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This paper first studies an expected utility problem with chance constraints and incomplete information on

a decision maker’s utility function. The model maximizes the worst-case expected utility of random outcome

over a set of concave functions within a novel ambiguity set, while the underlying probability distribution

is known. To obtain computationally tractable formulations, we employ a discretization approach to derive

a max-min chance-constrained approximation of this problem. This approximation is further reformulated

as a mixed-integer program. We show that the discrete approximation converges to the true counterpart

under mild assumptions. We also present a row generation algorithm for optimizing the max-min program.

A computational study for a bin-packing problem and a multi-item newsvendor problem is conducted to

demonstrate the benefit of the proposed framework and the computational efficiency of our algorithm. We

find that the row generation algorithm can significantly reduce the computational time, and our robust

policy could achieve a better out-of-sample performance when compared with the non-robust policy and the

one without the chance constraints.

Key words : Discrete optimization, robust expected utility, chance constraint, bin packing, multi-item

newsvendor

1. Introduction

Decision-making under uncertainty frequently involves balancing the value of under- and over-

utilization of a resource, while ensuring certain service performance. For example, in healthcare

operations, random demand results in underage and overage costs (Kim and Mehrotra 2015). In

an operating room (OR) planning problem, underage and overage costs are regarded as undertime

and overtime costs in the opened ORs, respectively. In this context, the underage and overage

can be modeled using a nonlinear function, which is important since the costs may not be linear
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(Davis et al. 2014). As additional examples, for a finite duration work shift, in the case of assigning

patients to a finite number of timeslots, the random duration required to fully serve a patient

has implications on work-life balance (Guest 2002, Azeem and Akhtar 2014). Here to achieve the

work-life balance, we want to ensure that the assigned patients finish within a certain time with

a desirable probability. A similar situation arises in scheduling ORs with multiple surgeries (e.g.,

Wang et al. 2021, 2022). In a newsvendor model, especially for the current business trends of

shortening product life-cycles, it is crucial to find a solution that optimally trades off between

under- and over-stocking (Natarajan et al. 2018, Hu et al. 2019, Wang and Delage 2024). To ensure

inventory capacity, we also want a bound on the over-stocking probability. In this paper, we use

utility functions to address the value of under- and over-utilization of a resource. In the meantime,

a chance constraint paradigm can be employed to ensure certain service performance.

In practice, it is difficult to estimate an exact utility function u(·) due to the absence of precise

and comprehensive explanations regarding human behavior, while crude estimated approaches

might be available (see Chajewska et al. 2000, Hu and Mehrotra 2015, Hu et al. 2018, Armbruster

and Delage 2015, and references therein). Therefore, for such problems it is prudent to assume

that the utility function u is unknown, and specify a model over an ambiguity set U that allows

a family of utility functions based on their shape and properties such that the decision-making

under uncertainty could balance the implications of under- and over-utilization. In the following, we

will propose a general modeling framework to address such an important class of decision-making

problems with incomplete information on the utility function.

1.1. Modeling Framework

The decision-making framework maximizes the worst-case expected utility of random outcomes

over a set of concave functions, with chance constraints. We consider the functions that first

increase and then decrease, which suitably model the situations described above. This framework

is novel since, for the first time, it combines the concept of robust decision making and chance

constraint optimization as a complementary synergistic mechanism for decision modeling under

risk and uncertainty. Specifically, we consider the robust utility maximization (RUM) problem with

chance constraints, represented as

(RUM) maximize
x∈X

minimize
u∈U

∑
j∈J

E[u(fj(x, ξ̃))], (1a)

subject to PQ

(
fj(x, ξ̃)≤ tj

)
≥ 1− ε, ∀j ∈J , (1b)

where X :=
{
x := (x1,x2)∈Rn1 ×Nn2

∣∣Ax≤ d}, n := n1 +n2, and A∈Rm×n, d∈Rm. We assume

that X is a non-empty compact set. u(·) : R 7→ [0,1] is a first increasing then decreasing concave

utility function and lies in an ambiguity set U . We define the set U by using functional bounds
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on the utility and an additional condition that is specified by using a reference utility function.

Q denotes a joint distribution of random vector ξ̃ := (ξ̃1, · · · , ξ̃n)> ∈ Ξ. fj(x, ξ̃) : X × Ξ 7→ R is a

measurable random function for j ∈ J := {1, · · · , |J |}, and | · | is the cardinality of a set. t :=

{t1, · · · , t|J |} ∈ R|J |, and ε ∈ [0,1] is a given upper bound on the allowed probability of violation.

The objective of (RUM) is to maximize the worst-case total expected utility. Chance constraints

(1b) require that the constraints are satisfied with a given probability 1−ε. In this paper, we assume

that the probability distribution of ξ̃ has finite support (ξ1, · · · ,ξ|Ω|) such that P(ξ̃= ξω) = pω for

ω ∈Ω := {1, · · · , |Ω|}, where
∑
ω∈Ω

pω = 1 and pω ≥ 0 for ω ∈Ω.

1.2. Mathematical Formulations of Illustrative Examples

As discussed before, the model studied in this paper is motivated by many applications that involve

balancing costs resulting from random overage and underage. The number of patients assigned

to a clinician for service, or the number of surgeries assigned to an OR can be thought of as a

bin-packing problem with each item having a random size. We formally describe this model below,

followed by a description of a multi-item newsvendor problem.

Bin Packing with Chance and Utility. Let I := {1, · · · , |I|} denote a set of items and

J := {1, · · · , |J |} denote a set of homogeneous bins. We assign |I| items with random size ξ̃ :=

(ξ̃1, · · · , ξ̃|I|)> to |J | bins. We use ξωi to denote the size of item i∈ I under scenario ω ∈Ω, and cj

to represent the capacity of bin j ∈J .

We define a binary variable xij such that xij = 1 if item i ∈ I is assigned to bin j ∈ J , and

xij = 0 otherwise. The bin packing robust utility maximization (BP-RUM) problem is formulated

as follows:

(BP-RUM) maximize
x∈{0,1}|I||J |

minimize
u∈U

∑
j∈J

E[u(
∑
i∈I

ξ̃ixij − cj)] (2a)

subject to PQ

{∑
i∈I

ξ̃ixij − cj ≤ 0

}
≥ 1− ε, ∀j ∈J , (2b)∑

j∈J

xij = 1, ∀i∈ I. (2c)

For the (BP-RUM), the objective function (2a) is to maximize the worst-case total expected utility

of over- and under-utilization. Constraints (2b) require that the sum of item sizes assigned to bin

j is less than the capacity of bin j with a probability 1− ε. Constraints (2c) ensure that each item

is assigned to exactly one bin.

Multi-Item Newsvendor with Chance and Utility. The multi-item newsvendor robust

expected utility problem is to decide the order quantities for each item with a random demand, so

as to maximize the worst-case expected utility of the under- and over-stocking. More specifically,
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let J := {1, · · · , |J |} denote the set of items. We let the inventory capacity t := {t1, · · · , t|J |},

and the random demand of items ξ̃ := {ξ̃1, · · · , ξ̃|J |}. Under the scenarios ω ∈ Ω, the demand

ξω := {ξω1 , · · · , ξω|J |}. Each item j ∈ J has an ordering cost oj, and d is the total budget. Decision

variable x := {x1, · · · , x|J |} denotes the ordering quantities. The following formulates the multi-item

newsvendor robust expected utility problem (MN-RUM):

(MN-RUM) maximize
x∈R|J |+

minimize
u∈U

∑
j∈J

E
[
u
(
xj − ξ̃j

)]
(3a)

subject to PQ

{
xj − ξ̃j ≤ tj

}
≥ 1− ε, ∀j ∈J , (3b)

o>x≤ d. (3c)

For the (MN-RUM), the objective function (3a) is to maximize the worst-case total expected

utility of under- and over-stocking. Constraints (3b) ensure that the over-stocking is less than the

inventory capacity with the probability 1− ε. Constraint (3c) ensures that the total ordering cost

is no more than the budget.

1.3. Literature Review

In this section, we provide a review of the existing studies that are relevant to our work from

both the methodology and application aspects. More specifically, we mainly focus on the literature

about robust expected utility frameworks and two applications that are mentioned above.

1.3.1. Literature Review on Robust Expected Utility In the robust optimization (RO)

framework, the uncertain data lies in an uncertainty set (e.g., Bertsimas and Sim 2004), and the

decision-makers aim to identify the solutions that perform best under the worst-case realizations

within an uncertainty set and are robust to estimation errors. RO has been extensively developed

in terms of new methodologies and its practical applications (e.g., see recent reviews by Bertsimas

et al. 2011, Gabrel et al. 2014, Gorissen et al. 2015, Rahimian and Mehrotra 2019).

In terms of robust expected utility, Hansen and Sargent (2001) described a connection between

the max-min expected utility theory and robust-control theory. Schied (2005) defined the robust

utility function by using a set of probability measures and reformulated the terminal wealth problem

as a standard utility-maximization problem associated with a “subjective” probability measure.

Natarajan et al. (2010) studied a robust expected utility model for portfolio optimization, where

only the mean, covariance, and support information are available and the investor’s utility is

a piecewise-linear concave function. Armbruster and Delage (2015) considered the problem of

maximizing the worst-case expected utility of random outcome over a set of utility functions that

are assumed to be risk-averse, S-shaped, or prudent, and finally derived a linear program (LP)

reformulation. Haskell et al. (2016) further extended this work by considering ambiguity about
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both the decision maker’s risk preferences and the underlying distribution. They obtained an LP

reformulation under the assumption of a polyhedral distributional ambiguity set with a finite

number of vertices. For more general ambiguity sets, they proposed conservative approximations

that are based on reformulation-linearization techniques. Delage et al. (2022) considered a utility-

based shortfall risk measure where the true loss function is unavailable and proposed a preference

robust model by constructing a set of utility-based loss functions from empirical data or subjective

judgments. Luo and Mehrotra (2024) studied a service center location problem with ambiguous

utility gains upon receiving service under a distributionally robust optimization (DRO) framework,

where the elicited location-dependent utilities are assumed to be described by an expected value

and variance constraint.

Perhaps, the most relevant studies to ours are Hu and Mehrotra (2015) and Hu et al. (2018). Hu

and Mehrotra (2015) assumed that the utility function is increasing and concave. They specified the

uncertainty set by using upper bound and lower bound on the utility and marginal utility functions,

as well as auxiliary equality and inequality constraints on the utility. They used a partitioning-

based approach to formulate the problem as an LP. More recently, Hu et al. (2018) assumed

that the uncertainty set of the utility function is non-decreasing and satisfies additional boundary

and auxiliary conditions. They developed a sample average approximation (SAA) based approach

(Kleywegt et al. 2002) to solve the problem. Unlike the aforementioned two studies, our work

considers the utility-dependent decisions within a chance-constrained framework and constructs a

novel ambiguity set in the space of risk-averse utility centered at a reference utility function using

a distance metric. Moreover, our problem is to balance the value of under- and over-utilization of a

resource. This allows us to model a more general set of utility functions that are first increasing then

decreasing. In addition, the different ambiguity sets lead to different convergence analyses, Hu and

Mehrotra (2015) used probability theory to demonstrate the convergence, while our convergence

analysis relies on the convergence theory of optimization problems. Finally, we propose a row

generation algorithm with the strengthened strategy proposed by Bodur and Luedtke (2017) to

efficiently solve our problem with two practical applications.

1.3.2. Literature Review on Chance-Constrained Bin Packing Problem Chance-

constrained programs (CCPs) were first introduced by Charnes and Cooper (1959) to address

optimization problems under uncertainty, which have been widely used for various decision-making

contexts. CCPs are generally difficult to solve (e.g., Song et al. 2014), especially when the coeffi-

cients matrix is random or the chance constraints contain integer decision variables (as is shown

in our (BP-RUM) in Section 1.2). For the study of more general CCPs under different optimiza-

tion settings, we refer the interested reader to a recent review by Küçükyavuz and Jiang (2022).
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In recent years, the chance-constrained bin packing problem (CCBP) has been extensively stud-

ied, especially under the context of healthcare resources allocation (e.g., ORs and surgeries) and

cloud computing management (e.g., Hoogervorst et al. 2019, Cohen et al. 2019, Martinovic et al.

2021). For healthcare resource allocation, Deng and Shen (2016), Deng et al. (2019) and Zhang

et al. (2020) investigated a surgery scheduling problem with chance constraints to determine ORs

allocation and surgery scheduling using the stochastic programming and DRO paradigms. More

recently, Wang et al. (2021) studied a chance-constrained multiple bin packing problem with appli-

cation to ORs planning. Wang et al. (2022) further extended this work to a DRO model with joint

chance constraints with partial distribution information. Instead of minimizing the total cost or the

number of bins as in the above studies, we consider utility-dependent decisions within a chance-

constrained framework to ensure certain service performance, while balancing the implications of

under- and over-utilization of resources. Although CCBP is widely studied, to our best knowledge,

such applications under a robust expected utility framework are very rare.

1.3.3. Literature on Multi-Item Newsvendor Problem The newsvendor problem is a

fundamental operations management problem with various applications (see a recent review by

Qin et al. 2011). To determine the order quantities for multiple products, the retailers assume a

specifically known distribution of the random demand (e.g., Erlebacher 2000). However, in reality,

the true demand distribution is hardly ever known to the retailers. Leveraging recent advances in

RO, robust multi-item newsvendor problems aim to maximize the worst-case expected operating

revenue over all possible demand realizations within an uncertainty set (e.g., Ardestani-Jaafari and

Delage 2016, Hu et al. 2019, Zhang et al. 2021). For most real-world applications, the solutions of

RO models are generally over-conservative, thus DRO multi-item newsvendor problems have been

extensively explored in recent years, where one seeks a more robust solution that performs best

under the worst-case demand distribution within an ambiguity set of distributions (e.g., Hanasu-

santo et al. 2015, Natarajan et al. 2018, Rahimian et al. 2019, Chen et al. 2020, Wang and Delage

2024). Very few studies attempt to use alternative risk preferences within the expected utility

framework (Wang et al. 2012, Choi and Ruszczyński 2011), which assume that the distributions of

product demands and the utility function are exactly known in advance. However, it is very difficult

to derive the exact representation of the utility function in practice. This also further motivates

us to model the problem under a robust expected utility framework using a novel ambiguity set of

utility functions.

1.4. Contributions of This Paper

This paper addresses the modeling framework and resolution method of a general chance-

constrained robust expected utility problem over a set of concave utility functions that lie in a novel
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ambiguity set. Under mild conditions, we derive a mixed-integer program (MIP), and conduct the

convergence analysis for (RUM) that relies on the convergence theory of optimization problems,

and also develop a row generation-based solution scheme to solve the resulting problem efficiently.

The contributions of this paper are summarized as follows:

• We construct a novel ambiguity set in the space of risk-averse utility centered at a reference

utility function using a distance metric. To model the novel utility ambiguity set U , we employ a

discretization scheme where piecewise-linear approximations with N partitions are used. In doing

so, we are able to reformulate (RUM) as a tractable MIP with the help of a big-M technique. Then

a convergence analysis is provided to show that the discrete approximation converges to the true

counterpart under some mild assumptions. To the best of our knowledge, this is the first attempt

to study a general robust expected utility problem with chance constraints when the information

of the utility function is incomplete.

• We propose an efficient row generation-based solution scheme to solve the robust expected

utility model. More specifically, we represent (RUM) as a max-min formulation and investigate the

row generation approach for solving the problem. The algorithm considers a master problem as a

chance-constrained problem and a subproblem. We also strengthened the row generation algorithm

by using the strategy proposed by Bodur and Luedtke (2017).

• We perform an extensive numerical study for the bin-packing problem using real data from

surgery planning and the multi-item newsvendor problem to analyze the general structure of the

decisions from the decision-making framework and show the benefits of the techniques developed in

this paper for computational improvement. We find that the row generation algorithm significantly

outperforms a commercial solver. Furthermore, the average objective value is mainly unchanged

after the number of partitions reaches 10 for (BP-RUM) and (MN-RUM). Therefore, N = 10 can

be used to obtain approximate solutions with reasonable solution time. We also evaluate the out-

of-sample performance of the solutions generated from (BP-RUM) and (MN-RUM). The results

show the advantages of (BP-RUM) and (MN-RUM) when compared with the ones without the

chance constraints and their determinant counterparts.

1.5. Organization

The remainder of this paper is organized as follows. Section 2 gives a definition of ambiguity set U

and formulates (RUM) as a MIP using a discrete approximation of U and big-M techniques. We

then present convergence analysis to show that the discrete approximation converges to the true

counterpart under some mild assumptions in Section 3. In Section 4, we present a row generation

algorithm to solve (RUM). Section 5 reports the computational results of the robust expected utility

model for the bin-packing problem and the multi-item newsvendor problem. Section 6 concludes

the paper with a summary of the important findings. The Online Appendix includes all the proofs

of lemmas and theorems stated in the paper.
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2. Model Formulation

Section 2.1 introduces the definition of the ambiguity set U and examples for the risk-averse

utility functions. Using a discretization scheme, we then reformulate the robust expected chance-

constrained problem as an MIP in Section 2.2.

2.1. The Ambiguity Set Definition

We assume the function fj(x, ξ̃)∈Θ := [−θ1, θ2] for all x∈X , ξ̃ ∈Ξ, and j ∈J , where θ1, θ2 ∈R+.

We construct the ambiguity set U such that every function u in U satisfies these (and later)

properties.

u(−θ1) = 0, u(0) = 1, u(θ2) = 0. (4)

We use function ū and u as the bounds of u, that is to say,

u(a)≤ u(a)≤ ū(a), a∈Θ. (5)

We construct the following ball in the space of risk-averse utility centered at a reference utility

function u0:

d(u,u0)≤ b 1
p , (6)

where radius b is a positive constant and d(u,u0) is the distance between two functions u and u0

which is defined as the Lp-norm of u−u0, i.e.,

d(u,u0) =

(∫ θ2

−θ1
|u(a)−u0(a)|p da

) 1
p

.

Constraint (6) ensures that the utility functions are real-valued integrable in the domain using u0

as a reference, with a pre-specified bound. Let U ′ be the set of all first increasing then decreasing

concave utility functions defined on Θ. We have the following ambiguity set U ,

U :=
{
u∈U ′

∣∣ u satisfies the conditions in the constraints (4)− (6)
}
.

This utility set is different from the one used in Hu and Mehrotra (2015), in the use of constraint

(6). The set used in Hu and Mehrotra (2015) is specified using constraints linear in u, and u

is non-decreasing. Here we are allowing u to increase as well as decrease. In addition, Hu and

Mehrotra (2015) used limited preference queries to define an ambiguity set U . In Section 2.1.1,

we provide how to assess the reference utility function with the help of multiple methods that are

typically used in the literature. This allows us to model a more flexible ambiguity set. Moreover, our

distance-based ambiguity set contains all utility functions that are close to a most likely function
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(i.e., the reference utility function). The decision-maker could adjust the radius of the ambiguity

set to control the degree of conservatism of the expected utility problem. While the confidence of

the uncertainty set is also of high theoretical relevance, the main goal of our paper is practical

relevance. Thus, we primarily focus on providing reformulations for our model with the use of a

discretization scheme. We leave the statistical performance guarantee open for further research.

2.1.1. Approaches for Assessing the Ambiguity Set In the following, we provide some

approaches that could be used to assess the parameters in U . For the bounds on u, we may use

information from parametric approaches to specify them. Let the bounds on u be derived from the

power utility function (see, e.g., Brunello 2002, Holt and Laury 2002), which are given by

ur(a) =


(
a+ θ1

θ1

)1−r

, a∈ [−θ1,0],(
θ2− a
θ2

)1−r

, a∈ (0, θ2],

(7)

where parameter r is the constant coefficient of relative risk aversion. Holt and Laury (2002)

suggested that one could set r ∈ [0.41,0.68] for a risk-averse decision-makers. Thus, we use u0.41(a)≤

u(a)≤ u0.68(a) to specify a risk-averse decision maker’s utility set. Figure 1 gives the upper bound

and lower bound of the utility function when θ1 = θ2 = 1:

-1 -0.5 0 0.5 1
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u(a)
ū(a)

Figure 1 The upper and lower bounds of utility functions when θ1 = θ2 = 1.

Several approaches have been developed in the literature that can be used to assess the reference

utility function, such as discrete choice models (Train and Weeks 2005), the value equivalence

method, and the certainty equivalence method (Farquhar 1984). Nowadays, some studies have
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used the new proposals based on machine learning (ML) methods to evaluate the classical utility

function, which showed a high predictive capacity of ML methods (see, e.g., Wang et al. 2020,

Mart́ın-Baos et al. 2021). In practice, one can use more than one assessment procedure to evaluate

the reference utility function, which is helpful in choosing appropriate utility assessment procedures

for particular decision situations (Farquhar 1984).

2.2. Reformulation of (RUM)

We present a reformulation for (RUM) associated with a set UN , which is defined using a discretiza-

tion of the continuous problem. Let N be the number of partitions, A(N) = {a0, · · · , al, · · · , aN} be

a set of break points such that a0 < · · ·< al < · · ·< aN ; a0 =−θ1, al = 0; and aN = θ2. We assume

that if N1 < N2, then A(N1) ⊂ A(N2). We define the following piecewise linear approximation

functions of u and ū:

uN(a) =
N−1∑
k=0

(
u(ak+1)−u(ak)

ak+1− ak
a+

ak+1u(ak)− aku(ak+1)

ak+1− ak

)
1(ak ≤ a< ak+1), (8)

ūN(a) =
N−1∑
k=0

(
ū(ak+1)− ū(ak)

ak+1− ak
a+

ak+1ū(ak)− akū(ak+1)

ak+1− ak

)
1(ak ≤ a< ak+1), (9)

where 1(·) represents the indicator function, which returns 1 if the clause inside is correct, and

otherwise 0.

Following Figure 1, Figure 2 gives the approximation of bounds of utility functions when the

number of partitions N = 20.
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ū(a)
uN (a)
ūN (a)

Figure 2 Approximations of bounds of utility functions when N = 20.
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Let the ambiguity set

UN :=

u∈U ′

∣∣∣∣∣∣∣
u satisfies the conditions in constraint (4), uN ≤ u≤ ūN , and
N−1∑
k=0

(u0(ak)−u(ak))
p

(ak+1− ak)≤ b,

 ,

and

πN(x) = minimize
u∈UN

∑
j∈J

E[u(fj(x, ξ̃))], (10)

then Lemma 1 below gives a reformulation of πN(x) for any given x∈X .

Lemma 1. For a given x∈X , problem (10) is equivalent to the following reformulation:

minimize
θ,α,β

∑
j∈J

∑
ω∈Ω

pω(fj(x,ξ
ω)αjω +βjω) (11a)

subject to (ak+1− ak−1)θk ≥ (ak+1− ak)θk−1 + (ak− ak−1)θk+1, ∀k ∈ {1, · · · ,N − 1}, (11b)

θk ≤ ūN(ak), ∀k ∈ {0, · · · ,N}, (11c)

θk ≥ uN(ak), ∀k ∈ {0, · · · ,N}, (11d)

||Q(θ−u0)||p ≤ 1, (11e)

akα
jω +βjω − θk ≥ 0, ∀k ∈ {0, · · · ,N}, j ∈J , ω ∈Ω,

(11f)

βjω ≥ 0, ∀j ∈J , ω ∈Ω, (11g)

where θ0 = 0, θl = 1 and θN = 0, Q= diag
(

(a1−a0
b

)
1
p , · · · , (aN−aN−1

b
)

1
p

)
is a diagonal matrix, and

θ−u0 := (θ0−u0(a0), · · · , θN−1−u0(aN−1))>.

Note that the chance constraints can be rewritten as

fj(x,ξ
ω) + (Mjω − tj)zjω ≤Mjω, ∀j ∈J , ω ∈Ω, (12a)∑

ω∈Ω

pωzjω ≥ 1− ε, ∀j ∈J , (12b)

zjω ∈ {0,1}, ∀j ∈J , ω ∈Ω, (12c)

where Mjω is a large constant such that constraint (12a) still holds when zjω = 0 for j ∈J , ω ∈Ω.

We use the coefficient strengthening procedure inspired from Song et al. (2014) to obtain a tight

value of Mjω. For all j ∈J , ω ∈Ω,

Mjω ≥ M̄jω := maximize
x∈Rn

{
fj(x,ξ

ω)
∣∣∣P{fj(x, ξ̃)− tj ≤ 0

}
≥ 1− ε

}
.

For any j ∈J , ω, k ∈Ω, let

mjω(k) := maximize
x∈Rn

{
fj(x,ξ

ω)
∣∣∣fj(x,ξk)≤ tj} .
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We sort mjω(k) in a non-decreasing order such that mjω(k1)≤ . . .≤mjω(kN). Then mjω(kq+1) is

an upper bound for M̄jω, if q= max
{
l :
∑l

i=1 pki ≤ ε
}

.

Using the strong duality theory for the minimization problem (11), we obtain a reformulation of

(RUM) with the ambiguity set UN in Theorem 1.

Theorem 1. The problem

maximize
x∈X

minimize
u∈UN

∑
j∈J

E[u(fj(x, ξ̃))] (13a)

subject to (1b),

is equivalent to the following problem:

maximize
x∈X ,z,µ,γ1,γ2,δ,η,λ

N∑
k=0

(uN(ak)γ2k− ūN(ak)γ1k) +
N−1∑
k=0

ηku0(ak)−λ (14a)

subject to pωfj(x,ξ
ω)−

N∑
k=0

akδkjω = 0, ∀j ∈J , ω ∈Ω, (14b)

pω −
N∑
k=0

δkjω ≥ 0, ∀j ∈J , ω ∈Ω, (14c)

ηk =−µk(ak+1− ak−1) +µk+1(ak+2− ak+1)

+µk−1(ak−1− ak−2) + γ1k− γ2k +
∑
j∈J

∑
ω∈Ω

δkjω, ∀k ∈ {1, · · · ,N − 1}, (14d)

||Q−1η||∗ ≤ λ, (14e)

fj(x,ξ
ω) + (mjω(kq+1)− tj)zjω ≤mjω(kq+1), ∀j ∈J , ω ∈Ω, (14f)∑

ω∈Ω

pωzjω ≥ 1− ε, ∀j ∈J , (14g)

µ,γ1,γ2,δ≥ 0, (14h)

zjω ∈ {0,1}, ∀j ∈J , ω ∈Ω, (14i)

where µN = µ0 = 0, a−1, aN+1 ∈R, and || · ||∗ is the dual norm of || · ||p.

In the following, Corollary 1 and Corollary 2 give the final reformulations of (BP-RUM) and

(MN-RUM), respectively.

Corollary 1. Based on Theorem 1, the final reformulation of (BP-RUM) under the ambiguity

set UN can be represented as follows:

maximize
x,z,µ,γ1,γ2,δ,λ

N∑
k=0

(uN(ak)γ2k− ūN(ak)γ1k) +
N−1∑
k=0

ηku0(ak)−λ (15a)

subject to (2c), (15b)
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pω

(∑
i∈I

ξωi xij − cj

)
−

N∑
k=0

akδkjω = 0, ∀j ∈J , ω ∈Ω, (15c)

pω −
N∑
k=0

δkjω ≥ 0, ∀j ∈J , ω ∈Ω, (15d)

ηk =−µk(ak+1− ak−1) +µk+1(ak+2− ak+1)

+µk−1(ak−1− ak−2) + γ1k− γ2k +
∑
j∈J

∑
ω∈Ω

δkjω, ∀k ∈ {1, · · · ,N − 1}, (15e)

||Q−1η||∗ ≤ λ, (15f)∑
i∈I

ξωi xij − cj +mjω(kq+1)zjω ≤mjω(kq+1), ∀j ∈J , ω ∈Ω, (15g)∑
ω∈Ω

pωzjω ≥ 1− ε, ∀j ∈J , (15h)

µ,γ1,γ2,δ≥ 0, (15i)

xij, zjω ∈ {0,1}, ∀i∈ I, j ∈J , ω ∈Ω, (15j)

where µN = µ0 = 0, a−1, aN+1 ∈ R, and mjω(k) = maximize
xij∈{0,1}

{∑
i∈I

ξωi xij − cj
∣∣∣ ∑
i∈I

ξki xij − cj ≤ 0

}
, for

j ∈J , k,ω ∈Ω.

Corollary 2. Based on Theorem 1, we can reformulate (MN-RUM) with the ambiguity set

UN as the following problem:

maximize
x,z,µ,γ1,γ2,δ,λ

N∑
k=0

(uN(ak)γ2k− ūN(ak)γ1k) +
N−1∑
k=0

ηku0(ak)−λ (16a)

subject to (3c), (16b)

pω(xj − ξωj )−
N∑
k=0

akδkjω = 0, ∀j ∈J , ω ∈Ω, (16c)

pω −
N∑
k=0

δkjω ≥ 0, ∀j ∈J , ω ∈Ω, (16d)

ηk =−µk(ak+1− ak−1) +µk+1(ak+2− ak+1)

+µk−1(ak−1− ak−2) + γ1k− γ2k +
∑
j∈J

∑
ω∈Ω

δkjω, ∀k ∈ {1, · · · ,N − 1}, (16e)

||Q−1η||∗ ≤ λ, (16f)

xj − ξωj + (mjω(kq+1)− tj)zjω ≤mjω(kq+1), ∀j ∈J , ω ∈Ω, (16g)∑
ω∈Ω

pωzjω ≥ 1− ε, ∀j ∈J , (16h)

x,µ,γ1,γ2,δ≥ 0, (16i)

zjω ∈ {0,1}, ∀j ∈J , ω ∈Ω, (16j)

where µN = µ0 = 0, a−1, aN+1 ∈R, and mjω(k) = maximize
xj∈R+

{
xj − ξωj

∣∣∣xj − ξkj ≤ tj}, for j ∈J , k,ω ∈
Ω.
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3. Convergence Analysis

In this section, we show that the optimal solutions obtained by using the discrete approximation

of the set U converge to the true optimal solutions as N increases to ∞. Throughout this section,

we make the following assumptions, which are also commonly used in the literature.

Assumption 1. (i) fj(x, ξ̃) is linear in an open neighborhood of X for all j ∈ J ; (ii) U is a

non-empty set, and function u ∈ U has bounded derivative almost everywhere; (iii) ū, u and u0

are continuous concave functions.

Note that uN and ūN are the approximation functions of u and ū based on the A(N). Also,

under the above assumption, uN and ūN uniformly converge to u and ū, respectively. In the

following, under Assumption 1, we first show that π(x) := minimize
u∈U

∑
j∈J E[u(fj(x, ξ̃))] and πN(x)

are continuous concave functions.

Lemma 2. π(x) and πN(x) are continuous concave functions on X .

The following Lemma 3 to Lemma 7 give some preliminary results, which are needed to prove

the convergence of πN(x) to π(x).

Lemma 3. All u∈UN are equicontinuous.

Lemma 4. (Arzelà–Ascoli Theorem in Green and Valentine (1961)) Let K be a compact metric

space, with metric dK(p, p′), and let C(K) denote the space of real (or complex) valued continuous

functions on K. If {fn}n∈N is a sequence in C(K) obeying:

• {fn}n∈N is pointwise bounded, and

• {fn}n∈N is equicontinuous,

then, the sequence {fn}n∈N contains a uniformly convergent subsequence.

Lemma 5. For any sequence {uN ∈UN}, there exists a subsequence {uNK} that uniformly con-

verges to û∈U .

Lemma 6. For any u∈U , there exists a sequence uN ∈UN such that u= lim
N→∞

uN .

We state Theorem 2.3 in Alvarez-Mena and Hernández-Lerma (2005) in the following lemma for

completeness, which gives some convergence conditions of πN(x).

Lemma 7. For x ∈ X , let {uN} be a sequence of minimizers of {πN(x)}. Suppose (i) a

subsequence {uNk} of {uN} converges to u ∈ U ; (ii) lim
k→∞

inf πNk(x) ≥ π(x); (iii) for any

u ∈ U , there exists a sequence uN ∈ UN such that u = lim
N→∞

uN and
∑

j∈J E[u(fj(x, ξ̃))] =

lim
N→∞

∑
j∈J E[uN(fj(x, ξ̃))]. Then u is optimal for {π(x)}. Furthermore, πNk(x) converges to

{π(x)}.
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Based on Lemma 5 and 7, we shows that πN(x) converges to π(x) for all x∈X in Lemma 8 .

Lemma 8. πN(x)→ π(x) as N →∞ for all x∈X .

Referring to theorem 5.3 in Shapiro et al. (2009), the following Lemma gives some convergence

conditions of problem (13).

Lemma 9. Let yN and ZN be the optimal objective value and the set of optimal solutions of

problem (13) and y∗ and Z∗ be those of (RUM). Denote the deviation of sets ZN and Z∗ as

D(ZN ,Z
∗) := maxx1∈ZN minx2∈Z∗ ||x1 − x2||. Suppose (i) X is a non-empty compact set; (ii) the

function π(·) is continuous on X; and (iii) πN(·) uniformly converges to π(·) on X as N →∞.

Then, yN → y∗ and D(ZN ,Z
∗)→ 0 as N →∞.

Theorem 2 shows that the optimal solutions of problem (13) converge to the true optimal solution

of (RUM) in the limit.

Theorem 2. Let yN and ZN be the optimal objective value and the set of solutions of problem

(13), and y∗ and Z∗ be the optimal objective value and the set of solutions of (RUM). Then yN → y∗

and D(ZN ,Z
∗) := maximize

b1∈ZN
minimize
b2∈Z∗

||b1− b2|| → 0 as N →∞.

4. A Row Generation Solution Scheme

Note that solving the reformulation of (RUM) by an off-the-shelf commercial solver (e.g., CPLEX)

directly might be time-consuming, which will be further confirmed by our numerical study in

Section 5. Instead, in this section we propose a row generation algorithm as a solution method for

our (RUM).

Based on Lemma 1, (RUM) can be further approximated by the following max-min problem:

maximize
x∈X ,ρ∈P

ρ (17a)

subject to (ρ,x)∈Z, (17b)

where set P := [0, |J |], Z = {(ρ,x)∈R×Rn : ρ≤Z(x)} , and Z(x) is given as follows:

(SP) Z(x) = minimize
θ,α,β

∑
j∈J

∑
ω∈Ω

pω
(
fj(x,ξ

ω)αjω +βjω
)

subject to (11b)− (11g).

Give x∈X , since Z(x) is the equivalent formulation of problem πN(x), Z(x) is based on problem

(11). Moreover, we rewrite the chance constraints as constraints (14f) and (14g) to obtain the

master problem. We then define the master problem as follows:

(MP) maximize
x∈X ,z,ρ∈P

ρ
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subject to (14f), (14g), (14i),

(ρ,x)∈ Ẑ,

where Ẑ is a polyhedral relaxation of Z. If we use Ẑ =Z, then (MP) is an equivalent reformulation

of (17). In the row generation algorithm, Ẑ is gradually improved by adding cuts defining the set

Z.

An outline of the row generation algorithm is given in Algorithm 1. The row generation solves

(MP) and (SP) iteratively until the stopping criteria are met. We let UB and LB denote the upper

and lower bound, respectively. We initialize the number of iterations ` to 0, UB to positive infinity,

and LB to negative infinity. In each iteration, we update ` := `+ 1 and solve the linear relaxation

of (MP) to obtain an optimal solution (x`,z`, ρ`) and optimal objective value uobj`. Recall that

x= (x1,x2)∈Rn1 ×Nn2 , thus, x` = (x`1,x
`
2). If the objective value uobj` is larger than the current

lower bound: when (x`2,z
`) is integer, we solve (SP) with x fixed to be x` to attain an optimal

solution (θ`,α`,β`) and optimal objective value lobj`. If uobj` is larger than lobj`, we add the

cut ρ≤
∑
j∈J

∑
ω∈Ω

pω(fj(x,ξ
ω)αjω` + βjω`) to the (MP), else update LB if necessary. When (x`2,z

`)

is fractional, we update UB if necessary. We terminate the algorithm when the stopping criteria

are satisfied, and return the optimal value LB and the optimal solution (x∗,z∗, ρ∗). The following

result from Kelley (1960) shows that Algorithm 1 can find a solution of (RUM) in a finite number

of iterations under certain conditions.

Theorem 3. Let v := (θ,α,β) and V := {v | (11b)− (11g)}. We also let t := (x, ρ), T :=X ×P,

and g(t,v) := ρ−
∑
j∈J

∑
ω∈Ω

pω(fj(x,ξ
ω)αjω + βjω). We assume that T ×V is compact and g(t,v) is

continuous on T × V. If there exists an oracle that solves (MP) and (SP) to optimality at each

iteration, then Algorithm 1 terminates within finitely many iterations. If UB<+∞, then Algorithm

1 obtains a solution (x∗,z∗, ρ∗) of a desired accuracy at termination.

The row generation algorithm could be further improved by a strategy proposed by Bodur and

Luedtke (2017). Specifically, the linear relaxation of (MP) is solved using row generation. At each

iteration, the linear relaxation is solved, and the cut (18) violated by the current linear relaxation

solution is added to the linear relaxation. This loop is repeated until no more violated cuts are

found or some stopping criteria are met. Then, all the cuts found by far are added to the initial

(MP) formulation of the row generation algorithm. Our numerical study indicates that this strategy

can improve the performance of the row generation method for most types of instances.

5. Numerical Study

We numerically evaluate the performance of our robust utility maximization model and the pro-

posed row generation solution scheme with the help of the bin packing problem in Section 5.1 and

the multi-item newsvendor problem in Section 5.2.
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Algorithm 1: Row Generation Algorithm

1 Initialize The number of iteration `= 0, UB = +∞, LB =−∞, a tolerance ε′ > 0, and a small

number τ > 0.

2 Initialize N = {o}, where o is the root node with the LP relaxation of (MP).

3 while (N is nonempty and UB−LB > ε′) do
4 Select a node o∈N , N ←N/{o}.

5 Solve the linear relaxation of (MP) at the node o to obtain the optimal solution (x`,z`, ρ`) and

objective value uobj`. `= `+ 1.

6 if uobj` > LB then
7 if (x`2,z

`) is integer then
8 Fix x to be x`, and solve (SP) and obtain an optimal solution (θ`,α`,β`) and objective

value lobj`.

9 if uobj`− lobj` > τ then
10 Add the following cut

ρ≤
∑
j∈J

∑
ω∈Ω

pω(fj(x,ξ
ω)αjω` +βjω`) (18)

to (MP).
11 end

12 else
13 Update LB := max{LB, lobj`}.

14 end
15 end

16 else
17 Update UB := min{UB, uobj`}.

18 Branch, resulting in nodes o∗ and o∗∗, N ←N ∪{o∗, o∗∗}.
19 end
20 end
21 end

22 return LB and its corresponding optimal solution (x∗,z∗, ρ∗).

5.1. Bin Packing Robust Expected Utility Problem

We use the real data from a surgery planning problem to show the performance of the algorithm

proposed in Section 4 and the general structure of the decision made from (BP-RUM). In the

context of the surgery planning problem, the bins are ORs, items are surgeries, and capacity

denotes the OR time limit. We describe implementation details in Section 5.1.1 and present the

computational results in Section 5.1.2. Section 5.1.3 shows the out-of-sample performance.

5.1.1. Implementation Details We use historical surgery duration data from a large public

hospital in Beijing, China from January 2015 to October 2015, in which 5,721 historical observations

of surgery duration are employed to generate our samples (see Wang et al. (2021) for a more detailed

description). More specifically, we use log-normal distribution with the mean and the standard
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deviation of the surgery duration to generate surgery duration samples and round the samples to

the nearest 15 minutes. Equal probabilities are used as in the SAA method. The daily time limit cj

is set to 10 hours for j ∈J . Nine major surgery types are performed in a day and the percentage for

each surgery type are used to calculate the number of surgeries for each surgery type. We assign 12

surgeries (|I|= 12) to four ORs (|J |= 4) a day. The number of scenarios is set to be 30. The bound

support Θ = [−10,14], and the power utility functions (7) are used as the bounds. We consider the

number of partitions N ∈ {4,10,20}, b ∈ {1,2,5} and ε ∈ {0.1,0.2}. u0.41(a) and u0.68(a) are used

as the lower bound and upper bound of the utility function, respectively. We also let the reference

utility function be the power utility function with r = 0.55. For each sample size, five instances

were generated. Therefore, all the performance is reported over five instances on average.

All experiments are conducted on a laptop with Intel(R) 2.80 GHz processor and 16 GB RAM.

We implement the algorithm and models in the C programming language using IBM CPLEX solver,

version 12.71 callable libraries. We set the runtime limit as two hours and the relative optimality

gap tolerance as 0.5%. For instances that could not be solved to optimality, we give the average

relative optimality gap, where the gap is calculated as (UB−LB)

UB
∗ 100, and UB and LB are the

upper and lower bound, respectively. We report the average CPU solution time (in seconds) for

the instances that are solved to optimality within the runtime limit.

5.1.2. Computational Results We first provide the computational performance of the row

generation algorithm (i.e., Algorithm 1) for solving (BP-RUM), then present the objective values

of (BP-RUM) associated with the set UN .

Performance of row generation algorithm. The performances of the following three variants

are compared:

• CPX: refers to using CPLEX to directly solve MIP reformulation of (BP-RUM).

• RG: refers to using the row generation algorithm (Algorithm 1) to solve (BP-RUM).

• RG stren: refers to using the row generation algorithm (Algorithm 1) with the strategy pro-

posed by Bodur and Luedtke (2017), which is described in Section 4. When solving the linear

relaxation of (MP), we set the maximum number of iterations to be 5.

Table 1 reports the average CPU solution time for solving (BP-RUM), the subproblem (SP),

and the linear relaxation of (MP), the average number of cuts (18), and the number of instances

that are solved to optimality over the five generated instances.

We observe from Table 1 that, RG significantly outperforms CPX in terms of the average solution

time for all types of instances, and RG stren has a better performance than RG for most types

of instances. Specifically, RG saves more than 90% solution time when compared with CPX, and

RG stren saves more than 28% solution time when compared with RG. We also observe that CPX
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Table 1 The average CPU (in seconds) solution time for solving (BP-RUM) (AvT), the subproblem

(SP) (AvT-Z), and the linear relaxation of (MP) (AvT-L), the average number of cuts (cuts), and the

number of solved instances from the five instances (solved) are reported.

b ε N
CPX RG RG stren

AvT solved AvT AvT-Z cuts solved AvT AvT-Z AvT-L cuts solved

1

0.1

4 6,555[0.6] 1/5 71 22 950 5/5 43 12 0.4 959 5/5

10 [3.1] 0/5 208 97 1,639 5/5 99 48 0.3 1,636 5/5

20 [3.2] 0/5 1,039 917 1,640 5/5 528 458 2.7 1,615 5/5

0.2

4 [5.4] 0/5 98 31 2,077 5/5 98 25 0.3 2,081 5/5

10 [5.5] 0/5 290 111 3,753 5/5 278 104 0.4 3,517 5/5

20 [5.5] 0/5 2,506[0.6] 2,304 3,400 4/5 1,818 1,621 3.4 3,329 5/5

2

0.1

4 5,285[0.8] 1/5 83 24 939 5/5 51 13 0.3 1,041 5/5

10 [2.6] 0/5 237 108 1,715 5/5 115 59 0.5 1,620 5/5

20 [3.3] 0/5 816 709 1,679 5/5 454 391 2.3 1,674 5/5

0.2

4 [5.5] 0/5 73 23 1,985 5/5 129 26 0.3 2,191 5/5

10 [5.4] 0/5 266 111 3,629 5/5 265 105 0.4 3,460 5/5

20 [5.5] 0/5 2,065 1,833 3,511 5/5 2,415 2,149 4.4 3,611 5/5

5

0.1

4 [3.6] 0/5 70 20 927 5/5 43 11 0.3 955 5/5

10 [3.7] 0/5 138 71 1,653 5/5 101 46 0.3 1,653 5/5

20 [4.2] 0/5 1,164 1,029 1,798 5/5 470 399 2.1 1,692 5/5

0.2

4 [5.5] 0/5 380 99 2,355 5/5 92 25 0.3 2,029 5/5

10 [5.6] 0/5 1,202 470 3,680 5/5 415 123 0.4 3,876 5/5

20 [5.7] 0/5 4,318[0.7] 3,897 2,745 2/5 3,039 2,726 5.1 3,521 5/5

“[ · ]” in column of AvT means the average relative optimality gap (%) for instances that cannot be solved

to optimality within the time limit.

can only solve 2 out of the 90 instances to optimality, RG can solve 86 instances to optimality,

whereas, RG stren solves all of these instances to optimality. We see from Table 1 that the average

solution time for the row generation algorithm increases dramatically as the number of partitions

N increases. The required solution times did not change significantly when we consider different

sizes of the ambiguity set or different ε values.
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The average objective values. Figure 3 presents the average objective values of (BP-RUM)

as the number of partitions N varies.

Figure 3 The average objective values of (BP-RUM) as the number of partitions N varies.

From Figure 3 we can see that the average objective value increases significantly when the

number of partitions N varies from 2 to 4, and the improvement of the average objective value is

not significant when the number of partitions N is larger than 4. Moreover, the average objective

value is mainly unchanged after the number of partitions reaches 10. Therefore, in this example,

we can use the number of partitions N = 10 to obtain approximate solutions of (BP-RUM).

5.1.3. Out-of-Sample Performance We now discuss the solutions in the context of data

from the OR planning problem and the out-of-sample performance of the solutions generated from

(BP-RUM). For this purpose, we generated 10,000 scenarios from the log-normal distribution. We

set the number of partitions N = 10, and b is selected using a three-fold cross-validation scheme.

Specifically, the training dataset is randomly split into three equal-sized groups. One group is used

as the validation set, and the remaining groups are used as the training set. The cross-validation

process is repeated three times. At the end of the process, the radius with the maximum average

objective value is used. In order to evaluate the influence of the chance constraints, we remove the

chance constraints from (BP-RUM) and solve the resulting problem referred to as (BP-RUM-NC).

We also share our experience in solving a determinant problem, i.e. b= 0, which is referred to as

(BP-DUM). Figure 4 presents the average number of opened ORs, the out-of-sample over-utilization
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probability, over-utilization (hour), and under-utilization (hour) for the calibrated (BP-RUM),

(BP-DUM), and (BP-RUM-NC).

(a) (b)

(c) (d)

Figure 4 The average number of opening ORs, the out-of-sample over-utilization probability, over-utilization

(hour), and under-utilization (hour) for the calibrated (BP-RUM), (BP-DUM), and (BP-RUM-NC) as

ε varies.

From Figure 4, we observe that for (BP-RUM) and (BP-DUM), the average out-of-sample over-

utilization probability is smaller than the predefined ε value, which suggests that these solutions

deliver reasonable quality-of-service performance. Moreover, the average under-utilization is signif-

icantly larger than the over-utilization. This can be explained by the fact that in order to obtain

a desirable over-utilization probability, one needs to open more ORs and as a result, it will have a

larger under-utilization. And when ε further increases, the optimal number of opening ORs remains

unchanged, thus under and over-utilization are unchanged. The results from Figure 4 also show that
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compared with (BP-RUM), (BP-DUM) has slightly smaller over-utilization probability values and

over-utilization. However, (BP-DUM) has a larger average number of opening ORs, which results in

a significantly larger under-utilization. In the meantime, the under-utilization and over-utilization

are less than an hour when using the solution obtained from (BP-RUM-NC). Nevertheless, the

average over-utilization probability is larger than 0.3. Overall, (BP-RUM) can meet the desired

out-of-sample chance satisfaction ε with reasonable over- and under-utilization.

5.2. Multi-Item Newsvendor Robust Expected Utility Problem

We present computational results of (MN-RUM). We follow a similar parameter setting for the

multi-item newsvendor problem in recent work by Chen et al. (2020). For each scenario ω and item

j, we randomly generate ξωj from a uniform distribution on [0, ūj], where ūj is randomly generated

from a uniform distribution on [0,100]. The inventory capacity tj is randomly generated from a

uniform distribution on [10,20]. We let d = 50|J |, and oj = 1, for j ∈ J . The number of items

|J | = 100 and the number of scenarios |Ω| = 1000. For other implementation details, we use the

same settings as in Section 5.1.1.

5.2.1. Computational Results We first show the performance of the row generation algo-

rithm (Algorithm 1) for solving (MN-RUM), then we discuss the out-of-sample performance for

(MN-RUM).

Performance of row generation algorithm. We present the performance of the methods

described in Section 5.1.2. Table 2 reports the average CPU solution time for solving (MN-RUM),

the subproblem (SP), and the linear relaxation of (MP), and the average number of cuts (18).

Since all five generated instances could be solved within the time limit, we ignore the number of

instances solved to optimality over the five generated instances in Table 2.

The results from Table 2 further demonstrate the efficiency of the proposed row generation

algorithm. RG stren has a significantly better performance than CPX for the harder instances

(N ∈ {10,20}), and slightly outperforms RG for most types of instances. More specifically, for the

harder instances, in comparison to CPX, the average solution time is decreased by more than 54%

by RG stren, and about 50% by RG. Similar to Table 1, we also observe from Table 2 that as

the number of partitions N increases, the average solution time increases significantly, while when

ε varies from 0.1 to 0.2 or b from 1 to 5, the average solution time is not significantly different.

In the meantime, the average solution time for CPX increases more dramatically than the time

increase in the row generation algorithm as the number of partitions increases. This suggests that

compared with CPX, the row generation algorithm has a more stable computational performance.

The average objective values. Figure 5 presents the average objective values of (MN-RUM)

as the number of partitions N varies.
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Table 2 The average CPU (in seconds) solution time for solving (MN-RUM) (AvT),

the subproblem (SP) (AvT-Z), and the linear relaxation of (MP) (AvT-L), and the

average number of cuts (cuts) are reported.

b ε N
CPX RG RG stren

AvT AvT AvT-Z cuts AvT AvT-Z AvT-L cuts

1

0.1

4 110 145 144 11.4 131 73 56 5.4

10 453 277 276 8.4 253 125 127 3.4

20 3,248 547 545 6 574 288 286 3

0.2

4 103 257 250 20 258 178 67 14.4

10 799 614 605 19.6 539 379 148 12

20 3,412 1,344 1,337 17.2 1,068 746 312 10

2

0.1

4 78 124 123 9.2 111 53 56 3.6

10 851 317 316 9.4 317 173 142 4.4

20 2,788 489 488 5.8 620 301 318 3.4

0.2

4 84 296 287 22.2 252 173 68 13.8

10 598 586 578 19.4 535 382 143 13.2

20 2,643 1,414 1,406 18.8 1,046 715 321 10

5

0.1

4 89 134 133 10.6 143 80 61 5.4

10 537 266 265 8.2 219 82 136 2

20 2,956 624 623 7.4 607 310 296 3.4

0.2

4 84 278 269 21 299 215 72 16.4

10 616 572 564 18.4 488 322 156 10.2

20 3,050 1,179 1,173 16.4 1,321 928 383 11.6

Similar to Figure 5, the average objective value for the instances with N = 4 is significantly better

than the ones with N = 2, and the improvement of the average objective value is not significant

when we increase the number of partitions to N = 10. Therefore, in this example, N = 10 can also

be used to obtain approximate solutions with reasonable solution time.

5.2.2. Out-of-Sample Performance. We now discuss the out-of-sample performance of the

solutions generated from (MN-RUM) and compare the performance with (MN-RUM) but without

chance constraints, which is referred to (MN-RUM-NC), and the determinant problem, which is
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Figure 5 The average objective value of (MN-RUM) as the number of partitions N varies.

referred to as (MN-DUM). We generated 10,000 scenarios from the uniform distribution (0, ū).

Figure 6 presents the improvement (in %) of the out-of-sample over-stocking probability, over-

stocking, and under-stocking for the calibrated (MN-RUM) over (MN-RUM-NC) and (MN-DUM).

Since (MN-RUM) has a similar out-of-sample under-stocking to (MN-DUM), thus we did not

present it in this section.

Conclusions from the results in Figure 6 are similar to those observed from Figure 4 with some

differences. For example, using the solutions obtained from (MN-RUM-NC), the out-of-sample

over-stocking probability and over-stocking are significantly larger than the one obtained from (MN-

RUM), although the out-of-sample over-stocking probability for (MN-RUM) is slightly larger than

the predefined ε value. Whereas, compared with (MN-RUM), the out-of-sample under-stocking is

smaller when using the solutions obtained from (MN-RUM-NC). Different from Figure 4, compared

with (MN-RUM), (MN-DUM) has slightly larger out-of-sample over-stocking probability and over-

stocking. In the meantime, (MN-RUM) and (MN-DUM) have a comparable number of the out-

of-sample under-stocking. Hence, the out-of-sample superiority of robust solutions indicates that

(MN-RUM) also performs well in the multi-item newsvendor problem.

6. Concluding Remarks

In this work, we study a general robust expected utility maximization problem with chance con-

straints over a set of concave utility functions that lie in an ambiguity set. Methodologically

speaking, we first apply a discrete approximation approach to formulate the ambiguity set U
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(a) (b)

(c) (d)

Figure 6 The out-of-sample over-stocking probability for the calibrated (MN-RUM) (a), the improvement of the

out-of-sample over-stocking probability and over-stocking for (MN-RUM-NC) (b), and under-stocking

for (MN-RUM-NC) (c), and the improvement of the out-of-sample over-stocking probability and over-

stocking for (MN-DUM) (d) as ε varies.

and reformulate (RUM) as a mixed-integer program. We then conduct a detailed convergence

analysis to show that the discrete approximation converges to the true counterpart under some

mild assumptions. On the computational side, we propose a row generation-based solution scheme

to solve our chance-constrained robust expected utility model efficiently. Finally, from a practi-

cal application viewpoint, we perform an extensive numerical study for the bin packing problem

and the multi-item newsvendor problem to analyze the general structure of the decisions from

the decision-making framework and show the benefits of the techniques developed in this paper

for computational improvement. The numerical results show that the row generation algorithm

can significantly reduce the computational time for a certain problem size when compared with

CPLEX solver, and the solutions that are obtained from (RUM) achieve a desirable out-of-sample

performance.
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To the best of our knowledge, this is the first attempt to combine the concept of robust decision-

making with utility-dependent decisions and chance constraint optimization as a complementary

synergistic mechanism for decision modeling under risk and uncertainty, especially when the infor-

mation of the utility function is incomplete. For future research, we suspect that the modeling

framework and resolution methods that are presented in this paper should also benefit several other

practical applications of interest, e.g., those in facility location (e.g., Luo and Mehrotra 2024), and

cloud computing (e.g., Cohen et al. 2019, Martinovic et al. 2021), etc.
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Mart́ın-Baos J, Garćıa-Ródenas R, Rodriguez-Benitez L (2021) Revisiting kernel logistic regression under the

random utility models perspective. an interpretable machine-learning approach. Transportation Letters

The International Journal of Transportation Research 13(3):1–12.

Natarajan K, Sim M, Uichanco J (2010) Tractable robust expected utility and risk models for portfolio opti-

mization. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial

Economics 20(4):695–731.

Natarajan K, Sim M, Uichanco J (2018) Asymmetry and ambiguity in newsvendor models. Management

Science 64(7):3146–3167.

Qin Y, Wang R, Vakharia AJ, Chen Y, Seref MM (2011) The newsvendor problem: Review and directions

for future research. European Journal of Operational Research 213(2):361–374.

Rahimian H, Bayraksan G, Homem-de Mello T (2019) Controlling risk and demand ambiguity in newsvendor

models. European Journal of Operational Research 279(3):854–868.

Rahimian H, Mehrotra S (2019) Distributionally robust optimization: A review. working paper, http: //

www. optimization-online. org/ DB_ FILE/ 2019/ 08/ 7332. pdf .

Schied A (2005) Optimal investments for robust utility functionals in complete market models. Mathematics

of Operations Research 30(3):750–764.

Shapiro A, Dentcheva D, Ruszczynski A (2009) Lectures on stochastic programming: modeling and theory.

(SIAM) MPS, Philadelphia .

http://www.optimization-online.org/DB_FILE/2019/08/7332.pdf
http://www.optimization-online.org/DB_FILE/2019/08/7332.pdf


Wang & Mehrotra& Peng Robust Concave Utility Maximization over Chance Constraints
29

Song Y, Luedtke JR, Küçükyavuz S (2014) Chance-constrained binary packing problems. INFORMS Journal

on Computing 26(4):735–747.

Train K, Weeks M (2005) Discrete Choice Models in Preference Space and Willingness-to-Pay Space, 1–16

(Springer Netherlands).

Wang CX, Webster S, Zhang S (2012) Newsvendor models with alternative risk preferences within expected

utility theory and prospect theory frameworks. Handbook of Newsvendor Problems, 177–196 (Springer).

Wang S, Delage E (2024) A column generation scheme for distributionally robust multi-item newsvendor

problems. INFORMS Journal on Computing. https://doi.org/10.1287/ijoc.2022.0010.

Wang S, Li J, Mehrotra S (2021) Chance-constrained multiple bin packing problem with an application to

operating room planning. INFORMS Journal on Computing 33(4):1661–1677.

Wang S, Li J, Mehrotra S (2022) A solution approach to distributionally robust joint-chance-constrained

assignment problems. INFORMS Journal on Optimization 4(2):125–147.

Wang S, Wang Q, Zhao J (2020) Deep neural networks for choice analysis: Extracting complete economic

information for interpretation. Transportation Research Part C Emerging Technologies 118:102701.

Zhang J, Xie W, Sarin SC (2021) Robust multi-product newsvendor model with uncertain demand and

substitution. European Journal of Operational Research 293(1):190–202.

Zhang Z, Denton BT, Xie X (2020) Branch and price for chance-constrained bin packing. INFORMS Journal

on Computing 32(3):547–564.

https://doi.org/10.1287/ijoc.2022.0010


Wang & Mehrotra& Peng Robust Concave Utility Maximization over Chance Constraints
30

Appendix A: Proof of Lemmas and Theorems

A.1. Proof of Lemma 1

Let θk = u(ak), for k= 0, · · · ,N , then θ0 = u(a0) = 0, θl = u(al) = 1 and θN = u(aN) = 0. Given the concavity

property of u∈UN , we have
θ1− θ0

a1− a0

≥ · · · ≥ θl− θl−1

al− al−1

≥ 0≥ θl+1− θl
al+1− al

≥ · · · ≥ θN − θN−1

aN − aN−1

,

which implies that constraint (11b) holds. In addition, constraints (11c), (11d) and (11e) represent the

constraints of u(a).

Let U ′
N be a subset of UN which consists of all the piecewise linear functions with break points {a0, · · · , aN},

and

π′N(x) = minimize
u∈U ′

N

∑
j∈J

E[u(fj(x, ξ̃))]. (19)

If u∗ is an optimal solution of problem (10), we can define a piecewise linear function belonging to U ′
N that

bounds u∗ from below. Hence, we can rewrite problem (10) as problem (19). Since u∈U ′
N is piecewise linear

with the break point ak and corresponding value θk, thus given a v ∈Θ, u(v) is equivalent to

minimize
α,β

vα+β

subject to akα+β− θk ≥ 0 ∀k ∈ {0, · · · ,N},

β ≥ 0.

Therefore, when v= fj(x,ξ
ω) for j ∈J , ω ∈Ω, problem (10) is equivalent to problem (11). 2

A.2. Proof of Theorem 1

Let y =Q(θ − u0), then ||y||p ≤ 1 based on constraint (11e) and θ =Q−1y + u0. Let µ, γ1, γ2, δ be the

dual variables of constraints (11b) to (11d), and (11f) respectively. The dual function can be formulated as

g(µ,γ1,γ2,δ) = inf
α,β,y

L(α,β,y,µ,γ1,γ2,δ)

subject to ||y||p ≤ 1,

βjω ≥ 0, ∀j ∈J , ω ∈Ω,

where

L(α,β,y,µ,γ1,γ2,δ)

=
∑
j∈J

∑
ω∈Ω

[(pωfj(x,ξ
ω)−

N∑
k=0

akδkjω)αjω + (pω −
N∑
k=0

δkjω)βjω] +

N∑
k=0

(u(ak)γ2k− ū(ak)γ1k) +η>(Q−1y+u0).

and ηk =−µk(ak+1 − ak−1) + µk+1(ak+2 − ak+1) + µk−1(ak−1 − ak−2) + γ1k − γ2k +
∑

j∈J

∑
ω∈Ω δkjω, for all

k= 1, · · · ,N − 1.

Based on the domain of variables y, α and β, and the definition of dual norm, we have,

g(µ,γ1,γ2,δ2) =

N∑
k=0

(u(ak)γ2k− ū(ak)γ1k) +

N−1∑
k=0

ηku0(ak)− ||Q−1η||∗,

if pωfj(x,ξ
ω) −

∑N

k=0 akδkjω = 0, pω −
∑N

k=0 δkjω ≥ 0, for ω ∈ Ω. Thus, constraints (14b)-(14d) are the

dual formulation of problem (11). Note that when θk = u0(ak) for all k = 0, · · · ,N , constraint (11e) can be

reformulated as b ≥ 0. Since b is a positive constant, u0 ∈ relint UN such that constraint (11e) hold with

strict inequality, and problem (11) satisfies Slater’s condition (Boyd et al. 2004). Strong duality holds under

Slater’s conditions. 2



Wang & Mehrotra& Peng Robust Concave Utility Maximization over Chance Constraints
31

A.3. Proof of Lemma 2

Based on Assumption 1, we know that u is concave and fj(·) is linear in an open neighborhood of X which

can be denoted by N (X ). Therefore, u(fj(x, ξ̃)) is concave in N (X ) and thus E[u(fj(x, ξ̃))] is concave in

N (X ). Moreover, for x1,x2 ∈X , we have

π(λx1 + (1−λ)x2) = minimize
u∈U

∑
j∈J

E[u(fj(λx1 + (1−λ)x2, ξ̃))]

≥minimize
u∈U

λ
∑
j∈J

E[u(fj(x1, ξ̃))] + (1−λ)
∑
j∈J

E[u(fj(x2, ξ̃))]

≥ λminimize
u∈U

∑
j∈J

E[u(fj(x1, ξ̃))] + (1−λ) minimize
u∈U

∑
j∈J

E[u(fj(x2, ξ̃))]

= λπ(x1) + (1−λ)π(x2).

π(x) is concave function in N (X ), thus π(x) is continuous in X . Similarly, πN(x) is continuous concave

functions in X . This completes our proof. 2

A.4. Proof of Lemma 3

For u ∈UN , since the derivative u′ of u satisfies |u′| <M for almost everywhere, then u is Lipschitz with

Lipschitz constant M . Since a set of functions with bounded Lipschitz constant forms an equicontinuous set,

u is equicontinuous. 2

A.5. Proof of Lemma 5

Based on Lemma 3 and Lemma 4, we have that, for any sequence {uN ∈UN}, there exists a subsequence

{uNK
} that uniformly converges to û. Now we show that û∈U . Since {uNK

} is first increasing then decreasing

concave function, for any −θ1 ≤ a1 ≤ a2 ≤ 0, we have

û(a1) = lim
K→∞

uNK
(a1)≤ lim

K→∞
uNK

(a2) = û(a2).

Therefore, û is increasing on [−θ1,0]. Similarly, û is decreasing on [0, θ2]. For λ> 0 and −θ1 ≤ a1 ≤ a2 ≤ θ2,

û(λa1 + (1−λ)a2) = lim
K→∞

uNK
(λa1 + (1−λ)a2)

≥ lim
K→∞

λuNK
(a1) + (1−λ)uNK

(a2)

= λû(a1) + (1−λ)û(a2).

Hence, û is first increasing then decreasing concave function. We then consider the bound constraints. Since

uNK
and ūNK

uniformly converge to u and ū, respectively; we have

û= lim
K→∞

uNK
≥ lim
K→∞

uNK
= u, û= lim

K→∞
uNK

≤ lim
K→∞

ūNK
= ū.

We now claim the auxiliary constraint. Let

h(uNK
) =

NK−1∑
k=0

(u0(ak)−uNK
(ak))

p
(ak+1− ak)− b,

and

f(uNK
) =

∫ θ2

−θ1

(u0(a)−uNk
(a))

p
da− b, (20)
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hence

lim
K→∞

h(uNK
) = lim

K→∞
f(uNK

).

Given the uniform convergence of {uNK
} to û, for any δ > 0, there exists K̂ such that for all K ≥ K̂:

|uNK
(a)− û(a)| ≤ δ.

Thus we have∣∣f(uNK
)− f(û)

∣∣= ∣∣ ∫ θ2

−θ1

(u0(a)−uNk
(a))

p− (u0(a)− û(a))
p
da
∣∣

=

∣∣∣∣∫ θ2

−θ1

(û(a)−uNk
(a))

(
(u0(a)−uNk

(a))p−1 + · · ·+ (u0(a)− û(a))p−1
)
da

∣∣∣∣
≤ δ

∫ θ2

−θ

∣∣(u0(a)−uNk
(a))p−1 + · · ·+ (u0(a)− û(a))p−1

∣∣da
Since (u0(a)−uNk

(a))p−1 + · · ·+ (u0(a)− û(a))p−1 is bounded, f(û) = lim
k→∞

f(uNk
). It follows that,

f(û) = lim
k→∞

f(uNk
) = lim

k→∞
hNk

(uNk
)≤ 0.

Therefore, we have û∈U . 2

A.6. Proof of Lemma 6

For any u∈U , since (u0(a)−u(a))p is uniformly continuous on [−θ1, θ2], h(u) converges uniformly to f(u).

Hence, for δ > 0 and δ < τ/2, there exists N̂ such that for all N ≥ N̂ :

|h(u)− f(u)| ≤ δ,

then we have h(u)≤ f(u) + δ≤ δ, which gives us that
N−1∑
k=0

(u0(ak)−u(ak))
p

(ak+1− ak)≤ b+ δ. (21)

For any λ∈ [0,1], by constraint (21), it follows that

(1−λ)p
N−1∑
k=0

(u0(ak)−u(ak))
p

(ak+1− ak)≤ (1−λ)p(b+ δ)≤ (1−λ)(b+ δ). (22)

Similarly, we have

0≤ λ(b+ δ− τ), (23)

for all τ ∈R+ and τ ≤ b. From constraints (22) and (23), we can obtain
N−1∑
k=0

[u0(ak)− ((1−λ)u(ak) +λu0(ak))]
p

(ak+1− ak)≤ b+ δ−λτ

We let vλ = (1−λ)u+λu0, thus,
N∑
k=0

(u0(ak)− vλ(ak))
p ≤ b, ∀λ∈ [δ/τ,1].

Hence, we have for each λ∈ [δ/τ,1], vλ ∈UN for all N ≥ N̂ .

To construct the sequence uN , we define a positive sequence {δi} such that δi→ 0 as i→∞. Let vi =

(1− δi
τ

)u+ δi
τ
u0. Based on the above discussion, for each δi, there exists a positive integer number Ni such

that vi ∈UN for N ≥Ni, and vi→ u as i→∞. Let uN = vi for Ni ≤N <Ni+1. Therefore, we have uN ∈UN

for all N ≥N1 and uN → u as N →∞. 2
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A.7. Proof of Lemma 8

We let sequence {uN} be the optimal solution of πN(x) for given x ∈ X . By Lemma 5 we know

that there exists a subsequence {uNk
} of {uN} converges to u ∈ U . Since the limit of sequence {uNk

}

in U , hence, lim
k→∞

inf πNk
(x) ≥ π(x). Moreover, Lemma 6 shows that for any u ∈ U , there exists

a sequence uN ∈ UN such that u = lim
N→∞

uN . Since
∑
j∈J

E[uN(fj(x, ξ̃))] =
∑
j∈J

∑
ω∈Ω

pωuN(fj(x,ξ
ω)) and∑

j∈J
E[u(fj(x, ξ̃))] =

∑
j∈J

∑
ω∈Ω

pωu(fj(x,ξ
ω)), we have

∑
j∈J

E[u(fj(x, ξ̃))] = lim
N→∞

∑
j∈J

E[uN(fj(x, ξ̃))] (Lytle 2015).

Therefore, πNk
(x)→ π(x) as K→∞ by Lemma 7. To prove πN(x)→ π(x), let {πm(x)} be a subsequence

of πN(x). By Lemma 5, there exists a subsequence {umi
} of {um} such that umi

converges to u, which with

Lemma 7 implies that πmi
(x) converges to π(x). Since {πm(x)} is an arbitrary subsequence of πN(x), thus,

πN(x)→ π(x) as N →∞ (Buck 1943). 2

A.8. Proof of Theorem 2

By Lemma 2, we have that X is compact and πN(x) and π(x) are continuous, then {πN} uniformly converges

to π (see Hu and Mehrotra 2015). Since X and T are non-empty compact sets, and the function π(x) is

continuous on X and T , then yN → y∗ and D(ZN ,Z
∗) := maximize

b1∈ZN

minimize
b2∈Z∗

||b1−b2|| → 0 as N →∞, based

on Lemma 9. 2
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