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Abstract: Stochastic gradient descent method and its variants constitute the core optimization algorithms that
achieve good convergence rates for solving machine learning problems. These rates are obtained especially when these
algorithms are fine-tuned for the application at hand. Although this tuning process can require large computational
costs, recent work has shown that these costs can be reduced by line search methods that iteratively adjust the stepsize.
We propose an alternative approach to stochastic line search by using a new algorithm based on forward step model
building. This model building step incorporates second-order information that allows adjusting not only the stepsize
but also the search direction. Noting that deep learning model parameters come in groups (layers of tensors), our
method builds its model and calculates a new step for each parameter group. This novel diagonalization approach
makes the selected step lengths adaptive. We provide convergence rate analysis, and experimentally show that the
proposed algorithm achieves faster convergence and better generalization in well-known test problems. More precisely,
SMB requires less tuning, and shows comparable performance to other adaptive methods.
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Stochastic gradient descent (SGD) is a popular optimization algorithm for machine learning problems which
can achieve fast convergence when its stepsize and its scheduling are tuned well for the specific application at
hand. This tuning procedure can take up to thousands of CPU/GPU days resulting in big energy costs (Asi
and Duchi, 2019).

A number of researchers have studied adaptive strategies for improving the direction and the stepsize
choices of the stochastic gradient descent algorithm. Adaptive sample size selection ideas (Byrd et al., 2012;
Balles et al., 2016; Bollapragada et al., 2018) improve the direction by reducing its variance around the
negative gradient of the empirical loss function, while stochastic quasi-Newton algorithms (Byrd et al., 2016;
Wang et al., 2017) provide adaptive preconditioning. Recently, several stochastic line search approaches
have been proposed. Not surprisingly, some of these work cover sample size selection as a component of the
proposed line search algorithms (Balles et al., 2016; Paquette and Scheinberg, 2020).

The Stochastic Model Building (SMB) algorithm proposed in this paper is not designed as a stochastic
quasi-Newton algorithm in the sense explained by Bottou et al. (2018). However, it still produces a scaling
matrix in the process of generating trial points, and its overall step at each outer iteration can be written in
the form of matrix-vector multiplication. Unlike the algorithms proposed by Mokhtari and Ribeiro (2014) and
Schraudolph et al. (2007), we have no accumulation of curvature pairs throughout several iterations. Since
there is no memory carried from earlier iterations, the scaling matrices in individual past iterations are based
only on the data samples employed in those iterations. In other words, the scaling matrix and the incumbent
random gradient vector are dependent. That being said, we also provide a version (SMBi), where the matrix
and gradient vector in question become independent (see Algorithm 2).

Vaswani et al. (2019) apply a deterministic globalization procedure on mini-batch loss functions. That is,
the same sample is used in all function and gradient evaluations needed to apply the line search procedure
at a given iteration. However, unlike our case, they employ a standard line search procedure that does not
alter the search direction. They establish convergence guarantees for the empirical loss function under the
interpolation assumption, which requires each component loss function to have zero gradient at a minimizer of
the empirical loss. Mutschler and Zell (2020) assume that the optimal learning rate along the negative batch
gradient is a good estimator for the optimal learning rate with respect to the empirical loss along the same
direction. They test validity of this assumption empirically on deep neural networks (DNNs). Rather than
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making such strong assumptions, we stick to the general theory for stochastic quasi-Newton methods.

Other work follow a different approach to translate deterministic line search procedures into a stochastic
setting, and they do not employ fixed samples. In Mahsereci and Hennig (2017), a probabilistic model along
the search direction is constructed via techniques from Bayesian optimization. Learning rates are chosen
to maximize the expected improvement with respect to this model and the probability of satisfying Wolfe
conditions. Paquette and Scheinberg (2020) suggest an algorithm closer to the deterministic counterpart,
where the convergence is based on the requirement that the stochastic function and gradient evaluations
approximate their true values with a high enough probability.

With our current work, we make the following contributions. We use a model building strategy for adjusting
the stepsize and the direction of a stochastic gradient vector. This approach also permits us to work on subsets
of parameters. This feature makes our model steps not only adaptive, but also suitable to incorporate into
the existing implementations of DNNs. Our method changes the direction of the step as well as its size. This
property separates our approach from the backtracking line search algorithms. It also incorporates the most
recent curvature information from the current point. This is in contrast with the stochastic quasi-Newton
methods which use the information from the previous steps. Capitalizing our discussion on the independence
of the sample batches, we also give a convergence analysis for SMB. Finally, we illustrate the computational
performance of our method with a set of numerical experiments and compare the results against those obtained
with other well-known methods.

1. Stochastic Model Building. We introduce a new stochastic unconstrained optimization algorithm
in order to approximately solve problems of the form

min
x∈<n

f(x) = E[F (x, ξ)], (1)

where F : Rn × Rd → R is continuously differentiable and possibly nonconvex, ξ ∈ Rd denotes a random
variable, and E[.] stands for the expectation taken with respect to ξ. We assume the existence of a stochastic
first-order oracle which outputs a stochastic gradient g(x, ξ) of f for a given x. A common approach to tackle
(1) is to solve the empirical risk problem

min
x∈<n

f(x) = 1
N

N∑
i=1

fi(x), (2)

where fi : Rn → R is the loss function corresponding to the ith data sample, and N denotes the data sample
size which can be very large in modern applications.

As an alternative approach to line search for SGD, we propose a stochastic model building strategy inspired
by the work of Öztoprak and Birbil (2018). Unlike core SGD methods, our approach aims at including a
curvature information that adjusts not only the stepsize but also the search direction. Öztoprak and Birbil
(2018) consider only the deterministic setting and they apply the model building strategy repetitively until a
sufficient decent is achieved. In our stochastic setting, however, we have observed experimentally that using
multiple model steps does not benefit much to the performance, and its cost to the runtime can be extremely
high in deep learning problems. Therefore, if the sufficient decent is not achieved by the stochastic gradient
step, then we construct only one model to adjust the size and the direction of the step.

Conventional stochastic quasi-Newton methods adjust the gradient direction by a scaling matrix that is
constructed by the information from the previous steps. Our model building approach, however, uses the most
recent curvature information around the latest iteration. In the popular deep learning model implementations,
model parameters come in groups and updates are applied to each parameter group separately. Therefore, we
also propose to build a model for each parameter group separately making the step lengths adaptive.

The proposed iterative algorithm SMB works as follows: At step k, given the iterate xk, we calculate the
stochastic function value fk = f(xk, ξk) and the mini-batch stochastic gradient gk = 1

mk

∑mk
i=1 g(xk, ξk,i) at

xk, where mk is the batch size, and ξk = (ξk,1, . . . , ξk,mk) is the realization of the random vector ξ. Then, we
apply the SGD update to calculate the trial step stk = −αkgk, where {αk}k is a sequence of learning rates.
With this trial step, we also calculate the function and gradient values f tk = f(xtk, ξk) and gtk = g(xtk, ξk) at
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xtk = xk + stk. Then, we check the stochastic Armijo condition

f tk ≤ fk − c αk‖gk‖2, (3)

where c > 0 is a hyper-parameter. If the condition is satisfied and we achieve sufficient decrease, then we set
xk+1 = xtk as the next step. If the Armijo condition is not satisfied, then we build a quadratic model using
the linear models at the points xk,p and xtk,p for each parameter group p and find the step sk,p to reach its
minimum point. Here, xk,p and xtk,p denote respectively the coordinates of xk and xtk that correspond to the
parameter group p. We calculate the next iterate xk+1 = xk + sk, where sk = (sk,p1 , . . . , sk,pn) and n is the
number of parameter groups, and proceed to the next step with xk+1 . This model step, if needed, requires
extra mini-batch function and gradient evaluations (forward and backward pass in deep neural networks).

For each parameter group p, the quadratic model is built by combining the linear models at xk,p and xtk,p,
given by

l0k,p(s) := fk + g>k,ps and ltk,p(s− stk,p) := f tk + (gtk,p)>(s− stk,p),
respectively. Then, the quadratic model becomes

mt
k,p(s) := α0

k,p(s)l0k,p(s) + αtk,p(s)ltk,p(s− stk,p),

where

α0
k,p(s) =

(s− stk,p)>(−stk,p)
(−stk,p)>(−stk,p)

and αtk,p(s) =
s>stk,p

(stk,p)>stk,p
.

The constraint
‖s‖2 + ‖s− stk,p‖2 ≤ ‖stk,p‖2,

is also imposed so that the minimum is attained in the region bounded by xk,p and xtk,p. This constraint acts
like a trust region. Figure 1 shows the steps of this construction.

In this work, we solve a relaxation of this constrained model as explained in (Öztoprak and Birbil, 2018,
Section 2.2). The minimum value of the relaxed model is attained at the point xk,p + sk,p with

sk,p = cg,p(δ)gk,p + cy,p(δ)yk,p + cs,p(δ)stk,p, (4)

where yk,p := gtk,p − gk,p. Here, the coefficients are given as

cg,p(δ) = −
‖stk,p‖2

2δ , cy,p(δ) = −
‖stk,p‖2

2δθ [−(y>k,pstk,p + 2δ)(stk,p)>gk,p + ‖stk,p‖2y>k,pgk,p],

cs,p(δ) = −
‖stk,p‖2

2δθ [−(y>k,pstk,p + 2δ)y>k,pgk,p + ‖yk,p‖2(stk,p)>gk,p],

with
θ =

(
y>

k,ps
t
k,p + 2δ

)2 − ‖st
k,p‖2‖yk,p‖2 and δ = 1

2

(
‖st

k,p‖
(
‖yk,p‖+ 1

η
‖gk,p‖

)
− y>

k,ps
t
k,p

)
, (5)

where 0 < η < 1 is a constant which controls the size of sk,p by imposing the condition ‖sk,p‖ ≤ η‖stk,p‖.
Then, the adaptive model step becomes sk = (sk,p1 , . . . , sk,pn). We note that our construction in terms of
different parameter groups lends itself to constructing a different model for each parameter subspace.
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Figure 1: An iteration of SMB on a simple quadratic function. For simplicity we assume that there is only
one parameter group, and hence, we drop the subscript p . The algorithm first computes the trial point xtk
by taking the stochastic gradient step stk. If this point is not acceptable, then it builds a model using the
information at xk and xtk, and computes the next iterate xk+1 = xk + sk. Note that sk not only have a smaller
length compared to the trial step stk, but it also lies along a direction decreasing the function value.

We summarize the steps of SMB in Algorithm 1. Line 5 shows the trial point, which is obtained with the
standard stochastic gradient step. If this step satisfies the stochastic Armijo condition, then we proceed with
the next iteration (line 8). Otherwise, we continue with bulding the models for each parameter group (lines
10- 12), and move to the next iteration with the model building step in line 13.

Algorithm 1: SMB: Stochastic Model Building

1 Input: x1 ∈ Rn, stepsizes {αk}Tk=1, mini-batch sizes {mk}Tk=1,c > 0, and αmax satisfying (8)
2 for k = 1, . . . , T do
3 fk = f(xk, ξk), gk = 1

mk

∑mk
i=1 g(xk, ξk,i);

4 stk = −αkgk;
5 xtk = xk + stk;
6 f tk = f(xtk, ξk), gtk = 1

mk

∑mk
i=1 g(xtk, ξk,i);

7 if f tk ≤ fk − c αk‖gk‖2 then
8 xk+1 = xtk ;
9 else

10 for p = 1, . . . , r do
11 yk,p = gtk,p − gk,p;
12 sk,p = cg,p(δ)gk,p + cy,p(δ)yk,p + cs,p(δ)stk,p;

13 xk+1 = xk + sk with sk = (sk,p1 , . . . , sk,pr );

An example run. It is not hard to see that the steps produced by Algorithm 1 always lie in the span of
the two stochastic gradients, gk and gtk. In particular, when a model step is computed in line 11, we have

sk = w1gk + w2g
t
k.

for
w1 = cg(δ)− cy(δ)− cs(δ)α, and w2 = cy(δ).

Therefore, it is interesting to observe how the values of w1 and w2 evolve during the course of an SMB run,
and how the resulting performance compares to taking SGD steps with various stepsizes. For this purpose, we
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investigate the steps of SMB for one epoch on the MNIST dataset with a batch size of 128 (see Section 3 for
details of the experimental setting).

Figure 2: The coefficients of gk and gtk during a single-epoch run of SMB on the MNIST data with α = 0.5.
Model steps are taken quite often, but not at all iterations. The sum of the two coefficients vary in [-0.5,-0.25].

We provide in Figure 2 the values of w1 and w2 for SMB with α = 0.5 over the 468 steps taken in an epoch.
Note that the computations of gtk in line 6 of Algorithm 1 may spend a significant portion of the evaluation
budget, if model steps are taken very often. Figure 2 shows that SMB algorithm indeed takes a lot of model
steps in this run. To account for the extra gradient evaluations in computing the model steps, we run SGD
with a constant learning rate of α on the same problem for two epochs rather than one. Table 1 presents a
summary of the resulting training error and testing accuracy values. We observe that the performance of
SMB is significantly more stable for different α values, thanks to the adaptive steplength (and the modified
search direction) provided by SMB. SGD can achieve performance values comparable to or even better than
SMB, but only for the right values of α.

In Figure 2, it is interesting to see that the values of w2 are relatively small. We also realize that if we run
SGD with a learning rate close to the average (w1 + w2) value, it has an inferior performance. For the SMB
run with α = 0.5, for instance, the average (w1 + w2) value is close to −0.3. This can be contrasted with the
resulting performance of SGD with α = 0.3 in Table 1. These observations suggest that gtk contributes to
altering the search direction as intended, rather than acting as an additional stochastic gradient step.

α = 1.0 α = 0.5 α = 0.3 α = 0.1 α = 0.05
SGD SMB SGD SMB SGD SMB SGD SMB SGD SMB

Training loss 2.3033 0.3402 2.2947 0.1770 0.7435 0.1889 0.1594 0.3379 0.2410 0.3131
Test accuracy 0.1135 0.8949 0.1137 0.9460 0.7685 0.9422 0.9513 0.8993 0.9298 0.9162

Table 1: Performance on the MNIST data; SMB is run for one epoch, and SGD is run for two epochs.

2. Convergence Analysis. The steps of SMB can be considered as a special quasi-Newton update:

xk+1 = xk − αkHkgk, (6)

where Hk is a symmetric positive definite matrix as an approximation to the inverse Hessian matrix. In
Appendix 4, we explain this connection and give an explicit formula for the matrix Hk. We also prove that
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there exists κ, κ > 0 such that for all k, the matrix Hk satisfies

κI � Hk � κI, (7)

where for two matrices A and B, A � B means B−A is positive semidefinite. It is important to note that Hk

is built with the information collected around xk, particularly, gk. Therefore, unlike stochastic quasi-Newton
methods, Hk is correlated with gk, and hence, Eξk [Hkgk] is very difficult to analyze. Unfortunately, this
difficulty prevents us from using the general framework given by Wang et al. (2017).

To overcome this difficulty and carry on with the convergence analysis, we modify Algorithm 1 such that
Hk is calculated with a new independent mini batch, and therefore, it is independent of gk. By doing so,
we still build a model using the information around xk. Assuming that gk is an unbiased estimator of ∇f ,
we conclude that Eξk [Hkgk] = Hk∇f . In the rest of this section, we provide a convergence analysis for this
modified algorithm which we will call as SMBi (i for independent batch). The steps of SMBi are given in
Algorithm 2. As Step 11 shows, we obtain the model building step with a new random batch.

Algorithm 2: SMBi: Hk with an independent batch

1 Input: x1 ∈ Rn, stepsizes {αk}Tk=1, mini-batch sizes {mk}Tk=1,c > 0, and αmax satisfying (8)
2 for k = 1, . . . , T do
3 fk = f(xk, ξk), gk = 1

mk

∑mk
i=1 g(xk, ξk,i);

4 stk = −αkgk;
5 xtk = xk + stk;
6 f tk = f(xtk, ξk), gtk = 1

mk

∑mk
i=1 g(xtk, ξk,i);

7 if f tk ≤ fk − c αk‖gk‖2 then
8 xk+1 = xtk ;
9 else

10 for p = 1, . . . , n do
11 Choose a new independent random batch ξ′k;
12 g′k = 1

mk

∑mk
i=1 g(xk, ξ′k,i);

13 (stk)′ = −αkg′k, (xtk)′ = xk + (stk)′;
14 (gtk)′ = 1

mk

∑mk
i=1 g((xtk)′, ξ′k,i), y′k,p = (gtk,p)′ − g′k,p;

15 sk,p = −αkH ′k,pgk, where H ′k,p is calculated using g′k and y′k as defined in Appendix;

16 xk+1 = xk + sk with sk = (sk,1, . . . , sk,n);

Assumptions: Before providing the analysis, let us assume that f : Rn → R is continuously differentiable,
lower bounded by f low, and there exists L > 0 such that for any x, y ∈ Rn, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.
We also assume that ξk, k ≥ 1, are independent samples and for any iteration k, ξk is independent of {xj}kj=1,
Eξk [g(xk, ξk)] = ∇f(xk) and Eξk [‖g(xk, ξk)−∇f(xk)‖2] ≤M2, for some M > 0.

In order to be in line with practical implementations and with our experiments, we first provide an
analysis covering the constant stepsize case for (possibly) non-convex objective functions. Below, we denote
by ξ[T ] = (ξ1, . . . , ξT ) the random samplings in the first T iterations. Let αmax be the maximum stepsize that
is allowed in the implementation of SMBi with

αmax ≥
−1 +

√
1 + 16η2

4Lη . (8)

This hyper-parameter of maximum stepsize is needed in the theoretical results. Observe that since η−1 > 1,
assuming L ≥ 1 implies that it suffices to choose αmax ≥ 1 to satisfy (8). The proof of the following
convergence result is given in Appendix 4

Theorem 2.1 Suppose that our assumptions above hold and {xk} is generated by SMBi as given in Algorithm
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2. Suppose also that {αk} in Algorithm 2 satisfies that 0 < αk < 2/(Lη−1 + 2L2αmax) ≤ αmax for all k. For
given T , let R be a random variable with the probability mass function

PR(k) := P{R = k} = αk/(η−1 + 2Lαmax)− α2
kL/2∑T

k=1(αk/(η−1 + 2Lαmax)− α2
kL/2)

,

for k = 1, . . . , T . Then, we have

E[‖∇f(xR)‖2] ≤
Df + (σ2L/2)

∑T
k=1(α2

k/mk)∑T
k=1(αk/(η−1 + 2Lαmax)− α2

kL/2)
,

where Df := f(x1) − f low and the expectation is taken with respect to R and ξ[T ]. Moreover, if we choose
αk = 1/(Lη−1 + 2L2αmax) and mk = m for all k = 1, . . . , T , then this reduces to

E[‖∇f(xR)‖2] ≤ 2L(η−1 + 2Lαmax)2Df

T
+ M2

m
.

Using this theorem, it is possible to deduce that stochastic first-order oracle complexity of SMB with random
output and constant stepsize is O(ε−2) (Wang et al., 2017, Corollary 2.12). In Wang et al. (2017) (Theorem 2.5),
it is shown that under our assumptions above and the extra assumption of 0 < αk ≤ 1

L(η−1+2Lαmax) ≤ αmax,
if the point sequence {xk} is generated by SMBi method (when Hk is calculated by an independent batch in
each step) with batch size mk = m for all k, then there exists a positive constant Mf such that E[f(xk)] ≤Mf .
Using this observation, the proof of Theorem 2.1, and Theorem 2.8 in (Wang et al., 2017), we can also give
the following complexity result when the stepsize sequence is diminishing for non-convex objective functions.

Theorem 2.2 Let the batch size be m and assume that αk = 1
L(η−1+2Lαmax)k

−φ with φ ∈ (0.5, 1) for all k.
Then {xk} generated by SMBi satisfies

1
T

T∑
k=1

E[‖∇f(xk)‖2 ≤ 2L(η−1 + 2Lαmax)(Mf − f low)Tφ−1 + M2

(1− φ)m (T−φ − T−1)

for some Mf > 0, where T denotes the iteration number. Moreover, for a given ε ∈ (0, 1), to guarantee that
1
T

∑T
k=1 E[‖∇f(xk)‖2 < ε, the number of required iterations T is at most O

(
ε−

1
1−φ

)
.

3. Numerical Experiments. In this section, we compare SMB and SMBi against SGD, Adam (Kingma
and Ba, 2015), and SLS (SGD+Armijo) (Vaswani et al., 2019). We have chosen SLS, since it is a recent
method that uses stochastic line search with backtracking. We have conducted experiments on multi-class
classification problems using neural network models∗. Our Python package SMB along with the scripts to
conduct our experiments are available online: https://github.com/sibirbil/SMB

We start our experiments with constant stepsizes for all methods. We should point out that SLS method
adjusts the stepsize after each backtracking process and also uses a stepsize reset algorithm between epochs.
We refer to this routine as stepsize auto-scheduling. Our numerical experiments show that even without such
an auto-scheduling the performances of our methods are on par with SLS. Following the experimental setup
in Vaswani et al. (2019), we use the default constant learning rates of 0.5 for SMB and SMBi, 1 for SLS, 0.1
for SGD, and 0.001 for ADAM. For SMB, SMBi, and SLS, we have used the default hyper-parameter value
c = 0.1 of SLS that appears in the Armijo condition (also recommended by the authors of SLS). Due to the
high computational costs of training the neural networks, we report the results of a single run of each method.

MNIST dataset. On the MNIST dataset, we have used the one hidden-layer multi-layer perceptron (MLP)
of width 1,000.
∗The implementations of the models are taken from https://github.com/IssamLaradji/sls

https://github.com/sibirbil/SMB
https://github.com/IssamLaradji/sls
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Training & Test Losses

Training & Test Run Times

Figure 3: Classification on MNIST with an MLP model.

In Figure 3, we see the best performances of all five methods on the MNIST dataset with respect to epochs
and run time. Even though SMB and SMBi may calculate an extra function value (forward pass) and a
gradient (backward pass), we see in this problem that SMB and SMBi achieve the best performance with
respect to the run time as well as the number of epochs. More importantly, the generalization performances
of SMB and SMBi are also better than the remaining three methods.

It should be pointed out that, in practice, choosing a new independent batch means the SMBi method can
construct a model step in two iteration using two batches. This way the computation cost for each iteration is
reduced on average with respect to SMB but the model steps can only be taken in half of the iterations in the
epoch. As seen in Figure 3, this does not seem to effect the performance in this problem significantly.

CIFAR10 and CIFAR100 datasets. For the CIFAR10 and CIFAR100 datasets, we have used the
standard image-classification architectures ResNet-34 (He et al., 2016) and DenseNet-121 (Huang et al., 2017).
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Training & Test Losses Training & Test Losses

Training & Test Run Times Training & Test Run Times

Figure 4: Classification on CIFAR10 (left column) and CIFAR100 (right column) with ResNet-34 model.

In Figure 4, we see that on CIFAR10-Resnet34, SMB performs better than Adam and SGD algorithms.
However, its performance is only comparable to SLS. Even though SMB reaches a lower training loss value in
CIFAR100-Resnet34, this advantage does not show in test accuracy.

Training & Test Losses Training & Test Losses

Training & Test Run Times Training & Test Run Times

Figure 5: Classification on CIFAR10 (left column) and CIFAR100 (right column) with Densenet121 model.

In Figure 5, we see a comparison of performances of on CIFAR10 and CIFAR100 with DenseNet121. SMB
with a constant stepsize outperforms all other optimizers in terms of training error and reaches the best test
accuracy on CIFAR100, while showing similar accuracy with ADAM on CIFAR10.

Our last set of experiments are devoted to demonstrating the robustness of SMB. The preliminary results
in Figure 6 show that SMB is robust to the choice of the learning rate, especially in deep neural networks.
This aspect of SMB needs more attention theoretically and experimentally.
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Figure 6: Robustness of SMB under different choices of the learning rate.

4. Conclusion. Stochastic model building (SMB) is a fast alternative to stochastic gradient descent
method (SGD). The algorithm provides a model building approach that replaces the one-step backtracking
in stochastic line search methods. We have analyzed the convergence properties of a modification of SMB
by rewriting its model building step as a quasi-Newton update and constructing the scaling matrix with a
new independent batch. Our numerical results have shown that SMB converges fast and its performance is
insensitive to the selected stepsize.

In its current state, SMB lacks any internal learning rate adjusting mechanism that could reset the learning
rate depending on the progression of the iterations. Our initial experiments show that SMB can greatly benefit
from a stepsize auto-scheduling routine. This is a future work that we will consider. Our convergence rate
analysis is given for the alternative algorithm SMBi which can perform competitive against other methods,
but consistently underperforms the original SMB method. This begs for a convergence analysis for the SMB
method.
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APPENDIX

Proof of Theorem 2.1 First we show that the SMB step for each parameter group p can be expressed
as a special quasi-Newton update. For brevity, let us use sk, stk, gk, gtk, and yk instead of sk,p, stk,p, gk,p, gtk,p,
and yk,p, respectively. Recalling the definitions of θ and δ given in (5), observe that

2δ = ‖stk‖‖yk‖+ 1
η
‖stk‖‖gk‖ − y>k stk = αk

(
‖gk‖‖yk‖+ 1

η
‖gk‖2 + y>k gk

)
= αkσ,

and

θ =
(
y>k s

t
k + 2δ

)2 − ‖stk‖2‖yk‖2 = α2
k(σ − y>k gk)2 − α2

k‖gk‖2‖yk‖2 = α2
k(β2 − ‖gk‖2‖yk‖2) = α2

kγ,

where
σ = ‖gk‖‖yk‖+ 1

η
‖gk‖2 + y>k gk, β = σ − y>k gk, and γ = (β2 − ‖gk‖2‖yk‖2).

Therefore, we have

cg(δ)gk = −‖s
t
k‖2

2δ gk = −α
2
k‖gk‖2

αkσγ
γgk = −αk

‖gk‖2

σγ
γgk,

cy(δ)yk = −‖s
t
k‖2

2δθ [−(y>k stk + 2δ)(stk)>gk + ‖stk‖2y>k gk]yk

= −‖gk‖
2

αkσγ
yk[α2

k(σ − y>k gk)g>k gk + α2
k‖gk‖2y>k gk]

= −αk
‖gk‖2

σγ
[βykg>k + ‖gk‖2yky

>
k ]gk,

and

cs(δ)stk = −‖s
t
k‖2

2δθ [−(y>k stk + 2δ)y>k gk + ‖yk‖2(stk)>gk]stk

= −‖gk‖
2

αkσγ
(−αk)gk[−αk(σ − y>k gk)y>k gk − αk‖yk‖2g>k gk]

= −αk
‖gk‖2

σγ
[βgky>k + ‖yk‖2gkg

>
k ]gk.

Now, it is easy to see that

sk = cg(δ)gk + cy(δ)yk + cs(δ)stk

= −αk
‖gk‖2

σγ

[
γI + βykg

>
k + ‖gk‖2yky

>
k + βgky

>
k + ‖yk‖2gkg

>
k

]
gk.

Thus, for each parameter group p, we define

Hk,p = ‖gk,p‖
2

σpγp

[
γpI + βpyk,pg

>
k,p + ‖gk,p‖2yk,py

>
k,p + βpgk,py

>
k,p + ‖yk,p‖2gk,pg

>
k,p

]
, (9)

where

σp = ‖gk,p‖‖yk,p‖+ 1
η
‖gk,p‖2 + y>k,pgk,p, βp = σp − y>k,pgk,p, and γp = (β2

p − ‖gk,p‖2‖yk,p‖2).

Now, assuming that we have the parameter groups {p1, . . . , pn}, the SMB steps can be expressed as a
quasi-Newton update given by

xk+1 = xk − αkHkgk,
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where

Hk =
{
I, if the Armijo condition is satisfied;
diag(Hk,p1 , . . . ,Hk,pn), otherwise.

Here, I denotes the identity matrix, and diag(Hk,p1 , . . . ,Hk,pn) denotes the block diagonal matrix with the
blocks Hk,p1 , . . . ,Hk,pn .

We next show that the eigenvalues of the matrices Hk, k ≥ 1, are bounded from above and below uniformly
which is, of course, obvious when Hk = I. Using the Sherman-Morrison formula twice, one can see that for
each parameter group p, the matrix Hk,p is indeed the inverse of the positive semidefinite matrix

Bk,p = 1
‖gk,p‖2 (σpI − gk,py>k,p − yk,pg>k,p),

and hence, it is also positive semidefinite. Therefore, it is enough to show the boundedness of the eigenvalues
of Bk,p uniformly on k and p.

Since gk,py>k,p + yk,pg
>
k,p is a rank two matrix, σp/‖gk,p‖2 is an eigenvalue of Bk,p with multiplicity n− 2.

The remaining extreme eigenvalues are

λmax(Bk,p) = 1
‖gk,p‖2 (σp+‖gk,p‖‖yk,p‖−y>k,pgk,p) and λmin(Bk,p) = 1

‖gk,p‖2 (σp−‖gk,p‖‖yk,p‖−y>k,pgk,p),

with the corresponding eigenvectors ‖yk,p‖gk,p + ‖gk,p‖yk,p and ‖yk,p‖gk,p − ‖gk,p‖yk,p, respectively.

Observe that,

λmin(Bk,p) =
σp − ‖gk,p‖‖yk,p‖ − y>k,pgk,p

‖gk,p‖2

=
‖gk,p‖‖yk,p‖+ η−1‖gk,p‖2 + y>k,pgk,p − ‖gk,p‖‖yk,p‖ − y>k,pgk,p

‖gk,p‖2

= η−1‖gk,p‖2

‖gk,p‖2 = 1
η
> 1.

Thus, the smallest eigenvalue Bk,p is bounded away from zero uniformly on k and p.

Now, by our assumption of Lipschitz continuity of the gradients, for any x, y ∈ Rn and ξk, we have

‖g(x, ξk)− g(y, ξk)‖ ≤ L‖x− y‖.

Thus, observing that ‖yk,p‖ = ‖gtk,p − gk,p‖ ≤ L‖xtk,p − xk,p‖ ≤ αkL‖gk,p‖, we have

λmax(Bk,p) =
σp + ‖gk,p‖‖yk,p‖ − y>k,pgk,p

‖gk,p‖2

=
‖gk,p‖‖yk,p‖+ η−1‖gk,p‖2 + y>k,pgk,p + ‖gk,p‖‖yk,p‖ − y>k,pgk,p

‖gk,p‖2

= 2‖gk,p‖‖yk,p‖+ η−1‖gk,p‖2

‖gk,p‖2 ≤ 2Lαk + 1
η
≤ 2Lαmax + η−1.

This implies that the eigenvalues of Hk,p = B−1
k,p are bounded below by 1/(η−1 + 2Lαmax) and bounded

above by 1 uniformly on k and p. This result, together with our assumptions, shows that steps of the SMBi
algorithm satisfy the conditions of Theorem 2.10 in (Wang et al., 2017) with κ = 1/(η−1 + 2Lαmax) and
κ = 1 and Theorem 2.1 follows as a corollary.


