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This paper, for the first time, studies an expected utility problem with a chance constraint with incomplete

information on a decision maker’s utility function. The model maximizes the worst-case expected utility of

random outcome over a set of concave functions within a novel ambiguity set, while satisfying a chance con-

straint with a given probability. To obtain computationally tractable formulations, we employ a discretization

approach to derive a max-min chance-constrained approximation of this problem. This approximation is

further reformulated as a mixed-integer second-order cone program (MISOCP). We show that the discrete

approximation asymptotically converges to the true counterpart under mild assumptions. We also present

a row generation algorithm for optimizing the max-min program. In particular, the algorithm considers a

master problem as a chance-constrained problem and a second-order cone program (SOCP) as subproblems.

A computational study for a bin-packing problem and a multi-item newsvendor problem is conducted to

demonstrate the performance of the proposed framework and the computational efficiency of our algorithm.

We find that the row generation algorithm can significantly reduce the computational time.
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1. Introduction

Decision-making under uncertainty frequently involves balancing the value of under and over uti-

lization of a resource, or relative to a decision. We also need to ensure certain service performance,

while balancing the implications of under and over-utilization. For example, in a newsvendor model,

the implications of over and under-stocking are different. Thus, with the current business trends

of shortening product life-cycles especially during the COVID-19 pandemic, it is crucial to find a

robust solution that optimally trades off between under and over-stocking (Natarajan et al. 2018,

Hu et al. 2019, Wang and Delage 2021). To ensure customer service we also want a bound on the

stockout probability. In healthcare operations, random demand results in underage and overage
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costs (Kim and Mehrotra 2015). In this context, the underage and overage can be modeled using a

nonlinear function. The use of the nonlinear function is important since the costs may not be linear

(Davis et al. 2014). As additional examples, for a finite duration work-shift, in the case of assigning

patients to a finite number of timeslots, the random duration required to fully serve a patient has

implications on work-life balance as the day is planned for a finite time (Guest 2002, Azeem and

Akhtar 2014). Here to achieve the work-life balance, we want to ensure that the assigned patients

finish within a certain time with a desirable probability. A similar situation arises in scheduling

operating rooms (ORs) with multiple surgeries (e.g., Wang et al. 2021a,b).

When considering situations in the preferences of different stakeholders (e.g., hospital, patients,

doctors, and nurses), such as work-life balance or patient safety, it is difficult to estimate an

exact utility function u in practice, while a crude parametric estimate might be available (see

Chajewska et al. 2000, Hu and Mehrotra 2015, Hu et al. 2018, Armbruster and Delage 2015, Haskell

et al. 2018, and references therein). Therefore, for such problems it is prudent to assume that

the utility function u is unknown, and specify a model over an ambiguity set U that allows a

family of utility functions based on their shape and properties. In the following, we will propose a

general modeling framework to address such an important class of decision-making problems with

incomplete information on decision-makers’ utility function.

1.1. Modeling Framework

The decision-making framework we study in this paper maximizes the worst-case expected utility

of random outcomes over a set of concave functions, with a chance constraint. We consider the

functions that first increase and then decrease, which suitably models the situations described

above. This framework is novel since, for the first time, it combines the concept of robust deci-

sion making and chance constraint optimization as a complementary synergistic mechanism for

decision modeling under risk and uncertainty. Specifically, we consider the Robust Concave Utility

Maximization Problem (RCUMP) with a chance constraint, represented as

(RCUMP) maximize
x∈X

minimize
u∈U

E[u(f(x, ξ̃))], (1)

where X :=
{
x := (x1,x2)∈Rn1 ×Nn2

∣∣ PQ

(
f(x, ξ̃)≤ t

)
≥ 1− ε, Ax≤ d

}
, n := n1 +n2, and t∈R,

A ∈ Rm×n, d ∈ Rm. We assume that X is a non-empty compact set, u ∈ [0,1] is a concave utility

function and lies in an ambiguity set U . We define the set U by using functional bounds on the

utility and an additional condition that is specified by using a reference utility function. f(x, ξ̃)

is a measurable random function over x ∈ X . Q denotes a joint distribution of random vector

ξ̃ = (ξ̃1, · · · , ξ̃n)>. ε ∈ [0,1] is a confidence parameter, which measures the violated probability of

the chance constraint. The objective of (RCUMP) is to maximize the worse-case expected utility.
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Chance constraint requires that the constraint is satisfied with a given probability 1− ε. In this

paper, we assume that the probability distribution of ξ̃ has a finite support (ξ1, · · · ,ξ|Ω|) such that

P(ξ̃= ξω) = pω for ω ∈Ω := {1, · · · , |Ω|}, where
∑
ω∈Ω

pω = 1 and pω ≥ 0 for ω ∈Ω, | · | is the cardinality

of a set. Let Ω denote the set of all possible scenarios for the random vector.

1.2. Mathematical Formulations of Illustrative Examples

As discussed before, the model studied in this paper is motivated by many applications that involve

balancing costs resulting from random overage and underage. The number of patients assigned to

a clinician for service, or the number of surgeries assigned to an operating room can be thought of

as a bin-packing problem with each item having a random size. We formally describe this model

below, followed by a description of a multi-item newsvendor problem.

Bin Packing with Chance and Utility. Let I := {1, · · · , |I|} denote a set of items and

J := {1, · · · , |J |} denote a set of bins. We assign |I| items with random size ξ̃ := (ξ̃1, · · · , ξ̃|I|)>

to |J | bins. We let Ω := {1, · · · , |Ω|} denote the set of scenarios for the random size, and assume

that the probability distribution of the random size has a finite support (ξ1, · · · ,ξ|Ω|). We use ξωi

to denote the size of item i∈ I under scenario ω ∈Ω. Assume that Q is a joint probability of ξ̃ and

is characterized by a probability vector (p1, · · · , p|Ω|) such that
∑
ω∈Ω

pω = 1 and pω ≥ 0 for all ω ∈Ω.

We use tj to represent the capacity of bin j ∈J .

We define a binary variable xj such that xj = 1 if bin j ∈ J is open and xj = 0 otherwise, and

yij such that yij = 1 if item i ∈ I is assigned to bin j ∈ J , and yij = 0 otherwise. The bin packing

robust expected utility problem (BP RCUMP) is formulated as follows:

maximize
(x,y)∈{0,1}|J |×{0,1}|I||J |

minimize
u∈U

∑
j∈J

E[u(
∑
i∈I

ξ̃iyij − tj)] (2a)

subject to PQ

{∑
i∈I

ξ̃iyij − tj ≤ 0

}
≥ 1− ε, ∀j ∈J , (2b)∑

j∈J

yij = 1, ∀i∈ I, (2c)

yij ≤ xj, ∀i∈ I, j ∈J . (2d)

For the (BP RCUMP), the objective function (2a) is to maximize the worst-case expected utility

of over- and under-utilization. Constraints (2b) require that the sum of item sizes assigned to bin

j is less than the capacity of bin j with a probability 1− ε. Constraints (2c) ensure that each item

is assigned to exactly one bin. Constraints (2d) allow item i to be assigned to bin j only if bin j is

open.

Multi-Item Newsvendor with Chance and Utility. The multi-item newsvendor robust

expected utility problem is to decide the order quantities for each item with a random demand, so
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as to maximize the worst-case expected utility of the under- and over-stocking. More specifically,

let I := {1, · · · , |I|} denote the set of items, and Ω := {1, · · · , |Ω|} denote the set of scenarios. We

let the inventory capacity t := {t1, · · · , t|I|}, and the random demand of items ξ̃ := {ξ̃1, · · · , ξ̃|I|}.
Under the scenarios ω ∈ Ω, the demand ξω := {ξω1 , · · · , ξω|I|} with the probability distribution Q

such that pω ≥ 0 and
∑
ω∈Ω

pω = 1. Each item i∈ I has a ordering cost ci, and d is the total budget.

Decision variable x := {x1, · · · , x|I|} denotes the ordering quantities. The following formulates the

multi-item newsvendor robust expected utility problem (MN RCUMP):

maximize
x∈R|I|+

minimize
u∈U

∑
i∈I

E[u(xi− ξ̃i)] (3a)

subject to PQ

{
xi− ξ̃i ≤ ti

}
≥ 1− ε, ∀i∈ I, (3b)

c>x≤ d. (3c)

For the (MN RCUMP), the objective function (3a) is to maximize the worst-case expected utility of

under- and over-stocking. Constraints (3b) ensure that the over-stocking is less than the inventory

capacity with the probability 1− ε. Constraint (3c) ensures that the total ordering cost is no more

than the budget.

1.3. Literature Review

In this section, we provide a review of the existing studies that are relevant to our work from

both the methodology and application aspects. More specifically, we mainly focus on the literature

about robust expected utility framework and two applications that are mentioned above.

1.3.1. Literature Review on Robust Expected Utility In the robust optimization (RO)

framework, the complete knowledge of uncertain data is assumed to be unavailable and lies in

an uncertainty set (e.g., Bertsimas and Sim 2004), and the decision-makers aim to identify the

solutions that perform best under the worst-case realizations within an uncertainty set and are

robust to estimation errors. RO has been extensively developed in terms of new methodologies

and its practical applications (e.g., see recent reviews by Bertsimas et al. 2011, Gabrel et al. 2014,

Gorissen et al. 2015, Rahimian and Mehrotra 2019).

In terms of robust expected utility, Hansen and Sargent (2001) described a connection between

the max-min expected utility theory and robust-control theory. Schied (2005) defined the robust

utility function by using a set of probability measures and reformulated the terminal wealth prob-

lem as a standard utility-maximization problem associated with a subjective probability measure.

Natarajan et al. (2010) studied a robust expected utility model for portfolio optimization, where

only the mean, covariance, and support information are available and the investors utility is a

piecewise-linear concave function. Armbruster and Delage (2015) considered the problem of max-

imizing the worst-case expected utility of random outcome over a set of utility functions that are
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assumed to be risk-averse, S-shaped, or prudent, and finally derived a linear program (LP) refor-

mulation. Haskell et al. (2016) further extended this work by considering ambiguity about both the

decision makers risk preferences and the underlying distribution. They obtained a LP reformulation

under the assumption of a polyhedral distributional ambiguity set with a finite number of ver-

tices. For more general ambiguity sets, they proposed conservative approximations that are based

on reformulation-linearization techniques. Delage et al. (2021) considered a utility-based shortfall

risk measure where the true loss function is unavailable and proposed a preference robust model

by constructing a set of utility-based loss functions from empirical data or subjective judgments.

Haskell et al. (2018) considered the ambiguity in choice functions over a multi-attribute prospect

space and developed a robust preference model by constructing an ambiguity set of choice functions

through preference elicitation with pairwise comparisons of prospects. Luo and Mehrotra (2019)

studied a service center location problem with ambiguous utility gains upon receiving service under

a distributionally robust optimization (DRO) framework, where the elicited location-dependent

utilities are assumed to be described by an expected value and variance constraint.

Perhaps, the most relevant studies to ours are Hu and Mehrotra (2015) and Hu et al. (2018). Hu

and Mehrotra (2015) assumed that the utility function is increasing and concave. They specified

the uncertainty set by using upper bound and lower bound on the utility and marginal utility

functions, as well as auxiliary equality and inequality constraints on the utility. They used a

partitioning-based approach to formulate the problem as a LP. More recently, Hu et al. (2018)

assumed that the uncertainty set of the utility function is non-decreasing and satisfies additional

boundary and auxiliary conditions. They developed a sample average approximation (SAA) based

approach (Kleywegt et al. 2002) to solve the problem. Unlike the aforementioned two studies,

our work considers the utility-dependent decisions within a chance-constrained framework and

constructs a novel ambiguity set in the space of risk-averse utility centered at a reference utility

function using a distance metric. This allows us to model a more general set of utility functions

that are first increasing then decreasing. We also provide a convergence analysis where the proof

is different from Hu et al. (2018) and finally propose an efficient row generation-based solution

scheme to efficiently solve our (RCUMP) model with two practical applications.

1.3.2. Literature Review on Chance-Constrained Bin Packing Problem Chance-

constrained programs (CCPs) were firstly introduced by Charnes and Cooper (1959) to address

optimization problems under uncertainty, which have been widely used for various decision-making

context. CCPs are generally difficult to solve (e.g., Song et al. 2014), especially when the coefficients

matrix is random or the chance constraints contain integer decision variables (as is shown in our

(BP RCUMP) in Section 1.2). For the study of more general CCPs under different optimization
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settings, we refer the interested reader to a recent review by Küçükyavuz and Jiang (2021). In

recent years, the chance-constrained bin packing problem (CCBP) has been extensively studied,

especially under the context of healthcare resources allocation (e.g., ORs and surgeries) and cloud

computing management (e.g., Hoogervorst et al. 2019, Cohen et al. 2019, Martinovic et al. 2021).

For healthcare resources allocation, Deng and Shen (2016), Deng et al. (2019) and Zhang et al.

(2020) investigated a surgery scheduling problem with chance constraints to determine ORs alloca-

tion and surgery scheduling using the stochastic programming and DRO paradigms. More recently,

Wang et al. (2021a) studied a chance-constrained multiple bin packing problem with application

to ORs planning. Wang et al. (2021b) further extended this work to a DRO model with joint

chance constraints with partial distribution information. Instead of minimizing the total cost or the

number of bins as in the above studies, we consider utility-dependent decisions within a chance-

constrained framework to ensure certain service performance, while balancing the implications of

under and over-utilization of resources. Although CCBP is widely studied, to our best knowledge,

such applications under a robust expected utility framework are very rare.

1.3.3. Literature on Multi-Item Newsvendor Problem The newsvendor problem is a

fundamental operations management problem with various applications (see a recent review by

Qin et al. 2011). To determine the order quantities for multiple products, the retailers assume a

specifically known distribution of the random demand (e.g., Erlebacher 2000). However, in reality,

the true demand distribution is hardly ever known to the retailers. Leveraging recent advances in

RO, robust multi-item newsvendor problems aim to maximize the worst-case expected operating

revenue over all possible demand realizations within an uncertainty set (e.g., Ardestani-Jaafari and

Delage 2016, Hu et al. 2019, Zhang et al. 2021). For most real-world applications, the solutions of

RO models are generally over-conservative, thus DRO multi-item newsvendor problems have been

extensively explored in recent years, where one seeks a more robust solution that performs best

under the worst-case demand distribution within an ambiguity set of distributions (e.g., Hanasu-

santo et al. 2015, Natarajan et al. 2018, Rahimian et al. 2019, Chen et al. 2020, Wang and Delage

2021). Very few studies attempt to use alternative risk preferences within the expected utility

framework (Wang et al. 2012, Choi and Ruszczyński 2011), which assume that the distributions of

product demands and the utility function are exactly known in advance. However, it is very difficult

to derive the exact representation of the utility function in practice. This also further motivates

us to model the problem under a robust expected utility framework using a novel ambiguity set of

the utility functions.
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1.4. Contributions of This Paper

To summarize, this paper addresses the modeling framework and resolution method of a general

chance-constrained robust expected utility problem over a set of concave utility functions that

lie in a novel ambiguity set. Under mild conditions, we derive a mixed-integer second-order cone

programming (MISOCP) formulation, and conduct the convergence analysis for (RCUMP) that

relies on the convergence theory of optimization problems, and also develop a row generation-based

solution scheme to solve the resulting problem efficiently.

More specifically, the contributions of this paper are summarized as follows:

• We construct a novel ambiguity set in the space of risk-averse utility centered at a reference

utility function using a distance metric, and employ a discretization scheme to model the novel

utility ambiguity set U . In doing so, we are able to reformulate (RCUMP) as a tractable MISOCP

with the help of a big-M technique. Then a convergence analysis is provided to show that the

discrete approximation asymptotically converges to the true counterpart under some mild assump-

tions. To the best of our knowledge, this is the first attempt to study a general robust expected

utility problem with chance constraints when the information of the utility function is incomplete.

• We propose an efficient row generation-based solution scheme to solve the robust expected

utility model. More specifically, we represent (RCUMP) as a max-min formulation and investigate

the row generation approach for solving the problem. The algorithm considers a master problem

as a chance-constrained problem and a second-order cone programming (SOCP) subproblem. We

show that our proposed algorithm converges in a finite number of iterations.

• We perform an extensive numerical study for the bin-packing problem using real data from

surgery planning and the multi-item newsvendor problem to analyze the general structure of the

decisions from the decision-making framework and show the benefits of the techniques developed in

this paper for the computational improvement. We find that the row generation algorithm signifi-

cantly outperforms the one that uses a commercial solver to solve the MISOCP. We also evaluate

the out-of-sample performance of the solutions generated from (BP RCUMP). We found that the

solutions generated from (BP RCUMP) with the larger number of partitions N = 20 or the larger

ambiguity set do not improve performance in terms of out-of-sample over-utilization and under-

utilization measures in the simulation for most of the instances, even though the computational cost

increases rapidly with the number of partitions N . Therefore, when N = 10, the optimal solutions

obtained from (BP RCUMP) achieve a desirable out-of-sample performance, and this performance

is not improved by increasing the number of partitions. Moreover, the average under-utilization is

significantly larger than the over-utilization, and decreases when ε varies from 0.05 to 0.1. There-

fore, the choice of ε could affect the value of over-utilization and the under-utilization. Similar

observations can also be found for the multi-item newsvendor problem.
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1.5. Organization

The remainder of this paper is organized as follows. Section 2 gives a definition of ambiguity set U

and formulates (RCUMP) as a MISOCP using a discrete approximation of U and big-M techniques.

We then present convergence analysis to show that the discrete approximation asymptotically

converges to the true counterpart under some mild assumptions in Section 3. In Section 4, we

present a row generation algorithm to solve (RCUMP). Section 5 reports the computational results

of the robust expected utility model for the bin-packing problem and the multi-item newsvendor

problem with the help of data from the test problems. Section 6 concludes the paper with a

summary of the important findings.

2. Model Formulation

Section 2.1 introduces the definition of the ambiguity set U and examples for the rise-averse

utility functions. Using a discretization scheme, we then reformulate the robust expected chance-

constrained problem as a MISOCP in Section 2.2.

2.1. The Ambiguity Set Definition

We assume that the function f(x, ξ̃) has a bounded support Θ := [−θ1, θ2] for all x ∈ X , where

θ1, θ2 ∈R+. We also assume that the function u satisfies the following conditions,

u(−θ1) = 0, u(0) = 1, u(θ2) = 0. (4)

We use function ū and u as the bounds of u, that is to say,

u(a)≤ u(a)≤ ū(a), a∈Θ. (5)

We construct the following ball in the space of risk-averse utility centered at a reference utility

function u0:

d(u,u0)≤
√
b, (6)

where b is a positive constant and d(u,u0) is the distance between two functions u and u0 which is

defined as the L2-norm of u−u0, i.e.,

d(u,u0) =

√∫ θ2

−θ1
|u(a)−u0(a)|2 da

Constraint (6) ensures that the utility functions are real-valued square-integrable in the domain

using u0 as a reference, with a pre-specified bound. Let U ′ be the set of all first increasing then

decreasing concave utility functions defined on Θ. We have the following ambiguity set U ,

U :=
{
u∈U ′

∣∣ u satisfies the conditions in the constraints (4)− (6)
}
.
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This utility set is different from the one used in Hu and Mehrotra (2015), in the use of constraint

(6). The set used in Hu and Mehrotra (2015) is specified using constraints linear in u, and u is non-

decreasing. Here we are allowing u to increase as well as decrease. Moreover, using a benchmark

to specify the ambiguity set for u is desirable when considering the situations where a parametric

function is first estimated.

2.1.1. Examples of the Ambiguity Set In the following, we provide an example of the

ambiguity set U defined above. We let the bounds on u be derived from the power utility functions.

The upper and lower bound on u are given by

u(a) =


(
a+ θ1

θ1

)1−r2

, a∈ [−θ1,0],(
θ2− a
θ2

)1−r2

, a∈ (0, θ2],

u(a) =


(
a+ θ1

θ1

)1−r1

, a∈ [−θ1,0],(
θ2− a
θ2

)1−r1

, a∈ (0, θ2],

(7)

respectively, where parameters r1 and r2 are constant coefficients. For the power utility functions,

Holt and Laury (2002) suggested that one could set r1, r2 ∈ [0.41,0.68] for a risk-averse decision-

makers. We give the following upper bound ū and lower bound u of the utility function in Figure

1(a):

u(a) =

{
(a+ 1)

0.32
, a∈ [−1,0],

(1− a)
0.32

, a∈ (0,1].
u(a) =

{
(a+ 1)

0.59
, a∈ [−1,0],

(1− a)
0.59

, a∈ (0,1].

As a comparison, we set r1 = 0.25 and r2 = 0.75 for ū and u, which are shown in Figure 1(b).
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Figure 1 The bounds of utility functions when r1 = 0.68 and r2 = 0.41 in (a) and r1 = 0.75 and r2 = 0.25 in (b)

For the reference utility function, we let u0 be the power utility function, defined as follows

u0(a) =


(
a+ θ1

θ1

)1−r0

, a∈ [−θ1,0],(
θ2− a
θ2

)1−r0

, a∈ (0, θ2].

(8)
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2.2. Reformulation of (RCUMP)

In this section, we present a reformulation for (RCUMP) associated with a set UN , which is defined

using a discretization of the continuous problem. Let N is the number of partitions, A(N) =

{a0, · · · , al, · · · , aN} be a set of break points such that a0 < · · · < al < · · · < aN ; a0 = −θ1, al = 0;

and aN = θ2. We assume that if N1 <N2, then A(N1)⊂A(N2). We define the following piecewise

linear approximation functions of u and ū:

uN(a) =
N−1∑
k=0

(
u(ak+1)−u(ak)

ak+1− ak
a+

ak+1u(ak)− aku(ak+1)

ak+1− ak

)
1(ak ≤ a< ak+1), (9)

ūN(a) =
N−1∑
k=0

(
ū(ak+1)− ū(ak)

ak+1− ak
a+

ak+1ū(ak)− akū(ak+1)

ak+1− ak

)
1(ak ≤ a< ak+1), (10)

where 1(·) represents the indicator function, which returns 1 if the clause inside is correct, and

otherwise 0.

Following Figure 1(a), Figure 2 gives the approximation of bounds of utility functions when the

number of partitions N=20.
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1

u(a)
ū(a)
uN (a)
ūN (a)

Figure 2 Approximation of bounds of utility functions when r1 = 0.68, r2 = 0.41 and N = 20

Let the ambiguity set

UN :=

u∈U ′

∣∣∣∣∣∣∣
u satisfies the conditions in constraint (4) and uN ≤ u≤ ūN , and
N−1∑
k=0

(u0(ak)−u(ak))
2
(ak+1− ak)≤ b,

 ,

and

πN(x) = minimize
u∈UN

E[u(f(x, ξ̃))], (11)

then Lemma 1 below gives a SOCP reformulation of πN(x) for any given x∈X .
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Lemma 1. For a given x∈X , problem (11) is equivalent to the following SOCP reformulation:

minimize
θ,α,β

∑
ω∈Ω

pω(f(x,ξω)αω +βω) (12a)

subject to (ak+1− ak−1)θk ≥ (ak+1− ak)θk−1 + (ak− ak−1)θk+1, ∀k ∈ {1, · · · ,N − 1}, (12b)

θk ≤ ūN(ak), ∀k ∈ {0, · · · ,N}, (12c)

θk ≥ uN(ak), ∀k ∈ {0, · · · ,N}, (12d)

||Q(θ−u0)||2 ≤ 1, (12e)

akα
ω +βω − θk ≥ 0, ∀k ∈ {0, · · · ,N}, ω ∈Ω, (12f)

βω ≥ 0, ∀ω ∈Ω, (12g)

where θ0 = 0, θl = 1 and θN = 0, Q = diag(
√

a1−a0
b

, · · · ,
√

aN−aN−1

b
) is a diagonal matrix, and

θ−u0 := (θ0−u0(a0), · · · , θN−1−u0(aN−1))>.

Proof. Let θk = u(ak), then θ0 = u(a0) = 0, θl = u(al) = 1 and θN = u(aN) = 0. Given the con-

cavity property of u∈UN , we have

θ1− θ0

a1− a0

≥ · · · ≥ θl− θl−1

al− a1−1

≥ 0≥ θ1+1− θl
a1+1− al

≥ · · · ≥ θN − θN−1

aN − aN−1

,

which implies that constraint (12b) holds. In addition, constraints (12c), (12d) and (12e) represent

the constraints of u(a).

Let U ′
N be a subset of UN which consists of all the piecewise linear function with break

point {a0, · · · , aN}. If u∗ is an optimal solution of problem (11), we can define a piecewise linear

function belonging to U ′
N that bounds u∗ from below. Hence, we can rewrite problem (11) as

minimizeu∈U ′
N

∑
ω∈Ω pωu(f(x,ξω)). Since u ∈ U ′N is piecewise linear with the break point ak and

corresponding value θk, thus given a v ∈Θ, u(v) is equivalent to

minimize
α,β

vα+β

subject to akα+β− θk ≥ 0 ∀k ∈ {0, · · · ,N},

β ≥ 0.

Therefore, when v= f(x,ξω) for ω ∈Ω, problem (11) is equivalent to problem (12). 2

Using the duality theory and big-M strengthening technique inspired from Song et al. (2014),

we obtain a reformulation of (RCUMP) with the ambiguity set UN in Theorem 1.

Theorem 1. The problem

maximize
x∈X

minimize
u∈UN

E[u(f(x, ξ̃))] (13)
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is equivalent to the following MISOCP:

maximize
x,z,µ,γ1,γ2,δ,η,λ

N∑
k=0

(u(ak)γ2k− ū(ak)γ1k) +
N−1∑
k=0

ηku0(ak)−λ (14a)

subject to Ax≤ d, (14b)

pωf(x,ξω)−
N∑
k=0

akδkω = 0, ∀ω ∈Ω, (14c)

pω −
N∑
k=0

δkω ≥ 0, ∀ω ∈Ω, (14d)

ηk =−µk(ak+1− ak−1) +µk+1(ak+2− ak+1)

+µk−1(ak−1− ak−2) + γ1k− γ2k +
∑
ω∈Ω

δkω, ∀k ∈ {1, · · · ,N − 1}, (14e)

||Q−1η||2 ≤ λ, (14f)

f(x,ξω) + (mω(kq+1)− t)zω ≤mω(kq+1), ∀ω ∈Ω, (14g)∑
ω∈Ω

pωzω ≥ 1− ε, (14h)

µk, γ1k, γ2k, δkω ≥ 0, zω ∈ {0,1}, ∀k ∈ {0, · · · ,N}, ω ∈Ω, (14i)

where η0 = µN = µ0 = 0, and for ω,k ∈ Ω, mω(k) := maximize
x∈Rn

{
f(x,ξω)

∣∣∣f(x,ξk)≤ t,Ax≤ d
}

.

We sort mω(k) in a non-decreasing order such that mω(k1) ≤ . . . ≤ mω(kN), and let q :=

max
{
l :
∑l

j=1 pkj ≤ ε
}

.

Proof. Let y=Q(θ−u0), then ||y||2 ≤ 1 based on constraint (12e) and θ=Q−1y+u0. Let µ, γ1,

γ2, δ be the dual variables of constraints (12b) to (12d), and (12f) respectively. The dual function

can be formulated as

g(µ,γ1,γ2,δ) = inf
α,β,y

L(α,β,y,µ,γ1,γ2,δ)

subject to ||y||2 ≤ 1,

βω ≥ 0, ∀ω ∈Ω,

where

L(α,β,y,µ,γ1,γ2,δ)

=
∑
ω∈Ω

(pωf(x,ξω)−
N∑
k=0

akδkω)αω +
∑
ω∈Ω

(pω −
N∑
k=0

δkω)βω +
N∑
k=0

(u(ak)γ2k− ū(ak)γ1k) +η>(Q−1y+u0).

and ηk = −µk(ak+1 − ak−1) + µk+1(ak+2 − ak+1) + µk−1(ak−1 − ak−2) + γ1k − γ2k +
∑
ω∈Ω

δkω, for all

k= 1, · · · ,N − 1.

Based on the domain of variables y, α and β, and the definition of dual norm, we have,

g(µ,γ1,γ2,δ2) =
N∑
k=0

(u(ak)γ2k− ū(ak)γ1k) +
N−1∑
k=0

ηku0(ak)− ||Q−1η||∗,



Wang & Mehrotra: Robust Concave Utility Maximization over a Chance-Constraint
13

if pωf(x,ξω)−
∑N

k=0 akδkω = 0, pω−
∑N

k=0 δkω ≥ 0, for ω ∈Ω. Thus, constraints (14c)-(14e) are the

dual formulation of problem (12). Note that when θk = u0(ak) for all k= 0, · · · ,N , constraint (12e)

can be reformulated as 0≤ b. Since b is a positive constant, u0 ∈ relint UN such that constraint

(12e) hold with strict inequality, and problem (12) satisfies Slaters condition (Boyd et al. 2004).

Strong duality holds under the Slaters conditions.

Note that the chance constraint can be rewritten as

f(x,ξω) + (Mω − t)zω ≤Mω, ∀ω ∈Ω, (15a)∑
ω∈Ω

pωzω ≥ 1− ε, (15b)

zω ∈ {0,1}, ∀ω ∈Ω, (15c)

where Mω is a large constant such that constraint (15a) still holds when zω = 0. We use the

coefficient strengthening procedure inspired from Song et al. (2014) to obtain a tight value of Mω.

Note that for all ω ∈Ω,

Mω ≥ M̄ω := maximize
x∈Rn

{
f(x,ξω)

∣∣∣P{f(x, ξ̃)− t≤ 0
}
≥ 1− ε,Ax≤ d

}
.

For any ω,k ∈Ω, let

mω(k) := maximize
x∈Rn

{
f(x,ξω)

∣∣∣f(x,ξk)≤ t,Ax≤ d
}
.

We sort mω(k) in a non-decreasing order such that mω(k1)≤ . . .≤mω(kN). Then mω(kq+1) is an

upper bound for M̄ω, if q= max
{
l :
∑l

j=1 pkj ≤ ε
}

.

This completes our proof. 2

In the following, Corollary 1 and Corollary 2 give the final reformulations of (BP RCUMP) and

(MN RCUMP), respectively, which both are represented as the MISOCP.

Corollary 1. Based on Theorem 1, the final MISOCP reformulation of (BP RCUMP) under

the ambiguity set UN can be represented as follows:

maximize
x,y,z,µ,γ1,γ2,δ,λ

N∑
k=0

(u(ak)γ2k− ū(ak)γ1k) + η>u0N(a)−λ (16a)

subject to (2c), (2d), (16b)

pω

(∑
i∈I

ξωi yij − tj

)
−

N∑
k=0

akδkjω = 0, ∀j ∈J , ω ∈Ω, (16c)

pω −
N∑
k=0

δkjω ≥ 0, ∀j ∈J , ω ∈Ω, (16d)

ηk =−µk(ak+1− ak−1) +µk+1(ak+2− ak+1)
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+µk−1(ak−1− ak−2) + γ1k− γ2k +
∑
j∈J

∑
ω∈Ω

δkjω, ∀k ∈ {1, · · · ,N − 1}, (16e)

||Q−1η||2 ≤ λ, (16f)∑
i∈I

ξωi yij + (mjω(kq+1)− tj)zjω ≤mjω(kq+1), ∀j ∈J , ω ∈Ω, (16g)∑
ω∈Ω

pωzjω ≥ 1− ε, ∀j ∈J , (16h)

µ,γ1,γ2,δ≥ 0, xj, yij, zjω ∈ {0,1}, ∀i∈ I, j ∈J , ω ∈Ω, (16i)

where mjω(k) = maximize
yj

{∑
i∈I

ξωi yij

∣∣∣ ∑
i∈I

ξki yij ≤ tj, yj ∈ {0,1}|I|
}

, for all j ∈J and k,ω ∈Ω, and q

is defined in Theorem 1.

Corollary 2. Based on Theorem 1, we can reformulate (MN RCUMP) with the ambiguity set

UN as the following problem:

maximize
x,z,µ,γ1,γ2,δ,λ

N∑
k=0

(u(ak)γ2k− ū(ak)γ1k) + η>u0N(a)−λ (17a)

subject to (3c), (17b)

pω(xi− ξωi )−
N∑
k=0

akδkiω = 0, ∀i∈ I, ω ∈Ω, (17c)

pω −
N∑
k=0

δkiω ≥ 0, ∀i∈ I, ω ∈Ω, (17d)

ηk =−µk(ak+1− ak−1) +µk+1(ak+2− ak+1)

+µk−1(ak−1− ak−2) + γ1k− γ2k +
∑
i∈I

∑
ω∈Ω

δkiω, ∀k ∈ {1, · · · ,N − 1}, (17e)

||Q−1η||2 ≤ λ, (17f)

xi− ξωi + (miω(kq+1)− ti)ziω ≤miω(kq+1), ∀i∈ I, ω ∈Ω, (17g)∑
ω∈Ω

pωziω ≥ 1− ε, ∀i∈ I, (17h)

x,µ,γ1,γ2,δ≥ 0, ziω ∈ {0,1}, ∀i∈ I, ω ∈Ω, (17i)

where miω(k) = maximize
xi∈R+

{
xi− ξωi

∣∣∣xi− ξki ≤ ti}, for all i ∈ I and k,ω ∈ Ω, and q is defined in

Theorem 1.

3. Convergence Analysis

In this section, we show that, the optimal solutions obtained by using the discrete approximation

of the set U converge to the true optimal solutions in the limit. Throughout this section, we make

the following assumptions, which are also commonly used in the literature.

Assumption 1. (i) f(x, ξ̃) is linear in an open neighborhood of X ; (ii) U is a non-empty set,

and function u ∈ U has bounded derivative almost everywhere; (iii) ū, u and u0 are continuous

concave functions.
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Note that uN and ūN are the approximation functions of u and ū based on the A(N). Also,

under the above assumption, uN and ūN uniformly converge to u and ū, respectively. In the

following, under Assumption 1, we first show that π(x) := minimize
u∈U

E[u(f(x, ξ̃))] and πN(x) :=

minimize
u∈UN

E[u
(
f(x, ξ̃)

)
] are continuous concave functions.

Lemma 2. π(x) and πN(x) are continuous concave functions on X .

Proof. Based on Assumption 1, we know that u is concave and ξ(·) is linear in an open neigh-

borhood of X which can be denoted by N (X ). Therefore, u(f(x, ξ̃)) is concave in N (X ) and thus

E[u(f(x, ξ̃))] is concave in N (X ). Moreover, for x1,x2 ∈X , we have

π(λx1 + (1−λ)x2) = minimize
u∈U

E[u(f(λx1 + (1−λ)x2, ξ̃))]

≥minimize
u∈U

λE[u(f(x1, ξ̃))] + (1−λ)E[u(f(x2, ξ̃))]

≥ λminimize
u∈U

E[u(f(x1, ξ̃))] + (1−λ)minimize
u∈U

E[u(f(x2, ξ̃))]

= λπ(x1) + (1−λ)π(x2).

π(x) is concave function in N (X ), thus π(x) is continuous in X . Similarly, πN(x) is continuous

concave functions in X . This completes our proof. 2

The following Lemma 3 to Lemma 7 give some preliminary results, which are needed to prove

the convergence of πN(x) to π(x).

Lemma 3. Function u∈UN is equicontinuous.

Proof. For u ∈ UN , since the derivative u′ of u satisfies |u′| < M for almost everywhere, then

u ∈UN is Lipschitz with Lipschitz constant M . Since a set of functions with bounded Lipschitz

constant forms an equicontinuous set, u are equicontinuous. 2

Lemma 4. (ArzelàAscoli Theorem in Green and Valentine (1961)) Let K be a compact metric

space, with metric dK(p, p′), and let C(K) denote the space of real (or complex) valued continuous

functions on K. If {fn}n∈N is a sequence in C(K) obeying:

• {fn}n∈N is pointwise bounded, and

• {fn}n∈N is equicontinuous,

then, the sequence {fn}n∈N contains a uniformly convergent subsequence.

Lemma 5. For any sequence {uN ∈UN}, there exists a subsequence {uNK
} that uniformly con-

verges to û∈U .

Proof. Based on Lemma 3 and Lemma 4, we have that, for any sequence {uN ∈ UN}, there

exists a subsequence {uNK
} that uniformly converges to û. Now we show that û∈U . Since {uNK

}
is first increasing then decreasing concave function, for any −θ1 ≤ a1 ≤ a2 ≤ 0, we have

û(a1) = lim
K→∞

uNK
(a1)≤ lim

K→∞
uNK

(a2) = û(a2).
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Therefore, û is increasing at [−θ1,0]. Similarly, û is decreasing at [0, θ2]. For λ> 0 and −θ1 ≤ a1 ≤

a2 ≤ θ2,

û(λa1 + (1−λ)a2) = lim
K→∞

uNK
(λa1 + (1−λ)a2)

≥ lim
K→∞

λuNK
(a1) + (1−λ)uNK

(a2)

= λû(a1) + (1−λ)û(a2).

Hence, û is first increasing then decreasing concave function. We then consider the bound con-

straints. Since uNK
and ūNK

uniformly converge to u and ū, respectively; we have

û= lim
K→∞

uNK
≥ lim

K→∞
uNK

= u, û= lim
K→∞

uNK
≤ lim

K→∞
ūNK

= ū.

We now claim the auxiliary constraint. Let

h(uNK
) =

NK−1∑
k=0

(u0(ak)−uNK
(ak))

2
(ak+1− ak)− b,

and

f(uNK
) =

∫ θ2

−θ1

(
u0(a)−uNk

(a)
)2
da− b, (18)

hence

lim
K→∞

h(uNK
) = lim

K→∞
f(uNK

).

Given the uniform convergence of {uNK
} to û, for any δ > 0, there exists K̂ such that for all K ≥ K̂:

|uNK
(a)− û(a)| ≤ δ.

Thus we have

∣∣f(uNK
)− f(û)

∣∣= ∣∣ ∫ θ2

−θ1

(
u0(a)−uNk

(a)
)2− (u0(a)− û(a))

2
da
∣∣

=

∣∣∣∣∫ θ2

−θ1

(
û(a)−uNk

(a)
) (

2u0(a)− û(a)−uNk
(a)
)
da

∣∣∣∣
≤ δ

∫ θ2

−θ

∣∣2u0(a)− û(a)−uNk
(a)
∣∣da

Since 2u0(a)− û(a)−uNk
(a) is bounded, f(û) = lim

k→∞
f(uNk

). It follows that,

f(û) = lim
k→∞

f(uNk
) = lim

k→∞
hNk

(uNk
)≤ 0.

Therefore, we have û∈U . 2
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Lemma 6. For any u∈U , there exists a sequence uN ∈UN such that u= lim
N→∞

uN .

Proof. For any u ∈U , since (u0(a)− u(a))2 is uniformly continuous on [−θ1, θ2], h(u) converges

uniformly to f(u). Hence, for δ > 0 and δ < τ/2, there exists N̂ such that for all N ≥ N̂ :

|h(u)− f(u)| ≤ δ,

then we have h(u)≤ f(u) + δ≤ δ, which gives us that

N−1∑
k=0

(u0(ak)−u(ak))
2
(ak+1− ak)≤ b+ δ. (19)

For any λ∈ [0,1], by constraint (19), it follows that

(1−λ)2

N−1∑
k=0

(u0(ak)−u(ak))
2
(ak+1− ak)≤ (1−λ)2(b+ δ)≤ (1−λ)(b+ δ). (20)

Similarly, we have

0≤ λ(b+ δ− τ), (21)

for all τ ∈R+ and τ ≤ b. From constraints (20) and (21), we can obtain

N−1∑
k=0

[u0(ak)− ((1−λ)u(ak) +λu0(ak))]
2
(ak+1− ak)≤ b+ δ−λτ

We let vλ = (1−λ)u+λu0, thus,

N∑
k=0

(u0(ak)− vλ(ak))
2 ≤ b, ∀λ∈ [δ/τ,1].

Hence, we have for each λ∈ [δ/τ,1], vλ ∈ UN for all N ≥ N̂ .

To construct the sequence uN , we define a positive sequence {δi} such that δi→ 0 as i→∞.

Let vi = (1− δi
τ

)u+ δi
τ
u0. Based on the above discussion, for each δi, there exists a positive integer

number Ni such that vi ∈UN for N ≥Ni, and vi→ u as i→∞. Let uN = vi for Ni ≤N <Ni+1.

Therefore, we have uN ∈UN for all N ≥N1 and uN → u as N →∞. 2

We state Theorem 2.3 in Alvarez-Mena and Hernández-Lerma (2005) in the following lemma for

completeness, which gives some convergence conditions of πN(x).

Lemma 7. For x ∈ X , let {uN} be a sequence of {πN(x)}. Suppose (i) a subsequence {uNk
} of

{uN} converges to u ∈U ; (ii) lim
k→∞

inf πNk
(x)≥ π(x); (iii) for any u ∈U , there exists a sequence

uN ∈ UN such that u = lim
N→∞

uN and E[u(f(x, ξ̃))] = lim
N→∞

E[uN(f(x, ξ̃))]. Then u is optimal for

{π(x)}. Furthermore, πNk
(x) converges to {π(x)}.

Based on Lemma 5 and 7, we shows that πN(x) converges to π(x) for all x∈X in Lemma 8 .
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Lemma 8. πN(x)→ π(x) as N →∞ for all x∈X .

Proof. We let sequence {uN} be the optimal solution of πN(x) for given x ∈ X . By Lemma 5

we know that there exists a subsequence {uNk
} of {uN} converges to u ∈ U . Since the limit of

sequence {uNk
} in U , hence, lim

k→∞
inf πNk

(x)≥ π(x). Moreover, Lemma 6 shows that for any u∈U ,

there exists a sequence uN ∈UN such that u= lim
N→∞

uN . Since E[uN(f(x, ξ̃))] =
∑
ω∈Ω

pωuN(f(x,ξω))

and E[u(f(x, ξ̃))] =
∑
ω∈Ω

pωu(f(x,ξω)), we have E[u(f(x, ξ̃))] = lim
N→∞

E[uN(f(x, ξ̃))] (Lytle 2015).

Therefore, πNk
(x)→ π(x) as K →∞ by Lemma 7. To prove πN(x)→ π(x), let {πm(x)} be a

subsequence of πN(x). By Lemma 5, there exists a subsequence {umi
} of {um} such that umi

converges to u, which with Lemma 7 implies that πmi
(x) converges to π(x). Since {πm(x)} is an

arbitrary subsequence of πN(x), thus, πN(x)→ π(x) as N →∞ (Buck 1943). 2

The following Lemma gives some convergence conditions of problem (13).

Lemma 9. (Lemma 9 in Hu and Mehrotra (2015)) Let yN and ZN be the optimal objective value

and the set of optimal solutions of problem (13) and y∗ and Z∗ be those of (RCUMP). Denote

the deviation of sets ZN and Z∗ as D(ZN ,Z
∗) := maxx1∈ZN

minx2∈Z∗ ||x1 − x2||. Suppose (i) X

is a non-empty compact set; (ii) the function π(·) is continuous on X; and (iii) πN(·) uniformly

converges to π(·) on X as N →∞. Then, yN → y∗ and D(ZN ,Z
∗)→ 0 as N →∞.

Theorem 2 shows that the optimal solutions of problem (13) converge to the true optimal solution

of (RCUMP) in the limit.

Theorem 2. Let yN and ZN be the optimal objective value and the set of solutions of problem

(13), and y∗ and Z∗ be the optimal objective value and the set of solutions of (RCUMP). Then

yN → y∗ and D(ZN ,Z
∗) := maximize

b1∈ZN

minimize
b2∈Z∗

||b1− b2|| → 0 as N →∞.

Proof. By Lemma 2, we have that X is compact and πN(x) and π(x) are continuous, then {πN}
uniformly converges to π (see Hu and Mehrotra 2015). Since X and T are non-empty com-

pact sets, and the function π(x) is continuous on X and T , then yN → y∗ and D(ZN ,Z
∗) :=

maximize
b1∈ZN

minimize
b2∈Z∗

||b1− b2|| → 0 as N →∞, based on Lemma 9. 2

4. A Row Generation Solution Scheme

Note that solving the reformulation of (RCUMP) by an off-the-shelf commercial solver (e.g.,

CPLEX, GUROBI) directly might be time-consuming, which will be further confirmed by our

numerical study in Section 5. Instead, in this section we propose a row generation algorithm as a

solution method for our (RCUMP).

Based on Lemma 1, (RCUMP) can be further rewritten as the following max-min problem:

maximize
x∈X ,ρ∈[0,1]

ρ (22a)
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subject to ρ≤Z(x), (22b)

where Z(x) is given as follows:

Z(x) = minimize
θ,α,β

∑
ω∈Ω

pω
(
f(x,ξω)αωj +βωj

)
subject to (12b)− (12g).

We then define the master problem as follows:

(MP) maximize
x,z∈{0,1}|Ω|,ρ∈[0,1]

ρ

subject to (14b), (14g), (14h),

and the subproblem as follows:

(SP) minimize
θ,α,β

∑
ω∈Ω

pω
(
f(x,ξω)αωj +βωj

)
subject to (12b)− (12g).

An outline of the row generation algorithm is given in Algorithm 1. The row generation solves

(MP) and (SP) iteratively until a stopping criteria is met. We let UB and LB denote the upper

and lower bound, respectively. We initialize the number of iterations ` to 0, UB to positive infinity,

and LB to negative infinity. In each iteration, we update ` := `+1 and solve the linear relaxation of

(MP) to obtain an optimal solution (x`,z`, ρ`) and optimal objective value uobj`. If the objective

value uobj` is larger than the current lower bound: when (x`2,z
`) is integer, we solve (SP) with x

fixed to be x` to attain an optimal solution (θ`,α`,β`) and optimal objective value lobj` . If uobj`

is larger than lobj`, we add the cut ρ ≤
∑
ω∈Ω

pω(f(x,ξω)αω` + βω`) to the (MP), else update LB

if necessary. When (x`2,z
`) is fractional, we update UB if necessary. We terminate the algorithm

when the stopping criteria is satisfied, and return the optimal value UB and the optimal solution

(x∗,z∗, ρ∗). The following theorem shows that Algorithm 1 can find a solution of (RCUMP) in a

finite number of iterations under certain conditions.

Theorem 3. Let v := (θ,α,β) and V := {v | (12b)− (12g)}. We also let t := (x, ρ), T := X ×

[0,1], and g(t,v) := ρ−
∑
ω∈Ω

pω(f(x,ξω)αω + βω). We assume that T ×V is compact and g(t,v) is

continuous on T × V. If there exists an oracle that solves (MP) and (SP) to optimality at each

iteration, then Algorithm 1 terminates within finitely many iterations. If UB<+∞, then Algorithm

1 obtains a solution (x∗,z∗, ρ∗) of a desired accuracy at termination.

Proof. Based on the definitions, we can rewrite problem (22) as the following problem:

maximize
t∈T

ρ (23a)
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subject to g(t,v)≤ 0, ∀v ∈ V. (23b)

Since T ×V is compact and g(t,v) is continuous on T ×V, then g(t,v) is uniformly continuous on

T ×V. Thus, for the τ , there exists a δ > 0 such that

|g(t,v)− g(t′,v′)| ≤ τ/2, if ||t− t′||+ ||v−v′|| ≤ δ. (24)

If Algorithm 1 generates infinite t and v values without termination. For t ∈ T , let B(v, δ) be a

closed ball of center v and radius δ, then we have v`+1 6∈ ∪`i=1B(vi, δ). Otherwise, if there exists

a v`+1 ∈ B(vi, δ) for some i ≤ `, based on condition (24), we have g(t,v`+1) ≤ g(t,vi) + τ/2 ≤ τ ,

which implies that the termination criteria is satisfied. Therefore, v`+1 6∈ ∪`i=1B(vi, δ) and B(vi, δ)∩

B(vj, δ) = ∅ if vi 6= vj, which indicates that ∪+∞
i=1 vol(B(vi, δ))≤ vol(∪v∈VB(v, δ)), this is a contra-

diction. Therefore, Algorithm 1 terminates within finitely many iterations.

If Algorithm 1 terminates at iteration `, the stopping criteria are met. Hence, Algorithm 1 will

finally return an solution (x∗,z∗, ρ∗) of a desired accuracy at termination. 2

5. Numerical Study

In this section, we numerically evaluate the performance of our robust concave utility maximization

model and the proposed row generation solution scheme with the help of the bin packing problem

in Section 5.1 and the multi-item newsvendor problem in Section 5.2.

5.1. Bin Packing Robust Expected Utility Problem

In this section, we use the real data from surgery planning problem to show the performance of the

algorithm proposed in Section 4 and the general structure of the decision made from (BP RCUMP)

that is presented in Section 1.2. In the context of surgery planning, the bins are ORs, items are

surgeries, and capacity denotes the OR time limit. We describe implementation details in Section

5.1.1 and finally present the computational results in Section 5.1.2.

5.1.1. Implementation Details In this section, we used historical surgery duration data

from a large public hospital in Beijing, China from January 2015 to October 2015, in which 5,721

historical observations of surgery duration are employed to generate our samples (see Wang et al.

(2021a) for a more detailed description). More specifically, we used log-normal distribution with the

mean and the standard deviation of the surgery duration to generate surgery duration samples and

rounded the samples to the nearest 15 minutes. Equal probabilities are used as in the SAA method.

The daily time limit tj is set to 10 hours for j ∈ J . Nine major surgery types are performed in a

day and the number of surgeries and the percentage for each surgery type are used to calculate the

number of surgeries for each surgery type. The bound support Θ = [−10,14], and the power utility

functions (7) and (8) are used as the bounds and reference of the utility functions, respectively. We
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Algorithm 1: Row Generation Algorithm

1 Initialize The number of iteration `= 0, UB = +∞, LB =−∞, a tolerance ε′ > 0, and a

small number τ > 0.

2 Initialize N = {o}, where o is the root node with the LP relaxation of (MP).

3 while (N is nonempty and UB−LB > ε′) do
4 Select a node o∈N , N ←N/{o}.

5 Solve the linear relaxation of (MP) at the node o to obtain the optimal solution

(x`,z`, ρ`) and objective value uobj`. `= `+ 1.

6 if uobj` > LB then
7 if (x`2,z

`) is integer then
8 Fix x to be x`, and solve (SP) and obtain an optimal solution (θ`,α`,β`) and

objective value lobj`.

9 if uobj`− lobj` > τ then
10 Add the following cut

ρ≤
∑
ω∈Ω

pω(f(x,ξω)αω` +βω`) (25)

to (MP).
11 end

12 else
13 Update LB := max{LB, lobj`}.

14 end
15 end

16 else
17 Update UB := min{UB, uobj`}.

18 Branch, resulting in nodes o∗ and o∗∗, N ←N ∪{o∗, o∗∗}.
19 end
20 end
21 end

22 return LB and its corresponding optimal solution (x∗,z∗, ρ∗).

consider the number of partitions N ∈ {2,10,20} and ε∈ {0.05,0.1,0.2}. We set r0 in the reference

function to 0.55. We consider two different pairs of parameters for the ambiguity set, namely,

(r1, r2)∈ {(0.41,0.68), (0.25,0.75)}. For each sample size, five instances were generated. Therefore,

all the performance is reported over five instances on average.

All experiments are conducted on the cedar cluster of Compute Canada with a single CPU core

and 32G memory. We implement the algorithm and models in the C programming language using

IBM CPLEX solver, version 12.10 callable libraries. We set the runtime limit as two hours and

the relative optimality gap tolerance as 0.1%. For instances that could not be solved to optimality,
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we give the average relative optimality gap, where the gap is calculated as (UB−LB)

UB
∗ 100, and UB

and LB are the upper and lower bound, respectively. We report the average CPU solution time (in

seconds) for the instances that are solved to optimality within the runtime limit.

5.1.2. Computational Results In this section, we present the computational results for

(BP RCUMP). We first provide the computational performance of the row generation algorithm

(i.e., Algorithm 1) for solving (BP RCUMP), then present the optimal solutions and objective

value, and the out-of-sample performance.

Performance of row generation algorithm. We assign twelve surgeries (|I| = 12) to four

ORs (|J |= 4) a day. The number of scenarios is set to be 30. The performance of the following

two variants are compared:

• CPX: refers to using CPLEX to directly solve MISOCP reformulation of (BP RCUMP).

• RG: refers to using the row generation algorithm (Algorithm 1) to solve (BP RCUMP).

Table 1 reports the average CPU solution time for solving (BP RCUMP) and the subproblem

(SP), the average number of cuts (25), and the number of instances that are solved to optimality

over the five generated instances.

We observe from Table 1 that, using the row generation algorithm to solve (BP RCUMP) sig-

nificantly outperforms CPX in terms of the average solution time for all the problems. Specifically,

compared with CPX, using the row generation algorithm saves an average of 80% time when CPX

is able to solve the problems to optimality. We also observe that for (r1, r2) = (0.41,0.68), CPX

can only solve 15 out of the 45 instances to optimality, and solve 13 out of the 45 instances when

(r1, r2) = (0.25,0.75), whereas, using the row generation algorithm solved all of these instances to

optimality. We see from Table 1 that the average solution time for CPX increases more dramatically

than the time increase in the row generation algorithm as the number of partitions N increases. In

particular, the number of solved instances decreases significantly for CPX in most cases when N

is increased from 2 to 10, while the increase in average solution time for RG is mild. The required

solution times did not change significantly when we considered different ambiguity sets. From Table

1 we also observe that the solution time for CPX changes significantly across different instances of

the same size when ε= 0.1 and ε= 0.2. For example, when ε= 0.1 and N = 2, the solution time

for one of the instances is only 21 seconds however the remaining instances cannot be solved to

optimality within the runtime limit. This suggests that compared with CPX, the row generation

algorithm has a more stable computational performance.

Out-of-sample performance. We now discuss the solutions in the context of data from the

operating room planning problem and the out-of-sample performance of the solution generated

from (BP RCUMP). For this purpose, we generated 150,000 scenarios from log-normal distribution
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Table 1 The average CPU (in seconds) solution time for solving (BP RCUMP) (AvT) and the

subproblem (SP) (AvT-Z), the average number of cuts (# of cuts), and the number of solved

instances from the five instances (solved) are reported.

(r1, r2) ε N
CPX RG

AvT solved AvT AvT-Z # of cuts solved

(0.41,0.68)

0.05

2 549 5/5 19 0.02 18 5/5

10 4,672 5/5 2,329 255.78 10,851 5/5

20 1,443[7.9] 1/5 2,921 709.40 12,052 5/5

0.1

2 21[0.5] 1/5 30 0.36 466 5/5

10 [2.0] 0/5 280 68.33 2,620 5/5

20 [3.2] 0/5 311 177.00 2,735 5/5

0.2

2 14[8.7] 1/5 80 0.60 937 5/5

10 [5.7] 0/5 567 157.22 6,210 5/5

20 29[5.6] 2/5 832 393.84 6,422 5/5

(0.25,0.75)

0.05

2 614 5/5 19 0.02 18 5/5

10 3,210[10.7] 3/5 1,027 169.84 7,468 5/5

20 1,704[10.4] 1/5 1,909 548.80 8,970 5/5

0.1

2 21[0.4] 1/5 25 0.33 466 5/5

10 [2.4] 0/5 160 50.17 2,249 5/5

20 17[3.8] 1/5 237 125.29 2,270 5/5

0.2

2 14[8.8] 1/5 86 0.73 937 5/5

10 [6.7] 0/5 529 137.01 5,179 5/5

20 46[7.1] 1/5 800 347.61 5,279 5/5

“[ · ]” in column of AvT means the average relative optimality gap (%) for instances that cannot be

solved to optimality within the time limit.

and used the solutions obtained from (BP RCUMP). We also share our experience in solving larger

size problems generated from taking |I|= 15, |J |= 5 and |Ω|= 100. Since both methods cannot

solve any instance to optimality within the runtime limit which leave an average of about 10%

optimality gap, we illustrate the out-of-sample performance of the best current solutions generated

from the model with the larger problem size. Table 2 presents the average objective values and the

number of opened ORs, the average over-utilization and under-utilization for (BP RCUMP). This

objective value is the value of the utility function at the optimal decision.

We see from Table 2 that as ε increases, the optimal number of opening ORs decreases at first

then remains unchanged. In this example, we observe that the average objective value for the
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Table 2 The average objective value (Obj), the average number of opening ORs (# of ORs), the average

over-utilization (Over)(in hours) and under-utilization (Under)(in hours) for (BP RCUMP) are reported.

(|I|,J , |Ω|) (12,4,30) (15,5,100)

(r1, r2) ε N Obj # of ORs Over Under Obj # of ORs Over Under

(0.68,0.41)

0.05

2 2.90 3.8 0.06 3.93 3.57 5 0.05 4.02

10 3.29 3.8 0.05 3.92 4.08 5 0.04 4.02

20 3.30 3.8 0.05 3.92 4.08 5 0.04 4.01

0.1

2 3.45 3 0.13 2.00 4.24 4 0.14 2.11

10 3.65 3 0.13 2.00 4.52 4 0.14 2.11

20 3.65 3 0.13 2.00 4.52 4 0.14 2.11

0.2

2 3.45 3 0.13 2.00 4.24 4 0.14 2.12

10 3.65 3 0.13 2.00 4.52 4 0.15 2.12

20 3.66 3 0.13 2.00 4.52 4 0.14 2.12

(0.75,0.25)

0.05

2 2.90 3.8 0.06 3.93 3.57 5 0.05 4.02

10 3.13 3.8 0.05 3.92 3.87 5 0.05 4.02

20 3.13 3.8 0.05 3.92 3.87 5 0.04 4.02

0.1

2 3.45 3 0.13 2.00 4.24 4 0.14 2.11

10 3.57 3 0.13 2.00 4.40 4 0.14 2.11

20 3.57 3 0.13 2.00 4.41 4 0.14 2.11

0.2

2 3.45 3 0.13 2.00 4.24 4 0.14 2.11

10 3.57 3 0.13 2.00 4.41 4 0.14 2.11

20 3.57 3 0.13 2.00 4.41 4 0.14 2.11

instances with N = 10 is better than the ones with N = 2, and the improvement of the average

objective value is not significant when we increase the number of partitions to N = 20, given that

the instances with N = 10 have the same number of opened ORs as the instances with other N

values. Moreover, when (r1, r2) = (0.41,0.68), the average objective values are marginally larger

than the ones with (r1, r2) = (0.25,0.75). This can be explained by the fact that the robust models

are more conservative when the size of the ambiguity set increases. The results in Table 2 also

show that the out-of-sample performance with the larger number of partitions N = 20 or the larger

ambiguity set (r1, r2) = (0.25,0.75) in terms of over-utilization and under-utilization measures in

the simulation does not improve for most of the instances, even though as observed from Table 1,

the computational cost increases rapidly with the number of partitions N . Therefore, when N = 10,

the optimal solutions obtained from (BP RCUMP) achieve a desirable out-of-sample performance,

and this performance is not improved by increasing the number of partitions. Moreover, the average
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under-utilization is significantly larger than the over-utilization, and decreases when ε varies from

0.05 to 0.1. When ε= 0.05, it has about four hours under-utilization, two hours under-utilization

for ε= 1, whereas the over-utilization is only about 0.04 and 0.14 hour, respectively. This can be

explained by the fact that in order to obtain a desirable over-utilization probability, one needs to

open more ORs and as a result, it will have a larger under-utilization. And when ε increases, it

allows a larger probability that violated the overtime chance constraints, thus under-utilization

decreases and over-utilization increases with an increase in ε value. When ε varies from 0.1 to 0.2,

it still opens 3 ORs on average, therefore the under-utilization and over-utilization are unchanged.

5.2. Multi-Item Newsvendor Robust Expected Utility Problem

In this section, we present computational results of the (MN RCUMP) problem that is presented

in Section 1.2. We follow a similar parameters setting for the multi-item newsvendor problem in a

recent work by Chen et al. (2020). For each scenario ω and item i, we randomly generate ξωi from

a uniform distribution on [0, ūi], where ūi is randomly generated from a uniform distribution on

[0,100]. The inventory capacity ti is randomly generated from a uniform distribution on [10,20]. We

let d= 50|I| and ci = 1, for i∈ I. The number of items |I| ∈ {100,150} and the number of scenarios

|Ω| ∈ {1000,2000}. All experiments for (MN RCUMP) are conducted on a 64-bit computer using

Windows operating system with Intel(R) 3.10 GHz processor and 128 GB RAM with a 64-bit

computer using Windows operating system. For other implementation details, we use the same

settings as in Section 5.1.1.

5.2.1. Computational Results We first show the performance of the row generation algo-

rithm (Algorithm 1) for solving (MN RCUMP), then we discuss the out-of-sample performance for

(MN RCUMP) in this section.

Performance of row generation algorithm. We present the performance of the methods

described in Section 5.1.2. Table 3 reports the average CPU solution time for solving (MN RCUMP)

and the subproblem (SP), the average number of cuts (25), and the number of instances that are

solved to optimality over the five generated instances.

The results from Table 3 further demonstrate the efficiency of the proposed row generation

algorithm. More specifically, in comparison to CPX, the average solution time is decreased by more

than 80% by using the row generation algorithm. When |I|= 150, |Ω|= 2000, and N = 20, CPX

cannot solve any instance to optimality, whereas, using the row generation algorithm could solve

all the instances to optimality within the runtime limit. We also observe from Table 3 that as the

number of partitions N increases, the average solution time increases significantly, while when ε

varies from 0.05 to 0.2 or (r1, r2) varies from (0.41,0.68) to (0.25,0.75), the average solution time

is not significantly different.
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Table 3 The average CPU (in seconds) solution time for solving (MN RCUMP) (AvT) and the subproblem (SP)

(AvT-Z), the average number of cuts (# of cuts), and the number of solved instances over the five instances (solved) are

reported.

(|I|, |Ω|) (100,1000) (150,2000)

(r1, r2) ε N
CPX RG CPX RG

AvT solved AvT AvT-Z # of cuts solved AvT solved AvT AvT-Z # of cuts solved

(0.41,0.68)

0.05

2 27 5/5 7 1 2 5/5 117 5/5 47 3 2 5/5

10 595 5/5 79 73 2 5/5 2,285 5/5 282 238 2 5/5

20 3,077 5/5 192 186 2 5/5 – 0/5 626 582 2 5/5

0.1

2 31 5/5 7 1 2 5/5 166 5/5 49 4 2 5/5

10 593 5/5 79 73 2 5/5 2,351 5/5 286 240 2 5/5

20 3,197 5/5 191 185 2 5/5 – 0/5 635 589 2 5/5

0.2

2 40 5/5 10 2 3 5/5 226 5/5 86 6 2.8 5/5

10 586 5/5 117 107 3 5/5 2,582 5/5 459 392 3 5/5

20 3,084 5/5 274 265 3 5/5 – 0/5 995 941 3 5/5

(0.25,0.75)

0.05

2 27 5/5 7 1 2 5/5 119 5/5 47 3 2 5/5

10 623 5/5 80 75 2 5/5 2,351 5/5 287 243 2 5/5

20 3,116 5/5 190 185 2 5/5 – 0/5 659 614 2 5/5

0.1

2 32 5/5 7 1 2 5/5 166 5/5 49 3 2 5/5

10 641 5/5 81 75 2 5/5 2,594 5/5 283 238 2 5/5

20 3,183 5/5 191 186 2 5/5 – 0/5 655 609 2 5/5

0.2

2 41 5/5 11 2 3 5/5 230 5/5 85 6 2.8 5/5

10 598 5/5 131 123 3 5/5 2,709 5/5 425 363 3 5/5

20 3,084 5/5 291 284 3 5/5 – 0/5 1,008 944 3 5/5

“[ − ]” in column of AvT means that we cannot find any feasible solution for instances within the time limit.

Out-of-sample performance. We now discuss the out-of-sample performance of the solution

generated from (MN RCUMP). We generated 150,000 scenarios from the uniform distribution

(0, ū). Table 4 presents the average objective values, the average over- and under-stocking for

(MN RCUMP). This objective value is the value of the utility function at the optimal decision.

Conclusions from the results in Table 4 are similar to those observed from Table 2 with some

differences. For example, when (r1, r2) = (0.41,0.68), the average objective values are marginally

larger than the ones with (r1, r2) = (0.25,0.75). Furthermore, the out-of-sample performance with

the larger number of partitions N = 20, or the larger ambiguity set in terms of over-stocking

and under-stocking measures does not improve for most of the instances, even though it has the

costlier solutions with an increasing N . Besides, the over-stocking increases and the under-stocking

decreases as ε increases, and the average under-stocking is significantly larger than the over-

stocking for most of the instances. Different from Table 2, when (|I|, |Ω|) = (150,2000) and ε= 0.2,

(MN RCUMP) has a comparable number of under- and over-stocking. In this case, as ε increases,
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Table 4 The average objective value (Obj), the average over-stocking (Over)(in hours) and under-stocking

(Under)(in hours) for (MN RCUMP) are reported.

(|I|, |Ω|) (100,1000) (150,2000)

(r1, r2) ε N Obj Over Under Obj Over Under

(0.41,0.68)

0.05

2 90.38 3.726 15.721 135.36 4.319 9.732

10 93.95 3.725 15.724 140.79 4.319 9.732

20 94.02 3.725 15.724 140.89 4.319 9.732

0.1

2 90.94 4.757 14.726 136.22 5.451 8.773

10 94.33 4.756 14.728 141.36 5.451 8.773

20 94.39 4.756 14.728 141.46 5.451 8.773

0.2

2 91.69 6.993 13.121 137.34 7.872 7.298

10 94.83 6.989 13.122 142.12 7.870 7.298

20 94.90 6.987 13.122 142.22 7.870 7.298

(0.25,0.75)

0.05

2 90.38 3.726 15.721 135.36 4.319 9.732

10 92.50 3.725 15.724 138.58 4.319 9.732

20 92.55 3.725 15.724 138.66 4.319 9.730

0.1

2 90.94 4.757 14.726 136.22 5.451 8.773

10 92.96 4.757 14.728 139.28 5.451 8.773

20 93.01 4.756 14.728 139.35 5.451 8.773

0.2

2 91.69 6.993 13.121 137.34 7.872 7.298

10 93.56 6.991 13.121 140.19 7.872 7.298

20 93.61 6.987 13.122 140.27 7.870 7.298

the over-stocking also increases to reach the value of the under-stocking, while for (BP RCUMP),

the under-utilization is still larger than over-utilization when ε= 0.2.

6. Concluding Remarks

In this work, we study a general robust expected utility maximization problem with a chance-

constraint over a set of a concave utility function that lies in an ambiguity set, which maximizes

the worst-case expected utility of random outcome over a set of concave functions, while satisfying

a constraint with a given probability. Methodologically speaking, we first apply a discrete approx-

imation approach to formulate the ambiguity set U and reformulate (RCUMP) as a mixed-integer

program with the help of the approximated ambiguity set and big-M techniques. We then conduct

a detailed convergence analysis to show that the discrete approximation asymptotically converges

to the true counterpart under some mild assumptions. On the computational side, we propose
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a row generation-based solution scheme to solve our chance-constrained robust expected utility

model efficiently, and show that our proposed algorithm can be converged in a finite number of

iterations. Finally, from a practical application viewpoint, we perform an extensive numerical study

for the bin packing problem and the multi-item newsvendor problem to analyze the general struc-

ture of the decisions from the decision-making framework and show the benefits of the techniques

developed in this paper for computational improvement. The numerical results show that the row

generation algorithm can significantly reduce the computational time for a certain problem size

when compared with CPLEX solver, and the solutions that are obtained from (RCUMP) achieve

a desirable out-of-sample performance.

To the best of our knowledge, this is the first attempt to combine the concept of robust decision-

making with the utility-dependent decisions and chance constraint optimization as a complemen-

tary synergistic mechanism for decision modeling under risk and uncertainty, especially when the

information of the utility function is incomplete. For future research, we suspect that the modeling

framework and resolution methods that are presented in this paper should also benefit several other

practical applications of interest, e.g., those in facility location (e.g., Luo and Mehrotra 2019),

and cloud computing (e.g., Cohen et al. 2019, Martinovic et al. 2021), etc. It is also very interest-

ing to further explore the current framework under a DRO context when the distribution of the

pay-off function f(x, ξ̃) is ambiguous but resides in an ambiguity set (e.g., moment-based set and

Wasserstein ambiguity set).
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