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Many large e-commerce retailers move sufficient freight volumes to operate private middle-mile consolidation

networks for order fulfillment, transporting customer shipments from stocking locations to last-mile delivery

partners in consolidated loads to reduce freight costs. We study a middle-mile network design optimization

problem with fixed origins and destinations to build load consolidation plans that minimize cost and satisfy

customer shipment lead-time constraints. We propose models that extend traditional flat network service

network design problems to capture waiting delays between load dispatches and ensure that shipment lead-

time requirements are satisfied with a desired probability. We approximate these chance constraints using

hyperparameterized linear constraints, resulting in new mixed-integer programs (MIPs) for service network

design. To find high-quality solutions to the proposed MIPs, we develop an effective integer-programming-

based local search (IPBLS) heuristic that iteratively improves a solution by optimizing over a smartly

selected subset of commodities. For the largest problem instances, we propose a two-phase IPBLS heuristic

that first utilizes a simplified, restricted MIP that constrains leg waiting delays individually. Computational

experiments using data from a large U.S.-based e-commerce partner demonstrate the significant impact

of tight lead-time constraints on the structure of the consolidation network designs and their concomitant

operating costs. Notably, tighter constraints lead to solutions with increased shipment consolidation and

higher dispatch frequencies on selected key transportation lanes. Such solutions trade off higher shipment

transit times with significantly reduced shipment waiting times to meet lead-time constraints at lower cost.
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1. Introduction

E-commerce retailing models such as ship-to-home and ship-to-store require that retailers fulfill

orders to customers on demand. E-retailers typically ship goods direct to customers from one or

more fulfillment centers (FCs) and/or from product vendor locations when drop shipping. When

shipping direct, e-retailers arrange shipments with third party carriers from origin stocking loca-

tions through to final customer delivery locations. However, large firms may be able to generate

substantial cost savings by alternatively building consolidated loads with many shipments outbound
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from some stocking locations into other facilities and potentially transferring those shipments into

subsequent consolidated loads prior to last-mile delivery. Such a system of consolidated loads is a

private middle-mile network and the design of these networks is the focus of this paper.

Amazon, Wayfair, and The Home Depot are examples of U.S. shippers who actively manage

large-scale middle-mile networks for e-commerce fulfillment. Amazon was one of the first to do so,

and they currently build outbound truckloads of packages from FCs to both dedicated intermediate

sort centers and direct to Amazon Prime delivery stations or third party parcel carrier facilities

(Leonard, M. 2021). Wayfair has also recently made middle-mile investments and coordinates

logistics services for many of their vendors for direct-to-customer shipments; in 2020, 90% of their

U.S. large-parcel orders flowed through a private middle-mile network (Wayfair 2021). As a final

example, The Home Depot is expanding its middle-mile fulfillment system as part of their One

Supply Chain initiative (The Home Depot 2021), leveraging new and existing fulfillment center

locations as intermediate consolidation locations. Each of these companies uses a private network

to reduce outbound transportation cost while simultaneously speeding up order transit times and

decreasing their reliance on third party logistics providers.

In this paper, we consider a specific middle-mile network planning problem faced by some large

e-retailers. Here, the retailer must ship orders over time from known origin stocking locations

(FCs or vendor locations) to known destination last-mile distribution (LMD) facilities. Examples

of such LMD facilities may be those operated by package transportation companies or postal

services (e.g., UPS), branded delivery subsidiaries (e.g., Amazon Prime), and/or less-than-truckload

(LTL) carriers or local large-and-bulky delivery companies. Since customer orders each have a

promised delivery time, each shipment should move from its origin to its LMD destination to meet

a time deadline. To minimize costs, the retailer consolidates shipments when appropriate into larger

loads (for example, truckloads or larger less-than-truckload shipments) prior to dispatch. These

consolidated loads are then outsourced to third-party carriers for transportation. The planning

problem then is to determine a joint set of shipment paths and load dispatches that move customer

shipments from origins to destinations at minimum cost given delivery time requirements.

This middle-mile network planning problem is similar to service network design problems faced

by consolidation trucking carriers, like LTL and package trucking firms. Traditional deterministic

flat network service network design (SND) optimization models for trucking were first developed

to configure such networks (see the review in Bakir et al., 2021). In flat network models, shipment

demand is modeled using average flow volumes, measured in total shipment size per time for each

origin-destination pair, and capacity decision variables model the number of loads to be dispatched

between facilities per time (i.e., dispatch frequencies). However, since these so-called flow and load

planning models were developed originally for systems where origin-to-destination transit time
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standards were longer, they typically used simple lower bounds on weekly load dispatch frequencies

to construct plans that would approximately meet these standards. Today, LTL and package carriers

often promise tighter delivery times and in response, researchers have explored using detailed time-

expanded network models for service planning that can model lead-time constraints more precisely.

Since LTL and package carriers use sorting facilities that operate only a few dedicated sorting and

dispatching periods each day, time-expanded networks with a large but manageable number of time

periods provide a natural modeling approach for such operations (Erera et al. 2013). Nevertheless,

such models tend to lead to extremely large integer programming optimization problems that are

difficult to solve.

E-retailer middle-mile networks differ from carrier trucking networks, most notably in that ship-

ments may be picked, packed, and ready to ship at origins continuously during operations. Subse-

quently, outbound loads in middle-mile networks may become ready for dispatch to various next

destinations at many possible times each day. Accurate modeling of load dispatch times in middle-

mile networks may require a larger set of time-space nodes and arcs, but time-expanded models

may still be useful in middle-mile consolidation planning. In this paper, however, we explore a

different modeling idea that reverts to flat network models that represent time as a continuum.

Specifically, this paper develops an approach that extends the use of traditional flat network

models as the underlying infrastructure for a network design mixed-integer program (MIP) to create

middle-mile planning models amenable to exact and heuristic solution approaches. Importantly, we

show how to add probabilistic constraints on shipment lead times to such MIP models, where the

lead time of a shipment may include transportation travel time and both fixed transfer processing

time and potential additional waiting time between load dispatches. To summarize the primary

contributions of this work, we:

– develop a new, effective MIP model, denoted the middle-mile consolidation problem with wait-

ing times (MMCW), for consolidation network design that captures the time shipments spend

waiting at transfer facilities within probabilistic lead-time constraints;

– approximate the chance constraints on shipment lead times using hyperparameterized nonlin-

ear constraints and reformulate them as linear constraints using binary variables;

– build a powerful integer-programming-based (IP-based) local search heuristic with novel ran-

domized search neighborhoods tailored to middle-mile consolidation problems and demon-

strate its effectiveness for solving small- to medium-sized problem instances;

– develop a simpler, restricted MIP network design model, denoted the middle-mile consolidation

with allocated waiting delay (MMCW-A), that allocates fractions of the total allowable waiting

time for each possible shipment path in advance to individual path legs, dramatically reducing

the size of the MIP formulation and producing high-quality starting solutions for the MMCW

model when solving large instances;
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– show that a two-phase IP-based local search heuristic that first searches a restricted solution

space using the MMCW-A model before transitioning to using the MMCW model substantially

outperforms an approach that relies solely on the MMCW model for the largest instances

most similar to networks operated in practice by large U.S. retailers; and

– demonstrate the significant impact of more conservative lead-time constraints on the struc-

ture of the network designs produced for realistic instances and on the resulting middle-mile

network operating costs.

The remainder of this paper is organized as follows. In Section 2, we discuss relevant literature.

In Section 3, we formulate the lead-time-constrained middle-mile consolidation network design

problem using two methods to model waiting delays. In Section 4, we develop single- and two-phase

IP-based local search heuristics to solve the design problems. In Section 5, we present results from

a computational study that highlight the impact of lead-time constraints on the resulting network

designs and the effectiveness of our solution approaches. Finally in Section 6, we make concluding

remarks and discuss potential areas of future work.

2. Literature Review

The consolidation network design problems faced by large e-retailers share many similarities

with flow and load planning SND problems for consolidation trucking carriers, such as less-than-

truckload (LTL) or package carriers (Bakir et al. 2021). We refer the reader to Crainic 2000 and

Wieberneit 2008 for broad reviews of SND in transportation. Early trucking SND work focused

on using flat (static) network models of a set of terminals with opportunities for consolidated

truckloads to be dispatched between them represented by arcs with flows. Initial arc-based mod-

els specified minimum weekly truckload frequencies on arcs with positive truck flows to control

waiting delays and ensure a minimum service level (Powell & Sheffi 1983, Powell 1986, Powell

& Koskosidis 1992). These papers did not attempt to convert their formulations into linear MIP

models and solve them; instead, local improvement heuristics are proposed that improve plans by

sequentially adding and dropping facility-to-facility arcs to and from the network in an attempt to

reduce costs. A different stream of early research proposed path-based flat network models for rail

freight SND tactical planning applications (Crainic et al. 1984, Crainic & Rousseau 1986) and then

adapted them for LTL transportation (Crainic & Roy 1988). These models select rail services to

offer and their respective frequencies to meet demand requirements. To ensure that shipments are

not delayed excessively, the proposed models included a nonlinear average waiting delay penalty

in the objective function; because the resulting nonlinear MIPs are intractable, a decomposition-

based algorithm is proposed to iteratively improve the plan by alternating between optimizing

service frequencies with fixed flows and optimizing flows with fixed service frequencies. In our work



Time-Constrained Middle-Mile Consolidation Network Design 5

herein, we will also propose a model that ensures a minimum service level by modeling waiting

delays as a function of service frequencies. However, instead of setting simple lower bounds on arc

frequencies or penalizing waiting delay in the objective, we develop chance constraints to ensure

with a certain probability (or lower bound service guarantee) that shipments reach destinations

within the promised lead time. We then solve the resulting MIP models exactly for small instances

or to within a provable optimality gap for larger instances using a heuristic approach.

More recent work in flow and load planning focuses on more detailed modeling of the time

shipments spend moving between origins and destinations by using time-expanded network models

that explicitly capture when loads are to be dispatched, often referred to as scheduled service

network design (SSND). Variants of SSND problems have been studied, including those that model

empty resource management, stochastic shipment volumes and travel times, platooning, etc. (Lin

2001, Pedersen et al. 2009, Andersen et al. 2009, Lium et al. 2009, Bai et al. 2014, Zhu et al. 2014,

Crainic et al. 2016, Demir et al. 2016, Scherr et al. 2019, Wang & Qi 2020). For larger networks

and planning horizons, time-expanded models and the associated SSND MIPs become very large

and difficult to solve. Models and heuristic solution methods of this type for planning trucking

consolidation networks are introduced in Jarrah et al. (2009), Erera et al. (2013), and Lindsey et al.

(2016). Each requires a heuristic approach to solve large-scale instances. Specifically, Jarrah et al.

(2009) propose decomposition and slope scaling techniques and Erera et al. (2013) and Lindsey et al.

(2016) propose approaches that use restricted and tailored integer programs, respectively, to find

improving solutions. To produce plans of high quality, such models often rely on a fine discretization

of time to accurately capture shipment consolidation opportunities; the quality of solutions may

improve as the time windows narrow, but at the expense of computational challenges related to

solving large and difficult MIPs. Other recent work has developed approaches that dynamically

determine the exact times that dispatches should occur, and thus do not require specifying a time

discretization in advance (Boland et al. 2017, Hewitt 2019, Boland et al. 2019, Scherr et al. 2020,

Marshall et al. 2021, Hewitt 2022). These so-called dynamic discretization discovery approaches

remain computationally expensive and have been shown to be effective primarily for networks with

fewer than 50 nodes, 1,000 arcs, and at most 1,000 origin-destination pairs.

The modeling approach we develop in this paper for shipment waiting times in lead-time con-

straints is also similar to work found in the public transit literature. Using service headway (i.e.,

the inverse of frequency) to model passenger waiting times is common in work that addresses public

transit systems (Mauttone et al. 2021). For example, when considering passengers arriving at a

transit station according to a stationary stochastic process with independent increments, it is well

known that the expected waiting time for each passenger until the arrival of a vehicle (i.e., bus) is

equal to one-half of the vehicle dispatch headway when this headway is constant (Daganzo 1997). A
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problem related to public transit network design is the network assignment problem where models

attempt to predict how passengers might jointly choose routing strategies across a network to move

from origins to destinations, minimizing their traveling and waiting times. Spiess & Florian (1989)

model average waiting time such problems as the inverse of total outbound departure frequency

assuming exponential headways. Bouzäıene-Ayari et al. (2001) provide a review of this literature;

more complex models of average waiting time have been proposed in other papers but the functions

still generally include a term that is proportional to the inverse of departure frequencies. Cancela

et al. (2015) extend passenger assignment models into transit design models that minimize passen-

ger waiting times by assigning frequencies for selected services. To address the nonlinearity when

modeling waiting delay as the inverse of frequency, they use a discrete set of frequency options for

each service, of which one is assigned using a binary indicator variable; we adopt a similar modeling

idea in this paper. Across this literature, we are not aware of other work that develops linearized

chance constraints for total waiting time for multiple-leg trips.

Finally, although we develop tractable MIP models in this paper for lead-time-constrained

middle-mile network design, we can obtain much better solutions to these models using less com-

putation time by employing an effective heuristic solution approach known as IP-based local search

(Hwang et al. 2011). IP-based local search is a MIP solution approach that combines exact and

heuristic approaches (Franceschi et al. 2006, Savelsbergh & Song 2008, Hewitt et al. 2010). In this

framework, a restricted version of the full MIP is solved at each iteration in an attempt to improve

an incumbent solution (Erera et al. 2013, Lindsey et al. 2016). Specifically, at each iteration, a

subset of variables are selected to be freed for optimization while the remaining are fixed to the

current solution. The subset of variables to free is selected using defined search neighborhoods

specific to the problem, such as freeing all variables associated with freight destined for a single

terminal when optimizing an LTL load plan with an in-tree structure (Erera et al. 2013). After a

restricted MIP is defined, it is typically solved using a commercial solver for no more than a few

minutes, since limiting the solve time of restricted MIPs allows for more MIPs to be solved within

a total time limit (Hwang et al. 2011, Erera et al. 2013). Similar to previous IP-based heuristics

built for trucking network problems, our search neighborhoods are defined after selecting a small

number of network components, such as locations and arcs, and selecting variables associated with

these components. However, in contrast to previous work, our proposed IP-based heuristic identi-

fies solution improvement opportunities via randomized search neighborhoods, where probabilities

of selecting network components are computed to bias the search toward areas of the network with

high freight volumes. We also use multiple search neighborhood generation schemes, and switch

between them adaptively to escape local minima.
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3. Middle-Mile Consolidation Optimization Modeling

In this section, we introduce the middle-mile consolidation network design problem with fixed ori-

gins and destinations. We first formulate a path-based mixed integer programming model using flat

networks when lead-time requirements can be embedded in the set of possible consolidation routes.

We then extend this base model and propose new flat network design MIPs that estimate waiting

delays between load dispatches and ensure that shipment lead-time requirements are satisfied with

a defined probability.

3.1. Problem Description

We consider a large shipper that needs to move shipments from known origins (vendor or fulfill-

ment center (FC) locations) to known destinations, each of which is a last-mile distribution (LMD)

facility, within specified lead times. To do so, the shipper needs to plan sufficient freight trans-

portation capacity between its facilities to satisfy shipment demand and lead-time constraints. This

capacity will be provided by scheduling loads, where a load is a consolidated set of shipments to

be dispatched. We assume that the shipper does not own nor lease the transportation equipment

assets used to move loads and is then not responsible for balancing these assets across facilities

over time.

Let (N ,L) define the shipper’s service network. The node set N denotes the set of facilities

in the network; these include vendor locations, FCs, LMD facilities, and potentially other sorting

and transfer locations. Subset NO ⊆N includes all locations that originate middle-mile shipments.

Subset ND ⊆N includes all locations that are destinations for shipments. Finally, NH ⊆N includes

all facilities where shipments can be transferred from one load to another; these intermediate

locations may be FCs, cross-docks, or other transfer terminals, and we assume that they have

sufficient capacity to transfer assigned shipments. Each facility i∈N belongs to at least one of the

subsets NO, ND, or NH . The directed arc set L consists of the set of potential freight transportation

legs connecting pairs of locations.

If shipments are moved on a leg l ∈L, they all must be assigned to a single mode m ∈Ml, and

a leg-mode combination (l,m) will be referred to as a lane. Here, a mode m ∈Ml indicates the

type of freight transportation used on leg l ∈ L and also specifies cost parameters and bounds on

the size of each individual load. For middle-mile networks, typical transportation types include

truckload and LTL trucking. Given mode m, we assume that each load of size q dispatched on

lane (l,m) incurs a cost given by the expression Alm +Blmq. This fixed-plus-linear form is a useful

model that can represent many real-world freight cost structures reasonably well. Furthermore,

each lane also specifies an associated upper bound Qmax
lm and lower bound Qmin

lm on the size of each

dispatched load; these bounds are used to model both physical constraints on load size by mode
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and key size buckets where cost parameters differ. For example, a truckload mode can be modeled

with a load size lower bound of zero and an upper bound equal to the maximum trailer capacity.

On the other hand, an LTL mode may also specify a minimum load size required to qualify for

a price discount. We restrict each leg to use a single mode to attempt to pragmatically represent

operational realities; it is unlikely for a shipper to combine truckload and LTL shipments along

a single leg, and while LTL shipments over time may vary in size (and thus size bucket), such

variation is not important to capture in a planning model.

Given this network and available freight transportation modes, the middle-mile consolidation

network design problem is to determine a minimum-cost allocation of transportation capacity

on network legs to ensure that a shipment consolidation plan is feasible. Shipment demand is

modeled using a set K of commodities. Since customer orders are filled from known origins to known

destinations, each commodity k ∈K has a fixed origin ok ∈NO and destination dk ∈ND. Although

many shipments may be sent over time for commodity k, we assume that each such shipment

follows the same sequence (or route) defined by the chosen consolidation plan. Let Rk represent

the set of potential freight routes for commodity k, where each route is an ordering of adjacent

freight transportation legs connecting origin ok to destination dk, and potentially uses one or more

transfer facilities in NH . Then, for each commodity k ∈ K, a unique freight route r ∈ Rk must

be selected. The selected route specifies a consolidation plan for commodity k: one that includes

a single leg is referred to as a direct route, whereas a consolidation route has multiple legs and

includes shipment transfer(s). For notational convenience, we denote R := ∪k∈KRk as the set of

potential freight routes.

3.2. A Base Model of Middle-Mile Consolidation

We now introduce a base optimization model for middle-mile consolidation network design (MMC),

which handles cases where shipment lead times can be determined completely by the legs and

transfer terminals contained within each route. The proposed model uses a flat (not time-expanded)

network representation of capacity allocation to legs and an associated representation of shipment

consolidation into load dispatches. Thus, this base model is not a detailed schedule of actual planned

load dispatches. Instead, freight transportation capacity decisions are modeled as frequencies of load

dispatches on lanes per time (e.g., number of truckloads per week). The demand inputs then are

also expressed as constant rates per time; let Vk be the demand rate for commodity k, representing

the aggregated average shipment size flowing (i.e., the volume) from ok to dk per time (e.g., lbs

per week). As a tactical model, it is assumed that any non-constant fluctuations in demand or

load dispatch frequencies do not substantively impact the feasibility of the plan. The goal of the

MMC model is to select a joint set of freight routes for all commodities along with load dispatch
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frequencies on selected lanes such that all commodity volume is transported feasibly and total cost

is minimized.

Let binary variables xr indicate whether route r ∈R is selected and ylm indicate whether lane

(l,m) ∈ L×Ml is used. Continuous variables vlm indicate the total shipment volume assigned to

each lane (l,m). Finally, integer variables flm count the number (or frequency) of loads dispatched

per time on lane (l,m). Suppose that shipment lead times can be completely determined by the

legs and transfer terminals contained within each route. Furthermore, suppose that each route

r ∈ Rk for commodity k has a total handling cost Cr, typically proportional to the number of

transfers multiplied by the shipment volume Vk. Then, the set R can be pre-processed so that it

only contains routes for which lead-time requirements are met, thus ensuring that the MMC model

selects a consolidation plan that is lead-time feasible. We can formulate this model as follows:

min
x,y,f,v

∑
r∈R

Crxr +
∑
l∈L

∑
m∈Ml

(
Almflm +Blmvlm

)
(1a)

s.t.
∑
r∈Rk

xr = 1, ∀k ∈K, (1b)∑
m∈Ml

vlm =
∑
k∈K

∑
{r∈Rk|r3l}

Vkxr, ∀ l ∈L, (1c)

vlm ≤Qmax
lm flm, ∀ l ∈L, ∀m∈Ml, (1d)

vlm ≥Qmin
lm flm, ∀ l ∈L, ∀m∈Ml, (1e)∑

m∈Ml

ylm ≤ 1, ∀ l ∈L, (1f)

flm ≤ Flmylm, ∀ l ∈L, ∀m∈Ml, (1g)

xr ∈ {0,1}, ∀ r ∈R, (1h)

ylm ∈ {0,1}, ∀ l ∈L, ∀m∈Ml, (1i)

flm ∈Z≥0, ∀ l ∈L, ∀m∈Ml, (1j)

vlm ≥ 0, ∀ l ∈L, ∀m∈Ml. (1k)

The objective is to determine a transportation consolidation plan that minimizes the total trans-

portation and handling costs. Constraints (1b) ensure that one route is selected for each commodity.

Constraints (1c) determine the total volume flowing on each leg l aggregated across commodities

and allocate it to a selected lane (l,m). Constraints (1d) and (1e) set the required load dispatch

frequencies for each lane using upper and lower bounds on load size. Note that, consistent with

nearly all flow and load planning models in the literature, these constraints assume that ship-

ments can be fluidly packed into loads ignoring discrete bin packing considerations. Constraints

(1f) ensure that each leg uses at most one mode (and thus is included in at most one lane). Finally,
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since the number of dispatched loads using lane (l,m) may be limited over time (especially for

LTL shipments), constraints (1g) require that a lane-specific maximum load dispatch frequency

Flm is not exceeded. Note also that this model does not include constraints to balance transport

equipment across locations over time, as the shipper does not own the transportation equipment

assets.

The MMC model is formulated using path-based variables xr since in most middle-mile planning

problems, the number of reasonable geographic consolidation routes per commodity is likely to

be small when compared to the number of network arcs. In such scenarios, path-based models

require fewer binary decision variables. It is also well-known that path-based models make it very

easy to exclude certain routes from consideration; for example, routes that induce more than some

allowable fraction of out-of-route mileage or that require more than some maximum transit time

can be excluded easily. In Section 3.4, it will also become clear that path-based models are useful

when modeling probabilistic commodity lead-time constraints.

A key concern about the MMC model is its ability to capture true shipment lead times since

it ignores waiting delays for load dispatches. If the solution has sufficiently high frequencies on

all lanes (i.e., dispatches daily or more frequently), then it may be appropriate to ignore waiting

delays. However, when loads are potentially dispatched less frequently, as is typically the case with

large-and-bulky items for instance, it becomes crucial to explicitly model waiting delays. In the

subsequent sections, we develop approaches for doing so.

3.3. Modeling Lead-Time Constraints with Waiting Time Delays

Missing from the MMC base model is a representation of the waiting delays that shipments expe-

rience given a consolidation plan. If the shipments for a commodity travel along a route r with a

single leg (and associated lane), they incur potential waiting delays for loads departing the origin.

When shipments additionally transfer along a route with multiple legs, waiting delay may occur

at each dispatch location.

The frequency of load dispatches on a leg impacts lead times since lower frequencies lead to longer

waiting delays. Given the load dispatch frequency fl on leg l, we assume trucks are scheduled to

dispatch every 1
fl

time units, which we refer to as the resulting headway. We can then safely make

the simplifying assumption that load dispatches and headways are deterministic and uncoordinated

across facilities. Then, if individual shipment sizes are small compared to the capacity of each load

and they are equally likely to arrive at any time within a dispatch headway of length 1
fl

, the waiting

delay to the end of the headway (and subsequent dispatch) experienced by any individual shipment

to be dispatched on leg l can be modeled as a uniform random variable Wl ∼ Uniform(0, 1
fl

).

Since the flat network model assumes that originating shipment volume arrives continuously and
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deterministically over time at origin locations, it should be clear that the waiting delay for the

initial dispatch is uniformly distributed. When volume is transferred at an intermediate location,

if inbound arriving loads and headways are uncoordinated, it is again most reasonable to assume

that any individual shipment’s arrival time is uniformly-distributed on the headway interval and

that the shipment can be loaded into the next dispatch. Now suppose that we replace the fluid

arrival model of shipments at each origin with a homogeneous Poisson process; again, the waiting

time from any individual shipment’s arrival time to the next dispatch will be Uniform(0, 1
fl

), since

the arrival times of an observed set of Poisson points on an interval of known length are uniformly

distributed on that interval. When individual shipment sizes are small compared to the size of a

consolidated load, the uniform waiting delay model is again appropriate.

We now define the lead time of a route as the sum of leg transit times and waiting delays for

load dispatches, where we assume that any shipment processing time at an intermediate facility

h∈NH is included in the transit time of the outbound leg and is independent of the total volume

that moves through the transfer location. In Figure 1, we illustrate how commodity arrival times

and uncoordinated dispatches can lead to different waiting delays experienced by two shipments

of the same commodity. In the example, the shipments must traverse a two-leg route (with fixed

transit times of 0.5 days and 1 day, respectively) to reach their destination. Since dispatches are

not coordinated, we observe that the first shipment incurs 2 days of waiting delay, while the second

incurs 2.6 days of waiting delay.

Figure 1 Lead time illustration of two shipments of a single commodity.
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The allowable waiting delay of route r, denoted Ŵr, is its lead-time requirement less the sum of

its leg transit times. A load plan will then satisfy the lead-time requirement of route r if and only

if the total waiting delay along that route does not exceed Ŵr. This can be expressed as∑
l∈r

Wl ≤ Ŵr, (2)

which involves the random variables Wl. To construct a plan that meets customer service goals,

one could choose from several potential models. For example, a robust plan might seek to satisfy

(2) with probability one. One could also compute expected plan lateness by taking the expectation

of the maximum of the left-hand side less the right-hand side and zero for each commodity, and

then summing these commodity lateness expressions weighted by volume. Expected plan lateness

could be penalized in the objective function or treated as a second objective function to cost in a

biobjective model.

Instead, we choose to develop a general chance-constrained model that ensures (under assump-

tions) that any shipment is on time with a certain probability p. Consider then the following chance

constraint:

P
(∑

l∈r

Wl ≤ Ŵr

)
≥ p. (3)

Constraint (3) ensures that the probability the sum of the dispatch waiting delays does not exceed

the allowable waiting delay is at least p. Specifically, p represents the probability guarantee of an

on-time arrival for the commodity using route r and is selected by the shipper as a lower bound

on service quality guaranteed to the customer. Since the waiting delay experienced by shipments

to be dispatched on leg l is assumed to be given by Wl ∼Uniform
(

0, 1
fl

)
, the probability that the

commodity traveling along r arrives on time to its destination is given by the following expression

(Kang et al. 2010):

P

(∑
l∈r

Wl ≤ Ŵr

)
=

1

|r|!
∏
l∈r

1
fl

∑
J⊆r

(−1)|J|
[

max

{
0, Ŵr−

∑
l∈J

1

fl

}]|r|
. (4)

However, the resulting constraint (3) is nonlinear in the load dispatch frequencies and cannot be

included directly in the optimization model (1). Instead, we approximate (3) using integer linear

constraints and add them to model (1).

The first step consists of approximating constraint (3) using a simpler nonlinear constraint by

making the following observations: When p= 0.5, i.e., the probability that the commodity traveling

on route r arrives on time is 0.5, chance constraint (3) is equivalent to:∑
l∈r

1

2

1

fl
≤ Ŵr . (5)
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Similarly, when the probability of on-time arrival is p= 1, chance constraint (3) is equivalent to:∑
l∈r

1

fl
≤ Ŵr . (6)

From these observations, given a general on-time arrival probability p, we approximate chance

constraint (3) using the following constraint:

ρr
∑
l∈r

1

fl
≤ Ŵr , (7)

where ρr ∈ [0,1] is a conservatism hyperparameter for route r that depends on its allowable waiting

delay Ŵr and number of legs, as well as the probability guarantee p. Put simply, the selected ρr

represents the maximum proportion of the headway (i.e.,
∑

l∈r
1
fl

) the commodity can wait in order

to guarantee the probability p of meeting the commodity lead-time requirement desired by the

shipper.

Given deterministic and homogeneous headways, setting ρr = 0.5 (respectively ρr = 1) ensures

that feasible load plans satisfy the lead-time requirement for route r with probability p = 0.5

(respectively p= 1). However, in general, determining the hyperparameters ρr given the desired on-

time arrival probability p is challenging. A low value of ρr will allow the selection of load plans that

will not meet the on-time arrival probability, while a high value of ρr will force the selection of load

plans that are too conservative and costly. Thus, given a probability p of on-time arrival desired by

the shipper, we consider the problem of determining for each route r the lowest hyperparameter

ρr for which constraints (7) guarantee that a commodity traveling on route r meets the lead-time

requirement with probability p. This problem can be formulated as follows:

min ρr =
Ŵr∑
l∈r

1
f ′
l

s.t. P

(∑
l∈r

Wl ≤ Ŵr

)
≥ p, ∀f ∈Zr>0 | ρr

∑
l∈r

1

fl
≤ Ŵr,

f ′ ∈Zr>0.

Equivalently, we select for each route r the lowest value of ρr that excludes any combination of

load dispatch frequencies with a total waiting delay that exceeds the allowable waiting delay with

probability at least 1− p. Whenever the number of legs per route is small, which is typically the

case in consolidation transportation systems, this problem can be solved by smartly iterating over

permissible load dispatch frequencies until we are guaranteed that the remaining load plans satisfy

the on-time probability. Note that in some cases, there does not exist a ρr value that separates all

combinations of load dispatch frequencies that satisfy chance constraint (3) from the ones that do

not. Thus, this approach can lead to setting ρr to a value that will exclude a small number of load
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dispatch frequency combinations that result in an on-time probability at least p and thus may be

more conservative than necessary.

Although the non-linear constraints (7) are a rather simple sum of separable hyperbolic terms

for each route, incorporating constraints of this type directly into the MMC model is not straight-

forward. In the next section, we discuss our approach to reformulate the MMC model in such a

way that allows us to linearize the lead-time constraints.

3.4. A Middle-Mile Consolidation Model with Linearized Lead-Time Constraints

To include lead-time constraints in the MMC model, we reformulate constraints (7) using binary

variables. We call the resulting optimization model the middle-mile consolidation with waiting

times (MMCW) model. The linearization approach is similar to that proposed in Cancela et al.

(2015) for transit network design problems. For each lane (l,m) and each possible positive frequency

ω ∈Flm := {1, . . . ,Flm} satisfying the maximum load dispatch frequency Flm, we define the binary

variable zlmω. We then substitute the frequency variables as follows:

flm =
∑
ω∈Flm

ωzlmω, ∀ l ∈L, ∀m∈Ml . (8)

We can now reformulate (7) as linear integer constraints, thus leading to the following formulation

of the MMCW model:

min
x,z,v

∑
r∈R

Crxr +
∑
l∈L

∑
m∈Ml

[
Alm

( ∑
ω∈Flm

ωzlmω
)

+Blmvlm
]

(9a)

s.t.
∑
r∈Rk

xr = 1, ∀k ∈K, (9b)∑
m∈Ml

vlm =
∑
k∈K

∑
{r∈Rk|r3l}

Vkxr, ∀ l ∈L, (9c)

vlm ≤Qmax
lm

∑
ω∈Flm

ωzlmω, ∀ l ∈L, ∀m∈Ml, (9d)

vlm ≥Qmin
lm

∑
ω∈Flm

ωzlmω, ∀ l ∈L, ∀m∈Ml, (9e)∑
m∈Ml

∑
ω∈Flm

zlmω ≤ 1, ∀ l ∈L, (9f)

ρr
∑
l∈r

∑
m∈Ml

∑
ω∈Flm

1

ω
zlmω ≤ Ŵrxr + ρr|r|(1−xr), ∀ r ∈R, (9g)

xr ∈ {0,1}, ∀ r ∈R, (9h)

zlmω ∈ {0,1}, ∀ l ∈L, ∀m∈Ml, ∀ω ∈Flm, (9i)

vlm ≥ 0, ∀ l ∈L, ∀m∈Ml. (9j)

Objective (9a) and constraints (9d)-(9e) are obtained by applying the variable replacement (8) to

objective (1a) and constraints (1d)-(1e), respectively. Constraints (9f) replace constraints (1f)-(1g)
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and select at most one frequency for each lane. Constraints (9g) provide a linear formulation of

constraints (7) and ensure that commodities arrive on time to their destinations with probability

at least p. Note that if route r is not selected and xr = 0, the second term on the right-hand side

provides an upper bound on the left-hand side, which is largest when all lanes in the route are

given the minimum non-zero frequency values of 1. Finally, notice that the MMCW model does

not need binary variables ylm or frequency upper bound constraints since they are accounted for

in the sets Flm of allowed frequency values.

3.5. Simplifying Lead-Time Constraints by Allocating Allowable Wait

Note that the main drawback of the MMCW model is the potentially large number of binary

variables zlmω, ∀ (l,m,ω)∈L×Ml×Flm needed when lanes have many possible frequency values;

this issue is exacerbated for large-scale networks with many legs, lanes, and commodities. To

manage this challenge, one could restrict the allowable frequency values to very small cardinality

sets for a large set of lanes. For example, if it is likely that a lane (l,m) will be used to transport

a large shipment volume, the minimum load dispatch frequency can be increased to reduce the

cardinality of Flm. Of course, such a restriction approach requires insight on potential solutions

and leads to an upper bound on the optimal solution value to the MMCW problem.

As an alternative, we develop a restricted version of the MMCW problem (and an associated

upper bound on its optimal value) that greatly reduces the size of the MIP formulation and can

be used to produce very good starting solutions for the MMCW problem when solving large, real-

world instances. This approach restricts the space of feasible solutions by allocating fixed fractions

of a route’s total allowable waiting delay a priori to each of its legs, and by doing so we can

build waiting time constraints directly in the space of the original decision variables of the MMC

model. We denote this restricted model as the middle-mile consolidation with allocated waiting delay

(MMCW-A) model. In general, this allocation can be arbitrary with the only constraint that the

sum of the individual leg allowable delays for route r does not exceed Ŵr. For this paper, however,

we limit our attention to a simple strategy that distributes the total allowable delay equally among

the legs of each route. Under this assumption, we now approximate chance constraint (3) using the

following hyperparameterized constraint on every leg l of a selected route r:

ρr
∑
m∈Ml

1

flm
≤ Ŵr

|r|
.

This is equivalent to directly adding the following linear constraints to (1) to yield the MMCW-A

model: ∑
m∈Ml

flm ≥ ρr
|r|
Ŵr

xr, ∀ r ∈R, ∀ l ∈ r. (10)
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The right-hand side of constraints (10) represents the minimum frequency of load dispatches on

each leg of a route that is needed to ensure the desired on-time arrival probability of a commodity

traveling on route r, for an appropriately selected hyperparameter ρr. Note that we are able to

rearrange the terms in this manner because only one load dispatch frequency variable for every

leg l will be non-zero, given constraints (1f) and (1g). Importantly and in contrast to the MMCW

model, the MMCW-A model does not require additional binary variables (although it retains

the integer lane frequency and binary lane variables). In practice, it is likely to be much simpler

computationally to find feasible and optimal solutions to this model. Of course, allocating allowable

waiting delays a priori may lead to suboptimal solutions. This may occur, for example, when a

large shipment volume is assigned to a leg l1, leading the capacity constraint (1d) to set a high

load dispatch frequency, which in turn may result in a waiting delay significantly lower than the

allowable waiting delay allocated to l1. If a consolidation route contains leg l1 and a leg l2 with

low assigned volume, then the load dispatch frequency for l2 needed to meet the route’s lead-time

constraint could be lower than what was permissible by constraint (10) and the allowable waiting

delay allocated to l2.

Similar to the MMCW model, we aim to determine for every selected route r ∈ R the lowest

hyperparameter ρr that will guarantee that the load plans satisfying constraints (10) meet the

corresponding lead-time requirement with probability at least p. This problem can be formulated

as follows:

min ρr =
f ′Ŵr

|r|

s.t. P

(∑
l∈r

Wl ≤ Ŵr

)
≥ p, ∀f ∈Zr>0 |

1

fl
≤ Ŵr

ρr|r|
∀ l ∈ r,

f ′ ∈Z>0.

Interestingly, we can derive the following result for the load dispatch frequencies satisfying con-

straints (10) (see Appendix A for the complete derivation). Specifically, for every route r ∈R and

every set of frequencies f ∈Zr≥0 satisfying 1
fl
≤ Ŵr

ρr|r| for every l ∈ r, we have:

P

(∑
l∈r

Wl ≤ Ŵr

)
≥
bρr|r|c∑
i=0

(−1)i

i!(|r| − i)!
(ρr|r| − i)|r| =: gr(ρr). (11)

Thus, given a desired on-time probability p, we can determine the corresponding conservatism

level ρr for each constraint (10) using an iterative search (e.g., bisection), since gr is a nondecreasing

function. Alternatively, if the number of legs |r| is small, one can determine the conservatism level

ρr by solving the polynomial equation gr(x)− p= 0 on each interval [ j−1|r| ,
j
|r| ], j ∈ {1, . . . , |r|}.
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Surprisingly, we observe that computing the conservatism level ρr for the MMCW-A approach

simply requires the on-time probability p and number of legs |r|, and is independent of the allowed

waiting delay Ŵr. Figure 2 illustrates the guaranteed on-time probability as a function of the

conservatism level and the number of legs for this model.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρr

p

|r|= 1

|r|= 2

|r|= 3

|r|= 4

Figure 2 Guaranteed probability p of on-time arrival given homogeneous conservatism levels ρr using the MMCW-

A model.

Again, we find that when the probability of on-time arrival is p = 0.5 (resp. p = 1), setting

the hyperparameter to ρr = 0.5 (resp. ρr = 1) ensures that the load plans that satisfy constraints

(10) are guaranteed to meet the lead-time requirement for the commodity traveling on route r

with probability p, regardless of the number of legs |r|. However, it is interesting to note that if

ρr > 0.5, the probability of on-time arrival increases with the number of legs |r|. On the other

hand, if ρr < 0.5, the probability of on-time arrival decreases with |r|. This is a consequence of the

independence between the waiting delay distributions within a route. This observation suggests

that there is value in adapting the conservatism level for each route, rather than selecting a unique

conservatism level for all routes.

We analyze the computational benefits and drawbacks of both the MMCW and MMCW-A

models, as well as the effects of varying conservatism levels, later in Section 5. Notably, since a

solution to the MMCW-A optimization problem is always feasible for the MMCW problem, we

will show how to use both models in tandem in a two-phase heuristic solution approach useful for

the largest problem instances.
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4. IP-Based Local Search Heuristic

Solving all models proposed in this paper for large-scale realistic problem instances is very challeng-

ing. Commercial solvers often fail to obtain feasible solutions to larger instances with a reasonable

optimality gap, and almost never find provably optimal solutions. Compared to the MMC model,

the MMCW model includes only |R| additional constraints to model the lead-time upper bound

for each possible route and removes
∑

l∈L |Ml| integer variables. However, it requires a very large

number of additional binary variables (
∑

l∈L
∑

m∈Ml
(|Flm|−1)) and the resulting MIP proves much

harder to solve than MMC instances for identical networks. Similarly, instances of the MMCW-

A model are challenging to solve due to the large number of allowable waiting delay constraints

added, which is equal to
∑

r∈R |r|.

For these reasons, we develop IP-based local search (IPBLS) solution approaches (see Erera

et al., 2013 and Lindsey et al., 2016) to effectively find good solutions to all three models. These

approaches work by iteratively improving an incumbent feasible solution by solving small, restricted

versions of the MIP models proposed earlier. These restricted models are obtained by fixing most

decision variables to their values in the incumbent, and then optimizing over the remaining vari-

ables. The incumbent always remains feasible and is passed to the solver as a warm-start solution.

Then, the restricted MIP is solved using a time limit to generate a new incumbent; note that the

warm-start solution in some cases may not be improved. The search continues by defining and

solving a new restricted MIP at each iteration until a stopping criterion is met.

To ensure that the IPBLS solution approach is effective, we must determine which set of vari-

ables to optimize over at each iteration. Each restricted optimization can be considered as the

selection of a (potentially) improving solution in a randomized neighborhood defined by the free

decision variables. We use two approaches to generate such neighborhoods, and each is motivated

by the premise that locations with large originating shipment volume often drive consolidation

decisions. Once consolidation legs are used in paths for origins with larger volumes, these legs

become attractive in paths for vendors with smaller volumes as well. The first generated neigh-

borhood, Neighborhood 1, seeks to improve consolidation outbound from origin facilities (vendors

or FCs), biased toward origins that have more outbound demand volume. The second generated

neighborhood, Neighborhood 2, is similar but focuses on origin facilities that might utilize a partic-

ular intermediate terminal as a consolidation point, again biased toward those with more demand

volume.

We now describe in detail how we generate the IPBLS neighborhoods. Given an incumbent solu-

tion, a randomized neighborhood of feasible solutions is generated by fixing all the route decision

variables xr associated with a subset of commodities, while freeing up all other decision variables.

At iteration t of the IPBLS, let R(t) be the set of routes whose decision variables xr will be freed



Time-Constrained Middle-Mile Consolidation Network Design 19

for reoptimization. Algorithm 1 specifies how such a subset R(t) is selected to define a randomized

instance of Neighborhood 1. Each iteration, an origin facility os is selected and all routes in Rk
for all commodities k that originate at os are added to R(t). The origin os is selected at random

each iteration, where the probability of selecting an origin is equal to its fraction of the total out-

bound shipment volume remaining among all origin facilities o that have not yet been selected.

This process continues with another iteration until at least α|R| routes are included in R(t), where

α∈ (0,1] is a user-selected parameter. A randomized instance of Neighborhood 2 is generated using

a similar procedure, as specified in Algorithm 2. Again, an origin facility os is identified at each

iteration and all routes for all commodities originating at os are added to R(t). However, Algorithm

2 selects os from a subset of origin facilities Oh that can transport some of their outbound volume

through a specific intermediate transfer facility h∈NH . Here, the probability of selecting a specific

origin os ∈ Oh is given by its fraction of outbound shipment volume in commodities that have a

route including transfer location h among all the remaining origin facilities in Oh. Note here that

all commodities originating at os and their associated routes are freed for reoptimization. Doing

so provides the flexibility for other commodities to shift from direct routes to consolidation routes,

or vice versa, as the majority of outbound volume from an origin should often flow altogether to

or be removed altogether from a common initial consolidation location to be cost-effective.

Algorithm 1: Route Set R(t) Selection for IPBLS Neighborhood 1

Input: Route set R, commodity set K, commodity volumes Vk, ∀k ∈K, percentage of

routes to add α

Result: Route subset R(t)

1 Set R(t)←∅;

2 Set O←{ok, ∀k ∈K};

3 Set V̂ ←
∑

k∈K Vk;

4 while |R(t)|<α|R| and O 6= ∅ do
5 Set w(o)← 1

V̂

∑
{k∈K|ok=o}

Vk, ∀o∈O;

6 Select origin os randomly from O using probability mass function w;

7 R(t)←R(t) ∪
(
∪{k∈K|ok=os}Rk

)
;

8 O←O\{os};

9 V̂ ← V̂ −
∑
{k∈K|ok=os}

Vk;

10 end

11 return R(t)
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Algorithm 2: Route Set R(t) Selection for IPBLS Neighborhood 2

Input: Route set R, commodity set K, commodity volumes Vk, ∀k ∈K, selected

intermediate facility h∈NH , percentage of routes to add α

Result: Route subset R(t)

1 Set R(t)←∅;

2 Set Kh←{k ∈K | at least one route r ∈Rk includes location h as a transfer point};

3 Set Oh←{ok, ∀k ∈Kh};

4 Set V̂ ←
∑

k∈Kh
Vk;

5 while |R(t)|<α|R| and Oh 6= ∅ do
6 Set w(o)← 1

V̂

∑
{k∈Kh |ok=o}

Vk, ∀o∈Oh;

7 Select origin os randomly from O using probability mass function w;

8 R(t)←R(t) ∪
(
∪{k∈Kh |ok=os}Rk

)
;

9 Oh←Oh \ {os};

10 V̂ ← V̂ −
∑
{k∈Kh |ok=os}

Vk;

11 end

12 return R(t)

Given these neighborhood generation methods, the IPBLS proceeds as detailed in Algorithm

3. First, an initial feasible solution is created as input to the search. Typically, each commodity

will have a single-leg direct route that can be selected and which will result in a feasible solution

as long as the frequency upper bounds Flm are not restrictive; we will not focus in this paper on

finding a good initial feasible solution in general. Next, the IPBLS begins by using randomized

Neighborhood 1. When a solution is found that improves the objective value of the incumbent,

the incumbent is updated. Within each iteration of the search, the incumbent solution is used as

a warm-start solution. Simple illustrative examples of the IPBLS when using Neighborhoods 1

and 2 are given in Figures 3 and 4, respectively. In each figure, a initial feasible solution is shown

in subfigure (a) and subfigures (b) and (c) illustrate two iterations of the IPBLS. Specifically, in

Figure 3, a subset of origins is selected at random, where the probability of selecting (P(select))

an origin is equal to its proportion of the total volume, and their commodity routes are optimized.

In Figure 4, an FC is first selected and a subset of origins from those that have the option of

transferring at the chosen FC are randomly selected, where the probability of selecting (P(select))

an origin is equal to its proportion of the total volume that may flow through the selected FC.

The commodity routes of the selected origins are then optimized. If the incumbent solution is not

improved using randomized instances generated by the current neighborhood (1 or 2) for a number

of consecutive iterations, the search switches to the other neighborhood. The search terminates
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once a time limit has been reached. Algorithm 3 is labeled as the Single-Phase IPBLS since it is

used to solve an instance of either the MMC, MMCW, or MMCW-A model directly.

VND FC LMD

(a) Initial feasible solution.

P(select)

0 1

(b) Origins assigned P(select) accord-
ing to proportion of total volume and
randomly selected; commodity routes
optimized.

P(select)

0 1

(c) P(select) values remain the same;
next set of origins randomly selected;
commodity routes optimized.

Figure 3 Illustration of IPBLS when using Neighborhood 1 to select route decision variables.

VND FC LMD

(a) Initial feasible solution.

P(select)

0 1

(b) FC selected; origins assigned
P(select) according to portion of vol-
ume able to use selected FC; origins
randomly selected; commodity routes
optimized.

P(select)

0 1

(c) Next FC selected; origins assigned
P(select) according to portion of vol-
ume able to use selected FC; origins
randomly selected; commodity routes
optimized.

Figure 4 Illustration of IPBLS when using Neighborhood 2 to select route decision variables.

Since large MMCW instances are particularly challenging to solve, we also develop a two-phase

approach that leads to better solutions in faster solve times. In this approach, we take advantage

of the fact that an MMCW-A model instance is a restriction of a corresponding MMCW instance.

Thus, we can first improve an initial feasible solution to the restricted MMCW-A model instance

using Algorithm 3. Once a time limit is reached, the feasible solution found is used as the new

initial solution for a second run of Algorithm 3 using the MMCW instance to complete the solve.

This two-phase IPBLS approach is detailed in Algorithm 4. Note that the total allowed run time T

of this two-phase algorithm is allocated in advance to time TMMCW-A spent improving the solution

using the restricted MMCW-A model and time TMMCW spent improving the solution using the

complete MMCW model.
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Algorithm 3: Single-Phase IP-Based Local Search

Input: MIP, initial feasible solution (x̂, v̂, (f̂ , ŷ) or ẑ), objective value ŵ, and listH as an

ordered list of transfer locations NH
Result: Improved feasible solution and improved objective value

1 Set val← ŵ, Trun← 0, iter← 0, neighborhood select← 1, and i← 1;

2 while Trun ≤ T do
3 if neighborhood select= 1 then
4 Select R(t) using Algorithm 1;

5 else
6 h← listH [i];

7 Select R(t) using Algorithm 2 and h as selected intermediate facility;

8 if i < |listH | then
9 i← i+ 1;

10 else
11 i← 1;

12 Solve MIP after adding constraints xr = x̂r, ∀ r ∈R\R(t), using (x̂, v̂, (f̂ , ŷ) or ẑ) as

warm-start solution;

13 TMIP← MIP solving time;

14 newval← MIP solution’s objective value;

15 if newval < val then

16 Set (x̂, v̂, (f̂ , ŷ) or ẑ)← MIP solution;

17 Set val← newval, iter← 0;
18 else
19 Set iter← iter+ 1;

20 if iter=N then
21 if neighborhood select= 1 then
22 neighborhood select← 2;

23 else
24 neighborhood select← 1;

25 Set iter← 0;
26 Trun← Trun +TMIP;
27 end

28 return (x̂, v̂, (f̂ , ŷ) or ẑ), val

5. Computational Results

In this section, we describe the design and the results of a computational study to analyze the

middle-mile consolidation plans produced by the models proposed in this paper and to evaluate

the performance of our heuristic solution approaches. In particular, we present results that: (i)

provide insights on the solution characteristics of the plans produced using MMCW models; (ii)
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Algorithm 4: Two-Phase IP-Based Local Search for MMCW Model

Input: Initial feasible solution (x̂, v̂, ẑ) and objective value ŵ

Result: Improved feasible solution and improved objective value

1 Set f̂lm←
∑

f∈Flm
fẑlmf ∀ l ∈L, ∀m∈Ml;

2 Set ŷlm←
∑

f∈Flm
ẑlmf ∀ l ∈L, ∀m∈Ml;

3 Set val← ŵ;

4 Run single-phase IPBLS (Algorithm 3) using MMCW-A model for TMMCW-A time with

initial solution (x̂, v̂, (f̂ , ŷ)) and objective value val as input;

5 Set (x′, v′, (f ′, y′))← output solution;

6 Set val← output objective value;

7 Set z′lmf ← 1{f ′
lm

=f} ∀ l ∈L, ∀m∈Ml, ∀f ∈Flm;

8 Run single-phase IPBLS (Algorithm 3) using MMCW model for TMMCW time with initial

solution (x′, v′, z′) and objective value val as input;

9 Set (x̂, v̂, ẑ)← output solution;

10 Set val← output objective value;

11 return (x̂, v̂, ẑ), val

demonstrate the impact of the conservatism hyperparameters on the on-time probabilities of the

consolidation plans generated by the MMCW and MMCW-A models; and (iii) assess the value of

using the single- and two-phase IPBLS heuristic approaches to solve large-scale, realistic instances

of these models.

The load plan models and IPBLS heuristic approaches were coded in Python 3.7 using Gurobi

9.1.1 as the MIP solver. We set the Gurobi MIPFocus parameter to focus on finding feasible solu-

tions when solving the restricted MIPs within Algorithm 3 and used the default setting (balancing

feasibility and optimality) when solving the complete MIPs. All experiments were run on a Linux

computing cluster, which uses HTCondor 8.8.12 for job management. Each node in the cluster uses

multi-core 2.4 GHz processors with 8 GB of RAM each.

The IPBLS heuristics used to solve model instances were tuned using experiments, and we

now provide some details. When selecting the subsets of routes R(t) to free for optimization at

an iteration of the single- and two-phase IPBLS heuristics, we set α = 0.3 to balance the MIP

solution work required per iteration with the number of iterations. Other values for α (i.e., α =

0.2,0.25,0.35,0.4) were tested and found to either not make a significant improvement or reduced

the heuristic performance by either restricting too few or too many route variables. It may be useful

in practice to have α vary as Algorithm 3 proceeds; larger values of α can be used in later iterations

to intensify the search. We additionally set a solve time limit of 5 minutes per MIP to ensure a
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large number of iterations within the total heuristic time limit of 12 hours while also providing

sufficient solve time for the restricted MIP such that the final restricted MIP gap was less than

5%. The number of non-improving neighborhood searches allowed before switching neighborhood

selection methods is set to N = 5. We experimented with slightly different values (e.g., N = 3, 4,

6, and 7) but did not observe a significant effect on the results. The exact value of this parameter

is not necessarily important; the purpose of alternating selection methods is to help the search

escape local minima. The value of N should be small enough such that it provides the heuristic

with enough time to use both randomized neighborhoods multiple times, but also large enough to

allow a thorough search of the neighborhoods before switching to the next.

5.1. Middle-Mile Network Instances

The instances used in this study are synthetic but have been derived from historical demand data

provided by a large U.S.-based e-commerce retailer that partnered with our research team. Each

instance uses a planning horizon of one week. Shipment demand originates from locations in a set

NO of vendors (VND) and FCs. Shipment destinations are locations in a set ND of LMD facilities.

We categorize the vendors and LMD facilities into three size groups depending on the amount of

volume these locations send or receive, respectively. The distributions of vendors and LMD facilities

across the size groups are representative of those in our partner’s network. The set NH of facilities

used for intermediate shipment transfer in these instances is limited to the FCs; each instance has

8 such facilities. We create 9 groups of instances of increasing size that differ in the number of

vendors, LMD facilities, and demand commodities. Within each group, we build 5 instances with

different VND and LMD locations and commodity sets.

Attributes of the instances are summarized in Table 1. The table includes the number of VND

and LMD types, as well as the average number of truckloads (TL) originating at VNDs and FCs

and destined for LMDs, the number of commodities, and the number of lanes and routes for

each instance of each group. See Appendix B for additional details on the instances, including

characteristics of the average flow between location types. Figure 5 shows the vendor, FC, and

LMD locations for Group 4 - Instance 1; FC locations are identical in all groups and instances.

Direct freight transportation legs exist from each vendor location to each LMD facility that

receives shipments from the vendor. Furthermore, a leg exists between each vendor and each FC,

from FC to FC, and from each FC to each LMD facility. The truckload freight mode is available

for all these legs. LTL freight (and weight bucket modes) is allowed only on direct legs and FC-to-

LMD facility legs, since these restrictions most closely resemble the operations of our e-commerce

partner. For the truckload mode, trailer capacity is set at 12,000 pounds since load cube is typically

the binding size constraint for e-commerce shipments. LTL transportation is modeled with three
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Table 1 Instance characteristics.

Gr.
# of Locations / Average Volume in # of Truckloads (TL) Comm.

|K| Inst.
Lanes∑
l∈L |Ml|

Routes
|R|Small

VND
Medium

VND
Large
VND

FC
Small
LMD

Medium
LMD

Large
LMD

1 548 506
2 524 506
3 547 494
4 555 492

1
10

0.1 TL
2

0.5 TL
0

0 TL
8

2.5 TL
5

3.1 TL
2

3.5 TL
0

0 TL
106

5 551 500
1 1,706 1,725
2 1,704 1,713
3 1,705 1,733
4 1,722 1,713

2
15

0.3 TL
5

1.4 TL
2

3.1 TL
8

6.6 TL
10

3.8 TL
5

4.4 TL
2

5.1 TL
371

5 1,717 1,749
1 5,127 5,528
2 5,131 5,478
3 5,118 5,512
4 5,133 5,550

3
25

0.6 TL
10

2.4 TL
5

5.4 TL
8

12.1 TL
20

4.2 TL
10

4.9 TL
5

5.8 TL
1,176

5 5,132 5,556
1 13,894 15,342
2 13,886 15,374
3 13,884 15,344
4 13,890 15,368

4
50

0.9 TL
20

3.9 TL
10

9.0 TL
8

19.3 TL
30

5.6 TL
15

7.1 TL
10

9.4 TL
3,278

5 13,887 15,362
1 25,083 27,968
2 25,096 28,092
3 25,093 28,032
4 25,095 28,176

5
75

1.1 TL
30

4.6 TL
15

10.5 TL
8

22.8 TL
40

6.7 TL
20

8.7 TL
10

12.0 TL
5,992

5 25,094 28,016
1 41,655 47,092
2 41,656 47,180
3 41,655 47,032
4 41,651 46,934

6
100

1.4 TL
40

5.9 TL
20

13.4 TL
8

28.8 TL
50

7.9 TL
25

106 TL
15

14.4 TL
10,044

5 41,656 47,216
1 66,116 75,153
2 66,116 75,177
3 66,115 74,927
4 66,115 75,033

7
150

1.5 TL
50

6.2 TL
25

14.0 TL
8

30.8 TL
60

8.7 TL
30

11.9 TL
15

16.5 TL
16,023

5 66,115 75,155
1 124,228 141,947
2 124,228 142,009
3 124,228 141,955
4 124,228 141,837

8
250

1.8 TL
75

7.3 TL
40

16.6 TL
8

35.9 TL
70

12.2 TL
35

17.0 TL
20

24.3 TL
30,263

5 124,227 142,029
1 196,336 225,210
2 196,335 225,014
3 196,335 225,306
4 196,336 225,216

9
375

1.9 TL
100

7.9 TL
50

18.0 TL
8

39.8 TL
80

15.5 TL
40

21.8 TL
20

31.0 TL
47,964

5 196,336 225,318

weight buckets with minimum capacities of 0, 2,000, and 2,700 pounds and maximum capacities of

2,000, 2,700, and 4,000 pounds, respectively. The cost of a truckload was derived from historical

freight costs provided by our partner. The LTL cost buckets were then derived with the intuition

that moving more than a third of a truckload using LTL is typically more expensive than moving
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Figure 5 Locations for Group 4 - Instance 1.

that load by truckload. A summary of freight costs is provided in Table 2, where d represents the

distance of the leg; see Appendix B for an illustration of the freight costs of a 500-mile leg.

Table 2 Freight mode costs for a single load.

Mode Weight (lbs) Cost
TL 0<w≤ 12,000 750 + 1.27d
LTL1 0<w≤ 2,000 0.05(750 + 1.27d) +w(0.234 + 0.0004d)
LTL2 2,000<w≤ 2,700 0.05(750 + 1.27d) + 2000(0.234 + 0.0004d)
LTL3 2,700<w≤ 4,000 0.8w(0.234 + 0.0004d)

We allow up to 40 truckloads on each leg during the week. On the other hand, we limit LTL

shipping to 5 loads per week, which represents sending a single load per weekday; once more

capacity is needed, truckloads will be required.

For each instance, we generate sets Rk with the 5 most operationally-reasonable route options

for each commodity k using guidelines representing a more flexible version of the methods currently

used by our industry partner. The direct, single-leg route connecting the commodity origin to

destination is always included; selecting this route represents the decision to exclude this commodity

from any consolidated middle-mile loads and to simply send these shipments direct. The remaining

4 possible route options are: (i) the shortest distance two-leg route using a single transfer FC, (ii)

the two-leg route transferring at the FC closest to the vendor, (iii) the two-leg route transferring

at the FC closest to the LMD facility, and (iv) a three-leg route transferring at the FCs in (ii)

and (iii), if they are not identical. If some routes are identical, duplicates are removed, resulting

in commodities with fewer than 5 route options. Note that the number of routes is linear in the

number of commodities; thus, the computational burden to generate such route sets is minimal.

The restriction to use at most two transfer locations is common in practice for large middle-mile

operations; this was the case for the large e-retailer we partnered with.
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Without loss of generality, we assume that each unique commodity k represents shipment vol-

ume from origin ok to destination dk with identical lead-time targets; if shipments between these

facilities have potentially different lead-time targets, additional commodities could be defined.

Since we are unable to share actual target delivery lead times from our e-commerce partner, we

generate realistic substitutes by randomly perturbing promised lead times between various geo-

graphic origin-destination pairs with a multiplicative factor drawn uniformly from [0.8,1.2]. These

lead-time targets are then used to calculate the maximum allowable waiting delay Ŵr for each

route by subtracting its fixed transit time and FC transfer processing time(s), when applicable.

Time-infeasible routes (i.e., those that can never meet their lead-time requirement) are removed

prior to solving all optimization models. Allowable waiting delay constraints are generated with

a conservatism level of ρr = 0.5 (to meet lead-time requirements in expectation) in the computa-

tional experiments to follow, except those in Section 5.4 where the results under various on-time

probabilities are compared.

To reduce the computational burden when solving the models, the freight modes, load dispatch

frequencies, and related costs for all direct routes were determined in a pre-processing step. Impor-

tantly, this allows the cost of assigning a commodity to its direct route r′ to be included entirely

in the route cost coefficient Cr′ ; direct route legs are thus excluded from the set L, substantially

reducing the number of decision variables and related constraints.

5.2. Exact MIP versus Heuristic Solution Approach Performance

First, we present results that verify that our single- and two-phase IP-based heuristic solution

approaches are effective at solving realistically-sized problems. To evaluate MIP gaps associated

with solutions generated by the different approaches, we compute a best-known lower bound by

allowing the full MIP model to run for 2 weeks with the Gurobi MIPFocus parameter set to focus

on improving the lower bound. Table 3 shows the average performance across instances for each

group, comparing the average solution objective function values resulting when solving the full MIP

directly versus when solving using the single-phase IPBLS heuristic; the far right column reports

the percentage improvement in objective value when using the heuristic. The time until the best

objective found by the heuristic is also reported as Time to Obj (hr). This metric highlights both

that the heuristic can work well for smaller instances with a shorter run time and how the required

run time quickly increases as the instance size increases.

Although the full MIP can optimally solve Group 1 instances, the quality of the solutions pro-

duced by the full MIP unsurprisingly degrades as the instance size increases, where both the

MMCW-A and MMCW solutions have MIP optimality gaps greater than 50% for the largest

instances. On the other hand, we see that the heuristic approach produces high-quality solutions for
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Table 3 Comparing MIP vs single-phase IPBLS heuristic performance.

Group
2-week MIP

Lower Bound
MIP IPBLS Heuristic Heuristic

Improvement12-hr Obj MIP Gap 12-hr Obj MIP Gap Time to Obj (hr)
1 $120,000 $120,000 0.0% $120,000 0.0% 0.1 0.0%
2 $353,000 $359,000 1.7% $362,000 2.5% 0.9 -0.8%
3 $717,000 $767,000 6.5% $778,000 7.8% 7.1 -1.4%
4 $1,541,000 $1,704,000 9.6% $1,712,000 10.0% 12.0 -0.5%
5 $2,275,000 $2,653,000 14.2% $2,587,000 12.0% 12.0 2.5%
6 $3,702,000 $4,774,000 22.4% $4,159,000 11.0% 12.0 12.9%
7 $4,990,000 $6,908,000 27.8% $5,639,000 11.5% 12.0 18.4%
8 $12,457,000 $15,543,000 28.6% $12,457,000 10.9% 12.0 19.9%
9 $20,788,000 $45,657,000 54.5% $22,911,000 9.3% 12.0 49.8%

(a) MMCW-A

Group
2-week MIP

Lower Bound
MIP IPBLS Heuristic Heuristic

Improvement12-hr Obj MIP Gap 12-hr Obj MIP Gap Time to Obj (hr)
1 $118,000 $118,000 0.0% $118,000 0.0% 0.1 0.0%
2 $299,000 $311,000 3.9% $311,000 4.0% 3.3 -0.1%
3 $625,000 $686,000 8.9% $693,000 9.8% 9.5 -1.0%
4 $1,355,000 $1,536,000 11.7% $1,522,000 11.0% 12.0 0.9%
5 $2,046,000 $2,359,000 13.2% $2,323,000 11.9% 12.0 1.5%
6 $3,267,000 $4,226,000 22.7% $3,780,000 13.6% 12.0 10.6%
7 $4,331,000 $6,046,000 28.4% $5,096,000 15.0% 12.0 15.7%
8 $9,171,000 $19,633,000 53.3% $12,512,000 26.7% 12.0 36.3%
9 $15,327,000 $39,720,000 61.4% $25,969,000 41.0% 12.0 34.6%

(b) MMCW

all instance sizes within the allowed time limit, especially when using the MMCW-A models. Given

that the MMCW-A model is a restriction of the MMCW model, the similar (or better) MMCW-A

objective and solution quality for larger instances demonstrates why it is effective to solve the

MMCW-A model to create good warm-start solutions for the two-phase solution approach. We

present results to confirm this idea in Table 4. We additionally give example plots in Figure 6

from both Group 8 and 9 instances that visually demonstrate the effectiveness of the two-phase

approach. All other Group 8 and 9 instance plots exhibit nearly identical behavior.

Table 4 MMCW-A and MMCW solved using single-phase IPBLS compared to the two-phase IPBLS approach

for solving MMCW.

Group
MMCW MIP

2-week LB
MMCW-A MMCW

8-hr MMCW-A
+ 4-hr MMCW

IPBLS
12-hr Obj

MIP
Gap

IPBLS
12-hr Obj

MIP
Gap

IPBLS
12-hr Obj

MIP
Gap

8 $9,171,000 $12,457,000 26.4% $12,512,000 26.7% $10,938,000 16.1%
9 $15,327,000 $22,911,000 33.1% $25,969,000 41.0% $19,730,000 22.3%

We found that a good distribution of solve time limits for the two-phase IPBLS approach is

to allocate 8 hours to the solution of the MMCW-A model and then 4 hours to the solution of

the MMCW model; this allows the MMCW-A objective value to reach a plateau where fewer
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improvements can be easily identified, while still providing sufficient solve time to allow the MMCW

model to find improvements. Using these parameters, the MMCW solution objective improves by

13% for Group 8 and 24% for Group 9, while the MIP gaps improve by 39% and 45%, respectively.

Figure 6 Example plots for our single- and two-phase IPBLS solution approaches for Groups 8 and 9.

We make two observations when analyzing the example plots in Figure 6: (i) the drop in objective

value when switching from the MMCW-A model to the MMCW model after 8 hours, representing

the improvement in objective function when restrictions on leg load dispatch frequencies are relaxed

(i.e., individual leg waiting delays need not be less than the equally-distributed allowable waiting

delay 2 Ŵr
|r| ); and (ii) the 8-hr MMCW-A + 4-hr MMCW solution objective value drops below the

2-week MIP lower bound for the MMCW-A model, demonstrating that utilizing the two-phase

approach allows us to obtain a better solution than we could have obtained (at optimality) when

solving the MMCW-A model alone.

5.3. The Effect of Constraining Lead Time

We now study the effect of adding lead-time constraints when optimizing a middle-mile network

design using the MMCW model. We present in Table 5 results from solving the MMC model and
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the MMCW model with the 12-hr single-phase IPBLS heuristic approach on the same instances.

To obtain better solutions for the larger instances in groups 8 and 9, we use the 12-hr two-phase

IPBLS heuristic to solve the MMCW model. All row values represent averages across the 5 instances

within each group and we abbreviate Volume-Weighted as Vol-Wtd and Average Load Dispatch

Frequency as Avg Load Disp Freq in the column titles.

Table 5 Comparison of the MMC and MMCW model solutions.

IPBLS 12-hr
Objective

Vol-Wtd
Route
Length

Vol-Wtd
Route
Length

Variance

Avg Load
Disp Freq
(#/week)

Loads/Week
Vol-Wtd

Utilization

LTL TL LTL TL TL
Group 1

MMC $90,000 1.5 0.3 1.0 1.1 30 45 80%
MMCW $118,000 1.5 0.3 1.3 1.9 70 40 67%

Group 2
MMC $256,000 1.6 0.4 1.0 1.2 20 140 83%
MMCW $311,000 1.7 0.4 1.1 1.8 70 170 77%

Group 3
MMC $573,000 1.7 0.4 1.0 1.3 30 310 88%
MMCW $693,000 1.8 0.4 1.2 2.0 140 370 82%

Group 4
MMC $1,249,000 1.7 0.3 1.0 1.4 60 680 91%
MMCW $1,522,000 2.0 0.4 1.4 2.4 230 843 85%

Group 5
MMC $1,888,000 1.7 0.3 1.0 1.5 120 1,060 91%
MMCW $2,323,000 2.1 0.4 1.6 3.3 300 1,360 86%

Group 6
MMC $2,956,000 1.8 0.2 1.0 1.7 60 1,300 92%
MMCW $3,780,000 2.1 0.4 2.0 3.8 540 2,180 84%

Group 7
MMC $3,862,000 1.8 0.2 1.0 1.7 60 2,230 93%
MMCW $5,096,000 2.0 0.4 2.0 3.4 1,320 2,830 81%

Group 8
MMC $6,575,000 1.9 0.1 1.0 2.1 50 3,860 94%
MMCW-A+MMCW $10,938,000 2.1 0.3 2.5 6.3 2,000 6,020 61%

Group 9
MMC $9,230,000 1.9 0.1 1.0 2.3 100 5,490 93%
MMCW-A+MMCW $19,730,000 2.2 0.3 2.5 7.7 2,610 10,310 41%

As expected, we observe, by comparing the IPBLS 12-hr objectives, that the best solutions

to the MMCW models require more total cost than solutions to the MMC models, and thus

total middle-mile cost increases sometimes significantly once lead-time constraints are added. The

volume-weighted route lengths show that the MMC solution routes most commodities through one

FC and then on to the destination. Load dispatch frequencies provide only enough capacity for the

shipment volumes on each leg, leading to dispatch rates of one or two loads per week on most legs.

This results in high load volume-weighted utilization and low costs per ton-mile. However, when

lead-time constraints are enforced, the design must better utilize consolidation lanes to achieve
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both cost scale economies and to meet lead-time constraints. The result is an increase in the

average load dispatch frequencies; the table shows increases, sometimes dramatic, in both LTL

and truckload lane dispatch frequencies averaged across all lanes with positive frequency. We also

observe an increase in the use of LTL loads to move shipments, clearly shown by the increase in the

absolute number of loads dispatched per week; note even for the smallest instances, we see at least

a doubling, often tripling, in the number of LTL loads per week. This occurs largely because some

commodities cannot find a good consolidation path (even with increased truckload frequencies) that

meets their lead-time constraints; these commodities must be served with frequent LTL shipments

on direct legs.

Figure 7 Comparison of FC-to-FC truckload lane volume and load dispatch frequencies for the MMC and MMCW

models (Group 4 - Instance 1).

It is interesting to note that when lead-time constraints are enforced, we observe an increase

in the volume-weighted average route length, measured in number of middle-mile legs per ship-

ment volume. This can be explained by the solution aiming to mitigate the cost increase from

setting higher load frequencies by consolidating more commodities. Indeed, by adding lead-time

constraints, load frequencies must increase to reduce waiting times between dispatches on some

lanes. However, increasing frequencies on lanes with low volume is significantly more expensive

compared to lanes with higher volume. As a result, the solution assigns more volume to two-leg

routes and three-leg routes that include FC-to-FC truckload lanes. Interestingly, high dispatch fre-

quencies on consolidation lanes can reduce waiting delay enough to offset the higher transit times

that result when shipments follow longer transit-time geographic paths. In Figure 7, we observe

this increase in volume and load dispatch frequency on the FC-to-FC truckload lanes. In the fig-

ure, lanes are represented by blue lines, where a thicker line indicates more volume (across all

commodities) and a darker shade of blue indicates a higher load dispatch frequency. Surprisingly,
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dispatch frequencies on consolidation lanes are increased so significantly that many of the com-

modities that use routes with more legs meet their lead-time requirements with more slack time.

Figure 8 shows the distributions of the allowable waiting delay slack (i.e., Ŵr net the expected

waiting delay given the solution) for each route type when adding MMCW lead-time constraints

compared to the MMC model. Interestingly, allowable waiting delay slack increases on average as

the route length increases, demonstrating the powerful reductions in waiting time possible when

moving large shipment volumes on consolidation lanes.

Figure 8 Distributions of MMC and MMCW allowable waiting (AW) delay slack for the selected routes across

all instances categorized by route type.

Finally, we show two examples from the Group 4 instances in Figure 9 of a particular commodity

being re-routed to increase consolidation between FCs. The arrows in the figure represent the

route to which this commodity was assigned in that solution. Commodity (a) was assigned to the

direct route in the MMC solution, but instead consolidates at the nearest FC along with other

commodities in the MMCW solution. Commodity (b) switches from a two-leg route to a three-leg
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route; the second leg in the MMC solution is no longer used in the MMCW solution, as the model

is able to reduce costs by consolidating all commodities to use the FC-to-FC transfer. Although

the MMCW model selects a longer route (with additional transit time) for commodities (a) and

(b), the increased load dispatch frequencies result in a much smaller waiting delay, which in turn

reduced the total lead time.

Figure 9 Examples of commodities opting for longer routes in MMCW (Group 4 - Instance 1).

Overall, we find that solutions of the MMCW model utilize more consolidation lanes to offset

the increased costs associated with higher load dispatch frequencies. Although this leads to longer

routes (both in number of legs and miles) on average, there is still a significant decrease in expected

lead times for commodities.

5.4. Analysis of Conservatism

Next, we analyze the effect of conservatism on the solution, specifically looking at the trade-off

between cost and on-time probability. As discussed in Section 3.3, a minimum on-time probability

p can be specified to set conservatism levels ρr either for each individual route (for MMCW models)

or by route type (for MMCW-A models). Of course, the network designs generated by these models

will result in higher service levels than the minimum on-time probability specified. One way we

choose to measure service level in a solution is by calculating the volume-weighted expected on-time

probability (vOTP) of a solution as follows:

vOTP =

∑
k∈K P

(∑
l∈rWl ≤ Ŵr

)
Vk∑

k∈K Vk
,
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where the on-time probability of an individual commodity P
(∑

l∈rWl ≤ Ŵr

)
when using route r,

is calculated using (4), the assigned load dispatch frequencies from the solution, and the allowable

waiting delay Ŵr. As another service level performance metric, we calculate the volume-weighted

maximum lateness of a solution. To calculate this worst-case metric, every commodity is assumed

to experience waiting time of a full headway on each leg they traverse. The difference between

the sum of the maximum possible waiting delays across the route and the commodity’s allowable

waiting delay is the maximum lateness the commodity may experience. If the difference is negative,

the commodity will never be late and the maximum lateness is zero. These maximum lateness

values and the commodity volumes are used to calculate the volume-weighted maximum lateness

of a solution.

The results for two mid-sized groups with four different values of on-time probability guarantees

(i.e., Min p) are shown in Table 6, as well as results for the associated MMC solution. Note that in

this section, MMCW-A model results are provided primarily for comparative analysis; in general,

this stand-alone model produces results that are too costly and conservative to be useful in practice.

Each row represents the average measure for the 5 instances within each group when solving the

models using the 12-hr single-phase IPBLS approach. We again abbreviate Volume-Weighted as

Vol-Wtd and Average Load Dispatch Frequency as Avg Load Disp Freq in the column titles.

The lead-time constraints in the MMCW-A model, compared to those in the MMCW model, are

stricter for two- and three-leg routes, which leads to higher costs and more conservative average

load dispatch frequencies. Naturally, this also leads to higher expected on-time probabilities, as

measured by the increase in vOTP, and reduced maximum lateness values in solutions found using

the MMCW-A model. A retail shipper is likely to evaluate a consolidation network design using

two main metrics: (i) cost and (ii) service level. In Table 6, we first observe that design solutions

resulting from only minimizing cost would result in a vOTP of 47% and a maximum lateness of

about 4 days. We then see a significant improvement in both vOTP and maximum lateness when

adding lead-time constraints, even for the case where all commodities are only guaranteed to be

on time at least 50% of the time. While the lead-time constraints (7) for MMCW (resp. (10) for

MMCW-A) guarantee an on-time probability p for all commodities, we find that in nearly all cases,

the resulting vOTP exceeds p. This excess is due to some load frequencies being driven by high

volume commodities through constraints (1d) or by commodities with tight deadlines requiring

more frequent dispatches. When balancing cost and service level, using the MMCW model with

p= 0.7 appears to be a reasonable choice. For both groups, commodities have an expected on-time

probability of 96% and maximum lateness of less than 0.25 days for only a roughly 10% increase

in cost compared to the case when p= 0.5.
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Table 6 Comparing different service levels for both MMCW and MMCW-A solved using 12-hr IPBLS.

Min
p

Model
12-hr

IPBLS
Obj

vOTP

Vol-Wtd
Max

Lateness
(days)

Vol-Wtd
Route
Length

Avg Load
Disp Freq
(#/week)

Loads/Week
Vol-Wtd

Util

LTL TL LTL TL TL
Gr 5

0 MMC $1,888,000 0.47 4.25 1.7 1.0 1.5 120 1,060 91%
0.5 MMCW $2,323,000 0.87 0.83 2.1 1.6 3.3 300 1,360 86%

MMCW-A $2,587,000 0.93 0.47 2.1 1.9 3.9 700 1,430 82%

0.6 MMCW $2,436,000 0.92 0.47 2.1 2.1 3.7 430 1,410 83%
MMCW-A $2,760,000 0.97 0.20 2.1 2.4 4.4 850 1,490 79%

0.7 MMCW $2,523,000 0.96 0.24 2.2 2.3 4.7 490 1,510 86%
MMCW-A $2,842,000 0.98 0.11 2.2 2.5 5.2 870 1,570 79%

0.8 MMCW $2,662,000 0.98 0.12 2.3 2.6 5.3 620 1,580 84%
MMCW-A $2,943,000 0.99 0.05 2.3 2.6 6.2 960 1,680 80%

0.9 MMCW $2,844,000 1.00 0.05 2.3 2.6 5.8 720 1,680 78%
MMCW-A $3,103,000 1.00 0.02 2.4 3.0 7.1 870 1,840 76%

1.0 MMCW $3,207,000 1.00 0.00 2.3 3.0 7.3 870 1,930 72%
MMCW-A $3,753,000 1.00 0.00 2.3 3.3 8.9 1,290 2,150 64%

Gr 6
0 MMC $2,956,000 0.47 3.93 1.8 1.0 1.7 60 1,300 92%

0.5 MMCW $3,780,000 0.87 0.74 2.1 2.0 3.8 540 2,180 84%
MMCW-A $4,159,000 0.95 0.26 2.2 2.5 5.5 1,030 2,390 86%

0.6 MMCW $3,979,000 0.93 0.38 2.1 2.6 4.6 750 2,310 82%
MMCW-A $4,429,000 0.98 0.12 2.3 2.6 6.4 1,250 2,540 82%

0.7 MMCW $4,259,000 0.96 0.21 2.2 2.7 5.4 1,020 2,460 80%
MMCW-A $4,632,000 0.99 0.06 2.4 3.0 7.4 1,270 2,730 80%

0.8 MMCW $4,552,000 0.98 0.10 2.3 2.9 6.4 1,130 2,650 76%
MMCW-A $4,930,000 0.99 0.02 2.4 3.1 8.5 1,330 2,970 75%

0.9 MMCW $4,783,000 1.00 0.04 2.4 3.1 7.6 1,030 2,910 74%
MMCW-A $5,303,000 1.00 0.01 2.4 3.5 9.8 1,170 3,310 69%

1.0 MMCW $5,560,000 1.00 0.00 2.4 3.4 9.4 1,430 3,370 64%
MMCW-A $6,526,000 1.00 0.00 2.4 3.4 11.9 1,890 4,030 57%

6. Conclusion and Future Work

In this article, we studied a middle-mile consolidation network design problem to improve the ser-

vice level and outbound logistics cost of large e-commerce retailers. Specifically, we considered the

problem of capacity planning for moving customer shipments from fixed stocking locations to LMD

partners at minimum cost while satisfying customer promised delivery times. We proposed three

MIPs where both input demands and planned load decisions are expressed as constant rates per

time, extending traditional flat network SND models. First, the MMC base model handles cases

where shipment lead times can be completely determined by the legs and transfer terminals within

each route. To better account for the shipment waiting delays incurred between load dispatches,

we introduced chance constraints that guarantee lead-time requirements are met with a desired

probability specified by the shipper. We approximated these chance constraints using hyperparam-

eterized nonlinear constraints, which we reformulated as linear constraints using binary variables.
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The second MIP, the MMCW model, was obtained by adding these new constraints to the MMC

model. Third, we developed a simpler restricted MIP, the MMCW-A model, that individually

constrains leg waiting delays to satisfy lead-time requirements with the desired probability.

To find high-quality solutions to these large-scale MIPs, we developed an effective single-phase

IPBLS heuristic that iteratively improves an incumbent solution by optimizing over a smartly

selected subset of commodities using two neighborhood selection methods. For the largest problem

instances, we also proposed a two-phase IPBLS heuristic that first runs the single-phase IPBLS

on the MMCW-A model, and then further improves the incumbent solution using the single-phase

IPBLS on the MMCW model.

We then conducted an extensive computational study using data from a large U.S.-based e-

commerce partner to demonstrate the impact of tight lead-time constraints on the structure of

the consolidation network designs and their concomitant operating costs. Notably, we observed

that tighter and more conservative lead-time constraints lead to solutions with increased shipment

consolidation and higher dispatch frequencies on selected key transportation lanes. Such solutions

trade off higher shipment transit times with significantly reduced shipment waiting times to meet

lead-time constraints at lower cost. Finally, we found that the single- and double-phase IPBLS

heuristics provide a significant improvement over the solutions obtained directly from optimization

solvers, especially for large real-world problem instances.

Although we believe that the solutions produced by our approach are of high quality, it is difficult

to compute tight objective lower bounds for larger problem instances. Future work could focus

on improving these lower bounds. Furthermore, the modeling framework in this paper is largely

deterministic since input demand rates are considered to be known and time-homogeneous and

planned dispatches are assumed to occur with constant known headways. Robust extensions of this

work that relax these assumptions could be useful in practice.

A natural extension to this work is to incorporate transportation equipment management. In our

current work, the shipper determines how to economically consolidate loads and meet shipment

time requirements when outsourcing loads to third-party carriers operating their own equipment.

However, the shipper may decide to acquire a dedicated fleet of trailers to ensure capacity avail-

ability and potentially further reduce costs. In this case, the optimization model would require

equipment balance constraints, which equalize the total inbound and outbound load frequencies

for the truckload mode at each location. If the dedicated fleet were limited in size, it would also

likely be necessary to include an approach for modeling total truckload trailer availability (and

possibly also to distinguish between both a dedicated truckload mode and a third-party outsourced

truckload mode). The addition of these constraints would likely lead to a more difficult-to-solve
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model; thus, research is necessary to determine if an appropriate local search procedure could be

developed to find high-quality solutions in this case.

Another natural extension of this work is to seek methods for determining a detailed timed

schedule of load dispatches for a planning horizon. After solving our model, the tactical consol-

idation plan given by the set of selected routes for all commodities can be fixed as an input to

a detailed scheduling approach that uses a time-expanded network model to determine dispatch

dates and times for a set of loads. Such an approach would require more precise forecasts of com-

modity demand at specific times during the planning horizon and could be used to more accurately

determine the number of loads required to transfer all demand between origins and destinations

to meet lead-time requirements. One could also consider the problem with flexible origins and des-

tinations, where the shipper can decide the origin of shipments containing items held in stock at

multiple locations and can also select an LMD destination from potentially multiple locations with

different cost and lead-time implications. For example, dropping a shipment at the local terminal

of an LMD partner might be cheaper than using the middle-mile network for some shipments;

forcing all commodities to find an effective consolidation path that meets lead-time constraints

through the middle-mile network may be overly restrictive. Additionally, our models can be used

to reallocate items in stock among the FCs by leveraging the unused truckload capacity in the

selected consolidation plan in order to reduce future lead times.
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Appendix A: Derivation of (11)

We provide the complete derivation of (11) below. For every route r ∈R and every set of frequencies

f ∈Z>0 satisfying 1
fl
≤ Ŵr

ρr|r| for every l ∈ r, we have:

P
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Ŵr

|r|ρr

)|r|[
max

{
0, |r|ρr− |J |

}]|r|

=
1

|r|!
∑
J⊆r

(−1)|J|
[

max

{
0, ρr|r| − |J |

}]|r|
(12)

=
1

|r|!

|r|∑
i=0

(
|r|
i

)
(−1)i

[
max

{
0, ρr|r| − i

}]|r|
(13)

=
1

|r|!

|r|∑
i=0

|r|!
i!(|r| − i)!

(−1)i
[

max

{
0, ρr|r| − i

}]|r|

=

bρr|r|c∑
i=0

(−1)i

i!(|r| − i)!
(ρr|r| − i)|r| =: gr(ρr),

where we partitioned the sum over all subsets of legs in a route with respect to the subsets’ sizes

to move from (12) to (13).

Appendix B: Additional Instance Characteristics

We describe additional characteristics of the instances comprising our computational study in

Section 5. Specifically, Table 7 summarizes the average shipment flow volumes (measured in weight

and fractional truckloads) between the different types of origin-destination facility pairs. Next,

the distribution of the allowable waiting delays for all demand commodities k, averaged across

their potential routes in Rk, is depicted in Figure 10. Finally, Figure 11 illustrates the freight

transportation costs introduced in Table 2 on a 500-mile leg.



Time-Constrained Middle-Mile Consolidation Network Design 39

Table 7 Average volume per O-D pair across all instances.

Origins
Destinations

Small
LMD

Medium
LMD

Large
LMD

Small
VND

200 lbs
0.02 TL

300 lbs
0.03 TL

400 lbs
0.03 TL

Medium
VND

700 lbs
0.06 TL

1,200 lbs
0.1 TL

1,700 lbs
0.15 TL

Large
VND

1,400 lbs
0.12 TL

2,300 lbs
0.19 TL

3,700 lbs
0.31 TL

FC
3,900 lbs
0.33 TL

3,900 lbs
0.33 TL

3,900 lbs
0.33 TL

Figure 10 Distribution of average allowable waiting delays for commodities across all instances.

Figure 11 Freight mode costs for a 500-mile leg.
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