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Abstract We present approximate solutions for the robust semi-infinite multi-objective convex symmetric
cone programming problem. By using the robust optimization approach, we establish an approximate
optimality theorem and approximate duality theorems for approximate solutions in convex symmetric cone
optimization problem involving infinitely many constraints to be satisfied and multiple objectives to be
optimized simultaneously under the robust characteristic cone constraint qualification. We also give an
example to illustrate the obtained results in an important special case, namely the robust semi-infinite
multi-objective convex second-order cone program.
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1 Introduction

Robust optimization [1–4] has become a very active methodological approach that is established to deal
with optimization problems under uncertainty. The uncertainty means that the entering parameters of those
problems are not acknowledged precisely on the time while an answer must be determined. In recent years,
many authors have established approximate optimality conditions and duality theorems for approximate
solutions (ǫ-solutions) for different classes of optimization problems [5–20]. More specifically, Jeyakumar
and Li established strong duality for robust semidefinite linear programming [8], Lee and Jiao established
quasi approximate solutions for robust convex programming [9], Lee and Lee established approximate solu-
tions for robust convex programming [11], robust fractional programming [12], robust convex semidefinite
programming [14], and robust semi-infinite programming [15]. Lee and Lee also established optimality
conditions and duality theorems for robust semi-infinite multi-objective programming [13].

Convex symmetric cone optimization [21–24] problems are a class of convex optimization problems in
which we minimize a convex function over the intersection of an affine set with the Cartesian product of
symmetric cones. Well-known examples of symmetric cones are the nonnegative orthant cone, the second-
order cone, the cone of symmetric positive semidefinite matrices, the cone of complex hermitian positive
semidefinite matrices, and the cone of quaternion Hermitian positive semidefinite matrices. Therefore, well-
studied special cases of symmetric programming are linear programming, second-order cone programming
[25–28] and semidefinite programming [29–31]. Other special cases are optimization problems over complex
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Hermitian positive semidefinite matrices, and optimization problems over quaternion Hermitian positive
semidefinite matrices [21, 22, 24].

To illustrate the modeling potential of conic programming and the extensive applicability of symmetric
cone programming, we mention that all convex programming problems can be formulated as conic programs
[32], and that almost all real-world applications of conic programming are associated with symmetric
cones [25,26,29,30,32]. There is a strong relationship between symmetric cone programming and Euclidean
Jordan algebras. When we optimize over symmetric cones, the importance of Euclidean Jordan algebras
stems from the fact that a cone is symmetric if and only if it is the cone of squares of some Euclidean Jordan
algebra. Some Jordan algebraic notations, are listed in Table 1. These notations will be used in the sequel.
Readers who are unfamiliar with the theory of Jordan algebra are encouraged to read [21, Section 2].

Despite the genuine need for establishing an approximate optimality theorem and approximate duality
theorems for convex symmetric cone programming problems, there are no symmetric conicity analogs of
these approximate theorems. Inspired by this gap in the literature, in this paper, we establish ǫ-solutions
for the robust convex symmetric cone programming problem. Our setting is general in the sense that our
convex symmetric cone optimization problem involves infinitely many constraints and multiple objective
functions. That is, we establish an ǫ-optimality theorem and ǫ-duality theorems for robust semi-infinite
multi-objective convex symmetric cone programming. We also apply our results to an important special
case, namely the robust semi-infinite multi-objective convex second-order cone program.

The semi-infinite multi-objective symmetric programming problem is defined as

(SIMSP)


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























min
(

f1(x), f2(x), . . . , fK(x)
)

s.t. a(t)
0
+

m
∑

i=1

xia
(t)
i
� 0, t ∈ T,

where x ∈ Rm, fk : Rm → R, k = 1, . . . ,K, for a(t)
i
∈ J for i = 0, 1, . . . ,m, t ∈ T, J is a Jordan algebra with

dimension n and rank r, and T is an arbitrary index set that can be infinite.
The semi-infinite multi-objective symmetric programming problem with uncertain data in the constraints

is defined as

(USIMSP)
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
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


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
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





min
(

f1(x), f2(x), . . . , fK(x)
)

s.t. a(t)
0
+

m
∑

i=1

xia
(t)
i
� 0, t ∈ T,

where, for each i = 0, 1, . . . ,m and t ∈ T, the element a(t)
i

belongs to an uncertainty setV(t)
i
⊆ J .

Table 1: Some Jordan algebraic notations will be used throughout the paper.

Notation Denotation
Jn Euclidean Jordan algebra with dimension n (we drop n if it is known from the context).
rank(J) The rank of J .
e The identity element of J .
x ◦ y The Jordan product that maps (x, y) from J ×J to J .
x2 x ◦ x (in general, for n ≥ 2, xn := xn−1 ◦ x).
KJ The cone of squares of a Euclidean Jordan algebra J defined asKJ := {x2 : x ∈ J}.
int KJ The interior of the coneKJ .
λ1, . . . , λr The eigenvalues of an element x in a rank-r algebra J (the roots of its characteristic polynomial).

trace(x) The trace of an element x in J
(

trace(x) :=
√

∑r
i=1 λi

)

.

x • y The Frobenius inner product of x, y ∈ J defined as x • y := trace(x ◦ y).

‖x‖ The Frobenius norm of an element x ∈ J
(

‖x‖ :=
√

x • y =
√

∑r
i=1 λ

2
i

)

.

x �KJ 0 (x ≻KJ 0) x is an element inKJ (int KJ ).

We also write x � 0 (x ≻ 0) if J is known from the context.
y �KJ x (y ≺KJ x) Same as x �KJ y (x ≻KJ y).
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The robust counterpart of USIMSP is defined as

(RSIMSP)































min
(

f1(x), f2(x), . . . , fK(x)
)

s.t. a(t)
0
+

m
∑

i=1

xia
(t)
i
� 0, ∀a(t)

i
∈ V(t)

i
, i = 0, 1, . . . ,m, t ∈ T.

Hence, the robust feasible set FP of RSIMSP is given as

FP =
{

x ∈ Rm : a(t)
0
+

∑m
i=1 xia

(t)
i
� 0, ∀a(t)

i
∈ V(t)

i
, t ∈ T, i ∈ I

}

,

where I := {0, 1, 2, . . . ,m}. We make the following assumptions throughout this paper.

Assumption 1.1 For each t ∈ T and i ∈ I,V(t)
i
⊆ J is compact and convex.

Assumption 1.2 The robust feasiblity set FP has a nonempty interior.

Assumption 1.1 is necessary to give a characterization and prove properties of the robust characteristic
cone which will be given in the next section. Assumption 1.2 is called the Slater condition and is necessary
to prove and apply the robust version of Farkas’ lemma.

We use Rn
+ := {(x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . ,n} to denote the nth dimensional nonnegative

orthant cone of Rn. Its interior, int Rn
+ := {(x1, . . . , xn) ∈ Rn : xi > 0, i = 1, . . . ,n}, is denoted by Rn

++.
Let ǫ = (ǫ1, . . . , ǫk) ∈ RK

+, we say that x̄ ∈ FP is an ǫ-solution of RSIMSP if for any x ∈ FP we have that
fk(x) ≥ fk(x̄) − ǫk for each k = 1, . . . ,K. Our focus in this paper is to present the approximate solutions
(ǫ-solutions) for RSIMSP.

The next pages of the paper are structured as follows: Section 2 defines the robust characteristic cone
and proves its convexity. The ǫ-optimality condition theorem and the ǫ-duality theorems for robust semi-
infinite multi-objective symmetric programming are established in Sections 3 and 4, respectively. In Section
5, we apply our results to an important special case, robust semi-infinite multi-objective second-order cone
program.

2 The robust characteristic cone

In this section, we define the robust characteristic cone for our setting and and prove that it is closed and
convex. First, we present some preliminaries.

Let R̄ := [−∞,+∞] and f : Rn → R̄ be a function. We say f is proper if for all x ∈ Rn, f (x) > −∞ and
there exists x0 ∈ Rn such that f (x0) ∈ R. A proper function f is said to be convex if for all µ ∈ [0, 1], we have

f ((1 − µ)x + µy) ≤ (1 − µ) f (x) + µ f (y)

for all x, y ∈ Rn. The domain of f is defined to be the set dom f := {x ∈ Rn : f (x) < +∞}. The epigraph of f is
defined to be the set epi f :=

{

(x, r) ∈ Rn ×R : f (x) ≤ r
}

.
The subdifferential of f at x ∈ Rn is defined as

∂ f (x) =

{

{x⋆ ∈ Rn : 〈x⋆, y − x〉 ≤ f (y) − f (x), ∀y ∈ Rn}, if x ∈ dom f ,
∅, otherwise.

In general, for any ǫ ≥ 0 , the ǫ-subdifferential of f at x ∈ Rn is defined by

∂ǫ f (x) =

{

{x⋆ ∈ Rn : 〈x⋆, y − x〉 ≤ f (y) − f (x) + ǫ, ∀y ∈ Rn}, if x ∈ dom f ,
∅, otherwise.

A function f is said to be a lower semi-continuous function if lim infy→x f (y) ≥ f (x) for all x ∈ Rn. The
conjugate function of any proper convex function g on Rn is the function g⋆ : Rn → R ∪ {+∞} defined as

g⋆(x⋆) = sup
{〈x⋆, x〉 − g(x) : x ∈ Rn}

for any x⋆ ∈ Rn. The following proposition is due to Jeyakumar et al. [33].
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Proposition 2.1 Let f , g : Rn → R∪{+∞} be proper lower semicontinuous convex functions. If one of the functions
f and g is continuous, then

epi ( f + g)⋆ = epi f⋆ + epi g⋆.

For a given set A ⊂ Rn, we write cl A and co A to denote the closure of A and the convex hull generated
by A, respectively. The indicator function δA is defined as

δA(x) =

{

0, x ∈ A,
+∞, otherwise.

In convex programming, a constrained minimization problem over a closed convex subset C of Rn can
be reformulated as an unconstrained minimization problem by replacing its objective function, say f , with
the function ( f + δC)(x). The following proposition is due to Hiriart-Urruty and Lemarechal [34].

Proposition 2.2 Let f : Rn → R be a convex function, C be a closed convex subset of Rn, and ǫ ≥ 0. Then

∂ǫ( f + δC)(x̄) =
⋃

ǫ0≥0, ǫ1≥0,
ǫ0+ǫ1=ǫ

{

∂ǫ0 f (x̄) + ∂ǫ1δC(x̄)
}

.

We have also the following proposition [35, 36].

Proposition 2.3 Let I is an arbitrary index set, and gi : Rn → R ∪ {∞} be a proper lower semicontinuous convex
function for i ∈ I. Assume that there exists x0 ∈ Rn such that supi∈I gi(x0) ≤ +∞. Then

epi

(

sup
i∈I

gi

)⋆

= cl















co
⋃

i∈I

epi g⋆i















.

LetD be the robust characteristic cone defined as

D :=
⋃

a
(t)
i
∈V(t)

i
, i∈I, t∈T















∑

t∈T

(

z(t) • a(t)
1
, . . . , z(t) • a(t)

m , −z(t) • a(t)
0
− r(t)

)

: z(t) � 0, r(t) ≥ 0















.

The following lemma shows thatD is indeed a cone in Rm+1 under Assumption 1.1.

Lemma 2.1 The setD ⊂ Rm+1 is a cone.

Proof: It s clear that 0 ∈ D. To prove the desired result, we need to show that for each x ∈ D and λ ∈ R++,

we have λx ∈ D. Since x ∈ D, there exist ai = (a(t)
i

)t∈T, i ∈ I, z = (z(t))t∈T, and r ∈ R(T)
+

, where a(t)
i
∈ V(t)

i
and

z(t) � 0, for all t ∈ T and i ∈ I, such that xi =
∑

t∈T(z(t) • a(t)
i

) for i = 1, . . . ,m, and xm+1 = −
∑

t∈T(z(t) • a(t)
0
+ r(t)).

It follows that λxi =
∑

t∈T(λz(t) • a(t)
i

) and λxm+1 = −
∑

t∈T(λz(t) • a(t)
0
+ r̄). Note that λr(t) ≥ 0, and that λz(t) � 0

because KJ is a cone. Thus, λx ∈ D. �

The following lemma is due to [20, Lemma 4.2].

Proposition 2.4 Let ǫ ∈ R+, then x̄ is an ǫ-solution of RSIMSP if

K
∑

k=1

fk(x) ≥
K

∑

k=1

fk(x̄) − ǫ

for any x ∈ FP ∩ {x ∈ Rm : fk(x) ≥ fk(x̄), k = 1, . . . ,K}.

We say that RSIMSP satisfies the convexity condition if for every t ∈ T we have

V(t)
i
=



















a(t)
0
+

l
∑

j=1

u(t)
i j

a(t)
j

:
(

u(t)
i1
,u(t)

i2
, . . . ,u(t)

il

)

∈ U(t)
i



















,
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where U(t)
i

is compact convex subset of Rl, a(t)
0
∈ J and a(t)

j
� 0, for each t ∈ T, i ∈ I, and j = 1, 2, . . . , l.

The closeness and convexity of the robust characteristic coneD are necessary for the robust characteristic
cone constraint qualification to hold. The following lemma proves the convexity ofD under the convexity
condition of RSIMSP (see also [37, Proposition 1]).

Lemma 2.2 If RSIMSP satisfies the convexity condition, the robust characteristic coneD is convex.

Proof: Let x, y ∈ D and let λ ∈ [0, 1]. We want to show that λx + (1 − λ)y ∈ D. From the definition of D,

there exist hi = (h(t)
i

)t∈T, ci = (c(t)
i

)t∈T, i ∈ I, b = (b(t))t∈T,n = (n(t))t∈T, and r, s ∈ R(T)
+

, where h(t)
i
, c(t)

i
∈ Vt, and

b(t),n(t) � 0, for i ∈ I, t ∈ T, such that

xi =

∑

t∈T

(

b(t) • h(t)
i

)

, i ∈ I − {0}, xm+1 = −
∑

t∈T

(

b(t) • h(t)
0
+ r(t)

)

,

yi =

∑

t∈T

(

n(t) • c(t)
i

)

, i ∈ I − {0}, ym+1 = −
∑

t∈T

(

n(t) • c(t)
0
+ s(t)

)

.

Since h(t)
i
, c(t)

i
∈ Vt, there exist (u(t)

i1
,u(t)

i2
, . . . ,u(t)

il
) ∈ U(t)

i
and (v(t)

i1
, v(t)

i2
, . . . , v(t)

il
) ∈ U(t)

i
such that, for each i ∈ I,

we have

h(t)
i
= a(t)

0
+

l
∑

j=1

u(t)
i j

a(t)
j
, and c(t)

i
= a(t)

0
+

l
∑

j=1

v(t)
i j

a(t)
j
.

Fixing an i ∈ I − {0}, we have that

λxi + (1 − λ)yi = λ
∑

t∈T

(

b(t) • h(t)
i

)

+ (1 − λ)
∑

t∈T

(

n(t) • c(t)
i

)

=

∑

t∈T

















λ b(t) •

















a(t)
0
+

l
∑

j=1

u(t)
i j

a(t)
j

















+ (1 − λ) n(t) •

















a(t)
0
+

l
∑

j=1

v(t)
i j

a(t)
j

































=

∑

t∈T

















a(0)
j
•
(

λb(t)
+ (1 − λ)n(t)

)

+

l
∑

j=1

(

λu(t)
i j

b(t) • a(t)
j
+ (1 − λ)v(t)

i j
n(t) • a(t)

j

)

















.

For i ∈ I, t ∈ T and j = 1, 2, . . . , l, we define w(t)
i j

as

w(t)
i j
=































λu(t)
i j

b(t) • a(t)
j
+ (1 − λ)v(t)

i j
n(t) • a(t)

j

(

λb(t) + (1 − λ)n(t)
) • a(t)

j

, if
(

λb(t) + (1 − λ)n(t)
)

• a(t)
j
, 0,

u(t)
i j
, if

(

λb(t) + (1 − λ)n(t)
)

• a(t)
j
= 0.

By the convexity of U(t)
i

, it is clear that (w(t)
i1
,w(t)

i2
, . . . ,w(t)

il
) ∈ U(t)

i
for i ∈ I. In addition, for each i ∈ I− {0}, t ∈ T

and j = 1, 2, . . . , l, we have that

w(t)
i j

(

λb(t)
+ (1 − λ)n(t)

)

• a(t)
j
= u(t)

i j

(

λb(t) • a(t)
j

)

+ v(t)
i j

(

(1 − λ)n(t) • a(t)
j

)

. (1)

Note that if (λb(t) + (1 − λ)n(t)) • a(t)
j
, 0, the equality in (1) follows trivially. If (λb(t) + (1 − λ)n(t)) • a(t)

j
= 0,

then λb(t) • a(t)
j
= (1 − λ)n(t) • a(t)

j
= 0 because b(t),n(t), a(t)

j
� 0, for all i ∈ I − {0}, t ∈ T and j = 1, 2, . . . , l, and

hence the equality in (1) follows in this case as well. It follows immediately that

λxi + (1 − λ)yi =

∑

t∈T

















(

λb(t)
+ (1 − λ)n(t)

)

• a(t)
0
+

l
∑

j=1

(

w(t)
i j

(

λb(t)
+ (1 − λ)n(t)

)

• a(t)
j

)

















=

∑

t∈T

















(

λb(t)
+ (1 − λ)n(t)

)

•

















a(t)
0
+

l
∑

j=1

w(t)
i j

a(t)
j

































,
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for i ∈ I − {0}. Similarly it is also seen that

λxm+1 + (1 − λ)ym+1 = −
∑

t∈T

















(

λb(t)
+ (1 − λ)n(t)

)

•

















a(t)
0
+

l
∑

j=1

w(t)
0 j

a(t)
j

















+

(

λr(t)
+ (1 − λ)s(t)

)

















.

Note that λr(t) + (1 − λ)s(t) ≥ 0, λb(t) + (1 − λ)n(t) � 0, and (w(t)
i1
,w(t)

i2
, . . . ,w(t)

il
) ∈ U(t)

i
, for each i ∈ I and t ∈ T.

This implies that λx + (1 − λ)y ∈ D, and thereforeD is convex. The proof is complete. �

The following lemma proves the closeness of D under Assumptions 1.1 and 1.2 (see also [8, Corollary
2.1]).

Lemma 2.3 If the Slater condition holds, the robust characteristic coneD is closed.

Proof: Let {x(k)}∞
k=1

:= {(x1(k), x2(k), . . . , xm+1(k))}∞
k=1

be a sequence in D that is convergent to the point

x := (x1, x2, . . . , xm+1) ∈ Rm+1. To show thatD is closed, we want to show that x ∈ D. From the definition of

D, there exist ai(k) = (a(t)
i

(k))t∈T, i ∈ I, z(k) = (z(t)(k))t∈T, and r(k) ∈ R(T)
+

, where a(t)
i

(k) ∈ V(t)
i

and z(t)(k) � 0, for
all t ∈ T and i ∈ I, such that

xi(k) =
∑

t∈T

(

z(t)(k) • a(t)
i

(k)
)

, i = 1, 2, . . . ,m, (2)

and
xm+1(k) = −

∑

t∈T

(

z(t)(k) • a(t)
0

(k) + r(t)(k)
)

. (3)

Based on Assumption 1.1, the sequence {a(t)
i

(k)}∞
k=1

has a convergent subsequence. Therefore, after passing

to a convergent subsequence, if necessary, we may assume that a(t)
i

(k) → a(t)
i
∈ V(t)

i
. Now, we show that

{‖(z(t)(k)‖} is a bounded sequence by contradiction. Suppose on the contrary that ‖(z(t)(k)‖ → +∞. Then,
z(t)(k)/‖z(t)(k)‖ → z(t) ∈ KJ − {0}. Dividing both sides of (2) and (3) by ‖z(t)(k)‖ and applying the limit, we
obtain

∑

t∈T

(

z(t) • a(t)
i

)

= 0, i = 1, 2, . . . ,m, and −
∑

t∈T

(

z(t) • a(t)
0

)

=

∑

t∈T

lim
k→∞

r(t)(k)

‖z(t)(k)‖ ≥ 0.

Based on Assumption 1.2, there exists x(0) ∈ Rm such that a(t)
0
+

∑m
i=1 x(0)

i
a(t)

i
≻ 0, for all a(t)

i
∈ V(t)

i
, and

z(t) •














a(t)
0
+

m
∑

i=1

x(0)
i

a(t)
i















= z(t) • a(t)
0
+

m
∑

i=1

x(0)
i

(

z(t) • a(t)
i

)

≤ 0.

This is on one side of the coin, but on the other side, since z(t) ∈ KJ − {0}, we have z(t) • (a(t)
0
+

∑m
i=1 x(0)

i
a(t)

i
) > 0,

which is a contradiction. Hence, the sequence {‖z(t)(k)‖}∞
k=1

is bounded. From (3), the sequence {r(t)(k)}∞
k=1

is

also bounded. Therefore, after passing to a subsequence, if necessary, we can assume that z(t)(k)→ z̄(t) and
r(t)(k)→ r̄(t). By applying the limit in (2) and (3), we have

xi =

∑

t∈T

(

z̄(t) • a(t)
i

)

, i = 1, 2, . . . ,m, and xm+1 = −
∑

t∈T

(

z̄(t) • a(t)
0
+ r̄(t)

)

.

Thus, x ∈ D. This completes the proof. �

3 ǫ-Optimality theorem

In this section, we establish the ǫ-optimality theorem for our problem. First, we prove two intermediate
lemmas. The next lemma is the robust version of Farkas’ lemma for our setting, and is based on Assumptions
1.2 and 1.1.
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Lemma 3.1 Let (ck, αk) ∈ Rm ×R for k = 1, . . . ,K, then

FP ⊂
{

x ∈ Rm : 〈ck, x〉 ≥ αk, k = 1, . . . ,K
}

⇐⇒
K

∑

K=1

(ck, αk) ∈ cl co D.

Proof: Assume that FP ⊂ {x ∈ Rm : 〈ck, x〉 ≥ αk, k = 1, . . . ,K}, and let φk(x) = 〈ck, x〉 − αk for k = 1, 2, . . . ,K.

Then FP ⊂ {x ∈ Rm : φk(x) ≥ 0, k = 1, . . . ,K}. It follows that
∑K

k=1 φk(x) + δFP(x) ≥ 0 for all x ∈ Rm. Note that
φk is continuous for k = 1, 2, . . . ,K. Therefore, using Proposition 2.1, we have

(0, 0) ∈ epi















K
∑

k=1

φk + δFP















⋆

=

K
∑

k=1

epi φ⋆k + epi δ⋆FP =
K

∑

k=1

(ck, αk) + {0} ×R+ + epi δ⋆FP .

Thus,
K

∑

k=1

(ck, αk) ∈ −epi δ⋆FP − {0} ×R+. (4)

The desired result is obtained by showing that
∑K

k=1(ck, αk) ∈ cl co D. To prove this, in light of (4), it is
enough to show that epi δ⋆FP = −cl co D.

Note that, for each z(t) � 0, a(t)
i
∈ V(t)

i
, i ∈ I, t ∈ T and ξ ∈ Rm, we have

(

− z(t) • a(t)
0
−

〈

· ,
(

z(t) • a(t)
1
, . . . , z(t) • a(t)

m

)

〉)⋆

(ξ) = sup
x∈Rm

{

〈ξ, x〉 −
(

−z(t) • a(t)
0
−

〈

x,
(

z(t) • a(t)
1
, . . . , z(t) • a(t)

m

)〉)}

= sup
x∈Rm















m
∑

i=1

ξixi +

m
∑

i=1

(

xi z(t) • a(t)
i

)















+ z(t) • a(t)
0

= sup
x∈Rm















m
∑

i=1

(

xi

(

ξi + z(t) • a(t)
i

))















+ z(t) • a(t)
0

=

{

z(t) • a(t)
i
, if ξi = −z(t) • a(t)

i
, i = 1, . . . ,m,

+∞, otherwise.
(5)

Note also that, for any x ∈ Rm, we have

δFP(x) = sup
a

(t)
i
∈V(t)

i
, i∈I,

z(t)�0, t∈T















−z(t) •














a(t)
0
+

m
∑

i=1

xia
(t)
i





























.

It follows that

epi δ⋆FP = epi





























sup
a

(t)
i
∈V(t)

i
, i∈I,

z(t)∈ �0, t∈T

∑

t∈T

(

− z(t) • a(t)
0
−

〈

· ,
(

z(t) • a(t)
1
, . . . , z(t) • a(t)

m

)〉)





























⋆

= cl

































co
⋃

a
(t)
i
∈V(t)

i
, i∈I,

z(t)�0, t∈T

epi
∑

t∈T

(

− z(t) • a(t)
0
−

〈

· ,
(

z(t) • a(t)
1
, . . . , z(t) • a(t)

m

)〉)⋆

































= cl































co
⋃

a
(t)
i
∈V(t)

i
, i∈I, t∈T















∑

t∈T

(

− z(t) • a(t)
1
, . . . , −z(t) • a(t)

m , z(t) • a(t)
0
+ r

)

: z(t) � 0, r(t) ≥ 0













































= −cl co D,
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where the second equality follows from Propositions 2.1 and 2.3 and the third equality follows from (5).
The proof is complete. �

The following lemma is also based on Assumption 1.1.

Lemma 3.2 Let x̄ ∈ FP and ǫ ≥ 0. Let also fk : Rm → R be a convex function for k = 1, 2, . . . ,K. Then x̄ is an
ǫ-solution of RSIMSP if and only if for each k = 1, 2, . . . ,K and t ∈ T, there exist ǫk, ǫt ≥ 0 and ξk ∈ ∂ǫk fk(x̄) such

that
∑K

k=1 ǫk +
∑

t∈T ǫt = ǫ and














K
∑

k=1

ξk,

〈 K
∑

k=1

ξk, x̄

〉

−
∑

t∈T

ǫt















∈ cl co D.

Proof: Assume that x̄ is an ǫ-solution of RSIMSP, where ǫ ≥ 0. Then, for any x ∈ FP,
∑K

k=1 fk(x) ≥
∑K

k=1 fk(x̄)−ǫ.
It follows that, for any x ∈ Rm, we have

K
∑

k=1

fk(x) + δFP(x) ≥
K

∑

k=1

fk(x̄) + δFP(x̄) − ǫ.

Then, according to the definition of ǫ-subdifferentiability, we deduce that 0 ∈ ∂ǫ(
∑K

k=1 fk + δFP)(x̄), which in
view of Proposition 2.2 is equivalent to

0 ∈
K

∑

k=1

∂ǫk fk(x̄) +
∑

t∈T

∂ǫtδFP(x̄).

Therefore, for each k = 1, . . . ,K and t ∈ T, there exist ǫk, ǫt ≥ 0, ξk ∈ ∂ǫk fk(x̄), and −ξt ∈ ∂ǫtδFP (x̄) such that

k
∑

k=1

ǫk +
∑

t∈T

ǫt = ǫ and

k
∑

k=1

ξk −
∑

t∈T

ξt = 0.

Equivalently, for each k = 1, . . . ,K and t ∈ T, there exist ǫk, ǫt ≥ 0 and ξk ∈ ∂ǫk fk(x̄) such that 〈ξk, x〉 ≥ 〈ξk, x̄〉−ǫt
for any x ∈ FP and t ∈ T, and hence

〈 K
∑

k=1

ξk, x

〉

≥
〈 K
∑

k=1

ξk, x̄

〉

−
∑

t∈T

ǫt

for any x ∈ FP. By Lemma 3.1, we conclude that for each k = 1, . . . ,K and t ∈ T, there exist ǫk, ǫt ≥ 0 and
ξk ∈ ∂ǫkδFP(x̄) such that















K
∑

k=1

ξk,

〈 K
∑

k=1

ξk, x̄

〉

−
∑

t∈T

ǫt















∈ cl co D.

The proof is complete. �

In light of Lemmas 3.1 and 3.2, we can obtain the ǫ-optimality theorem under the robust characteristic
cone constraint qualification.

Theorem 3.1 (Approximate optimality theorem) Consider the RSIMSP problem, and let x̄ ∈ FP. Then x̄ is an ǫ-

solution of RSIMSP if and only if there exist (ǫt)t∈T ∈ R(T)
+
, ǫk ∈ R+, ξk ∈ ∂ǫk fk(x̄), k = 1, 2, . . . ,K, āi = (ā(t)

i
)t∈T, i ∈ I,

and z̄ = (z̄(t))t∈T, where ā(t)
i
∈ V(t)

i
and z̄(t) � 0, for all t ∈ T and i ∈ I, such that

∑K
k=1 ǫk +

∑

t∈T ǫt = ǫ, and

K
∑

k=1

ξk =

∑

t∈T

(

z̄(t) • ā(t)
1
, z̄(t) • ā(t)

2
, . . . , z̄(t) • ā(t)

m

)

, (6)

∑

t∈T

ǫt ≥
∑

t∈T















z̄(t) •














ā(t)
0
+

m
∑

i=1

x̄iā
(t)
i





























≥ 0. (7)
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Proof: Assume that x̄ is an ǫ-solution of RSIMSP, where ǫ ≥ 0. By Lemma 3.2, for each t ∈ T and k = 1, 2, . . . ,K,

there exist ǫk, ǫt ≥ 0 and ξk ∈ ∂ǫk fk(x̄) such that
∑K

k=1 ǫk +
∑

t∈T ǫt = ǫ and















K
∑

k=1

ξk,

〈 K
∑

k=1

ξk, x̄

〉

−
∑

t∈T

ǫt















∈
⋃

a
(t)
i
∈V(t)

i
, i∈I, t∈T















∑

t∈T

(

z(t) • a(t)
1
, . . . , z(t) • a(t)

m , −z(t) • a(t)
0
− r

)

: z(t) � 0, r(t) ≥ 0















.

It follows that

K
∑

k=1

ξk =

∑

t∈T

(

z̄(t) • ā(t)
1
, z̄(t) • ā(t)

2
, . . . , z̄(t) • ā(t)

m

)

, (8)

〈 K
∑

k=1

ξk, x̄

〉

−
∑

t∈T

ǫt = −
∑

t∈T

(

z̄(t) • ā(t)
0
+ r̄(t)

)

, (9)

for some (r̄(t))t∈T ∈ R(T)
+

, āi = (ā(t)
i

)t∈T, i ∈ I, and z̄ = (z̄(t))t∈T, with ā(t)
i
∈ V(t)

i
and z̄(t) � 0, for all t ∈ T and i ∈ I.

By combining (8) and (9), we get

∑

t∈T

ǫt ≥
∑

t∈T

(

ǫt − r̄(t)
)

=

∑

t∈T

(

z̄(t) • ā(t)
0

)

+

〈 K
∑

k=1

ξk, x̄

〉

=

∑

t∈T















z̄(t) •














ā(t)
0
+

m
∑

i=1

x̄iā
(t)
i





























≥ 0.

This proves the first direction.

For the second, assume that there exist (ǫt)t∈T ∈ R(T)
+
, ǫk ∈ R+, ξk ∈ ∂ǫk fk(x̄), k = 1, 2, . . . ,K, āi = (ā(t)

i
)t∈T, i ∈ I,

and z̄ = (z̄(t))t∈T, where ā(t)
i
∈ V(t)

i
and z̄(t) � 0, for all t ∈ T and i ∈ I, such that the equality

∑K
k=1 ǫk+

∑

t∈T ǫt = ǫ
holds, and that (6) and (7) hold. By the definition of the ǫ-subdifferentiality of f , for any x ∈ Rm, we have
that

K
∑

k=1

fk(x) −
K

∑

k=1

fk(x̄) ≥
〈 K
∑

k=1

ξk, x − x̄

〉

−
K

∑

k=1

ǫk

=

〈

∑

t∈T

(

z̄(t) • ā(t)
1
, . . . , z̄(t) • ā(t)

m

)

, x − x̄

〉

−
K

∑

k=1

ǫk

=

∑

t∈T















z̄(t) •














m
∑

i=1

xiā
(t)
i















− z̄(t) •














m
∑

i=1

x̄iā
(t)
i





























−
K

∑

k=1

ǫk

≥
∑

t∈T















z̄(t) •














ā(t)
0
+

m
∑

i=1

x̄iā
(t)
i





























−
K

∑

k=1

ǫk −
∑

t∈T

ǫt

=

∑

t∈T















z̄(t) •














ā(t)
0
+

m
∑

i=1

x̄iā
(t)
i





























− ǫ ≥ − ǫ,

where the first equality is obtained from (6), the second and third inequalities follow from (7). Therefore,
∑K

k=1 fk(x) ≥
∑K

k=1 fk(x̄) − ǫ, for any x ∈ FP. Thus, from Proposition 2.4, x̄ is an ǫ-solution of RSIMSP. This
proves the second direction. The result is established. �
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4 ǫ-Duality theorems

The (Wolfe-type) dual problem associated with the RSIMSP problem is the problem

(RSIMSD)



























































max















f1(y) −
∑

t∈T















z(t) •














a(t)
0
+

m
∑

i=1

yia
(t)
i





























, . . . , fK(y) −
∑

t∈T















z(t) •














a(t)
0
+

m
∑

i=1

yia
(t)
i











































s.t. 0 ∈
K

∑

k=1

∂ǫk fk(y) −
∑

t∈T

(

z(t) • a(t)
1
, z(t) • a(t)

2
, . . . , z(t) • a(t)

m

)

,

K
∑

k=1

ǫk ≤ ǫ, ǫk ≥ 0, z(t) � 0, a(t)
i
∈ V(t)

i
, t ∈ T, i ∈ I, k = 1, 2, . . . ,K.

Note that RSIMSD has the feasibility set

FD :=
{

(

y, a0, . . . , am, z
)

: ai =

(

a(t)
i

)

t∈T
, z =

(

z(t)
)

t∈T
, 0 ∈

∑K
k=1 ∂ǫk fk(y) −

∑

t∈T

(

z(t) • a(t)
1
, . . . , z(t) • a(t)

m

)

,
∑K

k=1 ǫk ≤ ǫ, ǫk ≥ 0, y ∈ Rm, a(t)
i
∈ V(t)

i
, z(t) � 0, t ∈ T, i ∈ I, k = 1, 2, . . . ,K

}

.

Let ǫ ≥ 0. The point (x̄, ā0, . . . , ām, z̄) is called an ǫ-solution of RSIMSD if for any (y, a0, . . . , am, z) ∈ FD we
have

K
∑

k=1

fk(x̄) −
∑

t∈T















z̄(t) •














ā(t)
0
+

m
∑

i=1

x̄iā
(t)
i





























≥
K

∑

k=1

fk(y) −
∑

t∈T















z(t) •














a(t)
0
+

m
∑

i=1

yia
(t)
i





























− ǫ.

Now, we are ready to establish the ǫ-weak duality theorem, which holds between the RSIMSP problem
and its dual, the RSIMSD problem.

Theorem 4.1 (Approximate weak duality theorem) For any feasible solution x of RSIMSP and any feasible
solution (y, a0, a1, . . . , am, z) of RSIMSD, we have

K
∑

k=1

fk(x) ≥
K

∑

k=1

fk(y) −
∑

t∈T















z(t) •














a(t)
0
+

m
∑

i=1

yia
(t)
i





























− ǫ.

Proof: Let x and (y, a0, a1, . . . , am, z) be feasible solutions of RSIMSP and RSIMSD, respectively. Then

ai = (a(t)
i

)t∈T and z = (z(t))t∈T, where a(t)
i
∈ V(t)

i
and z(t) � 0, for all t ∈ T and i ∈ I, and the inequality

∑

t∈T(z(t) • (a(t)
0
+

∑m
i=1 xia

(t)
i

)) ≥ 0 holds. It follows that, for each k = 1, 2, . . . ,K, there exist ǫk ≥ 0, ξk ∈ ∂ǫk fk(x)

such that
∑K

k=1 ξk =
∑

t∈T

(

z(t) • a(t)
1
, z(t) • a(t)

2
, . . . , z(t) • a(t)

m

)

and
∑K

k=1 ǫk ≤ ǫ. Then, by the definition of the

ǫ-subdifferentiability, we have that

K
∑

k=1

fk(x) −














K
∑

k=1

fk(y) −
∑

t∈T















z(t) •














a(t)
0
+

m
∑

i=1

yia
(t)
i











































≥
〈 K
∑

k=1

ξk, x − y

〉

−
K

∑

k=1

ǫk +
∑

t∈T















z(t) •














a(t)
0
+

m
∑

i=1

yia
(t)
i





























=

〈

∑

t∈T

(

z(t) • a(t)
1
, z(t) • a(t)

2
, . . . , z(t) • a(t)

m

)

, x − y

〉

−
K

∑

k=1

ǫk

+

∑

t∈T















z(t) •














a(t)
0
+

m
∑

i=1

yia
(t)
i





























=

∑

t∈T















z(t) •














a(t)
0
+

m
∑

i=1

xia
(t)
i





























−
K

∑

k=1

ǫk

≥ −
K

∑

k=1

ǫk ≥ − ǫ.

The proof is complete. �

Now, we state and prove the ǫ-strong duality, which holds theorem between RSIMSP and RSIMSD under
the robust characteristic cone constraint qualification.
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Theorem 4.2 (Approximate strong duality theorem) Assume that the robust characteristic coneD is closed and

convex. If x̄ is an ǫ-solution of RSIMSP, then there exist ai = (a(t)
i

)t∈T, i ∈ I, and z = (z(t))t∈T, where a(t)
i
∈ V(t)

i
and

z(t) � 0, for all t ∈ T and i ∈ I, such that (x̄, ā0, ā1, . . . , ām, z̄) is a 2ǫ-solution of RSIMSD.

Proof: Let x̄ be an ǫ-solution of RSIMSP, then by using Theorem 3.1, there exist (ǫt)t∈T ∈ R(T)
+
, ǫk ∈ R+, ξk ∈

∂ǫk fk(x̄), k = 1, 2, . . . ,K, āi = (ā(t)
i

)t∈T, i ∈ I, and z̄ = (z̄(t))t∈T, where ā(t)
i
∈ V(t)

i
and z̄(t) � 0, for all t ∈ T and i ∈ I,

such that

K
∑

k=1

ǫk+
∑

t∈T

ǫt = ǫ,
K

∑

k=1

ξk =

∑

t∈T

(

z̄(t) • ā(t)
1
, z̄(t) • ā(t)

2
, . . . , z̄(t) • ā(t)

m

)

, and
∑

t∈T

ǫt ≥
∑

t∈T















z̄(t) •














ā(t)
0
+

m
∑

i=1

x̄iā
(t)
i





























≥ 0.

Therefore, the point (x̄, ā0, ā1, . . . , ām, z̄) is a feasible solution for RSIMSD. Then, using Theorem 4.1, for any
feasible solution (y, a0, a1, . . . , am, z) of RSIMSD, we have that

K
∑

k=1

fk(x̄) −
∑

t∈T













z̄(t) •












ā(t)
0
+

m
∑

i=1

x̄iā
(t)

























−














K
∑

k=1

fk(y) −
∑

t∈T













z(t) •












a(t)
0
+

m
∑

i=1

yia
(t)

i







































≥ −ǫ −
∑

t∈T













z̄(t) •












ā(t)
0
+

m
∑

i=1

x̄iā
(t)

i

























≥ −ǫ −
∑

t∈T

ǫt

= −ǫ − ǫ +
K

∑

k=1

ǫk ≥ − 2ǫ.

This means that (x̄, ā0, ā1, . . . , ām, z̄) is a 2ǫ-solution of RSIMSD. �

Now, we give the ǫ-strong duality between RSIMSP and RSIMSD under the Slater condition and the
weakened robust characteristic cone constraint qualification.

Corollary 4.1 Assume that the robust Slater condition holds and that the robust characteristic coneD is convex. If

x̄ is an ǫ-solution of RSIMSP, then there exist ai = (a(t)
i

)t∈T, i ∈ I, and z = (z(t))t∈T, where a(t)
i
∈ V(t)

i
and z(t) � 0, for

all t ∈ T and i ∈ I, such that (x̄, ā0, ā1, . . . , ām, z̄) is a 2ǫ-solution of RSIMSD.

Proof: By Lemma 2.3, the robust characteristic cone D is closed. The result immediately follows from
Theorem 4.2. �

In the remaining part of this paper, we shall demonstrate in an example that the approximate weak and
strong duality of a second-order cone program hold true even though the Slater condition fails.

5 An illustrative example

Throughout this section, we use “,” for adjoining vectors and matrices in a row, and use “;” for adjoining
them in a column. So, for example, if a, and b are vectors, then (aT, bT)T = (a; b).

Let En be the n-dimensional real vector space R × Rn−1 whose elements are indexed from 0. For each
vector x ∈ En, we write x̄ for the sub-vector consisting of entries 1 through n − 1; therefore x = (x0; x̄).

The nth-dimensional second-order cone (also known as the quadratic or Lorentz cone) is defined as

En
+ :=

{

(x0; x̄) ∈ R ×Rn−1 : x0 ≥ ‖x̄‖
}

,

where ‖ · ‖ denotes the Euclidean norm.

The cone En
+ is closed, pointed (i.e., it does not contain a pair of

opposite nonzero vectors) and convex with nonempty interior
in Rn. It is also known that En

+ is self-dual (i.e., it equals its dual
cone), and homogeneous (i.e., its automorphism group acts transi-
tively on its interior). Therfore, the cone En

+ is symmetric [21, 25].
The graph to the right shows the 3rd-dimensional second-order
cone E3

+
. x2

x1

x0 E3
+

11



Table 2: Some notions associated with the Jordan algebra of the second-order cone.

Notion Definition

Euclidean Jordan algebra En :=
{

(x0; x̄) : x0 ∈ R, x̄ ∈ Rn−1
}

Identity vector e := (1; 0) ∈ En

Jordan product ◦ : En × En → En x ◦ y :=
(

xTy; x0 ȳ + y0x̄
)

Square of x x2 := x ◦ x =
(

‖x‖2; 2x0x̄
)

Cone of squares KEn :=
{

x2 : x ∈ En
}

= En
+

Frobenius inner product • : En × En → R x • y := xTy

Frobenius norm ‖x‖ :=
√

x • x =
√

xTx

Table 2 lists some notions from the Euclidean Jordan algebra associated with the second-order cone.
In this section, we consider the robust semi-infinite multi-objective convex second-order cone program-

ming problem:

(RSIMSOCP)























min
(

x1 + x2
2
; x1

)

s.t. a(t)
0
+ x1a(t)

1
+ x2a(t)

2
� 0, t ∈ [0, 1],

a(t)
i
∈ V(t)

i
⊆ E3, t ∈ [0, 1], i = 0, 1, 2,

whereV(t)
0
,V(t)

1
andV(t)

2
, t ∈ [0, 1], are the uncertainty subsets:

V(t)
0

:=
{(

u(t)
0

; 0; u(t)
0

)

: u(t)
0
∈ [−t, 0]

}

,

V(t)
1

:=
{(

1; u(t)
1

; 1
)

: u(t)
1
∈ [−t, t]

}

,

V(t)
2

:=
{(

u(t)
2

; 0; u(t)
2

)

: u(t)
2
= t

}

.

Now, for any t ∈ [0, 1], we have

a(t)
0
+ x1a(t)

1
+ x2a(t)

2
=





















u(t)
0
+ x1 + x2u(t)

2

x1u(t)
1

u(t)
0
+ x1 + x2u(t)

2





















.

One can see that FP = {(x1; x2) : x1 = 0, x2 ≥ 1} is the set of all robust feasible solutions of RSIMSOCP.

Let ǫ ≥ 0, then SFP = {(0; x2) : 1 ≤ x2 ≤
√

1 + ǫ} is the set of all ǫ-solutions of RSIMSOCP.
The robust characteristic cone is

D =
⋃

a
(t)
i
∈V(t)

i
,i=0,1,2, t∈T















∑

t∈T

(

z(t)Ta(t)
1

; z(t)Ta(t)
2

;−z(t)Ta(t)
0
− r(t)

)

: z(t) ∈ E3
+, r(t) ≥ 0















.

Note that z(t) ∈ E3
+

means that z(t)
0
≥

∥

∥

∥(z(t)
1

; z(t)
2

)
∥

∥

∥ = ((z(t)
1

)2 + (z(t)
2

)2)1/2. It follows that

D =
⋃

u
(t)
0
∈[−t,0], u(t)

2
=t,

u
(t)
1
∈[−t,t], t∈T















∑

t∈T

(

z(t)
0
+ z(t)

1
u(t)

1
+ z(t)

2
;
(

z(t)
0
+ z(t)

2

)

u(t)
2

;−
(

z(t)
0
+ z(t)

2

)

u(t)
0
− r(t)

)

: z(t)
0
≥

√

(

z(t)

1

)2
+

(

z(t)
2

)2
, r(t) ≥ 0

}

,

which is the set R ×R+ ×R, henceD is closed and convex.
It is clear that a(t)

0
+ x1a(t)

1
+ x2a(t)

2
is on the boundary of the second-order cone for any (x1; x2) ∈ FP, hence

the robust Slater condition fails.
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We now formulate the Wolf dual problem, RSIMSOCD, of RSIMSOCP as follows

(RSIMSOCD)















































max















y1 + y2
2 −

∑

t∈T

(

z(t)T
(

a(t)
0
+ y1a(t)

1
+ y2a(t)

2

)

)

, y1 −
∑

t∈T

(

z(t)T
(

a(t)
0
+ y1a(t)

1
+ y2a(t)

2

)

)















s.t. 0 ∈ ∂ǫ1 f1(y) + ∂ǫ2 f2(y) −
∑

t∈T

(

z(t)Ta(t)
1
, z(t)Ta(t)

2

)

,

ǫ1 + ǫ2 ≤ ǫ, ǫ1 ≥ 0, ǫ2 ≥ 0, z(t) ∈ E3
+, a(t)

i
∈ V(t)

i
, t ∈ T, i = 0, 1, 2.

LetU = [−t, 0] × [−t, t] × {t}. Then the feasible set FD is

FD =

{

(

y1, y2, a
(t)
0
, a(t)

1
, a(t)

2
, z(t)

)

∈ R2 ×U × E3
+

: (0, 0) ∈ ∂ǫ1 f1(y1, y2) + ∂ǫ2 f2(y1, y2) −
∑

t∈T

(

z(t)Ta(t)
1
+ z(t)Ta(t)

2

)

,

ǫ1 + ǫ2 ≤ ǫ, ǫ1 ≥ 0, ǫ2 ≥ 0, a(t)
i
∈ V(t)

i
, t ∈ T, i = 0, 1, 2

}

=

{

(

y1, y2, a
(t)
0
, a(t)

1
, a(t)

2
, z(t)

)

∈ R2 ×U × E3
+

: (0, 0) ∈ {2} ×
[

2y2 − 2
√
ǫ1 + ǫ2, 2y2 + 2

√
ǫ1 + ǫ2

]

−
∑

t∈T

((

z(t)
0
+ z(t)

1
u(t)

1
+ z(t)

2

)

;
(

z(t)
0
+ z(t)

2

)

u(t)
2

)

, ǫ1 + ǫ2 ≤ ǫ, ǫ1 ≥ 0, ǫ2 ≥ 0, a(t)
i
∈ V(t)

i
, t ∈ T, i = 0, 1, 2

}

=

{

(

y1, y2, a
(t)
0
, a(t)

1
, a(t)

2
, z(t)

)

∈ R2 ×U × E3
+

: 2y2 − 2
√
ǫ1 + ǫ2 ≤

∑

t∈T

(

z(t)
0
+ z(t)

2

)

u(t)
2
≤ 2y2 + 2

√
ǫ1 + ǫ2,

∑

t∈T

(

z(t)
0
+ z(t)

1
u(t)

1
+ z(t)

2

)

= 2, ǫ1 + ǫ2 ≤ ǫ, ǫ1 ≥ 0, ǫ2 ≥ 0, a(t)
i
∈ V(t)

i
, t ∈ T, i = 0, 1, 2

}

.

Then, for any (x1, x2) ∈ FP and any (y1, y2, a
(t)
0
, at

1
, a(t)

2
, z(t)) ∈ FD, we have, with x1 = 0 and x2 ≥ y2, that

f1(x1, x2) + f2(x1, x2) −














f1(y1, y2) + f2(y1, y2) −
∑

t∈T

(

z(t)T
(

a(t)
0
+ y1a(t)

1
+ y2a(t)

2

)

)















= x2
2
− y1 − y2

2
− y1 +

∑

t∈T

((

z(t)
0
+ z(t)

2

)

u(t)
0
+

(

z(t)
0
+ z(t)

1
u(t)

1
+ z(t)

2

)

y1 +

(

z(t)
0
+ z(t)

2

)

u(t)
2

y2

)

≥
(

2y2 + 2
√
ǫ1 + ǫ2

)

(

x2 − y2
) − ǫ1 +















−2 +
∑

t∈T

(

z(t)
0
+ z(t)

1
u(t)

1
+ z(t)

2

)















y1 − ǫ2

+

∑

t∈T

(

(

z(t)
0
+ z(t)

2

)

u(t)
0
+

(

z(t)
0
+ z(t)

2

)

u(t)
2

y2

)

≥
∑

t∈T

(

z(t)
0
+ z(t)

2

)

u(t)
2

(

x2 − y2
) − ǫ1 − ǫ2 +

∑

t∈T

((

z(t)
0
+ z(t)

2

)

u(t)
0
+

(

z(t)
0
+ z(t)

2

)

u(t)
2

y2

)

=

∑

t∈T

(

z(t)
0
+ z(t)

2

)

(u(t)
2

x2 + u(t)
0

)

− ǫ1 − ǫ2

=

∑

t∈T

(

z(t)T
(

a(t)
0
+ 0.a(t)

1
+ x2a(t)

2

)

)

− ǫ1 − ǫ2

≥ −ǫ1 − ǫ2 ≥ − ǫ.
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Also, for any (x1, x2) ∈ FP and any (y1, y2, a
(t)
0
, at

1
, a(t)

2
, z(t)) ∈ FD, we have, with x1 = 0 and x2 < y2, that

f1(x1, x2) + f2(x1, x2) −














f1(y1, y2) + f2(y1, y2) −
∑

t∈T

(

z(t)T
(

a(t)
0
+ y1a(t)

1
+ y2a(t)

2

)

)















= x2
2
− y1 − y2

2
− y1 +

∑

t∈T

((

z(t)
0
+ z(t)

2

)

u(t)
0
+

(

z(t)
0
+ z(t)

1
u(t)

1
+ z(t)

2

)

y1 +

(

z(t)
0
+ z(t)

2

)

u(t)
2

y2

)

≥
(

2y2 − 2
√
ǫ1 + ǫ2

)

(

x2 − y2
) − ǫ1 +















−2 +
∑

t∈T

(

z(t)
0
+ z(t)

1
u(t)

1
+ z(t)

2

)















y1 − ǫ2

+

∑

t∈T

(

(

z(t)
0
+ z(t)

2

)

u(t)
0
+

(

z(t)
0
+ z(t)

2

)

u(t)
2

y2

)

≥
∑

t∈T

(

z(t)
0
+ z(t)

2

)

u(t)
2

(

x2 − y2
) − ǫ1 − ǫ2 +

∑

t∈T

((

z(t)
0
+ z(t)

2

)

u(t)
0
+

(

z(t)
0
+ z(t)

2

)

u(t)
2

y2

)

=

∑

t∈T

(

z(t)
0
+ z(t)

2

)

(u(t)
2

x2 + u(t)
0

)

− ǫ1 − ǫ2

=

∑

t∈T

(

z(t)T
(

a(t)
0
+ 0.a(t)

1
+ x2a(t)

2

)

)

− ǫ1 − ǫ2

≥ −ǫ1 − ǫ2 ≥ − ǫ.

This implies that for any (x1, x2) ∈ FP and any (y1, y2, a
(t)
0
, at

1
, a(t)

2
, z(t)) ∈ FD, we have

f1(x1, x2) + f2(x1, x2) −














f1(y1, y2) + f2(y1, y2) −
∑

t∈T

(

z(t)T
(

a(t)
0
+ y1a(t)

1
+ y2a(t)

2

)

)















≥ −ǫ. (10)

Therefore, the approximate weak duality theorem (Theorem 4.1) holds.

For the strong duality, let (x̄1, x̄2) = (0,
√

1 + ǫ) ∈ SFP , ǫ1 + ǫ2 = (
√

1 + ǫ − 1)2. Let also

z̄(t)
=



















2
√

1 + ǫ − 2
√
ǫ1 + ǫ2

0
0



















, ā(t)
0
=

















−1
0
−1

















, ā(t)
1
=

















1
−1

1

















, and ā(t)
2
=

















1
0
1

















, t ∈ T.

One can see that (x̄1, x̄2, ā
(t)
0
, āt

1
, ā(t)

2
, z̄(t)) ∈ FD for t ∈ T. Furthermore, for any (y1, y2, a

(t)
0
, at

1
, a(t)

2
, z(t)) ∈ FD, we

have that

f1(x̄1, x̄2) + f2(x̄1, x̄2) −
∑

t∈T

(

z̄(t)T
(

ā(t)
0
+ x̄1ā(t)

1
+ x̄2ā(t)

2

)

)

− f1(y1, y2) − f2(y1, y2) +
∑

t∈T

(

z(t)T
(

a(t)
0
+ y1a(t)

1
+ y2a(t)

2

)

)

≥ −ǫ −
∑

t∈T

(

z̄(t)T
(

ā(t)
0
+ x̄1ā(t)

1
+ x̄2ā(t)

2

)

)

= −ǫ −
(

2
√

1 + ǫ − 2
√
ǫ1 + ǫ2

)(

− 1 +
√

1 + ǫ
)

= −ǫ −
(

(√
1 + ǫ − √ǫ1 + ǫ2 − 1

)2
− ǫ1 − ǫ2 + ǫ

)

= −ǫ + ǫ1 + ǫ2 − ǫ ≥ − 2ǫ,

where we used (10) to obtain the first inequality. Thus, the approximate strong duality theorem (Theorem
4.2) also holds.
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