
Recognizing Integrality of Weighted
Rectangles Partitions
Paul Deuker1 and Ulf Friedrich∗2

1Technical University of Munich, Department of Mathematics,
Munich, Germany. ORCID: 0000-0001-8061-4632.

2Otto von Guericke University, Faculty of Mathematics, Magdeburg,
Germany. ORCID: 0000-0001-6566-245X.

January 23, 2023

The weighted rectangles partitioning (WRP) problem is defined on a set of
active and inactive pixels. The problem is to find a partition of the active
pixels into weighted rectangles, such that the sum of their weights is maximal.
The problem is formulated as an integer programming problem and instances
with an integral relaxation polyhedron are characterized by the balancedness
of the problem matrix. Numerical experiments illustrate the benefits of
detecting balancedness for solving WRP.

Keywords: partition problem, integer programming, balanced matrix.

1 Problem Description
We begin by defining the two-dimensional weighted rectangles partitioning (WRP)
problem formally. The setting can be generalized to three or more dimensions in a
straightforward way by using higher-dimensional orthotopes instead of two-dimensional
rectangles.
For p, q ∈ N we consider a rectangular problem field Rp,q which is divided in p × q

pixels. Each pixel of the problem field is either active or inactive as illustrated in Figure 1
with p = 5 and q = 7. We say that a set of pixels is active if all contained pixels are
active, e.g., in the upper row of the problem field in Figure 1 there is a 1× 2 and a 1× 3
active rectangle. Note that WRP can easily be generalized to non-rectangular problem

∗Corresponding author.

1



fields by extending the field with empty pixels to a larger rectangle. A problem field is
interpreted as a binary p× q-matrix where each active pixel is represented by a one and
each inactive pixel is represented by a zero.

Figure 1: Two di�erent rectangle partitions of a 5◊7 problem field. Active pixels
are displayed in gray in the upper picture, two sample partitions are displayed
in black and gray below.

a weight w(s) œ R. We consider a generic weight function. Depending on the
weights, it can be beneficial to split or merge rectangles to obtain a higher total
weight. For example, splitting a 2 ◊ 2 rectangle with a weight of 10 into two
2 ◊ 1 rectangles with a weight of 6 will result in a higher total weight.

Definition 1. Given a problem field Rp,q and a weight function w : Sp,q æ R,
the WRP problem is the task to partition all active pixels into disjoint rectangles
in Sp,q such that the sum of the weights of the used rectangles is maximal.

In Definition 1, partition means that all active pixels have to be covered
by rectangles without covering any inactive pixels and disjoint means that no
two rectangles share the same pixel. The problem is always feasible as a trivial
solution uses one 1 ◊ 1 rectangle for each active pixel. Two non-trivial solutions
for the above example setting are given in Figure 1. Both solutions consist of
eight disjoint rectangles, but can have a di�erent overall value depending on the
weight function.

1.1 Related Problems and Applications
The WRP problem is similar to several two-dimensional problems of the packing
or partitioning type. In what follows we relate WRP to problems already
discussed in the optimization literature. We refer the reader to the survey article
[15] for an in-depth comparison of the several variants and to the library of
instances and computational benchmarks in [11].

In general, WRP can be identified as a set partitioning problem [7]. Given
the set of all possible rectangles, the task is to find a partition that meets the
problem’s preconditions – in our case defined by the active pixels. If a brief,
informal description of WRP is sought, we can relate WRP to a two-dimensional
cutting stock problem [9, 12] with holes. In both problems, a collection of
rectangles is sought that yields the highest possible profit or the lowest possible
cost. The main di�erence is that in the cutting stock typically not all rectangle
types may be used, whereas in WRP the field has spaces not to be occupied.

Another optimization problem with many similarities to WRP is the two-
dimensional knapsack problem, see [16]. In both problems, rectangles have to be

2

Figure 1: Two different rectangle partitions of a 5× 7 problem field. Active pixels are
displayed in gray in the upper picture, two sample partitions are displayed in
black and gray below.

Let Sp,q be the set of all k × l-rectangles which are a product of k ≤ p and l ≤ q
consecutive pixels, i.e., all sub-rectangles of Rp,q. Each s ∈ Sp,q is assigned a weight
w(s) ∈ R. We consider a generic weight function. Depending on the weights, it can
be beneficial to split or merge rectangles to obtain a higher total weight. For example,
splitting a 2× 2 rectangle with a weight of 10 into two 2× 1 rectangles with a weight of
6 will result in a higher total weight.

Definition 1. Given a problem field Rp,q and a weight function w : Sp,q → R, the WRP
problem is the task to partition all active pixels into disjoint rectangles in Sp,q such that
the sum of the weights of the used rectangles is maximal.

In Definition 1, partition means that all active pixels have to be covered by rectangles
without covering any inactive pixels and disjoint means that no two rectangles share the
same pixel. The problem is always feasible as a trivial solution uses one 1× 1 rectangle
for each active pixel. Two non-trivial solutions for the above example setting are given
in Figure 1. Both solutions consist of eight disjoint rectangles, but can have a different
overall value depending on the weight function.

1.1 Related Problems and Applications
The WRP problem is similar to several two-dimensional problems of the packing or
partitioning type. In what follows we relate WRP to problems already discussed in the
optimization literature. We refer the reader to the survey article [15] for an in-depth

2



comparison of the several variants and to the library of instances and computational
benchmarks in [11].

In general, WRP can be identified as a set partitioning problem [7]. Given the set of all
possible rectangles, the task is to find a partition that meets the problem’s preconditions –
in our case defined by the active pixels. If a brief, informal description of WRP is sought,
we can relate WRP to a two-dimensional cutting stock problem [9, 12] with holes. In
both problems, a collection of rectangles is sought that yields the highest possible profit
or the lowest possible cost. The main difference is that in the cutting stock typically not
all rectangle types may be used, whereas in WRP the field has spaces not to be occupied.

Another optimization problem with many similarities to WRP is the two-dimensional
knapsack problem, see [16]. In both problems, rectangles have to be placed on a problem
field while maximizing profit. The problem field of WRP can be interpreted as a two-
dimensional knapsack with special pockets, where not every item fits into every pocket.
A difference to WRP is that each rectangle size can be used arbitrarily often. The
two-dimensional strip packing problem [5, 17] can be interpreted as a generalization of
WRP to an unbounded problem field.

The literature on rectangular decomposition, e.g., [14, 18, 21], considers the problem
of partitioning a given rectangular shape with or without holes into a minimum number
of smaller rectangles. This has been extended to more general shapes, see the survey
in [22]. In principle, we can reduce this problem to WRP by setting the weights of all
rectangles in R to -1. However, the purely discrete setting of WRP is different from the
geometric perspective of general rectangle decomposition algorithms which is why we do
not detail this line of argumentation here. In [1], a partitioning problem similar to WRP
is studied from an approximation perspective. The authors give a concise summary of
approximation algorithms and present a quasi-polynomial approximation method based
on dynamic programming.
In theoretical computer science, rectangle partitions are an important tool to study

the communication complexity of a protocol, see [13]. In particular, any protocol can
be interpreted as a partition into active and inactive rectangles. The partition number
of a protocol, defined as the smallest number of rectangles to partition both the active
and inactive pixels, is a lower bound on the deterministic communication complexity [13,
Proposition 2.2]. We can compute the partition number within our model by setting all
weights to -1 and solve the problem both for the active and inactive pixels.

Our study of WRP is inspired by the rather unusual application of a slot machine
game by an Australian gambling machine manufacturer [2]. The game has a playing field
of size 5× 7 pixels on which randomly some pixels are active. The goal of the game is
to connect adjacent active pixels to rectangles that have different weights such that the
sum of all weights is maximal.

1.2 Structure of this Work
In the next section, we formulate WRP as an integer programming problem (IP). Based
on this formulation, we search for integral instances of WRP by checking the balancedness
of the system matrix. Our main result is the complete characterization of balanced

3



instances given in Theorem 8. In Section 3, we compare an algorithm for checking the
balancedness and the total unimodularity of the system matrix to the direct solution
of the problem as an integer programming problem. Finally, we assess our findings in
Section 4 and point to possible future research directions.

2 Solving the WRP
2.1 IP Formulation
We begin the analysis of WRP by introducing an IP formulation of WRP. Let B be
the set of active pixels and let R = R(B) ⊆ Sp,q be the set of all possible rectangles,
where possible means they consist of pixels b ∈ B only. Ignoring the dependency on B
in the notation, we define the matrix A = (ar,b) as the incidence matrix of all possible
rectangles. In particular, the columns of A are indexed by the rectangles r ∈ R and the
rows correspond to the active pixels b ∈ B, where ar,b = 1 if and only if b ∈ r. We define
a variable xr for all r ∈ R and write wr = w(r) for the corresponding weight.
Using the above notation, we can formulate WRP as an IP problem.

max
∑

r∈R

wrxr

s.t.
∑

r∈R

ar,bxr = 1 ∀ b ∈ B

xr ∈ {0, 1} ∀ r ∈ R

(1)

Apparently, this formulation uses the reasoning of a typical set partitioning formulation,
cf. [3], and a key task in its solution is to (implicitly) generate the set R to be partitioned.

2.2 Integral WRP Instances
The solution of the IP (1) is easy when the polyhedron corresponding to the linear
relaxation of the feasible set has only integer vertices, i.e., when the instance is integral.
A standard result for verifying this property is the Hoffman-Kruskal Theorem [10] that
links integral polyhedra to the total unimodularity of the system matrix A.
Instead, we apply results on balanced matrices developed in [4, 6, 8] to check for

the integrality of the polyhedron. In particular, the polyhedron defined by the linear
relaxation of (1) is integral if the system matrix is balanced, see [20, Theorem 21.7]. As
every totally unimodular matrix is balanced [20, Section 21.5], we can find more integral
instances checking balancedness than by checking total unimodularity. In addition,
checking for balancedness can be performed more efficiently for WRP than testing for
total unimodularity, see Section 3.
We build upon the original definition of a balanced matrix in [4] using hypergraphs.

Definition 2. A hypergraph H = (V, E) is balanced if every odd cycle

(a1, E1, a2, E2, · · · , E2v+1, a1)

4



in H has an edge Ei ∈ E which contains at least three of its vertices aj ∈ V . A
{0, 1}-matrix is called balanced if it is the incidence matrix of a balanced hypergraph.

It is easy to see that every balanced matrix is a {0,1} matrix that does not contain
any square submatrix of odd order with all row sums and all column sums equal to 2.
An unbalanced matrix is a matrix that does not satisfy the property in Definition 2. We
extend this definition for WRP by considering so-called journeys instead of cycles.

Definition 3. A step in a WRP problem field is a pair of two pairwise disjunct pixels,
which are both contained in the same active rectangle. A journey in a WRP problem
field is a sequence of different steps, in which every pixel is appearing exactly twice. A
journey is odd if it contains an odd number of steps.

We can characterize balanced WRP problem fields with the help of journeys. First
note that each submatrix in Definition 2 corresponds to a journey.

Lemma 4. Every square submatrix M in Formulation (1) of odd order with row sums
and column sums equal to 2 corresponds to an odd journey in the WRP problem field.

Proof. Every column of M represents one rectangle of the problem field and each row
of M represents one pixel of the problem field. Since M has row sums and all column
sums equal to 2, it defines a journey. Moreover, this journey is odd because M is of odd
order.

Next, we construct three types of problem fields that are unbalanced. These examples
are the key observations for the complete characterization of balanced fields of WRP in
Theorem 8.

Lemma 5. A problem field containing a 3× 2 rectangle of active pixels is unbalanced.

Proof. Given the 3×2 rectangle of active pixels in Figure 2, consider the journey indicated
by the arrows. We show that this journey leads to an unbalanced submatrix. First,

We can characterize balanced WRP problem fields with the help of journeys.
First note that each submatrix in Definition 2 corresponds to a journey.

Lemma 4. Every square submatrix M in Formulation (1) of odd order with
row sums and column sums equal to 2 corresponds to an odd journey in the WRP
problem field.

Proof. Every column of M represents one rectangle of the problem field and
each row of M represents one pixel of the problem field. Since M has row sums
and all column sums equal to 2, it defines a journey. Moreover, this journey is
odd because M is of odd order.

Next, we construct three types of problem fields that are unbalanced. These
examples are the key observations for the complete characterization of balanced
fields of WRP in Theorem 8.

Lemma 5. A problem field containing a 3 ◊ 2 rectangle of active pixels is
unbalanced.

Proof. Given the 3◊2 rectangle of active pixels in Figure 2, consider the journey
indicated by the arrows. We show that this journey leads to an unbalanced
submatrix. First, observe the corresponding matrix representation of the problem

Figure 2: An unbalanced combination of 6 active pixels

field Q
ccccca

1 1 1 1 1 0 0 0 0 0 0

I6
1 1 0 1 1 1 1 1 0 0 0
0 1 0 0 1 1 0 1 1 0 0
0 0 1 1 1 0 0 0 0 1 0
0 0 0 1 1 0 1 1 0 1 1
0 0 0 0 1 0 0 1 1 1 1

R
dddddb

,

where Id is the identity matrix in d dimensions. The gray fields above correspond
to a 3 ◊ 3 submatrix which is the representation of the journey described in
Figure 2. Clearly, this matrix is unbalanced.

In the same manner, we can prove that all problem fields that contain the
left or middle combination in Figure 3 are unbalanced. A possible journey is
defined by the arrows in the right image in Figure 3.

Lemma 6. The problem fields in Figure 3 and all fields containing them as a
subset are unbalanced.

Finally, we examine a third constellation inducing the unbalancedness of the
problem field.

Lemma 7. A problem field containing a connected set of active pixels with
inactive pixels inside is unbalanced.

5

We can characterize balanced WRP problem fields with the help of journeys.
First note that each submatrix in Definition 2 corresponds to a journey.

Lemma 4. Every square submatrix M in Formulation (1) of odd order with
row sums and column sums equal to 2 corresponds to an odd journey in the WRP
problem field.

Proof. Every column of M represents one rectangle of the problem field and
each row of M represents one pixel of the problem field. Since M has row sums
and all column sums equal to 2, it defines a journey. Moreover, this journey is
odd because M is of odd order.

Next, we construct three types of problem fields that are unbalanced. These
examples are the key observations for the complete characterization of balanced
fields of WRP in Theorem 8.

Lemma 5. A problem field containing a 3 ◊ 2 rectangle of active pixels is
unbalanced.

Proof. Given the 3◊2 rectangle of active pixels in Figure 2, consider the journey
indicated by the arrows. We show that this journey leads to an unbalanced
submatrix. First, observe the corresponding matrix representation of the problem

Figure 2: An unbalanced combination of 6 active pixels

field Q
ccccca

1 1 1 1 1 0 0 0 0 0 0

I6
1 1 0 1 1 1 1 1 0 0 0
0 1 0 0 1 1 0 1 1 0 0
0 0 1 1 1 0 0 0 0 1 0
0 0 0 1 1 0 1 1 0 1 1
0 0 0 0 1 0 0 1 1 1 1

R
dddddb

,

where Id is the identity matrix in d dimensions. The gray fields above correspond
to a 3 ◊ 3 submatrix which is the representation of the journey described in
Figure 2. Clearly, this matrix is unbalanced.

In the same manner, we can prove that all problem fields that contain the
left or middle combination in Figure 3 are unbalanced. A possible journey is
defined by the arrows in the right image in Figure 3.

Lemma 6. The problem fields in Figure 3 and all fields containing them as a
subset are unbalanced.

Finally, we examine a third constellation inducing the unbalancedness of the
problem field.

Lemma 7. A problem field containing a connected set of active pixels with
inactive pixels inside is unbalanced.

5

Figure 2: An unbalanced combination of 6 active pixels, a journey using the pixels, and
the corresponding matrix below.

observe the corresponding matrix representation of the problem field in Figure 2, where

5



Id is the identity matrix in d dimensions. The gray fields correspond to a 3× 3 submatrix
which is the representation of the journey described in the figure. Clearly, this matrix is
unbalanced.

In the same manner, we can prove that all problem fields that contain the left or
middle combination in Figure 3 are unbalanced. A possible journey is defined by the
arrows in the right image in Figure 3.

Lemma 6. The problem fields in Figure 3 and all fields containing them as a subset are
unbalanced.

Figure 3: Left and middle: Two unbalanced combinations of active pixels. Right:
Illustration of a journey showing that the combinations are unbalanced.

Here, two pixels are connected if they define 2 ◊ 1 or 1 ◊ 2 active rectangle.

Proof. In a problem field with a set of connected active pixels with inactive
pixels inside it is straightforward to find a journey: The rectangles and active
pixels next to the inactive pixels can be used to define the steps of a journey.
This idea is exemplified in the rightmost problem field of Figure 4.

Since there is at least one inactive pixel inside of the set, one rectangle in
the journey has a side length of three or more active pixels. As one “big” step
in this rectangle can be divided into two “smaller” steps, every such journey can
be transformed into one with an odd number of steps. By Lemma 4 this journey
corresponds to a matrix of odd order with row sums and all column sums equal
to 2. Hence, the problem matrix is unbalanced.

Theorem 8. A WRP problem field is unbalanced if and only if it contains one
of the following pixel constellations

(a) a 3 ◊ 2 or a 2 ◊ 3 active rectangle,

(b) two 2 ◊ 2 active rectangles having exactly one pixel in common,

(c) a set of active pixels with inactive pixels inside.

Proof. If the problem field contains one of the listed constellations of active
pixels, it follows directly from the Lemmas 5, 6, and 7 that this field is not
balanced.

Next, let an arbitrary unbalanced problem field be given. We show that all
unbalanced problem fields that do not contain the constellations (a) or (b) must
contain a set of active pixels with inactive pixels inside. Choose any active pixel
of the unbalanced field and assume that options (a) and (b) do not apply. Then,
by assumption, the pixel is not contained in a rectangle of size 2 ◊ 3. This leaves
only rectangles of sizes 2 ◊ 2, 1 ◊ n, or n ◊ 1, where n œ N.

If the pixel is contained in a 2 ◊ 2 rectangle and this rectangle is connected
to another rectangle of the same size, the two rectangles cannot have pixels in
common as we have ruled out this constellation. Therefore, the only possible
constellation is the shape given in Figure 5, i.e., two pixels of the rectangles are
connected. By Lemma 4, it su�ces to find a journey using this constellation of
active pixels. In every such journey, a step from one of the two 2 ◊ 2 rectangles
to the other (such as the one highlighted in Figure 5) can only be used in one
direction, so every journey has to return using another set of steps, outside of
the shown constellation. Moreover, the two pixels prohibited in the figure have
to be inactive by assumption. Therefore, one of the two remaining pixels must
be inside the active set used by the journey.

6

Figure 3: Left and middle: Two unbalanced combinations of active pixels. Right: Illus-
tration of a journey showing that the combinations are unbalanced.

Finally, we examine a third constellation inducing the unbalancedness of the problem
field.

Lemma 7. A problem field containing a connected set of active pixels with inactive pixels
inside is unbalanced.

Here, two pixels are connected if they define 2× 1 or 1× 2 active rectangle.

Proof. In a problem field with a set of connected active pixels with inactive pixels inside
it is straightforward to find a journey: The rectangles and active pixels next to the
inactive pixels can be used to define the steps of a journey. This idea is exemplified in
the rightmost problem field of Figure 4.

Since there is at least one inactive pixel inside of the set, one rectangle in the journey
has a side length of three or more active pixels. As one “big” step in this rectangle can
be divided into two “smaller” steps, every such journey can be transformed into one
with an odd number of steps. By Lemma 4 this journey corresponds to a matrix of odd
order with row sums and all column sums equal to 2. Hence, the problem matrix is
unbalanced.

Theorem 8. A WRP problem field is unbalanced if and only if it contains one of the
following pixel constellations

(a) a 3× 2 or a 2× 3 active rectangle,

(b) two 2× 2 active rectangles having exactly one pixel in common,

(c) a set of active pixels with inactive pixels inside.

6



Proof. If the problem field contains one of the listed constellations of active pixels, it
follows directly from the Lemmas 5, 6, and 7 that this field is not balanced.

Next, let an arbitrary unbalanced problem field be given. We show that all unbalanced
problem fields that do not contain the constellations (a) or (b) must contain a set of
active pixels with inactive pixels inside. Choose any active pixel of the unbalanced field
and assume that options (a) and (b) do not apply. Then, by assumption, the pixel is not
contained in a rectangle of size 2× 3. This leaves only rectangles of sizes 2× 2, 1× n, or
n× 1, where n ∈ N.

Next, let an arbitrary unbalanced problem field be given. We show that all unbalanced
problem fields that do not contain the constellations (a) or (b) must contain a set of
active pixels with inactive pixels inside. Choose any active pixel of the unbalanced field
and assume that options (a) and (b) do not apply. Then, by assumption, the pixel is not
contained in a rectangle of size 2 ◊ 3. This leaves only rectangles of sizes 2 ◊ 2, 1 ◊ n, or
n ◊ 1, where n œ N.

Figure 4: Sample field with the three di�erent cases in Theorem 8.

If the pixel is contained in a 2 ◊ 2 rectangle and this rectangle is connected to another
rectangle of the same size, the two rectangles cannot have pixels in common as we have
ruled out this constellation. Therefore, the only possible constellation is the shape given
in Figure 5, i.e., two pixels of the rectangles are connected. By Lemma 4, it su�ces to
find a journey using this constellation of active pixels. In every such journey, a step from
one of the two 2 ◊ 2 rectangles to the other (such as the one highlighted in Figure 5) can
only be used in one direction, so every journey has to return using another set of steps,
outside of the shown constellation. Moreover, the two pixels prohibited in the figure have
to be inactive by assumption. Therefore, one of the two remaining pixels must be inside
the active set used by the journey.

The same argumentation holds for rectangles of sizes 1 ◊ n or n ◊ 1.

Figure 5: The constellation of pixels in the proof of Theorem 8. Two pixels are prohibited.

From a computational perspective, it is important to discuss the complexity of the
criteria introduced above. Checking whether the lemmas used in Theorem 8 apply is
relatively easy: The Lemmas 5 and 6 can be checked in O(pq) for a field of size p◊ q. For
testing Lemma 7, a depth-first search algorithm is needed, which has a runtime of O(pq).
Thus, the total runtime for the detection of the balancedness is in O(pq). Moreover, it is
su�cient to check for circles with a length greater than 4.

We continue this section with a refinement of the balancedness property for WRP.

7

Figure 4: Sample field with the three different cases in Theorem 8.

If the pixel is contained in a 2× 2 rectangle and this rectangle is connected to another
rectangle of the same size, the two rectangles cannot have pixels in common as we have
ruled out this constellation. Therefore, the only possible constellation is the shape given
in Figure 5, i.e., two pixels of the rectangles are connected. By Lemma 4, it suffices to
find a journey using this constellation of active pixels. In every such journey, a step from
one of the two 2× 2 rectangles to the other (such as the one highlighted in Figure 5) can
only be used in one direction, so every journey has to return using another set of steps,
outside of the shown constellation. Moreover, the two pixels prohibited in the figure have
to be inactive by assumption. Therefore, one of the two remaining pixels must be inside
the active set used by the journey.
The same argumentation holds for rectangles of sizes 1× n or n× 1.

Next, let an arbitrary unbalanced problem field be given. We show that all unbalanced
problem fields that do not contain the constellations (a) or (b) must contain a set of
active pixels with inactive pixels inside. Choose any active pixel of the unbalanced field
and assume that options (a) and (b) do not apply. Then, by assumption, the pixel is not
contained in a rectangle of size 2 ◊ 3. This leaves only rectangles of sizes 2 ◊ 2, 1 ◊ n, or
n ◊ 1, where n œ N.

Figure 4: Sample field with the three di�erent cases in Theorem 8.

If the pixel is contained in a 2 ◊ 2 rectangle and this rectangle is connected to another
rectangle of the same size, the two rectangles cannot have pixels in common as we have
ruled out this constellation. Therefore, the only possible constellation is the shape given
in Figure 5, i.e., two pixels of the rectangles are connected. By Lemma 4, it su�ces to
find a journey using this constellation of active pixels. In every such journey, a step from
one of the two 2 ◊ 2 rectangles to the other (such as the one highlighted in Figure 5) can
only be used in one direction, so every journey has to return using another set of steps,
outside of the shown constellation. Moreover, the two pixels prohibited in the figure have
to be inactive by assumption. Therefore, one of the two remaining pixels must be inside
the active set used by the journey.

The same argumentation holds for rectangles of sizes 1 ◊ n or n ◊ 1.

Figure 5: The constellation of pixels in the proof of Theorem 8. Two pixels are prohibited.

From a computational perspective, it is important to discuss the complexity of the
criteria introduced above. Checking whether the lemmas used in Theorem 8 apply is
relatively easy: The Lemmas 5 and 6 can be checked in O(pq) for a field of size p◊ q. For
testing Lemma 7, a depth-first search algorithm is needed, which has a runtime of O(pq).
Thus, the total runtime for the detection of the balancedness is in O(pq). Moreover, it is
su�cient to check for circles with a length greater than 4.

We continue this section with a refinement of the balancedness property for WRP.

7

Figure 5: The constellation of pixels in the proof of Theorem 8. Two pixels are prohibited.

From a computational perspective, it is important to discuss the complexity of the
criteria introduced above. Checking whether the lemmas used in Theorem 8 apply is
relatively easy: The Lemmas 5 and 6 can be checked in O(pq) for a field of size p× q. For
testing Lemma 7, a depth-first search algorithm is needed, which has a runtime of O(pq).

7



Thus, the total runtime for the detection of the balancedness is in O(pq). Moreover, it is
sufficient to check for circles with a length greater than 4.
We continue this section with a refinement of the balancedness property for WRP.

Definition 9. A {0,1}-matrix is totally balanced if it does not contain a square submatrix
of size at least three which has no identical columns and its row and column sums equal
to two.

Lemma 10. A problem field containing a 2× 2 rectangle of active pixels is not totally
balanced.

Proof. Figure 6 shows a matrix representation of an active 2× 2 rectangle. Clearly, the
matrix is not totally balanced.

In Lemma 4 we have observed that a square matrix of odd order with row and columns
sums equal to two corresponds to an odd journey. In the same way, a square matrix
of even order with row and column sums equal to two corresponds to an even journey.
Therefore, we need to consider journeys of odd or even length when determining total
balancedness. As before, we can fully characterize totally balanced instances using
journeys.

Definition 9. A {0,1}-matrix is totally balanced if it does not contain a square submatrix
of size at least three which has no identical columns and its row and column sums equal
to two.

Lemma 10. A problem field containing a 2 ◊ 2 rectangle of active pixels is not totally
balanced.

Proof. Figure 6 shows a matrix representation of an active 2 ◊ 2 rectangle. Clearly, the
matrix is not totally balanced.

In Lemma 4 we have observed that a square matrix of odd order with row and columns
sums equal to two corresponds to an odd journey. In the same way, a square matrix
of even order with row and column sums equal to two corresponds to an even journey.
Therefore, we need to consider journeys of odd or even length when determining total
balancedness. As before, we can fully characterize totally balanced instances using
journeys.

Q
cca

1 1 1 0 0

I4
1 1 0 1 0
1 0 1 0 1
1 0 0 1 1

R
ddb

Figure 6: An active 2 ◊ 2 rectangle and the corresponding matrix

Proposition 11. A balanced WRP problem field is totally balanced if and only if it does
not contain a 2 ◊ 2 active rectangle.

Proof. If a problem field is totally balanced, it does not contain a 2 ◊ 2 active rectangle,
by Lemma 10.

Since the problem field is balanced, it does not contain any of the constellations
described in the Lemmas 5, 6, and 7. These constellations correspond to odd journeys. It
remains to show that there is no even journey. However, with the three larger structures
already ruled out, the only possible rectangular pixel structure which might contain an
even journey is a 2 ◊ 2 rectangle. Hence, the problem field is totally balanced.

2.3 WRP-induced Hypergraphs
Following Berge [4], we introduced the notion of balanced matrices with the help of
hypergraphs. The question arises of how the characterization of balanced WRP matrices
in Theorem 8 fits into the original hypergraph perspective. In Figure 7 we see the WRP
problem field that was already considered in Lemma 6, the problem field matrix, and
one possible hypergraph of this matrix.

Using the definition of Berge directly, we would have to check every possible odd cycle
and determine whether it contains an edge with at least three of its vertices. A circle
that does not fulfill this property is drawn in bold lines in the hypergraph of Figure 7, so
the hypergraph is not balanced. With the new characterization, it su�ces to find the
journey displayed in Figure 3.

8

Figure 6: An active 2× 2 rectangle and the corresponding matrix

Proposition 11. A balanced WRP problem field is totally balanced if and only if it does
not contain a 2× 2 active rectangle.

Proof. If a problem field is totally balanced, it does not contain a 2× 2 active rectangle,
by Lemma 10.
Since the problem field is balanced, it does not contain any of the constellations

described in the Lemmas 5, 6, and 7. These constellations correspond to odd journeys. It
remains to show that there is no even journey. However, with the three larger structures
already ruled out, the only possible rectangular pixel structure which might contain an
even journey is a 2× 2 rectangle. Hence, the problem field is totally balanced.

2.3 WRP-induced Hypergraphs
Following Berge [4], we introduced the notion of balanced matrices with the help of
hypergraphs. The question arises of how the characterization of balanced WRP matrices
in Theorem 8 fits into the original hypergraph perspective. In Figure 7 we see the WRP
problem field that was already considered in Lemma 6, the problem field matrix, and
one possible hypergraph of this matrix.

8



Using the definition of Berge directly, we would have to check every possible odd cycle
and determine whether it contains an edge with at least three of its vertices. A circle
that does not fulfill this property is drawn in bold lines in the hypergraph of Figure 7, so
the hypergraph is not balanced. With the new characterization, it suffices to find the
journey displayed in Figure 3.

Q
cccccccca

1 1 1 0 0 0 0 0 0 0 0 0

I7

1 1 0 1 1 0 0 0 0 0 0 0
1 0 1 0 0 1 1 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 0 1 1 0 1 0
0 0 0 1 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 0 1 1

R
ddddddddb

B1 B2 B1

B3 B4 B5

B2 B6 B7

Figure 7: WRP problem field, corresponding matrix representation, and a corresponding
hypergraph. Active pixels are labeled B1, . . . , B7 and inactive pixels are labeled
B1, B2.

3 Numerical Experiment
As observed in Section 2.1, the conditions of Theorem 8 are computationally easy to check.
This is an interesting feature when numerically comparing an algorithm for balancedness
detection with other integrality conditions. For this comparison, the implementation of a
total unimodularity test by Walter and Truemper [24] is used. We call this benchmark TU-
test in the following. The TU-test algorithm uses an implementation of [23]. Balancedness
is checked with a simple Python implementation of Theorem 8. Comparing our specialized
approach to the more general TU-test algorithm is, of course, unfair considering that TU-
test is not focusing on WRP instances. However, to the best of our knowledge, TU-test is
the only publicly available library for integrality testing via unimodularity or balancedness.
According to the TU-test project webpage [24] an extension for balancedness detection is
currently under development.

For the experiment, 100 random problem fields with the sizes 5 ◊ 5, 10 ◊ 10, 15 ◊ 15,
20 ◊ 20, and 25 ◊ 25 were generated. We ran each instance five times and report averaged
runtimes. Since the two algorithms test for di�erent conditions, di�erent results are to be
expected. Because totally unimodular matrices are also balanced, our algorithm recognizes
more integral problem instances than TU-test, which can be seen in Figure 8. For the
random data, the figure shows up to four times more balanced instances than totally
unimodular instances. These results emphasize that testing integrality via balancedness
is preferable to total unimodularity because more instances can be detected this way. In
addition, the balancedness detection is also faster in the WRP problem class, which is,
however, not guaranteed for general integer programming problems.

As expected, there are pronounced di�erences in the runtimes reported in Figure 9.
The balancedness test clearly outperforms the TU benchmark in terms of runtime.

9

Figure 7: WRP problem field, corresponding matrix representation, and a corresponding
hypergraph. Active pixels are labeled B1, . . . , B7 and inactive pixels are labeled
B1, B2.

3 Numerical Experiment
As observed in Section 2.1, the conditions of Theorem 8 are computationally easy to check.
This is an interesting feature when numerically comparing an algorithm for balancedness
detection with other integrality conditions. For this comparison, the implementation of a
total unimodularity test by Walter and Truemper [24] is used. We call this benchmark TU-
test in the following. The TU-test algorithm uses an implementation of [23]. Balancedness
is checked with a simple Python implementation of Theorem 8. Comparing our specialized
approach to the more general TU-test algorithm is, of course, unfair considering that TU-
test is not focusing on WRP instances. However, to the best of our knowledge, TU-test is
the only publicly available library for integrality testing via unimodularity or balancedness.
According to the TU-test project webpage [24] an extension for balancedness detection is
currently under development.

For the experiment, 100 random problem fields with the sizes 5× 5, 10× 10, 15× 15,
20× 20, and 25× 25 were generated. We ran each instance five times and report averaged
runtimes. Since the two algorithms test for different conditions, different results are to be

9



expected. Because totally unimodular matrices are also balanced, our algorithm recognizes
more integral problem instances than TU-test, which can be seen in Figure 8. For the
random data, the figure shows up to four times more balanced instances than totally
unimodular instances. These results emphasize that testing integrality via balancedness
is preferable to total unimodularity because more instances can be detected this way. In
addition, the balancedness detection is also faster in the WRP problem class, which is,
however, not guaranteed for general integer programming problems.

5 10 15 20 25

20

40

60

80

Size of quadratic problem fields

N
um

be
rs

of
in

te
gr

al
pr

ob
le

m
fie

ld
s TU-test

Balancedness

Figure 8: Integral instances detected by the two algorithms.

Moreover, Figure 9 illustrates that the increase in runtime for the balancedness test is
much smaller than for TU-test when the problem field size is raised. The di�erence in
experimental runtimes can, of course, be traced back to di�erent worst-complexities of
the two algorithms. The algorithm for balancedness detection is tailored specifically
to the WRP problem fields while the TU-test benchmark checks general matrices for
total unimodularity. The balancedness recognition algorithm has a worst-case runtime of
O(pq), while the TU-test runs in O((p2q2)5) worst-case time, as reported in [24].

Table 1 summarizes the number of detected integral problem fields by both tests, the
cumulative runtimes of the algorithms, and the cumulative runtime of a basic gurobipy
implementation of Formulation (1) for reference.

4 Conclusion and Possible Extensions
We have introduced WRP as a geometric optimization problem with close connections to
other combinatorial problems of the partitioning type. Starting from a straightforward
IP formulation, we adapted the concept of balancedness to detect the integrality of
WRP instances and argued why this approach is more suitable than checking for total
unimodularity here. The results proved in Section 2.1 characterize all balanced WRP
instances. Based on our numerical study, integrality detection is possible in practical
computations.

Several aspects of the problem setting allow for future research. Above, we discussed
the problem with a general weight function. Assuming that the weight function is, e.g.,
monotone or submodular seems reasonable and may lead to specialized solution algorithms
or approximation schemes as in [1]. Furthermore, we have limited our discussion to
rectangles. Allowing more general shapes such as polyominoes might be an interesting

10

Figure 8: Integral instances detected by the two algorithms.

As expected, there are pronounced differences in the runtimes reported in Figure 9.
The balancedness test clearly outperforms the TU benchmark in terms of runtime.
Moreover, Figure 9 illustrates that the increase in runtime for the balancedness test is
much smaller than for TU-test when the problem field size is raised. The difference in
experimental runtimes can, of course, be traced back to different worst-complexities of
the two algorithms. The algorithm for balancedness detection is tailored specifically
to the WRP problem fields while the TU-test benchmark checks general matrices for
total unimodularity. The balancedness recognition algorithm has a worst-case runtime of
O(pq), while the TU-test runs in O((p2q2)5) worst-case time, as reported in [24].

Table 1 summarizes the number of detected integral problem fields by both tests, the
cumulative runtimes of the algorithms, and the cumulative runtime of a basic gurobipy
implementation of Formulation (1) for reference.

4 Conclusion and Possible Extensions
We have introduced WRP as a geometric optimization problem with close connections to
other combinatorial problems of the partitioning type. Starting from a straightforward

10



Figure 9: Number of solved instances using the TU-test benchmark algorithm (dashed
lines) and balancedness detection via Theorem 8 (solid gray lines). For each
algorithm, the five lines show instances of sizes 5 ◊ 5, 10 ◊ 10, 15 ◊ 15, 20 ◊ 20,
and 25 ◊ 25 from left to right.

extension of the WRP. However, the concept of journeys used in our proofs does not
carry over to more general shapes in an obvious way.

Finally, we conjecture that more general pixel constellations than those used in
Theorem 8 can be used to characterize WRP instances with a perfect system matrix, see
[19]. Since every balanced matrix is also perfect, these constellations have to be supersets
of those described in Theorem 8.

Acknowledgements The second author acknowledges the support of the Research Training
Group 2297 Mathematical Complexity Reduction (MathCoRe), funded by Deutsche Forschungsge-
meinschaft (DFG), grant number 314838170.

Data availability The datasets generated and analyzed in Section 3 are available in the
repository https://github.com/ulf-friedrich/WeightedRectanglesPartition.

References
[1] Anna Adamaszek and Andreas Wiese. Approximation schemes for maximum weight

independent set of rectangles, 2013.

[2] Aristocrat Technologies Australia. Lucky fortune link – da sheng yeah, 2021. www.
aristocrat.com/apac/games/lucky-fortune-link-da-sheng-yeah.

11

Figure 9: Number of solved instances using the TU-test benchmark algorithm (dashed
lines) and balancedness detection via Theorem 8 (solid gray lines). For each
algorithm, the five lines show instances of sizes 5× 5, 10× 10, 15× 15, 20× 20,
and 25× 25 from left to right.

IP formulation, we adapted the concept of balancedness to detect the integrality of
WRP instances and argued why this approach is more suitable than checking for total
unimodularity here. The results proved in Section 2.1 characterize all balanced WRP
instances. Based on our numerical study, integrality detection is possible in practical
computations.
Several aspects of the problem setting allow for future research. Above, we discussed

the problem with a general weight function. Assuming that the weight function is, e.g.,
monotone or submodular seems reasonable and may lead to specialized solution algorithms
or approximation schemes as in [1]. Furthermore, we have limited our discussion to
rectangles. Allowing more general shapes such as polyominoes might be an interesting
extension of the WRP. However, the concept of journeys used in our proofs does not
carry over to more general shapes in an obvious way.
Finally, we conjecture that more general pixel constellations than those used in

Theorem 8 can be used to characterize WRP instances with a perfect system matrix, see
[19]. Since every balanced matrix is also perfect, these constellations have to be supersets
of those described in Theorem 8.

Acknowledgements The second author acknowledges the support of the Research Training
Group 2297 Mathematical Complexity Reduction (MathCoRe), funded by Deutsche Forschungsge-
meinschaft (DFG), grant number 314838170.

Data availability The datasets generated and analyzed in Section 3 are available in the

11



Table 1: Summary of the problem field sizes of the tested instances, number of recognized
instances by the TU-test benchmark (TU) and balancedness detection algorithm
(bal), total runtimes (time TU) and (time bal) of the two algorithms, and the
runtime (time IP) when solving formulation (1) directly using gurobipy. All
runtimes in seconds.

size TU bal time TU time bal time IP
5× 5 38 77 0.33 0.003 0.25

10× 10 21 55 1.90 0.008 1.56
15× 15 17 52 23.45 0.018 5.92
20× 20 10 39 175.78 0.027 15.70
25× 25 17 44 1431.31 0.034 49.10

repository https://github.com/ulf-friedrich/WeightedRectanglesPartition.

References
[1] Anna Adamaszek and Andreas Wiese. Approximation schemes for maximum weight

independent set of rectangles, 2013.

[2] Aristocrat Technologies Australia. Lucky fortune link – da sheng yeah, 2021. www.
aristocrat.com/apac/games/lucky-fortune-link-da-sheng-yeah.

[3] Egon Balas and Manfred W. Padberg. Set partitioning: A survey. SIAM Review,
18:710–760, 1976.

[4] Claude Berge. Balanced matrices. Mathematical Programming, 1:19–31, 1972.

[5] Andreas Bortfeldt. A genetic algorithm for the two-dimensional strip packing problem
with rectangular pieces. European Journal of Operational Research, 172(3):814–837,
2006.

[6] Michele Conforti, Gérard Cornuéjols, and Mendu Rammohan Rao. Decomposition
of balanced matrices. Journal of Combinatorial Theory, Series B, 77(2):292–406,
1999.

[7] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer Programming.
Springer, 2014.

[8] D. R. Fulkerson, A. J. Hoffman, and Rosa Oppenheim. On balanced matrices. In
M. L. Balinski, editor, Pivoting and Extension: In honor of A.W. Tucker, pages
120–132. Springer Berlin Heidelberg, 1974.

12



[9] Paul C Gilmore and Ralph E Gomory. Multistage cutting stock problems of two
and more dimensions. Operations Research, 13(1):94–120, 1965.

[10] Alan J Hoffman and Joseph Bernard Kruskal. Integral boundary points of convex
polyhedra. Linear Inequalities and Related Systems, pages 223–246, 1956.

[11] Manuel Iori, Vinícius Loti de Lima, Silvano Martello, and Michele Monaci. 2DPack-
Lib: a two-dimensional cutting and packing library. Optimization Letters, 16(2):471–
480, 2022.

[12] Claire Kenyon and Eric Rémila. A near-optimal solution to a two-dimensional
cutting stock problem. Mathematics of Operations Research, 25(4):645–656, 2000.

[13] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge Univer-
sity Press, 1997.

[14] WT Liou, JJ-M Tan, and Richard CT Lee. Minimum rectangular partition problem
for simple rectilinear polygons. IEEE transactions on computer-aided design of
integrated circuits and systems, 9(7):720–733, 1990.

[15] Andrea Lodi, Silvano Martello, and Michele Monaci. Two-dimensional packing
problems: A survey. European Journal of Operational Research, 141(2):241–252,
2002.

[16] Andrea Lodi and Michele Monaci. Integer linear programming models for 2-staged
two-dimensional knapsack problems. Mathematical Programming, 94(2):257–278,
2003.

[17] Silvano Martello, Michele Monaci, and Daniele Vigo. An exact approach to the
strip-packing problem. INFORMS Journal on Computing, 15(3):310–319, 2003.

[18] Surendra Nahar and Sartaj Sahni. Fast algorithm for polygon decomposition.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
7(4):473–483, 1988.

[19] ManfredW Padberg. Perfect zero-one matrices. Mathematical Programming, 6(1):180–
196, 1974.

[20] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley &
Sons, 1998.

[21] Valeriu Soltan and Alexei Gorpinevich. Minimum dissection of a rectilinear polygon
with arbitrary holes into rectangles. Discrete & Computational Geometry, 9(1):57–79,
1993.

[22] Tomáš Suk, Cyril Höschl IV, and Jan Flusser. Decomposition of binary images—a
survey and comparison. Pattern Recognition, 45(12):4279–4291, 2012.

13



[23] Klaus Truemper. A decomposition theory for matroids. v. testing of matrix total
unimodularity. Journal of Combinatorial Theory, Series B, 49(2):241–281, 1990.

[24] Matthias Walter and Klaus Truemper. Implementation of a unimodularity test.
Mathematical Programming Computation, 5(1):57–73, 2013.

14


