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Typically, within facility location problems, fairness is defined in terms of accessibility of users. However,
for facilities perceived as undesirable by communities hosting them, fairness between the usage of facilities
becomes especially important. Limited research exists on this notion of fairness. To close this gap, we develop
a series of optimization models for the allocation of populations of users to facilities such that access for
users is balanced with a fair utilization of facilities. The optimality conditions of the underlying non-convex
quadratic models provide a precise tradeoff between accessibility and fairness. We define new classes of
fairness, and a metric to quantify the extent to which fairness is achieved in both optimal and suboptimal
allocations. We show a continuous relaxation of our central model is sufficient to achieve a perfect extent of
fairness, while a special case reduces to the classical notion of proportional fairness. Our work is motivated
by pervasive ecological challenges faced by the waste management community as policymakers seek to reduce
the number of recycling centers in the last few years. As a computational case study, applying our models on
data for the state of Bavaria in Germany, we find that even after the closure of a moderate number of recycling
centers, large degrees of access can be ensured provided the closures are conducted optimally. Fairness,
however, is impacted more, with facilities in rural regions shouldering larger loads of visiting populations

than those in urban regions.
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History:

1. Introduction

We revisit the class of Facility Location Problems (FLPs), which have a rich history in
the optimization literature. Specifically, we are interested in so-called undesirable or semi-
desirable facilities; i.e., facilities that exert a negative impact on the surrounding community,
while still providing a necessary service. Examples of such facilities include sanitary landfills,
airports, or thermal stations (Erkut and Neuman 1989). Users prefer certain facilities, while

facilities have finite capacities. There are two aims we pursue: (i) select a subset of facilities for
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the allocation, and (ii) provide an assignment of users to the selected facilities. We determine
the allocation and assignment in a manner that is both fair to the community surrounding
a facility and accessible to the users seeking this facility; we make the two terms—“fair”
and “accessible”—precise later in this work. A high utilization of a facility, that results
from assigning a large amount of users to it, can have significant detrimental impact on the
community that hosts this facility. Thus, an assignment that is highly accessible for the users
could disproportionately burden some communities. Analogously, an allocation that is highly
fair for the community around a facility could result in assignments that are inaccessible,
or biased, to the users. We formulate optimization models where optimal solutions balance
these two goals, and the aim of this work is to analytically (where possible) quantify such
compromises. To this end, we present general results—using the optimality conditions of our
models—that determine this tradeoff relationship between accessibility and fairness.

Preferences of users to facilities in FLPs are typically modeled via weights that quantify
accessibility, e.g., distances between the user and the facility. In locating desirable facilities, a
policymaker might seek to reduce these distances. However, for locating undesirable facilities,
a policymaker needs to incorporate additional criteria based on fairness to the communi-
ties hosting these facilities (henceforth, fairness among the facilities). There is an extensive
body of literature devoted to addressing such fairness concerns in this “obnoxious” FLP.
One typical approach is to maximize the distance of users to facilities in some fashion (Cap-
panera 1999). A second well-studied approach is to minimize the population lying within
a given radius of a facility (Plastria and Carrizosa 1999). Inequity in assignments is also
long acknowledged in the resource allocation literature; thus, various measures of equity and
fairness have been proposed, see, e.g., Marsh and Schilling (1994). Bertsimas et al. introduce
several classes of the optimization problem of fairly allocating resources, where recipients
have varying utilities (Bertsimas et al. 2011). Fairness criteria play an especially important
role in communication networks where aspects of this problem are studied, see, e.g., Kelly
et al. (1998). These lead to competing definitions of fairness, and two well-studied notions
are those of maz-min fairness and proportional fairness (Bertsimas et al. 2011, Kaplan 1974,
Kelly et al. 1998, Singh 2020). We revisit these concepts later in this work.

However, only a few works consider fairness in the sense of disparities in usage of facil-
ities. Two exceptions are Berman et al. (2009) and Marin (2011), where the authors seek

to achieve fairness by minimizing the maximum load a facility carries and by balancing the
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maximum and minimum number of users assigned to a facility, respectively. In a similar
spirit as these two works, our notion of fairness among facilities dwells from reducing dis-
parities in wutilization of facilities, while ensuring large degrees of access for the users visiting
these facilities. However, the two goals of maximizing accessibility of users to a facility and
minimizing disparities in the utilization of facilities are conflicting. Two factors cause further
challenges: (i) users have varying preferences to certain facilities, such as shorter travel times
or preferences that depend on individual choices (Tversky and Simonson 1993), and (ii) the
preferred facility of a user might not have enough capacity to accommodate it (Pirkul and
Schilling 1988). With this background, there are two broad components to this work.

The first component is a theoretical contribution to the rich class of FLPs. We begin by
proposing a quadratic-binary optimization model that is uniquely distinguished from tra-
ditional FLPs by the choice of its objective function; in Section 2, we discuss in detail the
reasons for this modeling choice. Our model is induced by a new notion of fairness that
encompasses both of the competing goals we mention above. Feasible solutions of this model
that are suboptimal pay a price both in terms of the maximum access of users and the
minimum dispersion in the utilization of the facilities. Interestingly, even solutions that are
optimal achieve fairness only to a limited extent. With this motivation, we construct a metric
that quantifies the extent of fairness. The natural follow-up question is when—if at all—is a
perfect extent of fairness achieved. We prove that a suitably relaxed version of our optimiza-
tion model achieves this in an optimal solution, thereby providing one sufficient condition.
Next, we show that our notion of fairness generalizes existing results on proportional fairness;
specifically, we prove that a special case of this relaxed model achieves proportional fairness.

The second component of this work is inspired by a pervasive problem in the waste man-
agement community—positioning of recycling centers. As of 2018, Germany is among the
leading countries worldwide in the proportion of waste that is recycled (Kaza et al. 2018). In
Germany, the “Wertstoffhéfe” (or, recycling centers) are facilities where the public is required
to dispose of waste that is not regularly collected from households. A few examples of such
waste include construction waste, recyclable electronics, large appliances, and scrap metal.
However such recycling locations are perceived as undesirable facilities, and these negative
perceptions are further enhanced when a region is forced to shoulder a disproportionately
large burden of these facilities (Morell 1984). These concerns are justified as recycling centers

pose health and environmental hazards, e.g., recycling centers have been found to increase
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risks of fires (Ibrahim 2020), and storing electronic waste can lead to health risks in the sur-
rounding community through trace metal pollution in soil and road dust (Yekeen et al. 2016).
As a result, the number of such recycling centers has steadily decreased within the state of
Bavaria during the last few years (Bayerisches Landesamt fiir Umwelt 2015); the number of
recycling centers in the years 2016, 2017, 2018, and 2019 were 1,624, 1,597, 1,583, and 1,578,
respectively (Bayerisches Landesamt fiir Umwelt 2020). This leads to a natural question that
policymakers face: what is an optimal selection of a limited number of recycling centers to
keep open? Given this budget of recycling centers, an efficient usage of the open facilities by
the public is paramount for a state’s recycling policy. We apply our optimization models as a
case study for the entire set of users and recycling locations of Bavaria and provide extensive
computational experiments. Here, our analysis provides data-driven evidence on significant
disparity between rural and urban regions both in the treatment of recycling centers and in
the populations visiting them.

The structure of the rest of this article is as follows. In Section 2, we propose our central
and relaxed optimization models plus provide our definitions and metrics for fairness. In
Section 3, we demonstrate the connection of our models to existing results on proportional
fairness. Section 4 summarizes the estimation of data from Bavaria for our computational
case study in Section 5. We provide a concluding discussion in Section 6, and further details,

analysis, and proofs in the appendices.

2. Mathematical Models

Consider a set of users ¢ € I with populations U; > 0 and a set of facilities 7 € J with
capacities C; > 0. Populations of users have a preference to facilities measured in terms
of weights or probabilities; without loss of generality we assume 0 < P;; < 1. For example,
populations might prefer facilities that are closer to their residences or those that are open on
weekends with a higher probability than others. In the absence of this preference, if user 7 is
allocated to facility j then its entire population U; visits j. Instead, the preference discounts

the population of ¢ that actually visits j to U;P;; < U;. Then, the following optimization
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model describes our central problem of assigning users to facilities in a fair manner:

. 2ier Uil jiTi 2
S 3G (1= =) (1
jeJ J
s.t. ZUiPi,jxi,j S Cj vj €J: &7 (1b)
iel
jeJ
inJ:l ViGIZVi (1d)
JjeJ
Y in,j Vi €]7j € ‘]::ui,j (16)
.771'73'6{0,1} VZ‘EI,]'EJZ’}/Z'J’ <1f)
y; €{0,1} VieJ:d; (1g)

The optimization model (1) is a quadratic-binary program. Here, o, 3,14, 11,7 0;,
denote the dual variables for equations (1b)-(1g), respectively; we revisit these later. Note
that the binary restrictions in constraint (1g) can be written as y;(1 —y;) =0 with the dual
variables interpreted accordingly. Model (1) is non-convex due to the binary restrictions on

the decision variables, however its relaxation is a convex quadratic program. To understand

model (1), we begin by defining two key quantities below.

a; = Zie[ UiPi,jxi,ja vj € J7 (2&)
e UiPjwij .
uy = it Vil =z i i (2b)
J

First, in equation (2a) the quantity a; denotes the total population assigned to facility j;
this quantity is a measure of the access of facility j for all the users. Second, in equation (2b)
the quantity u; denotes the wtilization of facility j; i.e., the fraction of its total capacity
that is actually being used. Conversely, the idleness of facility j is given by 1 — u;. Then,
model (1) minimizes the capacity-weighted sum of squared idleness; we explain this objective
function in detail below. Constraint (1b) ensures the utilizations are no more than 1, while
constraint (1c) allows no more than a budget of B facilities to open. The binary variables
x;; and y; govern whether user 7 is assigned to facility j and whether facility j is open,
respectively; this is ensured by constraints (1f) and (1g), respectively. Constraint (1d) ensures
a user ¢ is assigned to only one facility; i.e., the entire population of user i—discounted by

the preferences—is allocated only to a single facility. Thus, the fraction Y- ;c; Ui(1 — P;;)x;
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of the population of user i is left unallocated to any facility as an artifact of user ¢ being
stringent in its preferences. Constraint (1le) enforces facility j is open if any user is assigned
to it, while if j is closed then no user is assigned to it; i.e., y; =1 if x; ; = 1 for any ¢, while
if y; =0, then z; ; =0,Vi e I.

In model (1), constraints (1b), (1d)-(1g) are similar to those of a traditional capacitated
FLP (see, e.g., (Wolsey 1998)) with two additional restrictions. The first is a preferential
access to facilities—this preference is reflected via the coefficients U;P; ;. The second is a
budget on the number of facilities—this is enforced via constraint (1c). Proposition A.1 in
Appendix A.1, motivated by the capacitated FLP, provides a valid inequality for model (1).
Analogously, constraints (1c)-(1g) are similar to those of a p-median problem (see, e.g., (ReV-
celle and Swain 1970)). Then, the binary restrictions in (1g) can be replaced with their
continuous relaxation, 0 <y < 1; since there exists an optimal solution where y is binary
if  is binary (see, Proposition A.2 in Appendix A.1). However, the binary restrictions in
equation (1f) cannot be replaced with their continuous relaxation; this is unlike the tradi-
tional p-median problem due to the choice of our objective function (see, Proposition A.3 in
Appendix A.1 for a counterexample).

An important feature distinguishing model (1) from traditional FLPs is our choice of the
objective function (1a). Our choice is central to the discussion and results in this section, and
the rationale behind this choice is subtle. We first provide an intuitive explanation and then
lay out the formal reasoning that substantiates our choice. Assigning each user to its most
accessible facility, even when the capacities allow, results in a disproportionately large degree
of utilization for the highly-accessible facilities. On the other hand, allocating facilities to a
capacity-proportional amount of utilization might lead to inaccessible assignments for remote
users. Thus, as we mention in Section 1, there are two conflicting aims that we pursue and
the objective function (1a) precisely captures both of these. First, we seek to achieve fairness
between facilities by ensuring that no facility carries a disproportionate burden of assigned
users; the proportion of burden is determined by the facility’s capacity. Simultaneously, we
seek to maximize users’ access to the facilities. The terms in the objective function (1a)
get smaller for a larger utilization u;, and, in turn, from a larger access to the facility j.
The sum of the squared idleness seeks to reduce the disparity between the utilization of the
different facilities; the weights C; determine the relative weighting of the utilization of the

facilities. To this end, model (1) provides a tradeoff between access and fairness. With this
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background, we are now ready to define our notion of fairness among facilities that makes
this tradeoff precise.

DEFINITION 1 (FAIRNESS). Consider an allocation with utilization defined by equa-
tion (2b), and two distinct open facilities j, 5’ € J.
(i) The allocation to the ordered pair (7, 5') is said to have a warranted fairness if P, ; > P,

for every user ¢ € I assigned to j.
(ii) The allocation to the ordered pair (j,7’) is said to have a compensatory fairness if there
exists a user ¢ € [ assigned to j with P, ; < P, y and u; <uj.

Then, an allocation is said to be fair if it has a warranted or compensatory fairness for all
ordered pairs of distinct open facilities (7, j). O

Definition 1 classifies a fair solution between two facilities as follows. First, fairness is only
defined for facilities that are open (y > 0). In a choice between two open facilities, if all users
are assigned to their preferred facility then there is no basis for a competition. This denotes
a warranted fairness. Such an allocation is most favorable for a policymaker as it allows
no grounds for unfairness. However, now consider a user i that prefers an open facility j’
over another open facility j, yet in a feasible solution i is assigned to j. Such a solution is
fair for the respective facilities only if the assignment seeks to balance out the utilization
of the facilities; i.e., j is utilized at most as much as j'. Such an allocation, although not
completely fair in terms of preferences towards facilities, is compensated for fairness by a
larger utilization of the preferred facility. Then, this allocation has a compensatory fairness
according to Definition 1 if there is at least one user assigned in this fashion. Pairs of open
facilities with neither warranted nor compensatory fairness are allocated unfairly.

A natural follow-up question is the extent to which fairness is achieved in optimal solutions;
i.e., the proportion of open pairs allocated fairly. The following definition quantifies this.

DEFINITION 2 (DEGREE OF FAIRNESS). Let Jo = {j € J:y; =1} denote the set of open
facilities and let I; ={i € [ 1z, ; =1} C I,Vj € Jo denote the set of users that are assigned to
an open facility j. Further let k; = 1(P;; > P, j»,Vi € I;) denote that the allocation to (7, j')
has a warranted fairness, Vyj, j' € Jo,and [; y =1(3ie€ I, : P, ; < P, /) - 1(u; < u;s) denote that
the allocation to (j,j’) has a compensatory fairness, V7, j' € Jo according to Definition 1.

Here, 1(-) is 1 if its argument is TRUE and 0 otherwise.
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(i) The Degree of Fairness (DoF’) is defined as the ratio of the total number of facility pairs
(7,4") that are allocated fairly among all the |Jo|- (|Jo| — 1) ordered pairs of distinct

open facilities:

Z. e .75.,]{. PRy
DoF = =2°€J0.07) 753 757 c [O7 1]
[Jol - (1ol = 1)
(ii) The Degree of unwarranted Fairness (DoF") is defined as the ratio of the total number

of facility pairs (j,j’) for which an allocation has a compensatory fairness to the total

number of facility pairs (7, j') for which an allocation does not have a warranted fairness:

S e iz b
Do = Tl 1) = Sy <
O

Definition 2 states the DoF' in terms of ordered pairs of open facilities. Thus, the ordered
pair (7,j') might not have a fair allocation even if the pair (j',7) has one. However, Defi-
nition 1 implies that at least one of the pairs (j,7’) and (j’,7) always has a fair allocation,
V4,4" € Jo. To see this, consider a pair (4, ;') that does not have a fair allocation. Then, by
Definition 1, u; > ;s necessarily holds. Thus, u;s > u; does not hold, and (j', j) is guaranteed
to be allocated fairly. Hence, the DoF is at least 0.5 in any feasible solution. The DoF’
analogously measures the extent of fairness among facilities that do have competition. Then,
Definition 2 defines the DoF” as the odds of the number of facilities with compensatory fair
allocations to the odds of those without a warranted fair allocation.

We note that the preceding discussion as well as both Definition 1 and Definition 2 are
independent of the underlying optimization models. Different modeling choices—for example,
with modifications of the objective function—are expected to give different extents of DoF'.
Our choice of the objective function in model (1) is governed by this consideration as well.
Unfortunately, model (1) still does not guarantee that the optimal allocation has a warranted
or compensatory fairness for all pairs of open facilities; i.e., model (1) does not ensure DoF =
1 in an optimal solution. See, Example A.5 in Appendix A.3 in this regard. To explain our
reasoning, and to further substantiate our choice of the objective function, we now provide
one sufficient condition that results in an optimal solution with a perfectly fair allocation.
This sufficient condition is a continuous relaxation of the x variables in model (1) as given

by the following model.

P (1 Zier UiPijxijy2
z —rgl’lyn;C’](l c, ) (3a)

s.t. (1b) — (le); (1g);z;; > 0,Vie I, j € J. (3b)
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In model (3), we remove the constraints z; ; <1 as they are implied by constraints (le)
and (1g). Thus, the only difference in model (1) and model (3) is in constraint (1f): model (1)

constrains z as a binary variable, while model (3) provides its continuous relaxation.

THEOREM 1. An allocation corresponding to an optimal solution to model (3) is fair by
Definition 1.

Let (x,y) be an optimal solution to model (3), and F(z,y) denote the objective function
of model (3). Using the definition of u from equation (2b), we have ai—ljj = —2U,; P 4(1
u;),Viel,je Jand g—; =0,Vj € J. The necessary Karush-Kuhn-Tucker (7KKT ) optimality
conditions for the non-convex quadratic optimization model (3) are:

 Primal feasibility: constraints (3b)
o Dual feasibility:

UiP; ) .
4G5 L — v+ iy — Vi = 2Ui Py j (1 = uy) Viel,jeJ (4a)
J
5 1 - 2yj Z i 5 v] (4b)
el
aj, B, pij,Yi; >0 Viel,jeJ. (4c)

o Complementary slackness:

<1 - u1> vjeJ (5a)
(5-2u)-0 o
Vz(lgx”> = Viel (5¢)
o ) -
YTy = Viel,jeJ (5¢)

5 (yj(l —yj)> =0 Vjel (5f)

We note that these KKT conditions although not sufficient for optimal solutions are neces-
sary; i.e., any optimal solution (z,y) for model (3) must satisfy them. Consider an arbitrary
ordered pair (j,j') of distinct open facilities; i.e., j # ', y; =y; =1. If P, ; > P, ; for every
user ¢ € [ assigned to j, then according to Definition 1 the allocation has a warranted fair-
ness. Next, consider that there exists a user ¢ € I with z; ; =1 with P, ; < P, ;. We show that
the allocation has a compensatory fairness.

If uj =1, then u; <wuy is trivially true, and the allocation to the pair (j,j") has a com-

pensatory fairness. Hence, in the following we assume u; < 1. From equation (1d), x; ;; = 0.
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From equation (5a), a;; =0, while from equations (5d) and (5e) we further have p; ; =0 and

7i.; =0, respectively. Hence, it follows from equation (4a) that

UiPi,
—2U; P, ;(1 —uj) + o C L — it ;=0 (6a)
J
—QUZ'Pi,j/(l — u]'/) — Vi =Yy = 0. (6b)

We distinguish two cases below: (i) u; =1 and (ii) u; < 1.
(i) Assume u; =1. We prove that this is not possible.

From equation (6) we have
UiP;
i

Since ay, fti j,7,5 > 0 and uj < 1, a contradiction follows.

a; + pig = —2Ui Py e (L= uj0) =i
(ii) Next, consider the case that u; < 1. We prove that u; < u;. We have a; =0 from

equation (5a). Further, since p; j,v: 7 > 0, equation (6) leads to
Pij(1 =) = By (1= ).

Under the hypothesis, P;; < P; j» and uj,u; < 1. Then, the result follows. O
Theorem 1 shows that a continuous relaxation of the x variables of model (1) alone ensures
that all the ordered pairs of facilities have allocations that are fair in an optimal solution of
model (3); i.e., there exists an optimal solution with DoF =1 for model (3). In other words,
optimal solutions that do not have a fair allocation stem only from the discrete nature of
the decision variables x;;. The proof of Theorem 1 hinges on the particular choice of the
objective function. Note that model (3) is still non-convex; thus, all solutions that are fair
or satisfy the KKT conditions are not always optimal to model (3).

We conclude this section with a disclaimer. The continuous relaxation of binary variables
is often a significant modification of any discrete optimization model. In this sense, the above
results are of interest purely from a theoretical point of view. That being said, there are
three grounds that further warrant our contributions. First, for certain classes of FLPs—
in particular the p-median problem—integer solutions are obtained even with a continuous
relaxation of both the z and y variables, see, e.g., (ReVelle and Swain 1970, Siegel and
Rajaram 2021). Second, the above results are strong in the sense that they provide certificates
of fairness despite the non-convexity of the relaxed model and even without requiring the
typical additional constraint qualifications. Finally, in Section 5.4 we present computational
experiments that provide the DoF' and DoF” for model (1) by varying the budget B; these
results help determine the shortfall from a DoF of 1.
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3. Proportional Fairness
Previous works consider the notion of proportional fairness (Huang et al. 2017, Singh 2020);
i.e., facilities are assigned users in proportion to their capacities. Huang et al. study a
model for allocating discretionary amounts of vaccines to dispensing sites and show that
their convex-quadratic optimization model achieves coverage proportional to the weights
assigned to sites (Huang et al. 2017). Model (1) significantly differs from the model employed
in (Huang et al. 2017) as we also consider the preferences of users and their access to facilities.
To this end, we simultaneously maximize access and fairness in an optimal allocation. More
importantly, unlike the models considered in the above cited works (Huang et al. 2017, Singh
2020), our models are not convex. The definition of a proportionally fair solution of (Singh
2020) extended to our models is as follows:

DEFINITION 3 (PROPORTIONAL FAIRNESS). An allocation with utilization defined by
equation (2b) is said to be proportionally fair if it provides the same utilization for all open

facilities. U

Similar to fairness, proportional fairness is also not guaranteed in an optimal solution to
model (1); it is easy to construct such examples, see Example A.5 in Appendix A.3. Next,
proceeding as in Section 2, we investigate conditions that allow proportional fairness in an
optimal solution to model (1). We show that a special case of model (3)—where we entirely
eliminate the preferences of user ¢ towards any facility—does indeed ensure proportional
fairness in an optimal solution. Thus, as compared to model (1), we require two modifications:
(i) we relax the binary restrictions on z to their continuous relaxation as we did in model (3);
ie., 0<wx;; <1, and (ii) we remove the preferences of users towards facilities; i.e., P, ; <
P; € (0,1). These modifications are given in the following optimization model.

 UPux, .
ZPF:rLlinZC] (1- Z’/UC’l xﬁy)2 .
Y jeJ J
s.t. ) UiPai; < Cj¥j € J; (1) — (1e); (Ig)saiy 2 0. Yi €1, € J. (7b)
icl

To prove that an optimal solution of model (7) has a proportionally fair allocation we
need the following lemma, the proof of which we reserve for Appendix A.2. Intuitively, the
proof rests on the fact that in the absence of preferences towards facilities the total assigned
population is 3> e Uil ; = >, Ui Py in every feasible solution, where the equality
follows from equation (1d). By allowing a user’s population to be split arbitrarily among
multiple facilities, the proof shows that given a feasible solution to model (7) we can always
construct another feasible solution, where there is a user from which we allocate fractions of

population to every utilized facility while maintaining the same utilization of the facilities.
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LEMMA 1. In a feasible solution (x,y) to model (7), let Jg={j € J: Y ic; Ui Pix;; >0} C
J. Consider an t* € I, j* € J such that x;++ >0 (such a pair exists because of constraint (1d)).
Then, there exists another feasible solution (z',y") that provides the same value of the objec-
tive function (7a) as (x,y), such that:

L.(1) ¥ier UiPix} ;=Y  UiPivs j, Vj € J

L.(ii) x}; >0, Vj € Jp.

See Appendix A.2. O

COROLLARY 1. Given an optimal solution (x,y) to model (7) there exists another optimal
solution (z',y'), such that conditions L.(i) and L.(ii) of Lemma 1 are satisfied.

The proof follows directly from Lemma 1. U

THEOREM 2. An allocation corresponding to an optimal solution to model (7) is propor-

tionally fair by Definition 5.

The proof is similar to that of Theorem 1. Let (x,y) be an optimal solution to model (7).
The necessary KKT optimality conditions to model (7) are primal feasibility given by equa-
tions (7b), dual feasibility given by equation (4), and complementary slackness given by
equation (5), with Pj; <— P, € (0,1),Vie I,j€ J. Let Jo ={j € J:y; =1} CJ be the set of
open facilities. We prove that u; is the same for all j € Jp. The result is vacuous if Jo =0,
while the result holds by definition if | Jo| = 1. Hence, consider |Jo| > 2. We distinguish three
cases below.

(i) First, we consider the case that there exists a facility j € Jo that is fully utilized; i.e.,
uj = 1. Let j' € Jo be another facility that is not fully utilized; i.e., u;; < 1. We prove
this is not possible. Since u; > 0, there exists an ¢* such that z;;; > 0, hence ;s =0
from equation (5e). From equation (1d) and x;s > 0 we have z;+ < 1, hence ;s =0

from equation (5d). Further, @y =0 from equation (5a). Then, from equation (4a) it

U,L-* Pi*
Cj

follows that «; + fiz; = Ve and —2U Py (1 —wjr) — yixjr = 3. Since i, flizg, Yirj > 0
and u; <1 a contradiction follows. Thus, in an optimal solution if there exists even a
single facility that is completely utilized, then all other open facilities are also completely
utilized.

(ii) Next, we consider the case that there exists a facility j € Jo that is not utilized at all;

ie., u; =0. Let j' € Jo be another facility that is utilized; i.e., uj > 0. We prove this
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(iii)

is also not possible. Since uj > 0, there exists an ¢* such that x;: > 0, hence 7+ = 0.
Since u; = 0, we have x;+; = 0 by the definition of u; further a; =0 and p;+ = 0 from

equations (5a) and (5d). Then, from equation (4a) it follows that

—Vix — Yizj = 2U;» Py (8a)
U,[:* PZ*
j
Equation (8) leads to:
U P
=+t i = —2Un By, (9)
j

Since ayr, iz, Viz; > 0 and ujr > 0, a contradiction follows. Thus, in an optimal solution
if there exists even a single facility that is open but not utilized at all, then all other
open facilities are also not utilized at all.

Finally, we consider the case that all open facilities have a utilization strictly between 0
and 1. Then, the set Jp={j € J: Y ;c; UiP,z;; >0} C Jo of utilized facilities is identical
to Jo. Thus, from Corollary 1, without loss of generality there exists an i* € I such
that x;+; > 0,Vj € Jo; hence, v+ =0,Vj € Jo from equation (5e), while y; =1,Vj € Jo
from equations (le) and (1g). Further, since |Jo| > 2, it follows from equation (1d) that
T < 1,Vj € Jo. Then, p;+ =0,Vj € Jo from equation (5d). Lastly, since by hypothesis
u; <1,Vj € Jo, we have a;; =0,Vj € Jo from equation (5a).

Hence, from equation (4a) and the definition of u we have

Vi :—2Ui*Pi*(1—Uj>, VjGJO,
Vi .
=1 1 .
or, U, + 5U.. B> <1, Vi e Jo
This proves the result. 0

Theorem 2 implies that an optimal solution of a modified version of model (1), where

preferences for facilities are removed and z is allowed to be fractional, is proportionally fair.

This result is again intuitive since without preferences the coverage is independent of the

specific facility the population is assigned to. Further, relaxing the binary restrictions on x

allows splitting the population of a user among several facilities. Finally, we note that cases

(i) and (ii) in the proof of Theorem 2 likely do not have a practical relevance. The case

of u; =1,Vj € Jo only holds if 3>, Ui Py = 3 e, Cj, while the case of u; =0,Vj € Jo is
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not even possible when P;, U; are strictly positive. In other words, for a realistic model the
utilization of all open facilities is equal and strictly between zero and one.

As in Section 2, we conclude this section with another disclaimer. It is tempting to conclude
that equal preferences towards facilities renders model (7) impractical. However, such results
open several opportunities for exploring characteristics of optimal solutions. The non-convex
model (7) that allows fractional assignments—although a significant modification from the
original model (1)—still applies to several settings where the population corresponding to
user ¢ can be partitioned across facilities via x; ;; e.g., splitting according to the last digit
of their address or splitting with preferences towards facilities of particular chains. Another
theoretical question is the interplay of access and fairness in model (7). We already saw in
Theorem 2 that model (7) is perfectly fair towards facilities. Interestingly, in achieving an
optimal solution with this proportionally fair allocation, model (7) does not compromise
on access. Indeed, the following corollary of Theorem 2 proves that model (7) provides the

maximum overall access.

COROLLARY 2. An optimal solution to model (7) achieves the mazimum overall access

across any feasible solution.

The maximum overall access is given by
Zpp=max » Y U;Px;j,s.t. (7b).
BY eTiel
From equation (1d) it follows that in any feasible solution for model (7) we have zZpp =

> icr UiPi. An optimal solution also achieves this access. 0

4. Data Sources and Estimation

In this section, we summarize the data we use for our computational experiments in Section 5.
We consider the set of users—i € I—as the set of all the ZIP codes in Bavaria, and the set
of facilities—j € J—as the subset of ZIP codes that contain at least one recycling center.
Then there are |I| = 2,060 ZIP codes and 1,529 recycling centers spread over |J| = 1,394 ZIP
codes. As we describe below, we further parameterize the set of facilities as rural or urban.
Model (1) requires four parameters: C;,U;, P, ;,Vi€ I,j € J, and B. We solve model (1) for
different budgets B < |J|, and below we briefly describe our methods for estimation of the

other three parameters. We reserve the details for Appendix B.
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4.1. Estimation of C; and U;

We estimate the population of ZIP codes, U;, using data from suche-postleitzahl.org (2020);
see Appendix B.1 for details. We do not have explicit data on the capacities of all the
recycling centers, and thus assume that a recycling center’s capacity is proportional to the
amount of waste that is collected there. To approximate the amount of waste collected, we
calculate the “catchment population” of each recycling center; i.e., the number of people
that are closest to this recycling center. For details on this estimation, see Algorithm S1
in Appendix B.3. For details on this estimation and the differentiation of rural and urban

regions, see Appendix B.2 - B.4.

4.2. Estimation of P, ;

Next, we describe our method to estimate the preferences of populations in ZIP code i to
recycling centers in ZIP code j. To this end, we construct a data-driven model that includes
a total of 618,245 person-trips that determines how far people in Germany travel. Using a
least-squares fit on our data, we obtain the fraction of target population willing to travel
at least d kilometers that we present in Figure 1. This willingness to travel determines the

preferences, P; ;. For the model and the details, see Appendix B.5.
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Figure 1  Willingness to travel curves (solid lines) for urban and rural populations fit to the MiD data (circles)

on person-trips for the entire German population. For details, see Section 4.2 and Appendix B.5.
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5. Analysis
5.1. Setup

In this section, we describe the setup for our computational experiments. As we mention in
Section 4.1, we consider |I| = 2,060 ZIP codes and |.J| = 1,394 recycling centers. Thus, there
are approximately 2.9 million x variables and as many constraints in equation (le) alone.
To reduce computational effort, we remove (i,7) combinations that have low preferences;
this reduction is similar to that implemented in Risanger et al. (2021). Specifically, we set
x;;=0,Viel,je Jfor which P, ; <0.2. As a byproduct of this reduction, 27 ZIP codes are
left out that do not have a preference of at least 20% to any recycling center. Hence, we

implement a post-processing step that assigns these ZIP codes to open recycling centers.
Here, we solve a secondary optimization problem—in addition to model (1)—that considers
only the subset JcJof recycling centers that are open in an optimal solution of the primary
model (1). Further, we fix the z;; variables to the values obtained via the primary model
Viel)\ I, where I C I is the set of ZIP codes that are left unassigned in the primary model.
Thus, constraints (1c), (le), and (1g) are obsolete, and a second computationally easy to

solve model results. This secondary optimization model is as follows.

er Uil jxi

Hgnch(l _ W)z (10a)
jeJ

s.t. Z Uipiyj.lf,"j < Cj Vj e j (IOb)
el
> mi=1 Viel (10c)
jed
z;;€{0,1} Viel jel. (10d)

Next, to further reduce computational effort, as we mention in Section 2, constraint (1g)
can be replaced without loss in optimality by its continuous relaxation. Although there is
some data-driven evidence that MIP solvers can generate superior cuts when both x and
y are enforced as binary (Ostrowski et al. 2012), in our computational experiments we do
not enforce y as binary. For a survey of similar data-driven computational enhancements
for MIPs, see, e.g., Klotz and Newman (2013). Finally, we model constraint (1d) as an
inequality, >=; z;; <1, instead of an equality. Then, we use model (10) as a post-processing
step to assign the previously unassigned ZIP codes. We denote these two versions as “Strict”
(with constraint (1d)) and “Loose” (with constraint (1d) implemented as > ; 2;; < 1). Both
versions include the secondary optimization model (10).

The above two enhancements lead to solutions that are feasible to model (1) but sub-

optimal. We quantify the tradeoff between suboptimality and the computational savings in
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Section 5.3. With these two enhancements, we carry out all computational experiments on
two high performance computing clusters with Intel Xeon E5-2643 v4 processors with 256
GB of RAM, Pyomo version 6.1.2 and Gurobi version 9.1.2. We seek to solve all optimization

models to an optimality tolerance of 0.5%, except model (10) to a 0% tolerance.

5.2. Analysis

Budget Regions Overall Travel Utilization
access [%] distance [km] [%]

‘ ‘ ‘plO p50 p90 ‘ pl0 p50 P90

100% all 62.2 0.7 2.0 6.0 27.0 40.5 56.7
rural 61.6 0.7 21 6.6 26.1 39.8 55.4

urban 62.8 0.6 19 438 28.7 43.0 59.2

90% all 61.9 0.7 22 64 29.2 42.3 58.0
rural 61.1 0.7 24 70 28.6 41.7 56.8

urban 62.7 0.6 2.0 438 31.2 43.9 60.5

80% all 61.2 0.7 25 70 31.3 43.9 59.7
rural 60.1 0.7 28 7.6 30.9 43.6 58.8

urban 62.4 0.7 22 50 32.8 44.5 62.0

70% all 60.4 0.8 29 75 32.7 46.4 62.3
rural 58.8 0.8 34 8.1 324 46.5 61.8

urban 62.1 0.8 22 55 33.4 46.0 62.8

60% all 59.1 09 34 80 33.7 47.7 63.7
rural 57.0 1.0 4.1 88 33.0 48.2 63.2

urban 61.4 09 24 58 34.6 46.9 64.6

50% all 57.6 1.0 4.1 8.9 34.4 49.2 65.8
rural 54.5 1.2 51 99 34.2 50.2 65.9

urban 60.8 09 26 6.7 34.6 47.2 65.8

40% all 55.4 1.2 5.0 9.8 36.0 51.3 69.4
rural 51.6 1.4 6.0 10.8 35.2 53.3 69.6

urban 59.2 1.0 3.0 7.8 36.2 47.5 66.6

30% all 52.6 1.5 6.0 11.5 37.7 55.4 73.0
rural 48.2 1.8 6.8 11.9 37.5 58.2 74.6

urban 57.1 1.1 3.8 85 38.0 52.3 71.4

Table 1 Estimated overall access, travel distances, and utilization of open facilities for different budgets for
rural, urban, and all regions of Bavaria on solving model (1). Here, the “Budget” column denotes the percentage
of open facilities. The “p10”, “p50”, and “p90” columns denote the 10*"", median, and 90" percentiles,

respectively. For details, see Section 5.2.

First, we present our results on solving model (1) for different budgets, B; i.e., the number

of recycling centers that are open. Fig. 2a shows the overall access, given by 100 %JEJ% for

L)
i€l Ui

different budgets of open recycling centers, while Fig. 2b shows the travel distances from the
ZIP codes to the assigned recycling centers in an optimal solution. For increasing budget, the
overall access increases while the median travel distance decreases. Table 1 presents these
results. The maximum overall access is no more than 62.2%, even when all the recycling

centers are open. This value is determined by the stringent preferences, as we discussed in
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Section 2, given by the travel model in equation (16), and the relatively low value of the

maximum access is primarily due to two reasons.

(i) First, several regions in Bavaria have a sparse number of recycling centers. For example,
there are only two recycling centers in the district of Schweinfurt with about 116,000
inhabitants spread over an area of 841,000 square kilometers. Similarly, the district of
Tirschenreuth with a population of 72,000 and an area of 1,084,000 square kilometers
has only one recycling center. Thus, even when all the recycling centers are open, there
is poor access, and the travel distances are large.

(ii) Second, our travel model (16) is a conservative estimate of the preferences to recycling
centers. This is because our model is based on data that shows how far people actually
travel for errands instead of how far they would be willing to travel. Similar underes-
timates in travel models have been reported before; see, e.g., Risanger et al. (2021). In
other words, the actual access to the recycling centers might be larger than that pre-
dicted by our results; however, if our estimation is conservative consistently across our
data, the choice of the optimal recycling centers would not change.

In our computational experiments, we distinguish our results for rural and urban regions
after optimizing for all the regions. For the overall access and travel distances this distinction
is with respect to the users’ location, while for the utilization of open facilities it is with
respect to the facilities’ location. As demonstrated in Fig. 1, users in rural regions have
slightly larger preferences to the same facility than those in urban regions. However, as we
observe from Table 1, access is always lower in rural regions than in urban regions for all
budgets; correspondingly, the travel distances in the rural regions are larger. The reasons for
this are subtle and are as follows. Although, for the same distance, the preferences are larger
for users in rural regions than those in urban regions, the distances to the closest recycling
centers are also, on average, larger in the rural regions. For users in rural regions the average
preference to the closest open recycling center when all the facilities are open is slightly less
(0.61) than that for users in urban regions (0.63). Equivalently, the average distance to the
closest open recycling center is larger for users in rural regions (3.0 kms) than that in urban
regions (2.3 kms). Consequently, the access to the assigned recycling center is lower for users
in rural regions. Secondly, for small budgets, model (1) favors larger facilities to open. The
average capacity of a facility in a rural region is 10,905 persons while that of one in an urban

region is 22,865 persons. For B =558 (or 40%), the largest 139 facilities are all opened. The
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share of large facilities among facilities in urban regions is higher than among facilities in
rural regions; e.g., for a 40% budget (B = 40%]|.J|), in an optimal solution 55% of all the
facilities that are located in urban regions are open, while only 34% of all the facilities that
are located in rural regions are open. This is despite the fact that there are significantly more
facilities in rural regions than in urban regions; 70% of all the 1,394 facilities are in rural
regions. For a 40% budget, in an optimal solution, only 58% (42%) of the opened facilities are
in rural (urban) regions. Thus, users in rural regions are forced to travel farther to facilities
outside of their ZIP codes. Indeed, for a 40% budget, 58% of the users in rural regions are
assigned to a facility that is not their closest open facility. In contrast only 38% of the users
in urban regions are assigned to facilities that are not the closest.

The above discussion demonstrates that the burden of providing access to rural regions
falls predominantly on the fewer rural facilities. This results in larger utilization of the rural
facilities and a lower access. However, the gaps between the rural and urban regions shrink
as more facilities are allowed to be open. The overall access for a 40% budget deviates by 7.6
percentage points (i.e., the urban populations have 7.6 percentage points more access than
the rural populations) while for a 90% budget the difference drops to only 1.6 percentage
points. Similarly the deviation in the median utilization changes from -5.8 percentage points
to 2.2 percentage points (i.e., the urban facilities are utilized 2.2 percentage points more

than the rural facilities) for an increase in budget from 40% to 90%. For details, see Table 1.

— all
— rural

Overall access [%)]
Distance to assigned facility [km]

— rural

— urban

30 40 50 70 80 90 100 30 40 50 70 80 90 100

60 60
Budget [%] Budget [%]

(a) Overall access (b) Travel distance
Figure 2 Estimated overall access (Fig. 2a) and the corresponding travel distances (Fig. 2b) for different budgets

for rural (in red), urban (in green), and all (in blue) regions of Bavaria on solving model (1). “Bud-
get” denotes the percentage of open facilities. In Fig. 2b, the solid, dashed, and dotted lines denote
the median, 10th percentile and 90th percentile of the travel distances, respectively. For details, see

Section 5.2.
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The median utilization of the open facilities drops with increasing budget, since the bur-
den of providing access is distributed among more recycling centers, see Fig. 3a. When all
the recycling centers are open—which provides the maximum access of 62.2%—the median
utilization is at its lowest value of 40.5%, with a wide range of the 10" and 90" quan-
tiles, see Table 1. However, although the marginal gains in access by opening more facilities
steadily drop, the same is not true for the marginal drops in the median utilization. The
increase in overall access by opening the last 30% facilities (i.e., varying the budget between
70% and 100%) is less than 2 percentage points, while the decrease in median utilization
is almost 6 percentage points. These observations also hold true when considering rural or

urban facilities alone.

—e— 30% Budget 60% Budget ~—— 90% Budget
70 —e— 40%Budget —— 70% Budget 100% Budget
40 —e— 50% Budget —— 80% Budget
60 —
= =
) 730
e &
E Z 2.0
o
40
1.0
30
0.
30 40 50 60 70 80 90 100 20 40 60 80 100
Budget [%] Utilization [%)]
(a) Utilization of open facilities (b) Distribution of the utilization of open facilities

Figure 3 Optimal utilization of the open facilities for different budgets. “Budget” denotes the percentage of
open facilities. Fig. 3a provides the utilization for the rural (in red), urban (in green), and all (in
blue) regions of Bavaria on solving model (1). The solid, dashed, and dotted lines denote the median,
10th percentile and 90th percentile of the utilization, respectively. Fig. 3b shows the distribution of
utilization for budgets, where the y-axis provides the relative frequency of the open facilities. A broad
distribution suggests a large dispersion. For analogous figures on the distribution of the utilization of
facilities in rural and urban areas, see Fig. S2a and Fig. S2b in Appendix C, respectively. For details,

see Section 5.2.

5.3. Effect of computational enhancements

In this section, we provide a brief analysis of the tradeoff between the suboptimality of the
solution with the two computational enhancements we mention in Section 5.1. First, we
compare the quality of an optimal solution provided by the Loose and Strict models. Both of
these versions involve a post-processing step due to the 20% cutoff. A few ZIP codes contain

only a very small number of facilities to which the respective travel probability exceeds 20%;
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this can result in infeasibility of the Strict version. The Loose version is always feasible as it
allows some ZIP codes to be left unassigned; there are 76 such ZIP codes (i.e., 3.69%) for a
30% budget, while there are no such unassigned ZIP codes for a 100% budget. In addition,
in both the versions, 27 ZIP codes (i.e., 1.31%) are excluded as they fall out of the 20%
cut-off. After the post-processing step all ZIP codes are assigned.

We observe that for lower budgets, more ZIP codes remain unassigned via the primary
model. In other words, the Loose version becomes increasingly accurate for larger budgets.
Table 2 summarizes these observations for a 30% budget. Further, Fig. 4a demonstrates
that the objective function values of the two models are close, however we save significant
computational effort in the Loose model. The largest deviation between the two objective
function values is 0.96% for a budget of 30%; for the same budget, the improvement in the
runtime is 77.37%. On average, the objective function values obtained by the Loose model
differ only by 0.16%, suggesting that the significant reduction in computational effort comes

at the expense of at most a marginal deterioration in the quality of solutions.
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(a) Effect of loose inequality (b) Effect of cutoff
Figure 4  Tradeoff between the computational runtimes (blue) and objective function values (red) for model (1).

In Fig. 4a, the “Strict” and “Loose” denote the two versions when constraint (1d) is implemented
as an equality and inequality, respectively. Both versions include a 20% cutoff and a post-processing
step. In Fig. 4b, the “0% cutoff” and “20% cutoff” denote the two versions without and with a 20%
cutoff, respectively. Both versions include constraint (1d) as an inequality. The total number of users

and facilities in Fig. 4b are 30% of that in Fig. 4a. For details, see Section 5.2.

Next, we compare the quality of an optimal solution when we remove all (4, j) combinations
that have preferences less than 20%. Instances with the full set of users and facilities could
not be generated without this cutoff (see Fischetti et al. (2017) for one standard way to

resolve this); hence, we only consider instances where the first 30% of users and facilities are
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selected. Then, we solve model (1) twice — first without removing any (7,j) combinations,
and second, with removing all combinations with P;; < 20%; we denote these versions as
“0% cutoff” and “20% cutoff”, respectively. Fig. 4b presents our results. The 0% cutoff
implementation could not be solved to optimality within a time limit of 20,000 seconds for
all budgets we consider. On the other hand, the 20% cutoff implementation is solved to
optimality with significantly lesser effort. Again, the deviation from optimality is marginal.
The conservative gap between the best feasible solution reported by the 20% cutoff and the
best bound reported by the 0% cutoff is, on average, 2.4%. For a detailed analysis with a

variety of instances, see Table S1 in Appendix C.

Strict Loose Improvement
Before After Before After
Assigned zip codes [%] 98.69 100.00 95.00 100.00 0.00%
Overall access [%)] 52.34 52.43 52.30 52.60 -0.31%
Objective value | 10,195,018.2 10,177,542.3 | 10,124,222.9 10,079,376.8 0.96%
Solving time [s] 3,872.8 3,873.2 871.0 876.4 77.37%

Table 2  Comparison of the quality of solutions for model (1) when constraint (1d) is implemented as an
equality (“Strict”) and as an inequality (“Loose”) for a 30% budget. Both versions include a 20% cutoff and a
post-processing step. The “Improvement” column shows the relative difference between the two “After” columns;

i.e., 100 s"‘;:;iLc‘:"se. The solving time for the Loose model is 77.37% better at a deviation of 0.31% in overall

access and 0.96% in the objective function value. For details, see Section 5.3.

5.4. Tradeoff between accessibility and fairness
As we mention before, the objective function (la) of model (1) seeks to simultaneously
achieve the conflicting goals of maximizing overall access and fairness in utilization of the
open recycling centers. Theorem 2 shows that a modification of model (1)—model (7)—
guarantees perfect proportional fairness. In Example A.5, we demonstrate that proportional
fairness does not necessarily hold for model (1). In this section, we examine the extent to
which proportional fairness is achieved via model (1) by studying various measures of the
variability in the utilization of the open recycling centers.

First, Table 1 provides the median, 10*", and 90" percentiles of the utilization, while
Fig. 3b illustrates the distribution of the utilization of open facilities for various budgets. The

distributions are consistently unimodal; for larger budgets they exhibit a positive skewness
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characterized by a long right tail. Although the gaps between the 10" and 90*" percentiles are
significant, the distributions become narrower for larger budgets suggesting the dispersion
decreases with increasing budget. Further, the peaks of the distributions shift to the left
reiterating the notion that the utilization decreases with increasing budget, as we discuss in
Section 5.2.

An optimal solution of model (1) that achieves perfect proportional fairness, as character-
ized by Theorem 2, has zero variance of the utilization of open facilities. Since the objective
function (1a) of model (1) seeks to achieve low variability by minimizing the capacity-weighted
sum of squared idleness 1 —u;, the weighted variance of the utilization of open facilities is
one measure to determine the extent to which proportional fairness is achieved. Here, the
weights correspond to the capacities of the facilities. We standardize this measure by dividing

the weighted standard deviation by the weighted average utilization of open facilities, and

/Vary(u _ ) Ciuj;
obtain the weighted coefficient of variation (CV,,) as CV,, = Vai() Here, u,, = ngoéj
w jeip I

Z, J Cj(uj—tw)?
dV — =
an CL?“w(U) ZjEJo Cj
lization of open facilities, respectively, and Jo = {j € J : y; = 1} is the set of open facilities in

are the weighted average and weighted variance of the uti-

a feasible solution. We distinguish these results according to the region in which the facilities
are located. For all budgets in Table 3, the C'V,, is at most just above 30% for both the rural
and urban regions.

The third measure we examine is the DoF and the DoF’ as given by Definition 2. The
last two columns in Table 3 present these values. The DoF is nearly one for all budgets we
consider. This uniform behavior is because the allocation has a warranted fairness for nearly
all of the open facility pairs. In other words, model (1) drives towards solutions that lower
any basis for arguments between facilities. Further, the DoF’ column demonstrates that
among facility pairs for which the allocation has a warranted fairness, over two-thirds do have
allocations that are compensatory fair. With increasing budget, the DoF’ increases; i.e., the
fraction of pairs with an unfair allocation shrinks. Similarly, with increasing budget, the DoF”
generally decreases; i.e., the fraction of pairs to which the allocation has a compensatory
fairness shrinks even faster than the fraction of pairs with an unfair allocation.

The fraction of open recycling centers whose utilization lies within one (two/three) stan-
dard deviation(s) of the mean is above 64% (95%/99.3%) for all budgets. This behavior is
similar to that observed when the data is normally distributed, where roughly 68%, 95% and

99.7% of values lie within one, two and three standard deviation(s) of the mean, respectively,
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Budget | Regions | @, [%)] | \/Var,(u) [%)] | CV,, [%)] | DoF [%] | DoF’ [%)]

100% all 40.23 11.23 27.91 100.00 67.54
rural 38.74 11.81 30.48
urban 41.86 10.31 24.64

90% all 40.93 10.86 26.53 100.00 76.38
rural 39.72 11.45 28.82
urban 42.22 10.03 23.75

80% all 41.74 10.78 25.83 100.00 83.92
rural 40.85 11.55 28.26
urban 42.67 9.85 23.08

70% all 42.62 10.93 25.65 100.00 88.80
rural 42.19 11.80 27.96
urban 43.04 9.97 23.17

60% all 43.57 11.10 25.47 99.99 89.41
rural 43.43 12.27 28.26
urban 43.70 9.84 22.52

50% all 44.71 11.57 25.87 99.99 89.40
rural 45.34 12.97 28.61
urban 44.15 10.13 22.93

40% all 46.09 11.93 25.88 99.99 92.92
rural 47.57 13.49 28.37
urban 44.85 10.28 22.92

30% all 48.59 12.93 26.61 99.99 94.32
rural 51.08 14.72 28.82
urban 46.63 10.94 23.45

Table 3 The third to fifth columns present the weighted mean (u.,), weighted standard deviation (\/Varw(u)),
and weighted Coefficient of Variation (CV,,) of the utilization of open recycling centers for different budgets,
respectively. The last two columns present the Degree of Fairness (DoF’) and the Degree of unwarranted Fairness

(DoF") as defined in Definition 2. For details, see Section 5.4.

see e.g. (Casella 2002, Chapter 3). Finally, we find a strong linear correlation between the
capacity of an open recycling center j, C;, and its accessibility, a;, given by equation (2a).
Using linear regression, we obtain linear functions a; = m - C; that fit the data well; for all
budgets we consider, the respective R2-values of these fits are greater than 0.9. The fits are
better for large budgets; for a 70% budget or larger, the R?-values are greater than 0.94. For
a visualization of the linear correlation between a and C' for an exemplary budget of 30%,
see Fig. S3 in Appendix B.

The above observations provide data-driven evidence that model (1) achieves proportional
fairness to a level that is not compromised by maximizing access. However, achieving this
level of fairness does require compromising some degree of access. To determine the extent
of the sacrifice paid in terms of access, we compare the overall access achieved by model (1)

with the mazimum overall access that is possible. Consider the following optimization model.
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Zha = Max > N P Usa;j,s.t. (1b) — (1g). (11a)

Y eriel
Model (11) does not consider fairness, and only seeks to maximize overall access using the
same set of constraints as model (1). Bertsimas et al. introduce the notion of the price of
fairness, and define it as the relative reduction of the sum of utilities achieved by a fair
solution compared to a solution that maximizes these utilities (Bertsimas et al. 2011). We
adapt this notion for our work by computing the price of fairness as the relative reduction
of the optimal access achieved by model (1) compared with the maximum possible access

achieved by model (11) as follows:

maximum overall access — optimal overall access

Price of fairness = (12)

maximum overall access

In equation (12), the maximum overall access is given by z},, from model (11), while the
optimal overall access is given by > ,c;a; from equation (2a) and model (1). Table 4 sum-
marizes the results for all budgets we consider; the price of fairness is at most 2%. The
above analysis provides additional data-driven evidence that model (1) is well-equipped in

providing good accessibility while simultaneously ensuring a large extent of fairness.

Budget 30% 40% 50% 60% 70% 80% 90% 100%

Optimal overall access (%] 52.6 554 57.6 59.1 60.4 61.2 61.9 62.2
Maximum overall access [%] 53.7 56.4 583 59.8 60.9 61.5 62.2 624
Price of fairness [%)] 20 18 13 11 09 04 06 0.3

Table 4 Comparison of optimal and maximum overall access for different budgets. The overall access is defined

by z].e] aj, where a; is given by equation (2a). The optimal overall access is that achieved by model (1), while
the maximum overall access is that achieved by model (11). The price of fairness is the relative reduction of the
optimal overall access compared with the maximum overall access given by equation (12). For details, see

Sections 5.4.

5.5. Summary

Sections 4 - 5.4 address the applied component of our theoretical work in Sections 2 - 3. Here,
we provide some policy implications of our results for Bavaria that have standalone value in
their own regard. Recent years have seen a decline in the number of operational recycling
centers in Bavaria (Bayerisches Landesamt fiir Umwelt 2020). Data-driven models, such as

those we present, can help provide informed choices for such closures. Our analysis provides
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insight into the extent to which waste management services operate, even when a significant
number of recycling centers are closed. Policymakers have also recognized that the success
of recycling centers is driven by the degree of usage by the public (Bayerisches Landesamt
fir Umwelt 2015). Smartly locating operational recycling centers is one tool to streamline
usage by the public. Efficient public informational campaigns is another, and policymakers
are implementing steps in this regard (Bayerisches Landesamt fiir Umwelt 2015).

Our analysis demonstrates that although the marginal loss in overall access by closing
recycling centers is quite small, fairness is severely impacted for facilities. Further, the
marginal drop in overall accessibility to open facilities is significantly larger among facilities
in rural regions than in urban regions. Further increasing this disparity, the additional burden
imposed by closing recycling centers is not shared uniformly by facilities—the responsibility
to ensure access falls slightly more on facilities in rural regions. Rural regions have more
facilities with smaller capacities. In a choice between a closure of a larger and smaller facility,
a policymaker might prefer closing the smaller facility. Indeed, our models provide evidence
to this — to achieve high degrees of access, closing a smaller facility is less damaging. Conse-
quently, facilities that do remain open in the rural regions must shoulder a larger burden of
users. Such ethically challenging policy decisions that lead to increased disparities between
regions can be backed up by policymakers with quantitative evidence, such as those provided
by our models.

Our analysis relies on several simplifying assumptions. We parameterize recycling centers
only by their capacity and their location. However, not all facilities accept the full spectrum
of recyclable waste. Further, recycling centers in Germany impose different fees as well as
limits on the accepted quantities of each type of waste, see, e.g., (Bayerisches Staatsminis-
terium fir Umwelt und Verbraucherschutz and Bayerisches Landesamt fiir Umwelt 2021).
These distinctions offer further opportunities to provide a higher-fidelity classification of
recycling centers. Additionally, the deposited waste is not always processed on the site, but
is often transported further for a final disposition. Our work ignores the transportation costs
associated with such transfers; we also ignore any terminal costs for closures. Further, the
travel distances used as input to determine the preferences are simplified estimates. First, we
assume the entire population of a ZIP code resides at its centroid. Second, we use geodesic
distances — the shortest distances on the surface of the earth between the ZIP codes and

the recycling centers — rather than the longer road distances. These two simplifications are
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frequently used when measuring the distances of two geographic objects, however they can

lead to underestimates in the actual distance traveled by residents (Jones et al. 2010).

6. Conclusions

We propose an optimization framework for the problem of assigning users to undesirable
facilities, while balancing accessibility of the users and fairness of the usage of facilities.
Our central model is a non-convex quadratic-binary program with constraints similar to a
p-median problem, but a significantly different objective function. With sequential relax-
ations, we present analytical results, based on the KKT optimality conditions of the under-
lying optimization models, that help determine the tradeoff between access and fairness.
We demonstrate how our work extends several concepts of fairness that already exist in the
literature. We further present metrics that measure the extent to which fairness is achieved
in feasible solutions. Then, we present an application of our work to allocate residents to
recycling centers, using data from the state of Bavaria.

Our work offers several grounds for extensions in the future. First, uncertainty could be
accounted for in the preferences of users towards facilities. Then, a probability distribu-
tion governs the preferences and stochastic optimization models could be employed. Second,
analytical or greedy lower and upper bounds for model (1) can be developed. Future work
could also focus on a heuristic that incorporates criteria for both fairness and accessibility
to further improve the upper bounds.

All our data, models, codes, and an appendix are publicly available at https://github.com/

schmitt-hub/preferential_access_and_fairness_in_waste_management.

Acknowledgments

We thank David Morton for his suggestions and comments. We gratefully acknowledge the compute resources
and support provided by the Erlangen Regional Computing Center (RRZE). Bismark Singh was partially
supported by the Bavarian State Ministry for Science and Art (Bayerisches Staatsministerium fiir Wis-
senschaft und Kunst) under the project “Greedy algorithms for fair allocations and efficient assignments

within facility location optimization problems”.

References

Bayerisches Landesamt fir Umwelt, ed. (2015) Wertstoffhof 2020 - Getrennthaltungsgebot und Nov-
elle des ElektroG, UmweltSpezial, URL https://www.bestellen.bayern.de/application/eshop_
app000009753ID=62794461.


https://github.com/schmitt-hub/preferential_access_and_fairness_in_waste_management
https://github.com/schmitt-hub/preferential_access_and_fairness_in_waste_management
https://www.bestellen.bayern.de/application/eshop_app000009?SID=62794461
https://www.bestellen.bayern.de/application/eshop_app000009?SID=62794461

Schmitt and Singh: Balancing Accessibility and Fairness
28 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

Bayerisches Landesamt fiir Umwelt (2020) Hausmiill in Bayern - Bilanzen 2019: Informationen aus der

Abfallwirtschaft. URL https://www.abfallbilanz.bayern.de/doc/2019/Abfallbilanz2019.pdf.

Bayerisches Staatsministerium fiir Umwelt und Verbraucherschutz, Bayerisches Landesamt fiir Umwelt (2021)

Abfallratgeber Bayern. URL https://www.abfallratgeber.bayern.de/.

Berman O, Drezner Z, Tamir A, Wesolowsky GO (2009) Optimal location with equitable loads.
Annals of Operations Research 167(1):307-325, ISSN 0254-5330, URL http://dx.doi.org/10.1007/
510479-008-0339-9.

Bertsimas D, Farias VF, Trichakis N (2011) The price of fairness. Operations Research 59(1):17-31, ISSN
0030-364X, URL http://dx.doi.org/10.1287/opre.1100.0865.

Cappanera P (1999) A survey on obnoxious facility location problems. Technical report, University of Pisa,

Pisa, URL http://eprints.adm.unipi.it/2014, Technical Report: TR-99-11.

Casella G (2002) Statistical inference (Australia Pacific Grove, CA: Thomson Learning), 2 edition, ISBN
0534243126.

Erkut E, Neuman S (1989) Analytical models for locating undesirable facilities. Furopean Journal of Oper-
ational Research 40(3):275-291, ISSN 0377-2217, URL http://dx.doi.org/10.1016/0377-2217(89)
90420-7.

Fischetti M, Ljubi¢ I, Sinnl M (2017) Redesigning benders decomposition for large-scale facility location.
Management Science 63(7):2146-2162, URL http://dx.doi.org/10.1287/mnsc.2016.2461.

Huang HC, Singh B, Morton DP, Johnson GP, Clements B, Meyers LA (2017) Equalizing access to pan-
demic influenza vaccines through optimal allocation to public health distribution points. PLOS ONE
12(8):e0182720, URL http://dx.doi.org/10.1371/journal.pone.0182720.

Tbrahim MA (2020) Risk of spontaneous and anthropogenic fires in waste management chain and hazards
of secondary fires. Resources, Conservation and Recycling 159:104852, ISSN 0921-3449, URL http:
//dx.doi.org/10.1016/j.resconrec.2020.104852.

Jones SG, Ashby AJ, Momin SR, Naidoo A (2010) Spatial implications associated with using Euclidean
distance measurements and geographic centroid imputation in health care research. Health Services

Research 45(1):316-327, URL http://dx.doi.org/10.1111/3.1475-6773.2009.01044 .x.

Kaplan S (1974) Application of programs with maximin objective functions to problems of optimal resource

allocation. Operations Research 22(4):802-807, URL http://dx.doi.org/10.1287/opre.22.4.802.

Kaza S, Yao LC, Bhada-Tata P, van Woerden F (2018) What a waste 2.0: A global snapshot of solid waste
management to 2050 (Washington, DC: World Bank), ISBN 978-1-4648-1329-0, URL http://dx.doi.
org/10.1596/978-1-4648-1329-0.

Kelly FP, Maulloo AK, Tan DKH (1998) Rate control for communication networks: shadow prices, propor-
tional fairness and stability. Journal of the Operational Research Society 49(3):237-252, ISSN 0160-5682,
URL http://dx.doi.org/10.1057/palgrave. jors.2600523.


https://www.abfallbilanz.bayern.de/doc/2019/Abfallbilanz2019.pdf
https://www.abfallratgeber.bayern.de/
http://dx.doi.org/10.1007/s10479-008-0339-9
http://dx.doi.org/10.1007/s10479-008-0339-9
http://dx.doi.org/10.1287/opre.1100.0865
http://eprints.adm.unipi.it/2014
http://dx.doi.org/10.1016/0377-2217(89)90420-7
http://dx.doi.org/10.1016/0377-2217(89)90420-7
http://dx.doi.org/10.1287/mnsc.2016.2461
http://dx.doi.org/10.1371/journal.pone.0182720
http://dx.doi.org/10.1016/j.resconrec.2020.104852
http://dx.doi.org/10.1016/j.resconrec.2020.104852
http://dx.doi.org/10.1111/j.1475-6773.2009.01044.x
http://dx.doi.org/10.1287/opre.22.4.802
http://dx.doi.org/10.1596/978-1-4648-1329-0
http://dx.doi.org/10.1596/978-1-4648-1329-0
http://dx.doi.org/10.1057/palgrave.jors.2600523

Schmitt and Singh: Balancing Accessibility and Fairness
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 29

Klotz E, Newman AM (2013) Practical guidelines for solving difficult linear programs. Surveys in Operations
Research and Management Science 18(1-2):1-17, URL http://dx.doi.org/10.1016/j.sorms.2012.
11.001.

Marin A (2011) The discrete facility location problem with balanced allocation of customers. Furopean
Journal of Operational Research 210(1):27-38, ISSN 0377-2217, URL http://dx.doi.org/10.1016/
j.ejor.2010.10.012.

Marsh MT, Schilling DA (1994) Equity measurement in facility location analysis: A review and framework.
European Journal of Operational Research 74(1):1-17, ISSN 0377-2217, URL http://dx.doi.org/10.
1016/0377-2217(94)90200-3.

Morell D (1984) Siting and the politics of equity. Hazardous Waste 1(4):555-571, ISSN 0738-6168, URL
http://dx.doi.org/10.1089/hzw.1984.1.555.

Ostrowski J, Anjos MF, Vannelli A (2012) Tight mixed integer linear programming formulations for the unit
commitment problem. IEEE Transactions on Power Systems 27(1):39-46, URL http://dx.doi.org/
10.1109/tpwrs.2011.2162008.

Pirkul H, Schilling DA (1988) The siting of emergency service facilities with workload capacities and backup
service. Management Science 34(7):896-908, URL http://dx.doi.org/10.1287/mnsc.34.7.896.

Plastria F, Carrizosa E (1999) Undesirable facility location with minimal covering objectives. European
Journal of Operational Research 119(1):158-180, ISSN 0377-2217, URL http://dx.doi.org/10.1016/
S0377-2217(98)00335-X.

ReVelle CS, Swain RW (1970) Central facilities location. Geographical Analysis 2(1):30-42, URL http:
//dx.doi.org/https://doi.org/10.1111/j.15638-4632.1970.tb00142.x.

Risanger S, Singh B, Morton D, Meyers LA (2021) Selecting pharmacies for COVID-19 testing to ensure
access. Health Care Management Science 24(2):330-338, ISSN 1386-9620, URL http://dx.doi.org/
10.1007/510729-020-09538-w.

Siegel Z, Rajaram K (2021) p-median problems and solution strategies. techreport, University of California,

Los Angeles, URL https://zsiegel92.github.io/writing_repo/UCLA/mgmt242/pmedian.pdf.

Singh B (2020) Fairness criteria for allocating scarce resources. Optimization Letters 14(6):1533-1541, URL
http://dx.doi.org/10.1007/s11590-020-01568-1.

suche-postleitzahlorg (2020) Karten von Deutschland. URL https://www.suche-postleitzahl.org/

plz-karte-erstellen.

Tversky A, Simonson I (1993) Context-dependent preferences. Management Science 39(10):1179-1189, URL
http://dx.doi.org/10.1287/mnsc.39.10.1179.

Wolsey LA (1998) Integer programming. A Wiley-Interscience Publication (New York, NY: Wiley), ISBN
978-0-471-28366-9.


http://dx.doi.org/10.1016/j.sorms.2012.11.001
http://dx.doi.org/10.1016/j.sorms.2012.11.001
http://dx.doi.org/10.1016/j.ejor.2010.10.012
http://dx.doi.org/10.1016/j.ejor.2010.10.012
http://dx.doi.org/10.1016/0377-2217(94)90200-3
http://dx.doi.org/10.1016/0377-2217(94)90200-3
http://dx.doi.org/10.1089/hzw.1984.1.555
http://dx.doi.org/10.1109/tpwrs.2011.2162008
http://dx.doi.org/10.1109/tpwrs.2011.2162008
http://dx.doi.org/10.1287/mnsc.34.7.896
http://dx.doi.org/10.1016/S0377-2217(98)00335-X
http://dx.doi.org/10.1016/S0377-2217(98)00335-X
http://dx.doi.org/https://doi.org/10.1111/j.1538-4632.1970.tb00142.x
http://dx.doi.org/https://doi.org/10.1111/j.1538-4632.1970.tb00142.x
http://dx.doi.org/10.1007/s10729-020-09538-w
http://dx.doi.org/10.1007/s10729-020-09538-w
https://zsiegel92.github.io/writing_repo/UCLA/mgmt242/pmedian.pdf
http://dx.doi.org/10.1007/s11590-020-01568-1
https://www.suche-postleitzahl.org/plz-karte-erstellen
https://www.suche-postleitzahl.org/plz-karte-erstellen
http://dx.doi.org/10.1287/mnsc.39.10.1179

Schmitt and Singh: Balancing Accessibility and Fairness
30 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

Yekeen TA, Xu X, Zhang Y, Wu Y, Kim S, Reponen T, Dietrich KN, Ho SM, Chen A, Huo X (2016)
Assessment of health risk of trace metal pollution in surface soil and road dust from e-waste recycling
area in China. Environmental Science and Pollution Research International 23(17):17511-17524, URL
http://dx.doi.org/10.1007/s11356-016-6896-6.


http://dx.doi.org/10.1007/s11356-016-6896-6

	Introduction
	Mathematical Models
	Proportional Fairness
	Data Sources and Estimation
	Estimation of Cj and Ui
	Estimation of Pi,j

	Analysis
	Setup
	Analysis
	Effect of computational enhancements
	Tradeoff between accessibility and fairness
	Summary

	Conclusions

