆d` +
∑
i∈K̄

d̃(`)iŷi(1− xi) +
∑
k∈K

d̃(`)ak(1− xak)

+
∑
k∈K

(
d̃(`)bk − d̃(`)ak

)
= − Γd∆d` +

∑
i∈K̄

d̃(`)iŷi(1− xi) +
∑
k∈K

d̃(`)bk −
∑
k∈K

d̃(`)akxak .

(28)

Note that the right-hand side of (28) corresponds to the right-hand side of (27) with the
additional term ∑

k∈K

d̃(`)akxak ≥ 0

subtracted. Here, we have d̃(`)akxak = 0 if xak = 0 and d̃(`)akxak > 0, otherwise. Hence,
feasibility w.r.t. Inequality (27) implies feasibility w.r.t. Inequality (28). Since (27) is a valid
inequality, this concludes the proof. �

Let us point out that the items in the sets Sa and Sb (or S`a and S`b in the multi-follower
case) can be paired in different ways. This might yield different lifted cuts. To this end,
we consider the following separation procedure. For an item a that is a candidate to
enter the set Sa or S`a, i.e., ŷa ≥ 1 holds, we select its counterpart b among all items that
satisfy the requirements with maximum value of ((db −∆db)− (da −∆da))ŷak(1− xb) and
(d̃(`)b − d̃(`)a)(1− xb) for the extended formulation and the multi-follower-based approach,
respectively. If such a pair (a, b) exists, items a and b are inserted into the sets Sa and Sb
(or S`a and S`b in the multi-follower case) and then removed from any further consideration.

3.3. Problems with an Uncertain Lower-Level Constraint. To conclude this section,
we briefly address uncertainties that only arise in a single packing-type constraint of the
follower as stated around (5) and (6). For the validity of the proposed cuts, we need to
impose the following.

Assumption 11. The uncertain lower-level constraint does not contain terms depending on
the leader’s decision, i.e., v = 0.

Assumption 12. All constraint coefficients of the uncertain lower-level constraint are
non-negative, i.e., wi ≥ 0 holds for all i ∈ [n].

Assumption 11 is an analog of Assumption 8 stating that the leader’s variables x are
linked to the lower-level problem only via the interdiction constraints yi ≤ ui(1 − xi).
Assumption 12 ensures that the Γw-robust lower-level problems (8) and (11) satisfy the
downward monotonicity property. Both assumptions are necessary to exploit a penalized
formulation of the Γw-robust follower’s problem to derive valid cuts as it is done in the case
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of uncertain objective function coefficients. Again, we remove interdiction constraints and
add penalty terms −diyixi to the objective function for all i ∈ [n]. Hence, we consider the
same deterministic objective function

n∑
i=1

diyi(1− xi)

in the extended formulation as well as in the multi-follower formulation. In particular, the
objective function is linear for a fixed leader’s decision x. However, the description of the
resulting feasible set differs for both approaches. For the extended formulation, we maximize
over the feasible set of the penalized follower’s problem projected onto the y-space, which is
given by

Θ = {y ∈ Y : ∃ z, θ ≥ 0 such that (8b) and (8c) are satisfied} .
The feasible set Θ is independent from the leader’s decision. Hence, an optimal solution
of the Γw-robust follower’s problem is attained at a vertex of the convex hull of Θ. We
denote Θ̂ as the set containing the finite number of vertices of the convex hull of Θ. Then,
the interdiction cuts

η ≥
n∑
i=1

diŷi(1− xi) for all ŷ ∈ Θ̂ (29)

are valid for Problem (2) and can equivalently replace Constraint (2c). Under Assumptions 5
and 6, when considering the multi-follower approach, we maximize over the `-dependent
feasible sets {

y ∈ {0, 1}n : Γw∆w` +

n∑
i=1

w̃(`)iyi ≤ C

}
,

which may differ in each follower sub-problem. However, it is easy to see that an optimal
solution needs to be contained in the union of all `-dependent sets. Let Y ′ be the set
containing the finite number of vertices of the convex hull of the union of all `-dependent
sets. Then, we obtain the interdiction cuts for the multi-follower case by replacing ŷ ∈ Θ̂
with ŷ ∈ Y ′ in (29), which can equivalently replace Constraint (2c) in Problem (2).

4. Computational Results

We now provide detailed numerical results for the proposed methods to solve interdiction
problems with a monotone Γ-robust follower. Our solution approaches are implemented in
Python 3.6.9 and Gurobi 9.1.2 is used to solve all arising optimization problems. 1 To add the
interdiction cuts described in the previous sections, we use Gurobi’s lazy constraint callbacks,
which requires to set the parameter LazyConstraints to 1. All other parameters have been left
at their default settings. The tests have been realized on an Intel XEON SP 6126 at 2.6 GHz
(6 cores) with 32 GB RAM, which is part of the high performance cluster “Elwetritsch” at
TU Kaiserslautern within the “Alliance of High Performance Computing Rheinland-Pfalz”
(AHRP).2 For each test run, we set the time limit to 1 h. We refer to the branch-and-cut
method that exploits the multi-follower approach as MF and to the one that is based on
the extended formulation as Ext. In Section 3.2, we have discussed several enhancements to
improve the performance of MF and Ext, which we assess in the following. The aim is to
determine a “winner setting” for MF and Ext and to compare both approaches. For the ease
of presentation, we focus on the bilevel knapsack interdiction problem as a typical example
of an interdiction problem with a monotone follower. Moreover, we only discuss the results
for problems with uncertainties regarding the objective function coefficients.

Before we start, let us also comment on that there is no other tailored method in the
literature that solves bilevel knapsack interdiction problems using a Γ-robust treatment of
uncertainties. Hence, there are no alternative methods that we could compare with. However,

1The code for the approaches presented in this paper is publicly available at https://github.com/
YasmineBeck/gamma-robust-knapsack-interdiction-solver.

2We kindly acknowledge the support of RHRK (https://rz.rptu.de/en/).

https://github.com/YasmineBeck/gamma-robust-knapsack-interdiction-solver
https://github.com/YasmineBeck/gamma-robust-knapsack-interdiction-solver
https://rz.rptu.de/en/
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using the extended formulation, one could transform the Γ-robust interdiction problem into
a standard mixed-integer linear bilevel problem. The latter can, in general, be solved with
the MibS solver (Tahernejad, Ralphs, and DeNegre 2020) and the general branch-and-cut
solver presented in Fischetti, Ljubić, et al. (2017). We tested both solvers for 40 robustified
knapsack instances with 35 items; see below for more details on our test set. MibS is not able
to solve any of these instances—although 35 items belong to the smallest class of instances
in our test set. The smallest optimality gap we get is 105 %. The other solver solved 2 out
of 40 instances. The runtimes are 1797.27 s and 3188.13 s, which is more than a factor of
360 or 635 longer than our tailored methods take. Consequently, we omit a more detailed
comparison with these general-purpose bilevel solvers.

4.1. Generation of Knapsack Test Instances. To test our solution approaches, we
consider the bilevel knapsack interdiction problem that has been considered in Caprara et al.
(2016) and which is formally stated as

min
x∈{0,1}n

p>y

s.t. v>x ≤ B,

y ∈ arg max
y′∈{0,1}n

{
p>y′ : w>y′ ≤ C, y′i ≤ 1− xi, i ∈ [n]

}
with B,C ∈ Z+, and p, v, w ∈ Zn+. In particular, the bilevel knapsack interdiction problem is
a prominent example for an interdiction problem with a monotone follower. The motivation
for us to focus on this type of problem is the following. Classic knapsack problems belong to
the most intensively studied discrete optimization problems, which is due to their relevance
in many real-world applications, e.g., in the field of economics. In particular, the bilevel
knapsack interdiction problem naturally extends the classic knapsack problem such as to
capture competitive situations; see, e.g., DeNegre (2011) for a specific application in corporate
strategy. Moreover, the knapsack interdiction problem is commonly used as a benchmark
for testing bilevel optimization solvers; see, e.g., DeNegre and Ralphs (2009) and Tang
et al. (2016). In its deterministic variant, the knapsack interdiction problem has been
studied, e.g., in Caprara et al. (2013, 2016), Della Croce and Scatamacchia (2020), DeNegre
(2011), Fischetti, Ljubić, et al. (2019), Fischetti, Monaci, et al. (2018), Shi et al. (2020),
and Tang et al. (2016). For our computational study, we generate deterministic knapsack
interdiction instances according to Martello et al. (1999), which we adapt to account for
a Γ-robust follower. Before we comment on the uncertainty parameterizations that we
consider, let us briefly describe the generation of the knapsack instances. The profits pi and
the follower’s weights wi take uncorrelated integer values from the interval [0, 100]. For
each instance size n ∈ {35, 40, 45, 50, 55, . . . , 100}, 10 instances have been generated. The
follower’s knapsack capacity C is set to d(N/11)

∑n
i=1 wie, where N ∈ {1, . . . , 10} is used

to identify the instance number. The leader’s weights vi and the interdiction budget B are
uniformly random integers from the intervals [0, 100] and [C − 10, C + 10]. Let us point
out that the deterministic knapsack instances with size n ∈ {35, 40, . . . , 55} are taken from
Caprara et al. (2016). All other instances have not yet been studied in the literature and
are newly generated. To study the effects of a Γ-robust follower, we consider four different
uncertainty parameterizations. We assume that the deviations take either 10 % or 25 % of
the nominal value. The parameter Γ is set to either 10 % or 50 % of the instance size n. In
the case of a fractional value for Γ, we then consider the closest integer. Hence, our test set
contains 560 robustified knapsack instances. Finally, let us mention that we do not consider
any instances with more than 100 items because even the most advanced variants of the
presented approaches cannot solve all of the 560 robustified knapsack instances described
above within a reasonable amount of time.

4.2. Lifted Cuts and Dominance Inequalities. We now assess the influence of lifted
cuts and dominance inequalities on the overall performance of the solution method. To this
end, we consider the following four settings.
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Figure 1. Log-scaled ECDF plots of the runtimes (in s) (top) and the
number of branch-and-bound nodes (bottom) for Ext (left) and MF (right)
using lifted cuts and/or dominance inequalities.

MF/Ext: The basic setting in which only basic interdiction cuts are added without any
further enhancements.

MF-D/Ext-D: The basic setting with the addition of dominance inequalities (21)
regarding the leader’s decision.

MF-L/Ext-L: The basic setting but instead of considering basic interdiction cuts, we
add lifted interdiction cuts.

MF-LD/Ext-LD: Like MF-L or Ext-L but with the addition of dominance inequali-
ties (21).

As a default for MF, we consider the cut separation strategy in which all violated (lifted)
interdiction cuts are added to the problem formulation. Figure 1 shows the empirical
cumulative distribution functions (ECDFs) w.r.t. the runtimes and the number of branch-and-
bound nodes of the four settings. The ECDFs can be interpreted as the percentage of instances
(y-axis) that can be solved within a certain amount of time and/or after investigating a
certain number of branch-and-bound nodes (log-scaled x-axis). Note that, to have a fair
comparison, we exclude 29 instances that none of the considered variants can solve within
the time limit. Moreover, we exclude 19 instances that every variant can solve within 5 s
to avoid drawing erroneous conclusions because of low runtimes. Hence, we consider a
total of 512 instances at this point. While lifted interdiction cuts only slightly improve the
performance of MF and Ext, the use of dominance inequalities significantly enhances the
performance of both approaches. The combination of lifted cuts and dominance inequalities
yields only minor further improvement compared to MF-D and Ext-D. Nevertheless, MF-LD
and Ext-LD dominate all other settings of the respective solution approach. This observation
is also underlined by the results in Table 1. In what follows, we thus hold on to the variants
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Table 1. Mean and median runtimes (in s), mean and median number of
branch-and-bound nodes as well as the number of solved instances for the
variants with lifted cuts and/or dominance inequalities.

runtimes node count

mean median mean median solved

Ext 1863.94 1507.90 689196.96 574953.50 268
Ext-D 583.12 53.52 108588.91 10254.50 473
Ext-L 1337.09 188.62 435544.75 168709.50 353
Ext-LD 260.25 21.86 46412.61 5593.50 510

MF 1933.78 2147.53 106190.09 87702.00 265
MF-D 1018.79 100.61 26374.73 3197.50 410
MF-L 1482.54 510.86 69689.89 36435.00 344
MF-LD 573.54 62.09 15212.53 1771.00 476

with additional dominance inequalities and lifted interdiction cuts as our “winner setting” for
both approaches.

4.3. The Benefits of Maximal Packings. We consider maximal packings of the follower
to avoid the generation of unnecessary interdiction cuts. This is achieved in the following
manner. We determine a feasible follower’s decision y for the current x by either solving the
follower’s extended formulation (14) or the sub-problems (15). In the next step, we complete
the follower’s decision to a maximal packing in a greedy-like fashion. To this end, we order
the indices of the follower’s variables according to non-increasing profit-to-weight ratio and
then gradually add items that still fit into the follower’s knapsack. When considering the
extended formulation, however, we need to further check if the follower’s decision (y, z, θ)
satisfies θ ≥ ∆pi. This requirement is necessary to ensure the feasibility of the maximal
packing w.r.t. the constraints zi + θ ≥ ∆piyi for all i ∈ [n]. Finally, we generate and add
only the interdiction cut that corresponds to the follower’s maximal packing.

To assess the influence of maximal packings, we adopt the parameterizations of our
previous “winner settings” MF-LD and Ext-LD with the difference that we now only add
cuts corresponding to maximal packings of the follower. We refer to these settings as
MF-LD-Max and Ext-LD-Max. Again, for a fair comparison, we exclude 21 instances that
none of the variants can solve within the time limit and 90 instances that every variant can
solve within 5 s so that we consider a total of 449 instances here. Based on Figure 2, it can
be seen that adding only the interdiction cuts corresponding to maximal packings of the
follower improves the performance of the overall solution method for both approaches. In
particular, this holds true for the easier instances, which is also underlined by the number of
solved problems presented in Table 2. Table 2 further shows considerably smaller mean and
median runtimes for MF-LD-Max and Ext-LD-Max compared to their counterparts without
maximal packings. Also the mean and median number of branch-and-bound nodes visited is
significantly smaller in both settings when maximal packings of the follower are considered.
To sum up, the observations drawn from Figure 2 and Table 2 clearly suggest that MF-LD-Max
and Ext-LD-Max are the “winner settings” among the considered variants.

As mentioned in Section 3.2, we also considered leader’s maximal packings. However,
preliminary computational results revealed that maximal packings for the leader interfere
with Gurobi’s integrated branching rules and node selection, which is why we decided to
refrain from this ingredient.

4.4. The Impact of Warmstarting. In our computational study, we also investigated how
warmstarting the proposed methods may affect their performance. To this end, we considered
two options—a heuristic similar to the one presented in Fischetti, Ljubić, et al. (2019) and
solving the nominal knapsack interdiction problem—to determine an initial feasible (and
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Figure 2. Log-scaled ECDF plots of the runtimes (in s) (top) and the
number of branch-and-bound nodes (bottom) for Ext (left) and MF (right)
considering maximal packings of the follower.

Table 2. Mean and median runtimes (in s), mean and median number of
branch-and-bound nodes as well as the number of solved instances for the
variants with and without maximal packings of the follower.

runtimes node count

mean median mean median solved

Ext-LD 360.70 37.71 61901.68 12293.00 439
Ext-LD-Max 252.71 15.32 41166.66 5253.00 448

MF-LD 718.13 94.62 18089.67 2789.00 405
MF-LD-Max 616.47 37.65 15079.47 1373.00 406

potentially good) decision of the leader for Problem (P0). The pair (x, η) that we obtain
using any of the two options is then provided to Gurobi as MIP start.

The computational results obtained for both settings revealed that warmstarting the
methods has no significant impact on their performance, neither for MF nor for Ext. This
is why we omit the details on the runtimes and the number of branch-and-bound nodes
here. As per default, both methods are warmstarted using the heuristic in all subsequent
considerations.

4.5. Comparison of Different Cut Separation Strategies and the Potential of
Parallelization. We further evaluate enhancement techniques that exploit the special
structure of the multi-follower formulation. Due to the fact that the overall problem
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can be considered as a single-leader-multi-follower problem with independent followers,
we can make use of parallelization as briefly mentioned in Section 2. In this context,
we can further consider different cut separation strategies instead of adding all violated
interdiction cuts in each iteration of the algorithm. This way, the number of cuts added
to the problem formulation can be reduced, which might speed up the overall solution
method. We adopt the parameterizations of the previous “winner setting”, i.e., we consider
the multi-follower formulation with lifted cuts corresponding to maximal packings of the
follower, dominance inequalities regarding the leader’s decision, and heuristic warmstarts.
For notational convenience, we omit MF-LD-Max as a prefix for the considered variants when
we focus on the following cut separation strategies.

All-In: The default setting in which all interdiction cuts that are violated by the current
leader’s decision are added to the problem formulation.

Most-Violated: A single cut is added corresponding to the interdiction inequality (20)
that is maximally violated by the current leader’s decision.

Sorting: In Álvarez-Miranda, Fernández, et al. (2015), the authors propose a learning
mechanism to identify the sub-problems that produce potentially good cuts. This is
done by taking the information of previous iterations into account. We adapt the
proposed strategy to our setting such that a single potentially good cut is added in
each iteration.

First-In: We iterate over ` ∈ {Γ, . . . , n+1}, add the first interdiction cut that is violated
by the current leader’s decision, and then break the loop.

Random: Among the violated interdiction cuts, we randomly choose a single cut and
add it to the problem formulation.

To assess the potential of parallelization, we consider so-called idealized runtimes, which
reflect the overall runtime of the solution method provided that there are sufficient capacities
available to solve all sub-problems in parallel. For each instance, the idealized runtimes are
computed after solving the problems sequentially by taking the maximum over the runtime
of each sub-problem.

In Figure 3, we compare the aforementioned cut separation strategies w.r.t. sequential and
idealized runtimes. Note that we exclude 21 instances that none of the considered variants can
solve within the time limit and 43 instances that every variant can solve within 5 s. Hence, we
consider a total of 496 instances here. It can be seen that the first insertion strategy First-In
harms the performance of the solution method for both sequential and idealized runtimes
as a benchmark. The last observation is also reflected by the results on the number of
branch-and-bound nodes presented in Figure 4 (left). A possible reason for this might be the
following. By adding the first violated interdiction cut, later follower sub-problems that might
produce stronger cuts are neglected. In particular, it is possible that the cut corresponding
to the same follower sub-problem is added in each iteration of the algorithm. To overcome
this situation, we consider Random as a modification of First-In. Based on Figure 3, it can be
observed that this variant performs significantly better. In particular, Random outperforms
all other cut separation strategies w.r.t. sequential runtimes. The potential reasons for the
effectiveness of the randomized first insertion strategy are twofold. On the one hand, it
seems beneficial to add a single cut in each iteration of the algorithm; otherwise, as for the
strategy All-In, the leader’s problem can get extremely large w.r.t. the number of constraints.
On the other hand, Random has comparatively low computational costs. For Sorting, it can
be seen that having information from previous iterations does not lead to a better choice
than randomly adding a violated cut. When considering Most-Violated, we need to solve
all sub-problems to determine the most violated interdiction cut, which seems to be rather
expensive. The previous observations are underlined by the results in Table 3, since the
sequential mean and median runtimes for Random are considerably smaller compared to all
other cut separation strategies. Focusing on idealized runtimes, however, it is noteworthy that
Random is no longer the “winning” cut separation strategy. Based on Figure 3 and Table 3,
Most-Violated dominates the randomized first insertion strategy w.r.t. idealized runtimes.
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Figure 3. Log-scaled ECDF plots of the sequential runtimes (left) and the
idealized runtimes (right) (in s) for different cut separation strategies.

Table 3. Sequential and idealized mean and median runtimes (in s) as well
as the number of solved instances for the variants with different cut separa-
tion strategies.

sequential runtimes idealized runtimes

mean median mean median solved

All-In 543.17 24.85 267.35 6.03 452
Most-Violated 346.88 17.98 37.53 4.35 481
Sorting 245.16 9.19 138.89 5.53 487
First-In 855.10 157.92 466.59 37.68 418
Random 183.52 7.23 156.57 5.61 492

This is to be expected since we can benefit the most from parallelization for Most-Violated,
where we indeed have to solve all of the sub-problems. In particular, the previous observations
suggest that the higher computational costs for solving all sub-problems—especially if this is
done in parallel—can be compensated to some extent by the strength of the added cuts. This
strength is further visualized in Figure 4 (right) and Table 4. Here, to assess the quality of the
added cuts, we consider the runtimes independently of the times spent for the cut generation.
However, it is noteworthy that, apart from the strength of Most-Violated, the results also
suggest that Sorting and Random yield cuts of good quality for the easier instances. Finally,
we further highlight the benefit of adding the most-violated cut by considering the mean and
median number of branch-and-bound nodes presented in Table 4. It can be observed that the
mean and median number of nodes for Most-Violated are significantly smaller than the ones
for almost all of the other cut separation strategies. Only All-In has a considerably smaller
mean number of investigated nodes compared to Most-Violated. However, as stated earlier,
it seems beneficial to add a single cut in each iteration of the algorithm instead of adding
all violated cuts, which is underlined by both the runtime results as well as the number of
solved instances.

To sum up, Most-Violated yields the strongest cuts among the considered variants. More-
over, provided that the necessary capacities are available to solve all sub-problems in parallel,
Most-Violated particularly outperforms all other variants w.r.t. idealized runtimes. Hence, we
consider Most-Violated as our “winning” strategy in the idealized setting. When considering
sequential runtimes, however, the cost of solving all sub-problems cannot be completely
compensated by the strength of the added cuts. Since the overall runtime is our decisive
criterion, we prefer Random in the sequential setting.
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Figure 4. Log-scaled ECDF plots of the number of branch-and-bound
nodes (left) and the runtimes (in s) independent of the times spent for the
cut generation (right) for different cut separation strategies.

Table 4. Mean and median runtimes (in s) independent of the times spent
for the cut generation as well as the mean and median number of branch-
and-bound nodes for the variants with different cut separation strategies.

runtimes node count

mean median mean median

All-In 258.36 5.05 14468.14 670.00
Most-Violated 27.67 2.83 24159.59 351.00
Sorting 104.84 3.26 39044.19 587.50
First-In 342.75 9.72 72248.80 11379.00
Random 113.29 3.16 45086.26 690.50

4.6. Comparison of the Solution Approaches. We now compare the “winning” pa-
rameterizations of the extended formulation and the multi-follower formulation. For the
multi-follower-based approach, we particularly distinguish between the sequential and the
idealized setting. Hence, we consider MF-LD-Max-Random, MF-LD-Max-Most-Violated, and
Ext-LD-Max, which we abbreviate with MF-seq, MF-ideal, and Ext in the following. Again, we
exclude 16 instances that none of the considered variants can solve within the time limit and
137 instances that every variant can solve within 5 s. In total, we thus consider 407 instances.
Figure 5 (left) shows the ECDF plots w.r.t. the runtimes of the three considered variants.
Note that we consider sequential and idealized runtimes for MF-seq and MF-ideal, respectively.
We observe that MF-ideal clearly outperforms the remaining two approaches. This partic-
ularly affirms that the strength of the multi-follower-based approach lies in the possibility
to parallelize the solution of the follower sub-problems. The previous observation is also
underlined by the mean and median runtimes in Table 5. It can be seen that MF-ideal has
significantly smaller mean and median runtimes compared to MF-seq and Ext. Despite being
not as significant as when considering the runtimes, the same qualitative behavior can also be
observed for the results on the number of nodes in Figure 5 (right) and Table 5. If, however,
the capacity is not available to have an idealized parallelization, the multi-follower-based
approach MF-seq still performs slightly better than Ext. Based on Figure 5, MF-seq seems to
have an advantage over Ext on the easier instances. The last observation is also supported by
the results on the mean and median runtimes presented in Table 5. Yet the number of solved
instances suggests that Ext performs slightly better than MF-seq on the harder instances.
Let us emphasize, however, that the amount of instances that can be solved by Ext but not
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Figure 5. Log-scaled ECDF plots of the runtimes (in s) (left) and the
number of branch-and-bound nodes (right) for the “winner settings” of Ext
and MF.

Table 5. Mean and median runtimes (in s), mean and median number of
branch-and-bound nodes as well as the number of solved instances for the
“winner settings” of Ext and MF.

runtimes node count

mean median mean median solved

Ext 324.42 24.16 49818.23 7680.00 401
MF-seq 267.57 10.59 62861.15 2546.00 398
MF-ideal 43.64 5.99 29502.58 1333.00 387

by MF-seq is comparatively small, which is why we consider MF-seq as the overall better
method in the sequential setting.

4.7. The Computational Cost of Robustness. To conclude our computational study,
we address the computational cost of robustness. This expression captures the effect of
robustification, e.g., on the overall runtimes of the solution methods. To evaluate the
computational cost of robustness, we compare the three “winning” approaches MF-seq, MF-
ideal, and Ext for the considered uncertainty parameterizations, which are referred to as (∆, Γ).
Here, ∆ ∈ {10, 25} is used to specify the considered percentage deviations in the objective
function coefficients and Γ ∈ {10, 50} denotes the percentage that the parameter Γ takes of
the instance size. Based on Table 6, it can be seen that the mean and median runtimes to
solve the Γ-robust knapsack interdiction problem increase with increasing values of ∆ and Γ
for Ext. For MF-seq and MF-ideal, however, this does not seem to be the case in principle.
Detailed runtime results for each knapsack instance can further be found in Table 8. For
both the multi-follower approach and the extended formulation, we compare the nominal
runtimes to the mean runtimes obtained from all considered uncertainty parameterizations.
Note that we label the sequential and idealized mean runtimes with the superscripts seq and
ideal, respectively.

To further assess the cost of robustness w.r.t. the runtimes, we measure the relative
performance of the method in the Γ-robust and in the nominal case. Note that we restrict
ourselves to the instances that have been considered in Section 4.6 for a fair comparison, i.e.,
we exclude 16 instances that none of the “winner” settings can solve within the time limit and
137 instances that every variant can solve within 5 s. To measure the relative performance,
we determine the coefficient of runtimes qi = ti,rob/ti,nom for each knapsack instance i. Here,
ti,rob and ti,nom denote the runtimes of the considered solution method for instance i in
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Table 6. Mean and median runtimes (in s) for the “winner” settings of Ext
and MF for the uncertainty parameterizations given by (∆, Γ).

uncertainty parameterization

(∆, Γ) = (10,10) (10,50) (25,10) (25,50)

mean Ext 201.93 331.11 234.78 540.96
MF-seq 301.37 234.55 334.64 192.01
MF-ideal 43.63 52.38 43.93 34.94

median Ext 6.34 41.50 10.70 84.54
MF-seq 10.35 10.63 10.44 11.06
MF-ideal 7.66 5.40 7.14 4.86

the Γ-robust and in the nominal case, respectively. In Figure 6, we show box-plots for the
coefficients of runtimes corresponding to MF-seq, MF-ideal, and Ext. Each box in Figure 6
represents the distribution of the determined coefficients q over the 407 considered instances
for the three “winning” solution methods. It can be seen that the box for Ext is considerably
larger compared to the other two approaches. This shows that the coefficients for MF-seq
and MF-ideal are less dispersed, which suggests that the performance of these methods is
more stable compared to the one of Ext. In particular, the boxes for MF-seq and MF-ideal
are of similar size, which reflects the similarity between the multi-follower-based solution
approaches. Note that MF-seq and MF-ideal rely on the same solution procedure. The only
difference between these approaches is that MF-seq is a sequential method and MF-ideal
exploits parallelization. Let us point out that, in Figure 6, we use a logarithmic scaling
of the y-axis for runtime coefficients greater than 40 such as to capture the spread of the
outliers in a detailed and comprehensive way. For Ext, the outliers are widely scattered, which
shows that the performance of the method is rather volatile. In contrast to that, smaller
ranges of the outliers can be observed for MF-seq and MF-ideal. All previous observations
are also affirmed by the results in Table 7. Based on Figure 6 and Table 7, it thus seems
reasonable to prefer the multi-follower approach over the extended formulation since it
seems to be the more stable method. Interestingly, we also observe coefficients of runtimes
strictly smaller than 1 for some of the instances. This means that the robust counterpart
can be solved faster than the nominal problem, i.e., robustification does not necessarily
always lead to increased computational costs. However, the mean and median coefficients
of runtimes shown in Table 7 emphasize that the robustification is not “for free”. However,
the computational cost of robustness for the multi-follower-based approaches—MF-ideal in
particular—is comparatively small.
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Table 7. Minimum, mean, median, and maximum values of the coefficients
of runtimes for the “winner” settings of Ext and MF.

min mean median max

Ext 0.79 128.59 14.68 4365.61
MF-seq 0.76 7.71 4.95 74.66
MF-ideal 0.04 4.60 1.66 65.37

100

1000

Ext MF-seq MF-ideal

10

20

30

40

Figure 6. Box-plots of the coefficients of runtimes qi = ti,rob/ti,nom for the
“winner” settings of Ext and MF.

To sum up, Γ-robust solutions are obtained at the expense of increased computational
difficulty of the problem but, provided that there are sufficient capacities available to solve all
of the follower sub-problems in parallel, the price of robustness w.r.t. runtimes is comparatively
small. Thus, we prefer MF-ideal over MF-seq and Ext. In the sequential setting, the results in
Table 7 clearly suggests that MF-seq outperforms Ext w.r.t. the stability of the method. Based
on the results in Table 5, however, the advantage of MF-seq over Ext is not as significant
as when the relative performance measure is considered. In particular, as elaborated in
Section 4.6, Ext seems to have an advantage on harder instances, which also justifies the use
of the extended formulation.

Table 8: Runtime results (in s) for the nominal knapsack instances
and mean runtimes for their robust counterparts.

Ext MF

size instance nominal robust nominal robustseq robustideal

35 1 0.22 1.71 0.37 0.74 0.27
2 0.49 6.00 0.49 1.13 0.45
3 0.56 13.70 0.77 4.68 1.92
4 0.22 1.75 1.34 6.08 3.23
5 0.28 2.74 2.01 5.80 4.16
6 0.14 0.71 0.38 0.69 0.49
7 0.18 1.20 0.37 3.15 2.83
8 0.16 0.53 0.14 0.39 0.18
9 0.04 0.65 0.13 0.37 0.28
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10 0.05 0.31 0.04 0.32 0.14

40 1 0.33 2.28 0.36 1.43 0.50
2 0.44 10.22 0.56 2.44 0.93
3 1.47 42.99 1.25 11.75 3.41
4 0.29 2.90 1.18 6.85 2.64
5 0.20 2.51 2.09 6.11 4.53
6 0.25 0.94 0.34 0.80 0.70
7 0.15 1.18 0.35 0.86 0.52
8 0.18 0.56 0.22 0.57 0.27
9 0.18 4.85 0.31 3.81 3.45
10 0.02 0.07 0.02 0.19 0.13

45 1 0.38 4.70 0.38 1.51 0.51
2 0.38 10.91 0.46 1.61 0.61
3 0.77 33.53 3.44 14.58 4.25
4 0.43 34.35 7.34 22.32 6.71
5 0.35 16.26 4.69 10.93 5.99
6 0.21 1.39 0.46 3.41 2.98
7 0.06 1.70 0.38 0.67 0.39
8 0.13 0.86 0.27 1.02 0.67
9 0.14 1.08 0.15 0.71 0.47
10 0.20 1.01 0.22 0.70 0.45

50 1 0.36 5.11 0.40 1.57 0.77
2 4.70 121.56 7.57 26.17 6.96
3 5.30 76.00 10.08 19.37 7.45
4 0.21 13.50 3.93 12.48 2.86
5 0.42 45.12 13.53 34.86 9.56
6 0.22 1.29 0.43 0.98 0.58
7 0.17 2.46 0.40 1.46 0.97
8 0.05 0.75 0.35 0.67 0.39
9 0.16 9.69 0.30 4.36 4.08
10 0.06 0.39 0.06 0.57 0.21

55 1 1.08 14.10 0.79 5.53 1.27
2 2.55 86.23 4.31 19.58 4.45
3 299.82 2191.23 261.03 870.73 196.44
4 30.68 338.33 40.64 192.79 48.64
5 0.67 38.71 15.82 20.45 12.10
6 0.44 21.98 0.91 3.65 3.41
7 0.23 8.73 0.57 4.25 3.59
8 0.24 32.00 0.44 5.18 4.72
9 0.14 3.21 0.16 1.18 0.74
10 0.21 2.47 0.21 2.73 2.53

60 1 0.49 3.73 0.32 1.88 0.44
2 3.28 58.43 1.49 14.08 3.30
3 28.27 424.31 22.57 114.68 31.02
4 32.84 358.24 35.87 182.28 54.59
5 1.06 25.08 3.70 17.98 10.79
6 0.66 6.44 0.43 5.37 5.16
7 0.22 5.77 0.41 1.15 0.56
8 0.24 4.99 0.44 3.47 2.88
9 0.23 3.74 0.31 3.84 3.54
10 0.20 1.53 0.27 0.74 0.46
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65 1 0.39 4.97 0.51 1.93 0.45
2 5.71 99.99 5.05 28.94 6.22
3 66.36 705.40 61.75 172.25 56.87
4 119.97 773.86 106.79 548.47 128.77
5 0.59 78.25 9.81 60.65 28.67
6 0.34 24.47 0.79 7.99 6.72
7 0.28 19.71 0.79 5.67 5.27
8 0.28 13.19 0.27 1.29 0.67
9 0.28 7.37 0.18 5.67 5.28
10 0.23 1.32 0.29 0.86 0.47

70 1 0.37 5.77 0.55 3.20 0.79
2 6.95 173.91 10.91 48.16 10.97
3 171.28 1477.50 197.35 594.18 166.50
4 52.55 1168.15 143.76 566.51 160.45
5 0.82 200.63 35.73 148.16 53.30
6 0.42 32.51 0.74 6.44 4.02
7 0.31 32.62 0.70 1.38 0.70
8 0.18 20.74 0.21 2.16 1.42
9 0.26 5.06 0.23 4.85 3.92
10 0.23 2.67 0.15 1.56 1.01

75 1 0.65 10.65 0.76 4.53 0.97
2 30.46 302.07 32.78 82.94 18.50
3 185.97 1669.87 148.04 594.80 159.71
4 2.37 1420.08 282.86 1476.37 349.61
5 0.56 165.93 27.51 87.01 34.18
6 0.40 40.84 1.29 4.12 3.31
7 0.21 21.62 0.41 1.08 0.91
8 0.21 15.62 0.30 6.81 6.63
9 0.24 3.41 0.31 1.43 0.82
10 0.11 0.91 0.28 0.85 0.48

80 1 0.66 15.50 0.65 9.21 1.94
2 58.70 584.49 31.46 194.11 41.11
3 513.98 2410.95 302.54 1554.35 399.95
4 0.93 – 496.44 – –
5 0.52 187.66 27.88 109.24 38.73
6 0.30 75.02 1.28 11.47 8.50
7 0.35 42.64 0.65 7.76 6.42
8 0.30 16.52 0.31 5.23 4.66
9 0.10 4.79 0.08 1.85 1.13
10 0.25 0.90 0.30 1.35 0.58

85 1 1.07 43.68 2.47 26.83 3.19
2 84.63 875.17 89.83 353.61 73.44
3 425.13 3112.44 333.26 2305.22 376.08
4 0.97 – 635.59 – –
5 0.77 218.35 30.64 91.05 34.17
6 0.36 55.90 1.31 4.23 2.17
7 0.28 53.94 1.25 8.13 7.25
8 0.21 22.15 0.24 7.73 6.85
9 0.17 6.58 0.15 9.70 7.37
10 0.11 0.71 0.09 1.37 0.52

90 1 2.60 43.73 2.73 19.40 3.87
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2 130.91 1184.05 110.48 506.53 106.59
3 1324.50 – 1102.64 – –
4 1.25 – 1788.24 – –
5 0.85 298.27 29.03 74.70 28.46
6 0.48 90.69 1.22 10.88 6.64
7 0.29 53.34 0.92 9.32 7.33
8 0.24 19.87 0.36 8.75 7.54
9 0.21 7.75 0.21 8.54 6.76
10 0.18 2.63 0.22 1.82 0.75

95 1 1.54 64.46 2.55 33.70 4.15
2 140.75 1203.87 101.87 702.22 104.00
3 1935.09 – 1266.83 – –
4 1.87 – – – –
5 1.87 683.32 54.15 206.94 47.86
6 0.54 155.16 2.57 12.58 3.53
7 0.35 143.62 1.08 11.34 8.30
8 0.31 39.91 0.46 8.81 7.65
9 0.63 10.83 0.79 4.93 2.32
10 0.14 1.79 0.14 1.56 0.53

100 1 3.09 69.32 1.61 37.42 3.71
2 203.20 1597.40 136.96 694.00 175.65
3 – – – – –
4 3.47 – – – –
5 0.82 1122.00 71.78 391.87 105.00
6 0.63 491.01 3.35 23.15 10.84
7 0.45 461.73 1.21 10.86 8.76
8 0.71 58.45 0.70 2.37 1.62
9 0.13 15.88 0.33 2.92 1.01
10 0.32 3.56 0.33 9.13 8.12

5. Conclusion

In this paper, we consider discrete min-max problems with a follower facing uncertain
lower-level data. We exploit a Γ-robust approach so that the follower only hedges against
a subset of deviations in the uncertain parameters as to adversely affect the solution of
the problem. We present two approaches—an extended formulation and a multi-follower
formulation—to model this type of situation. For both frameworks, we present a fairly generic
branch-and-cut method. Nevertheless, we can obtain stronger formulations for certain types
of problems. As an example, we consider interdiction problems with a monotone Γ-robust
follower to derive problem-tailored cuts that generalize existing interdiction cuts from the
literature. Finally, we conduct a computational study to assess the performance of the two
proposed solution approaches. To this end, we focus on the bilevel knapsack interdiction
problem, which is one of the most prominent examples of monotone interdiction problems.

The computational results suggest that the extended formulation (Ext) performs slightly
better on harder knapsack instances. However, smaller overall mean and median runtimes
and a more stable performance of the method compared to Ext can be observed for the multi-
follower formulation (MF). In particular, we can exploit parallelization for the multi-follower
formulation, which is a major strength of this solution approach. Nevertheless, the study
justifies the use of both the extended formulation as well as the multi-follower approach.

Despite the contribution of this paper, there are still several interesting research questions
that require further investigation. We briefly sketch three of them.
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(1) Throughout this paper, we assume that there are no coupling constraints, i.e., there
are no upper-level constraints explicitly depending on the variables of the follower.
This is a crucial assumption for the validity of the proposed methods. Otherwise, we
would not be able to project the follower’s variables out of the problem using the
optimal-value function as it is done in Section 1. Nevertheless, developing solution
methods for Γ-robust bilevel problems with coupling constraints is a reasonable
aspect of future work.

(2) In this paper, we focus on interdiction problems with a monotone Γ-robust follower
to obtain problem-tailored cuts. An interesting direction for future research would
be to investigate if generic cuts such as, e.g., intersection cuts (Fischetti, Ljubić,
et al. 2016, 2018) can be adapted to the setting described in Section 2.

(3) Finally, we would like to emphasize that we only consider uncertainties in a single
packing-type constraint in the lower level. The extended formulation can easily be
adapted to allow for deviations in multiple lower-level constraints. For the multi-
follower formulation, however, this situation significantly increases the difficulty of
the problem. This is due to the assumption regarding the ordering of the indices,
which is required to exploit the results in Bertsimas and Sim (2003). In general, it is
not possible to order the indices such that the deviations in the constraint coefficients
are non-increasing if there are multiple uncertain constraints. Thus, this aspect is
left for future research.

Acknowledgements

The third author thanks the DFG for their support within projects A05 and B08 in
CRCTRR154.

References

Álvarez-Miranda, E., E. Fernández, and I. Ljubić (2015). “The Recoverable Robust Facility
Location Problem.” In: Transportation Research Part B: Methodological 79, pp. 93–120.
doi: 10.1016/j.trb.2015.06.001.

Álvarez-Miranda, E., I. Ljubić, and P. Toth (2013). “A note on the Bertsimas & Sim
algorithm for robust combinatorial optimization problems.” In: 4OR—A Quarterly Journal
of Operations Research 11, pp. 349–360. doi: 10.1007/s10288-013-0231-6.

Arroyo, J. M. (2010). “Bilevel programming applied to power system vulnerability analysis
under multiple contingencies.” In: IET Generation, Transmission & Distribution 4.2,
pp. 178–190. doi: 10.1049/iet-gtd.2009.0098.

Bazgan, C., S. Toubaline, and D. Vanderpooten (2013). “Critical edges/nodes for the minimum
spanning tree problem: complexity and approximation.” In: Journal of Combinatorial
Optimization 26, pp. 178–189. doi: 10.1007/s10878-011-9449-4.

Beck, Y., I. Ljubić, and M. Schmidt (2022). “A Brief Introduction to Robust Bilevel Op-
timization.” In: SIAG on Optimization Views and News 30.2, pp. 1–10. url: https:
//siagoptimization.github.io/assets/views/ViewsAndNews-30-2.pdf.

– (2023). “A survey on bilevel optimization under uncertainty.” In: European Journal of
Operational Research. doi: 10.1016/j.ejor.2023.01.008.

Beck, Y. and M. Schmidt (2021). “A robust approach for modeling limited observability in
bilevel optimization.” In: Operations Research Letters 49.5, pp. 752–758. doi: 10.1016/j.
orl.2021.07.010.

Ben-Ayed, O., C. Blair, D. Boyce, and L. LeBlanc (1992). “Construction of a real-world
bilevel linear programming model of the highway network design problem.” In: Annals of
Operations Research 34, pp. 219–254. doi: 10.1007/BF02098181.

Ben-Tal, A., L. Ghaoui, and A. Nemirovski (2009). Robust Optimization. doi: 10.1515/
9781400831050.

Benders, J. F. (1962). “Partitioning procedures for solving mixed-variables programming
problems.” In: Numerische Mathematik 4, pp. 238–252. doi: 10.1007/BF01386316.

https://doi.org/10.1016/j.trb.2015.06.001
https://doi.org/10.1007/s10288-013-0231-6
https://doi.org/10.1049/iet-gtd.2009.0098
https://doi.org/10.1007/s10878-011-9449-4
https://siagoptimization.github.io/assets/views/ViewsAndNews-30-2.pdf
https://siagoptimization.github.io/assets/views/ViewsAndNews-30-2.pdf
https://doi.org/10.1016/j.ejor.2023.01.008
https://doi.org/10.1016/j.orl.2021.07.010
https://doi.org/10.1016/j.orl.2021.07.010
https://doi.org/10.1007/BF02098181
https://doi.org/10.1515/9781400831050
https://doi.org/10.1515/9781400831050
https://doi.org/10.1007/BF01386316


REFERENCES 33

Bertsimas, D., D. Brown, and C. Caramanis (2010). “Theory and Applications of Robust
Optimization.” In: SIAM Review 53. doi: 10.1137/080734510.

Bertsimas, D. and M. Sim (2003). “Robust discrete optimization and network flows.” In:
Mathematical Programming 98, pp. 49–71. doi: 10.1007/s10107-003-0396-4.

– (2004). “The Price of Robustness.” In: Operations Research 52.1, pp. 35–53. doi: 10.1287/
opre.1030.0065.

Besançon, M., M. F. Anjos, and L. Brotcorne (2019). Near-optimal Robust Bilevel Optimiza-
tion. url: https://arxiv.org/pdf/1908.04040.pdf.

Besançon, M., M. F. Anjos, and L. Brotcorne (2021). “Complexity of near-optimal robust
versions of multilevel optimization problems.” In: Optimization Letters 15, pp. 2597–2610.
doi: 10.1007/s11590-021-01754-9.

Birge, J. R. and F. Louveaux (2011). Introduction to Stochastic Programming. Springer-Verlag
New York. doi: 10.1007/978-1-4614-0237-4.

Bolusani, S., S. Coniglio, T. K. Ralphs, and S. Tahernejad (2020). “A Unified Framework
for Multistage Mixed Integer Linear Optimization.” In: Bilevel Optimization: Advances
and Next Challenges. Ed. by S. Dempe and A. Zemkoho. Cham: Springer International
Publishing, pp. 513–560. doi: 10.1007/978-3-030-52119-6_18.

Brown, G., M. Carlyle, J. Salmerón, and R. Wood (2006). “Defending Critical Infrastructure.”
In: Interfaces 36, pp. 530–544. doi: 10.1287/inte.1060.0252.

Buchheim, C. and D. Henke (2020). The bilevel continuous knapsack problem with uncertain
follower’s objective. url: https://arxiv.org/abs/1903.02810.

Buchheim, C., D. Henke, and F. Hommelsheim (2021). On the Complexity of Robust Bilevel
Optimization With Uncertain Follower’s Objective. url: https://arxiv.org/abs/2105.
08378.

Burtscheidt, J. and M. Claus (2020). “Bilevel Linear Optimization Under Uncertainty.” In:
Bilevel Optimization: Advances and Next Challenges. Ed. by S. Dempe and A. Zemkoho.
Springer International Publishing, pp. 485–511. doi: 10.1007/978-3-030-52119-6_17.

Burtscheidt, J., M. Claus, and S. Dempe (2020). “Risk-Averse Models in Bilevel Stochastic
Linear Programming.” In: SIAM Journal on Optimization 30.1, pp. 377–406. doi: 10.
1137/19M1242240.

Caprara, A., M. Carvalho, A. Lodi, and G. J. Woeginger (2013). “A Complexity and
Approximability Study of the Bilevel Knapsack Problem.” In: Integer Programming and
Combinatorial Optimization. Ed. by M. Goemans and J. Correa. Vol. 7801. IPCO 2013.
Springer, Berlin, Heidelberg, pp. 98–109. doi: 10.1007/978-3-642-36694-9_9.

– (2016). “Bilevel Knapsack with Interdiction Constraints.” In: INFORMS Journal on
Computing 28.2, pp. 319–333. doi: 10.1287/ijoc.2015.0676.

Chuong, T. D. and V. Jeyakumar (2017). “Finding Robust Global Optimal Values of Bilevel
Polynomial Programs with Uncertain Linear Constraints.” In: Journal of Optimization
Theory and Applications 173.2, pp. 683–703. doi: 10.1007/s10957-017-1069-4.

Cormican, K. J., D. P. Morton, and R. K. Wood (1998). “Stochastic Network Interdiction.”
In: Operations Research 46.2, pp. 184–197. doi: 10.1287/opre.46.2.184.

Cornuéjols, G. (2008). “Valid inequalities for mixed integer linear programs.” In: Mathematical
Programming 112, pp. 3–44. doi: 10.1007/s10107-006-0086-0.

Della Croce, F. and R. Scatamacchia (2020). “An exact approach for the bilevel knapsack
problem with interdiction constraints and extensions.” In: Mathematical Programming
183, pp. 249–281. doi: 10.1007/s10107-020-01482-5.

Dempe, S. (2002). Foundations of Bilevel Programming. Springer US. doi: 10.1007/b101970.
Dempe, S. and A. B. Zemkoho (2012). “Bilevel road pricing: theoretical analysis and optimality

conditions.” In: Annals of Operations Research 196, pp. 223–240. doi: 10.1007/s10479-
011-1023-z.

Dempe, S., S. Ivanov, and A. Naumov (2017). “Reduction of the bilevel stochastic optimization
problem with quantile objective function to a mixed-integer problem.” In: Applied Stochastic
Models in Business and Industry 33.5, pp. 544–554. doi: 10.1002/asmb.2254.

https://doi.org/10.1137/080734510
https://doi.org/10.1007/s10107-003-0396-4
https://doi.org/10.1287/opre.1030.0065
https://doi.org/10.1287/opre.1030.0065
https://arxiv.org/pdf/1908.04040.pdf
https://doi.org/10.1007/s11590-021-01754-9
https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1007/978-3-030-52119-6_18
https://doi.org/10.1287/inte.1060.0252
https://arxiv.org/abs/1903.02810
https://arxiv.org/abs/2105.08378
https://arxiv.org/abs/2105.08378
https://doi.org/10.1007/978-3-030-52119-6_17
https://doi.org/10.1137/19M1242240
https://doi.org/10.1137/19M1242240
https://doi.org/10.1007/978-3-642-36694-9_9
https://doi.org/10.1287/ijoc.2015.0676
https://doi.org/10.1007/s10957-017-1069-4
https://doi.org/10.1287/opre.46.2.184
https://doi.org/10.1007/s10107-006-0086-0
https://doi.org/10.1007/s10107-020-01482-5
https://doi.org/10.1007/b101970
https://doi.org/10.1007/s10479-011-1023-z
https://doi.org/10.1007/s10479-011-1023-z
https://doi.org/10.1002/asmb.2254


34 REFERENCES

DeNegre, S. T. (2011). “Interdiction and Discrete Bilevel Linear Programming.” PhD thesis.
Lehigh University. url: https: / /coral .ise .lehigh .edu /~ted / files / papers /
ScottDeNegreDissertation11.pdf.

DeNegre, S. T. and T. K. Ralphs (2009). “A Branch-and-cut Algorithm for Integer Bilevel
Linear Programs.” In: Operations research and cyber-infrastructure. Springer, pp. 65–78.
doi: 10.1007/978-0-387-88843-9_4.

Fischetti, M., I. Ljubić, M. Monaci, and M. Sinnl (2016). “Intersection Cuts for Bilevel
Optimization.” In: Integer Programming and Combinatorial Optimization. Ed. by Q.
Louveaux and M. Skutella. IPCO 2016. Springer, pp. 77–88. doi: 10.1007/978-3-319-
33461-5_7.

– (2017). “A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs.”
In: Operations Research 65.6, pp. 1615–1637. doi: 10.1287/opre.2017.1650.

– (2018). “On the use of intersection cuts for bilevel optimization.” In: Mathematical Pro-
gramming 172, pp. 77–103. doi: 10.1007/s10107-017-1189-5.

– (2019). “Interdiction Games and Monotonicity, with Application to Knapsack Problems.”
In: INFORMS Journal on Computing 31.2, pp. 390–410. doi: 10.1287/ijoc.2018.0831.

Fischetti, M., M. Monaci, and M. Sinnl (2018). “A dynamic reformulation heuristic for
Generalized Interdiction Problems.” In: European Journal of Operational Research 267.16,
pp. 40–51. doi: 10.1016/j.ejor.2017.11.043.

Fortuny-Amat, J. and B. McCarl (1981). “A Representation and Economic Interpretation of
a Two-Level Programming Problem.” In: The Journal of the Operational Research Society
32.9, pp. 783–792. doi: 10.1057/jors.1981.156.

Furini, F., I. Ljubić, E. Malaguti, and P. Paronuzzi (2020). “On Integer and Bilevel Formu-
lations for the k-Vertex Cut Problem.” In: Mathematical Programming Computation 12,
pp. 133–164. doi: 10.1007/s12532-019-00167-1.

– (2021). “Casting light on the hidden bilevel combinatorial structure of the capacitated
vertex separator problem.” In: Operations Research. doi: 10.1287/opre.2021.2110.

Furini, F., I. Ljubić, P. S. Segundo, and Y. Zhao (2021). “A branch-and-cut algorithm for the
Edge Interdiction Clique Problem.” In: European Journal of Operational Research 294.1,
pp. 54–69. doi: 10.1016/j.ejor.2021.01.030.

Geoffrion, A. M. (1972). “Generalized Benders decomposition.” In: Journal of Optimization
Theory and Applications 10, pp. 237–260. doi: 10.1007/BF00934810.

Goh, J. and M. Sim (2010). “Distributionally Robust Optimization and Its Tractable Approx-
imations.” In: Operations Research 58.4-part-1, pp. 902–917. doi: 10.1287/opre.1090.
0795.

Golden, B. (1978). “A problem in network interdiction.” In: Naval Research Logistics Quarterly
25.4. doi: 10.1002/nav.3800250412.

Grimm, V., L. Schewe, M. Schmidt, and G. Zöttl (2019). “A Multilevel Model of the European
Entry-Exit Gas Market.” In: Mathematical Methods of Operations Research 89.2, pp. 223–
255. doi: 10.1007/s00186-018-0647-z.

Haghighat, H. (2014). “Strategic offering under uncertainty in power markets.” In: Interna-
tional Journal of Electrical Power & Energy Systems 63, pp. 1070–1077. doi: 10.1016/j.
ijepes.2014.05.049.

Hansen, P., B. Jaumard, and G. Savard (1992). “New branch-and-bound rules for linear
bilevel programming.” In: SIAM Journal on Scientific and Statistical Computing 13.5,
pp. 1194–1217. doi: 10.1137/0913069.

Israeli, E. (1999). “System Interdiction and Defense.” PhD thesis. Naval Postgraduate School
Monterey, California. url: https://apps.dtic.mil/sti/pdfs/ADA361997.pdf.

Israeli, E. and R. K. Wood (2002). “Shortest-Path Network Interdiction.” In: Networks 40.2,
pp. 97–111. doi: 10.1002/net.10039.

Ivanov, S. (2018). “A Bilevel Stochastic Programming Problem with Random Parameters in
the Follower’s Objective Function.” In: Journal of Applied and Industrial Mathematics
12.4, pp. 658–667. doi: 10.1134/S1990478918040063.

https://coral.ise.lehigh.edu/~ted/files/papers/ScottDeNegreDissertation11.pdf
https://coral.ise.lehigh.edu/~ted/files/papers/ScottDeNegreDissertation11.pdf
https://doi.org/10.1007/978-0-387-88843-9_4
https://doi.org/10.1007/978-3-319-33461-5_7
https://doi.org/10.1007/978-3-319-33461-5_7
https://doi.org/10.1287/opre.2017.1650
https://doi.org/10.1007/s10107-017-1189-5
https://doi.org/10.1287/ijoc.2018.0831
https://doi.org/10.1016/j.ejor.2017.11.043
https://doi.org/10.1057/jors.1981.156
https://doi.org/10.1007/s12532-019-00167-1
https://doi.org/10.1287/opre.2021.2110
https://doi.org/10.1016/j.ejor.2021.01.030
https://doi.org/10.1007/BF00934810
https://doi.org/10.1287/opre.1090.0795
https://doi.org/10.1287/opre.1090.0795
https://doi.org/10.1002/nav.3800250412
https://doi.org/10.1007/s00186-018-0647-z
https://doi.org/10.1016/j.ijepes.2014.05.049
https://doi.org/10.1016/j.ijepes.2014.05.049
https://doi.org/10.1137/0913069
https://apps.dtic.mil/sti/pdfs/ADA361997.pdf
https://doi.org/10.1002/net.10039
https://doi.org/10.1134/S1990478918040063


REFERENCES 35

Kleinert, T., M. Labbé, I. Ljubić, and M. Schmidt (2021). “A Survey on Mixed-Integer
Programming Techniques in Bilevel Optimization.” In: EURO Journal on Computational
Optimization. doi: 10.1016/j.ejco.2021.100007. Forthcoming.

Labbé, M., P. Marcotte, and G. Savard (1998). “A Bilevel Model of Taxation and Its
Application to Optimal Highway Pricing.” In: Management Science 44.12-part 1. doi:
10.1287/mnsc.44.12.1608.

Lee, T. and C. Kwon (2014). “A short note on the robust combinatorial optimization problems
with cardinality constrained uncertainty.” In: 4OR 12, pp. 373–378. doi: 10.1007/s10288-
014-0270-7.

Martello, S., D. Pisinger, and P. Toth (1999). “Dynamic Programming and Strong Bounds for
the 0-1 Knapsack Problem.” In: Management Science 45.3. doi: 10.1287/mnsc.45.3.414.

Migdalas, A. (1995). “Bilevel programming in traffic planning: Models, methods and chal-
lenge.” In: Journal of Global Optimization 7, pp. 381–405. doi: 10.1007/BF01099649.

Moore, J. T. and J. F. Bard (1990). “The mixed integer linear bilevel programming problem.”
In: Operations Research 38.5, pp. 911–921. doi: 10.1287/opre.38.5.911.

Pajouh, F. M. (2020). “Minimum cost edge blocker clique problem.” In: Annals of Operations
Research 294, pp. 345–376. doi: 10.1007/s10479-019-03315-x.

Pajouh, F. M., V. Boginski, and E. L. Pasiliao (2014). “Minimum vertex blocker clique
problem.” In: Networks 64.1. doi: 10.1002/net.21556.

Pajouh, F. M., J. L. Walteros, V. Boginski, and E. L. Pasiliao (2015). “Minimum edge blocker
dominating set problem.” In: European Journal of Operational Research 247.1, pp. 16–26.
doi: 10.1016/j.ejor.2015.05.037.

Shi, X., O. Prokopyev, and T. K. Ralphs (2020). Mixed Integer Bilevel Optimization with
k-optimal Follower: A Hierarchy of Bounds. Tech. rep. url: http://www.optimization-
online.org/DB_FILE/2020/06/7874.pdf.

Sim, M. (2004). “Robust Optimization.” PhD thesis. Massachusetts Institute of Technology,
Sloan School of Management. url: https://dspace.mit.edu/handle/1721.1/17725.

Smith, J. C. and Y. Song (2020). “A survey of network interdiction models and algorithms.”
In: European Journal of Operational Research 283.3, pp. 797–811. doi: 10.1016/j.ejor.
2019.06.024.

Soyster, A. L. (1973). “Technical Note—Convex Programming with Set-Inclusive Constraints
and Applications to Inexact Linear Programming.” In: Operations Research 21.5, pp. 1154–
1157. doi: 10.1287/opre.21.5.1154.

Tahernejad, S. and T. K. Ralphs (2020). Valid Inequalities for Mixed Integer Bilevel Linear
Optimization Problems. Tech. rep. url: https://engineering.lehigh.edu/sites/
engineering.lehigh.edu/files/_DEPARTMENTS/ise/pdf/tech-papers/20/20T_013.
pdf.

Tahernejad, S., T. K. Ralphs, and S. T. DeNegre (2020). “A branch-and-cut algorithm for
mixed integer bilevel linear optimization problems and its implementation.” In: Mathemat-
ical Programming Computation 12, pp. 529–568. doi: 10.1007/s12532-020-00183-6.

Tang, Y., J. P. Richard, and J. C. Smith (2016). “A class of algorithms for mixed-integer
bilevel min–max optimization.” In: Journal of Global Optimization 66, pp. 225–262. doi:
10.1007/s10898-015-0274-7.

Wood, R. K. (2011). “Bilevel Network Interdiction Models: Formulations and Solutions.”
In: Wiley Encyclopedia of Operations Research and Management Science. doi: 10.1002/
9780470400531.eorms0932.

Xu, P. and L. Wang (2014). “An exact algorithm for the bilevel mixed integer linear pro-
gramming problem under three simplifying assumptions.” In: Computers & Operations
Research 41, pp. 309–318. doi: 10.1016/j.cor.2013.07.016.

Yanıkoğlu, İ. and D. Kuhn (2018). “Decision Rule Bounds for Two-Stage Stochastic Bilevel Pro-
grams.” In: SIAM Journal on Optimization 28.1, pp. 198–222. doi: 10.1137/16M1098486.

Zare, M. H., O. A. Prokopyev, and D. Sauré (2020). “On Bilevel Optimization with Inexact
Follower.” In: Decision Analysis 17.1. doi: 10.1287/deca.2019.0392.

https://doi.org/10.1016/j.ejco.2021.100007
https://doi.org/10.1287/mnsc.44.12.1608
https://doi.org/10.1007/s10288-014-0270-7
https://doi.org/10.1007/s10288-014-0270-7
https://doi.org/10.1287/mnsc.45.3.414
https://doi.org/10.1007/BF01099649
https://doi.org/10.1287/opre.38.5.911
https://doi.org/10.1007/s10479-019-03315-x
https://doi.org/10.1002/net.21556
https://doi.org/10.1016/j.ejor.2015.05.037
http://www.optimization-online.org/DB_FILE/2020/06/7874.pdf
http://www.optimization-online.org/DB_FILE/2020/06/7874.pdf
https://dspace.mit.edu/handle/1721.1/17725
https://doi.org/10.1016/j.ejor.2019.06.024
https://doi.org/10.1016/j.ejor.2019.06.024
https://doi.org/10.1287/opre.21.5.1154
https://engineering.lehigh.edu/sites/engineering.lehigh.edu/files/_DEPARTMENTS/ise/pdf/tech-papers/20/20T_013.pdf
https://engineering.lehigh.edu/sites/engineering.lehigh.edu/files/_DEPARTMENTS/ise/pdf/tech-papers/20/20T_013.pdf
https://engineering.lehigh.edu/sites/engineering.lehigh.edu/files/_DEPARTMENTS/ise/pdf/tech-papers/20/20T_013.pdf
https://doi.org/10.1007/s12532-020-00183-6
https://doi.org/10.1007/s10898-015-0274-7
https://doi.org/10.1002/9780470400531.eorms0932
https://doi.org/10.1002/9780470400531.eorms0932
https://doi.org/10.1016/j.cor.2013.07.016
https://doi.org/10.1137/16M1098486
https://doi.org/10.1287/deca.2019.0392


36 REFERENCES

Zeng, B., H. Dong, R. Sioshansi, F. Xu, and M. Zeng (2020). “Bilevel Robust Optimization
of Electric Vehicle Charging Stations With Distributed Energy Resources.” In: IEEE
Transactions on Industry Applications 56.5, pp. 5836–.5847. doi: 10.1109/TIA.2020.
2984741.

Zenklusen, R., B. Ries, C. Picouleau, D. de Werra, M.-C. Costa, and C. Bentz (2009).
“Blockers and transversals.” In: Discrete Mathematics 309.13, pp. 4306–4314. doi: 10.
1016/j.disc.2009.01.006.

Appendix A. Omitted Proofs

Proof of Proposition 1. Let x be a feasible upper-level decision and let (y∗, z∗, θ∗) be an
optimal solution of the x-parameterized lower-level problem (7). By Assumption 2, there
is a vector u ∈ Rny

+ such that Y (x) ⊆ [0, u1]× · · · × [0, uny ] and, in particular, 0 ≤ y∗i ≤ ui
holds for all i ∈ [ny]. Consequently, we obtain

d>y∗ ≥
ny∑
i=1

min{di, 0}ui.

By (7b), θ∗ ≥ 0, and y∗ ≤ u, an optimal solution of the follower further satisfies

z∗i = max{∆diy∗i − θ∗, 0} ≤ ∆diy
∗
i ≤ ∆diui

for all i ∈ [ny]. Finally, we have θ∗ ≤ max{∆diui : i ∈ [ny]} due to (7b) and the optimality
of θ∗, which concludes the proof. �

Proof of Proposition 2. This follows immediately from the first part of the proof of
Proposition 1. �

Proof of Proposition 3. Let x be a feasible upper-level decision and let ` ∈ {1, . . . , ny + 1}
be arbitrary but fixed. Further, let y` be an optimal solution of the `th sub-problem (10)
that is parameterized in x. By (9) and since y` ∈ {0, 1}ny , we obtain

Φd(x) ≥ −Γd∆d` +

ny∑
i=1

d̃(`)iy
`
i ≥ −Γd∆d` +

ny∑
i=1

min
{
d̃(`)i, 0

}
,

which concludes the proof. �

Proof of Proposition 4. Let x be a feasible upper-level decision. Further, let y ∈ Y (x)
and let y′ ∈ Y be such that y′ ≤ y holds. Due to B ∈ Rm×n+ , we obtain

By′ ≤ By ≤ b,
y′i ≤ yi ≤ ui(1− xi), i ∈ [n],

Thus, y′ is a feasible follower’s decision for the given x, i.e., y′ ∈ Y (x). �

Proof of Proposition 5. Let x be a feasible upper-level decision. First, we show that the
extended formulation (14) satisfies the monotonicity property. To this end, let (y, z, θ) be
a feasible follower’s decision for Problem (14) for the given x. Further, let y′ ∈ Y be such
that y′ ≤ y holds. Due to B ∈ Rm×n+ and ∆di ≥ 0 for all i ∈ [n], we obtain

zi + θ ≥ ∆diyi ≥ ∆diy
′
i, i ∈ [n],

By′ ≤ By ≤ b,
y′i ≤ yi ≤ ui(1− xi), i ∈ [n],

i.e., the follower’s decision (y′, z, θ) is feasible for Problem (14) for the given x. Second,
we show that each sub-problem (15) satisfies the monotonicity property. Note that there
is no need to specify ` ∈ {Γd, . . . , n + 1} since the feasible set of (15) does not depend
on `. For the given x, let y be a feasible follower’s decision for sub-problem (15). Further,
let y′ ∈ {0, 1}n be such that y′ ≤ y. Since we restrict ourselves to binary follower’s variables
in the multi-follower case, we have valid upper bounds ui = 1 for all i ∈ [n]. Applying the

https://doi.org/10.1109/TIA.2020.2984741
https://doi.org/10.1109/TIA.2020.2984741
https://doi.org/10.1016/j.disc.2009.01.006
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same arguments as before, y′ is feasible for sub-problem (15) for the given x. Consequently,
the Γd-robust lower-level problems (14) and (15) satisfy the monotonicity property. �

Proof of Proposition 6. Let x be a feasible upper-level decision. For notational convenience,
let Ψ(x) and Ψ denote the feasible set of Problem (14) and (16), respectively. Further,
let (y∗, z∗, θ∗) be an optimal solution of Problem (14) for the given leader’s decision x.
Then, (y∗, z∗, θ∗) is also feasible for Problem (16), i.e., (y∗, z∗, θ∗) ∈ Ψ. In particular,
y∗i xi = 0 holds for all i ∈ [n], i.e., both problems have the same objective function value
for (y∗, z∗, θ∗). Thus, we obtain

max
y,θ,z

{
n∑
i=1

diyi − Γdθ −
n∑
i=1

zi : (y, z, θ) ∈ Ψ(x)

}

≤ max
y,θ,z

{
n∑
i=1

diyi(1− xi)− Γdθ −
n∑
i=1

zi : (y, z, θ) ∈ Ψ

}
.

(30)

Let (ŷ, ẑ, θ̂) be an optimal solution of Problem (16) for the given leader’s decision x.
Without loss of generality, we assume that there is exactly one item k ∈ [n] for which the
interdiction constraint ŷk ≤ uk(1− xk) is not satisfied, i.e., ŷk ≥ 1 and xk = 1. Otherwise,
we repeat the following as long as there are no more items left that violate the interdiction
constraint. We consider the alternative follower’s decision (y′, z′, θ̂) with

y′i =

{
ŷi, i ∈ [n] \ {k},
0, i = k,

and

z′i =

{
ẑi, i ∈ [n] \ {k},
0, i = k.

By construction, (y′, z′, θ̂) is feasible for Problem (16) and satisfies all interdiction constraints.
Moreover, we obtain

max
y,θ,z

{
n∑
i=1

diyi(1− xi)− Γdθ −
n∑
i=1

zi : (y, z, θ) ∈ Ψ

}
= dkŷk (1− xk)︸ ︷︷ ︸

=0

+
∑

i∈[n]\{k}

di ŷi︸︷︷︸
=y′i

(1− xi)− Γdθ̂ − ẑk −
∑

i∈[n]\{k}

ẑi︸︷︷︸
=z′i

= dk y′k︸︷︷︸
=0

(1− xk) +
∑

i∈[n]\{k}

diy
′
i(1− xi)− Γdθ̂ − z′k︸︷︷︸

=0

−ẑk −
∑

i∈[n]\{k}

z′i

≤
n∑
i=1

diy
′
i(1− xi)− Γdθ̂ −

n∑
i=1

z′i,

i.e., the alternative follower’s decision is optimal for Problem (16). In particular, it is also
feasible for Problem (14), i.e., (y′, z′, θ̂) ∈ Ψ(x), and we have y′ixi = 0 for all i ∈ [n]. Hence,



38 REFERENCES

we obtain

max
y,θ,z

{
n∑
i=1

diyi(1− xi)− Γdθ −
n∑
i=1

zi : (y, z, θ) ∈ Ψ

}

=

n∑
i=1

diy
′
i(1− xi)− Γdθ̂ −

n∑
i=1

z′i

=

n∑
i=1

diy
′
i − Γdθ̂ −

n∑
i=1

z′i

≤ max
y,θ,z

{
n∑
i=1

diyi − Γdθ −
n∑
i=1

zi : (y, z, θ) ∈ Ψ(x)

}
.

(31)

Due to (30) and (31), Problem (14) and (16) admit the same optimal value. �

Proof of Proposition 7. Let x be a feasible upper-level decision and let ` ∈ {Γd, . . . , n+ 1}
be arbitrary but fixed. Further, let y∗ be an optimal solution of the `th sub-problem (15)
for the given leader’s decision x. Then, y∗ is also feasible for the `th sub-problem (17),
i.e., y∗ ∈ Y . In particular, y∗i xi = 0 holds for all i ∈ [n], i.e., both sub-problems have the
same objective function value for y∗. Thus, we obtain

max
y

{
n∑
i=1

d̃(`)iyi : y ∈ Y (x)

}
≤ max

y

{
n∑
i=1

d̃(`)iyi(1− xi) : y ∈ Y

}
. (32)

Let ŷ be an optimal solution of the `th sub-problem (17) for the given leader’s decision x.
Without loss of generality, suppose there is exactly one item k ∈ [n] for which the interdiction
constraint ŷk ≤ 1− xk is not satisfied, i.e., ŷk = 1 = xk. Then, we consider the alternative
follower’s decision

y′i =

{
ŷi, i ∈ [n] \ {k},
0, i = k.

By construction, y′ is feasible for the `th sub-problem (17) and satisfies all interdiction
constraints. Moreover, we obtain

max
y

{
n∑
i=1

d̃(`)iyi(1− xi) : y ∈ Y

}
= d̃(`)kŷk (1− xk)︸ ︷︷ ︸

=0

+
∑

i∈[n]\{k}

d̃(`)i ŷi︸︷︷︸
=y′i

(1− xi)

= d̃(`)k y′k︸︷︷︸
=0

(1− xk) +
∑

i∈[n]\{k}

d̃(`)iy
′
i(1− xi)

=

n∑
i=1

d̃(`)iy
′
i(1− xi),

i.e., the alternative follower’s decision is optimal for Problem (17). In particular, it is also
feasible for Problem (15), i.e., y′ ∈ Y (x), and we have y′ixi = 0 for all i ∈ [n]. Hence, we
obtain

max
y

{
n∑
i=1

d̃(`)iyi(1− xi) : y ∈ Y

}
=

n∑
i=1

d̃(`)iy
′
i(1− xi)

=

n∑
i=1

d̃(`)iy
′
i

≤ max
y

{
n∑
i=1

d̃(`)iyi : y ∈ Y (x)

}
.

(33)

Due to (32) and (33), Problem (15) and (17) admit the same optimal value. �
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Proof of Theorem 2. Let (x, η) ∈ X×R be a given leader’s decision. Due to the validity of
the proposed cuts, it suffices to show that the feasibility of (x, η) w.r.t. either the interdiction
cuts (18) or (19) implies η ≥ Φ(x). To this end, suppose that (x, η) satisfies Ax ≥ a and
either the interdiction cuts

η ≥
n∑
i=1

diŷi(1− xi)− Γdθ̂ −
n∑
i=1

ẑi for all (ŷ, ẑ, θ̂) ∈ Ψ̂

or

η ≥ −Γd∆d` +

n∑
i=1

d̃(`)iŷi(1− xi) for all ŷ ∈ Ŷ, ` ∈ {Γd, . . . , n+ 1}.

By Propositions 6 and 7, this is equivalent to

η ≥ max
ŷ,θ̂,ẑ

{
n∑
i=1

diŷi(1− xi)− Γdθ̂ −
n∑
i=1

ẑi : (ŷ, ẑ, θ̂) ∈ Ψ̂

}
= Φ(x)

and

η ≥ max
`∈{Γd,...,n+1}

{
−Γd∆d` + max

ŷ∈Ŷ

{
n∑
i=1

d̃(`)iŷi(1− xi)

}}
= Φ(x),

which concludes the proof. �

Proof of Proposition 8. This follows immediately from di > 0 and from the fact
that xi ∈ {0, 1} implies ŷi(1− xi) ≤ y′i(1− xi) for all i ∈ [n]. �

Proof of Proposition 9. Let (x, η) be feasible for Problem (2) with the lower-level optimal-
value function (3). Further, let ` ∈ {Γd, . . . , n+ 1} be arbitrary but fixed. Due to xi ∈ {0, 1}
for all i ∈ [n], we have d̃(`)i(1 − xi) ≤ 0 for all i /∈ D`

+. Hence, all follower’s variables yi
with i /∈ D`

+ could be omitted in this sub-problem, i.e., we obtain

Φ`(x) = max
y

∑
i∈D`

+

d̃(`)iyi(1− xi) : y ∈ Ŷ

 .

The validity of the new interdiction cuts (20) can be shown in a similar way as it is done in
Section 3. In particular,

− Γd∆d` +

n∑
i=1

d̃(`)iŷi(1− xi)

= − Γd∆d` +
∑
i∈D`

+

d̃(`)iŷi(1− xi) +
∑
i/∈D`

+

d̃(`)iŷi(1− xi)︸ ︷︷ ︸
≤0

≤ − Γd∆d` +
∑
i∈D`

+

d̃(`)iŷi(1− xi)

holds for all ŷ ∈ Ŷ and ` ∈ {Γd, . . . , n+1}. Thus, the cuts (20) dominate the basic interdiction
cuts (19). �

Proof of Proposition 10. This can be shown in analogy to the proof of Proposition 8.
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