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In this paper we consider the solution of optimization tasks with a piecewise
linear objective function and piecewise linear constraints. First, we state op-
timality conditions for that class of problems given in the so-called abs-linear
form and prove that they can be verified in polynomial time. Subsequently,
we propose an algorithm called Constrained Active Signature Method that
explicitly exploits the piecewise linear structure to solve such optimization
problems as the main contribution of this work. Convergence of the algo-
rithm within a finite number of iterations is proven. Numerical results for
various test cases including linear complementarity constraints and a bi-level
problem illustrate the performance of the new algorithm.
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1 Introduction

Motivated by numerous applications, e.g., from machine learning, there has been a grow-
ing interest in optimization problems that lack differentiability. That is, the objective
function and/or the constraints are not differentiable everywhere. One important class
of such problems is given by piecewise linear functions, where corresponding optimiza-
tion tasks arise, e.g., in train time tabling [5], as local models [22] or in the training of
deep neural networks with the Rectified Linear Unit (ReLU) as activation function [6,
27].

So far, there is only a limited number of algorithms to solve constrained nonsmooth
optimization problems available. Possible approaches comprise quasi-Newton methods
[3], bundle methods [23] or extensions of Franke-Wolfe approaches [25]. They all have
in common that they do not exploit the structure that is available in the nonsmooth
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setting. For unconstrained optimization problems with piecewise linear objective func-
tions, the so-called Active Signature Method (ASM) for determining local minima has
been proposed in [9]. This approach explicitly builds on the nonsmooth structure to
verify corresponding optimality conditions that can be verified in polynomial time even
if the target function is nonsmooth. In [14, 16], the more general setting of nonlinear,
so-called abs-smooth constrained optimization problems was considered. To derive op-
timality conditions that can be verified in polynomial time, Hegerhorst-Schultchen and
Steinbach reformulated the inequality constraints into equality constraints using slack
variables. Furthermore, it has been shown that each abs-smooth nonlinear optimiza-
tion problem has an equivalent formulation as mathematical program with equilibrium
constraints (MPEC) [15]. In the same paper, an equivalence of the corresponding reg-
ularity conditions was shown. These are, on the one hand, the MPEC-LICQ and, on
the other hand, the regularity conditions for abs-smooth problems, the so-called Linear
Independence Kink Qualification (LIKQ) that will also be considered here.

In this paper, an extension of ASM will be presented, which, in addition to the piece-
wise linear objective function, also takes piecewise linear functions as equality and in-
equality constraints into account and exploits explicitly the nonsmooth structure of the
optimization problem. To verfiy that an optimal point is reached by the algorithm, i.e.,
to define a suitable termination criteria, we will derive optimality conditions directly
for this problem class providing an alternative proof for the piecewise linear case in
comparison to [14, 16].

A piecewise linear function can always be given in its abs-linear form as introduced
for the first time in [8]:

Definition 1.1 (Abs-linear form, switching vector). A continuous piecewise linear func-
tion ϕ : Rn → R is in abs-linear form if y ≡ ϕ(x) is given by

y = d+ a>x+ b>z , (1a)

z = c+ Zx+Mz + L|z| , (1b)

with x ∈ Rn the argument vector, z ∈ Rs the vector of switching variables, called
switching vector, and constants d ∈ R, a ∈ Rn, b, c ∈ Rs, Z ∈ Rs×n, L,M ∈ Rs×s, where
the last two matrices are strictly lower triangular. Eq. (1b) is called switching system.

Here and throughout, |z| denotes the component-wise modulus of a vector z. Without
loss of generality, we can always assume that d = 0. Using the reformulation

max(x1, x2) =
1

2
(x1 + x2 + |x1 − x2|) , min(x1, x2) =

1

2
(x1 + x2 − |x1 − x2|) (2)

and Prop. 2.2.2 of [26] it follows that every continuous piecewise linear function can
be represented in an abs-linear form. In contrast to previous publications, e.g., [9, 11,
10], here the matrix M appears on the right side of Eq. (1b). One easily obtains the
new matrix M from the previous notation by subtracting the unit matrix there. The
reason for the adjustment is on one hand the coverage of more general formulations of
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the target function and on the other hand a unification with the constraints considered
in this paper for the first time.

Using the signatures of the switching vector, it is possible to decompose Rn into
polyhedra [7]. This decomposition plays an essential role in the algorithm we will present
in this paper, because one of the main ideas of the algorithm will be the solution of
suitable adapted smooth optimization problems on these polyhedra.

Definition 1.2 (Signature vector and signature matrix). Let a piecewise linear function
be given in an abs-linear form (1). For each x ∈ Rn, we define the signature vector

σ(x) ≡ (sgn(z1(x)), . . . , sgn(zs(x))) ∈ {−1, 0, 1}s ,

where the set on the right hand side comprises all possible signature vectors. The
corresponding signature matrix is given by Σ(x) = diag(σ(x)). A signature vector σ(x)
is called definite, if no component vanishes, i.e., σ(x) ∈ {−1, 1}s. This situation is
denoted by 0 /∈ σ(x). Otherwise it is called indefinite.

Since for Eq. (1b) the matrix L is assumed to be strictly lower triangular, |zs(x)|
does not contribute to the value of the abs-linear objective function and hence does
not impose any nonsmoothness. To simplify notation, we assume that the first s − 1
components z1, . . . , zs−1 are arguments of the absolute value such that they impose
nonsmoothness. This fact has to be taken into account correspondingly for calculating
a step size as described later, see Section 4. Since we will also consider frequently fixed
signature vectors, we will state the dependence on x if there is any explicitly. Based on
the signature vectors, it is possible to decompose the Rn into polyhedra as follows.

Definition 1.3 ((Extended) Signature domain). For a fixed σ ∈ {−1, 0, 1}s, we define

Pσ ≡ {x ∈ Rn | sgn(z(x)) = σ} ⊂ Pσ ≡ {x ∈ Rn | Σz(x) = |z(x)|} .

The set Pσ is called signature domain and the set Pσ extended signature domain.

Note that here and throughout the symbol ⊂ denotes a subset relation that also allows
equality of sets.

The domains Pσ are given as inverse images of the corresponding σ and represent
a disjoint decomposition of Rn into relatively open polyhedra. The boundaries of the
polyhedra Pσ are usually the sets where ϕ is nonsmooth. Motivated by the graphical
representation in low dimensions as illustrated also in Ex. 3.1, the sets of points at
which ϕ is nonsmooth are called kinks. As shown in [12] it is possible to define a partial
ordering as follows

σ ≺ σ̃ ⇐⇒ σ2
l ≤ σ̃lσl for 1 ≤ l ≤ s ⇐⇒ Pσ ⊂ P σ̃.

For more details about the decomposition see for example [7] or [9].
Next, we state the optimization problem for which we will present and analyze a

solution algorithm in this paper, i.e., the constrained abs-linear optimization problem
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(CALOP). It has the following structure:

min
x∈Rn,z∈Rs

a>x+ b>z

s.t. 0 = g +Ax+Bz + C|z| ,
0 ≥ h+Dx+ Ez + F |z| ,
z = c+ Zx+Mz + L|z| ,

(CALOP)

where g ∈ Rm, h ∈ Rp, A ∈ Rm×n, B,C ∈ Rm×s, D ∈ Rp×n and E,F ∈ Rp×s. Note that
the component zs may now introduce nonsmoothness. This is an important difference
to the unconstrained case considered in earlier papers, e.g. [9, 10]. However, since
we want to allow constraints that are as general as possible we do not impose further
restrictions on the matrices C and F in the remainder of this paper. Alternatively, i.e.,
if the nonsmoothness of the constraints is also pushed into the switching equation, the
value of s may increase significantly, depending on the number of constraints and their
nonsmoothness leading to a significant increase of the run time of the Algo. 1 presented
later. As can be seen, we assume that the objective function combined with the switching
system in the last constraint is in abs-linear form, cf. Eq. (1). The first constraint in
(CALOP) represents the equality constraint and the second one the inequality constraint.
For later use, we define

f : Rn × Rs → R, (x, z) 7→ a>x+ b>z , (3)

G : Rn × Rs × Rs → Rm, (x, z, |z|) 7→ g +Ax+Bz + C|z| ,
and H : Rn × Rs × Rs → Rp, (x, z, |z|) 7→ h+Dx+ Ez + F |z| .

The paper is organized as follows. Section 2 briefly describes the ASM published in
[9] to prepare the ground for the extensions derived in the present paper. Optimality
conditions for constrained nonsmooth optimization problems of the form (CALOP) are
derived in Section 3. For this purpose, the optimality conditions of the unconstrained
case as introduced in [7] and discussed further in [10] are modified to take the feasibility
with respect to the constraints into account. In Section 4, the ASM is extended to
cover also piecewise linear constrained optimization problems of the form (CALOP)
as one main contribution of the paper. The convergence analysis of the resulting new
algorithm is also given in Section 4.2. This includes also a statement on finite convergence
representing another important contribution of this paper. Numerical results for several
test problems are presented in Section 5. Finally, the paper concludes with a summary
and an outlook in Section 6.

2 The active signature method for unconstrained problems

In this section, the Active Signature Method (ASM) published in [9] is explained shortly,
such that it can be extended subsequently to constrained problems of the form (CALOP).
It should be noted that the notation has been adjusted in comparison to [9] because the
abs-linear form is used in a slightly different representation, as motivated above.
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The aim of the ASM is to determine a local minimum for a piecewise linear objective
function ϕ : Rn → R given in abs-linear form (1). At this point we would like to
mention that whenever it is not explicitly stated otherwise, the term minimum refers
to a local minimum. To find such a minimum, the basic idea is to decompose the Rn
into polyhedra as sketched above using the signature vectors and optimize a penalized
version of the objective function on these domains, switching from one polyhedron to
the next in an appropriate way. To achieve this behavior, for each x ∈ Rn and the
corresponding z = z(x), information about the structure of nonsmoothness is exploited.
Using the abs-linear form of the objective function ϕ, we obtain the following equivalent
abs-linear optimization problem

min
x∈Rn,z∈Rs

a>x+ b>z

s.t. z = c+ Zx+Mz + L|z| .
(ALOP)

Since piecewise linear functions may be unbounded below, we add the term 1
2x
>Qx

with a positive definite matrix Q = Q> ∈ Rn×n to the objective. Furthermore, we
fix one signature vector σ ∈ {−1, 0, 1}s to obtain from (ALOP) the smooth quadratic
optimization problem

min
x∈Rn,z∈Rs

a>x+ b>z +
1

2
x>Qx (4a)

s.t. z = c+ Zx+Mz + LΣz , (4b)

0 = (Is − |Σ|)z , (4c)

0 ≤ Σz , (4d)

onPσ, i.e., all x ∈Pσ are feasible. Here, Is denotes the identity matrix in Rs×s. Due
to the penalty term, it is ensured that a global minimum exists on Pσ. As shown in
[9] applying standard KKT theory for the smooth constrained quadratic optimization
problem Eq. (4) yields the following system of necessary optimality conditionsQ 0 Z>

0 Is − |Σ| Σ(M> + ΣL> − Is)
Z M + LΣ− Is 0

xz
λ

 = −

 aΣb
c

 . (5)

Due to its consistency, the system of equations has a solution, which in general does
not necessarily have to be unique. A solution of Eq. (5) is denoted by (x̂, ẑ, λ), where
λ represents the Lagrange multiplier associated with the equality constraint (4b). As
described also in [9], the system (5) can be solved efficiently using the special structure
of the triangular matrices L and M . However, Eq. (5) ignores the inequality constraints
(4d) of the optimization problem (4). Hence, the resulting Σẑ may have negative com-
ponents. In this case, there must be a so called blocking constraint or more specifically
a blocking kink on the line segment from the current iterate (x, z) to the infeasible point
(x̂, ẑ). With ẑ part of the solution of the system given in Eq. (5) and z the current
iterate, this situation can be easily detected by calculating the maximal step size βz as

βz = inf
1≤l≤s

{
βzl ≡

−zl
ẑl − zl

∣∣∣∣ (ẑl − zl)σl < 0

}
∈ (0,∞] (6)
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with inf ∅ ≡ ∞. Note that in comparison to [9] we replace the factor zl by σl in the test
of the sign. Since only the sign is important the formulation in Eq. (6) is equivalent to
the original formulation but numerically more stable.

If βz < ∞ the first index for which the minimum is attained is denoted by jz. For
βz ≤ 1, there exists at least one blocking constraint and the next iterate is given by

x+ = (1− βz)x+ βzx̂ and z+ = (1− βz)z + βz ẑ .

The part x+ lies on the boundary of Pσ, i.e., at least one component of σ(x+) drops
to zero in comparison to σ. Therefore, one updates σ+ = σ − σjzejz setting σ+

jz = 0,
which amounts to the activation of a kink. In other words the feasible domain of the
optimization problem (4) is effectively reduced to the face polyhedronPσ+ ⊂ Pσ. This
can be seen as restricting one component of the signature vector. After finitely many such
kink activations one must have βz = 1 so that the full step reaches the unique minimizer
xσ within the current Pσ. For more details on this, see [9] and for the handling of
constraints Section 4 in this article.

Definition 2.1 (Signature optimal point). Let an optimization problem of the form
(ALOP) be given. Consider a fixed signature vector σ ∈ {−1, 0, 1}s. A minimizer
xσ ∈ Pσ of the optimization problem

min
x∈Rn,z∈Rs

a>x+ b>z (7a)

s.t. z = c+ Zx+Mz + LΣz , (7b)

0 = (Is − |Σ|)z , (7c)

0 ≤ Σz , (7d)

is called signature optimal point of the original, unconstrained optimization problem
(ALOP).

Note that for many or even most σ the polyhedra Pσ do not contain minimizers, in
which case the solutions of (7) lie on their relative boundary. The piecewise linear and
convex function ϕ : R2 → R,

ϕ(x) = max{max{−100, 2x1 + 5|x2|}, 3x1 + 2|x2|} (8)

considered already by Hiriart-Urruty and Lemaréchal in [17] will be used to illustrate
this observation. In contrast to the original formulation given in [17] the representation
given in Eq. (8) results in only four switching variables:

z1 = x2 , z2 = −100− 2x1 + 5|z1| ,
z3 = −50− 4x1 + 0.5|z1|+ 0.5|z2| , z4 = 2.25|z1|+ 0.25|z2|+ 0.5|z3| ,
y = −25 + x1 + z4 .

Fig. 1 shows the decomposition of the R2 in the different polyhedra Pσ with definite
signature vectors. The lines correspond to polyhedra with indefinite signature vectors,
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Figure 1: Signature domains and (non) signature optimal points

where we mark one of them to give an example. As can be seen, the point x̃ = (30,−5)
has the signature vector σ(x̃) = (−1,−1, 1, 1) ≡ σ. When optimizing over Pσ one
obtains the minimizer x̌ = (0, 0) with the signature vector σ(x̌) = (0,−1, 0, 1) 6= σ.
Hence, one has x̌ /∈ P(−1,−1,1,1) but x̌ is signature optimal on the polyhedron P(0,−1,0,1)

that contains only x̌. The function ϕ(.) is constant on the polyhedra P(1,1,−1,1) and
P(−1,1,−1,1). Hence, x̄ = (−85, 10) with the signature σ(x̄) = (1, 1,−1, 1) is a minimizer
on the polyhedron P(1,1,−1,1). Therefore, x̄ is signature optimal.

There exist optimality conditions that can be used to verify in polynomial time whether
a signature optimal point xσ is a minimizer of the full optimization problem (ALOP) or
not, see, e.g., [10, 14, 16]. For this purpose, let σ̃ � σ so thatP σ̃ ⊃Pσ. Any such σ̃ can
be decomposed into σ+γ, where |σ|>|γ| = 0 holds. It was shown in [10] that minimality
of xσ on Pσ̃ then requires

0 ≤ b>γ + λ>L|γ| − λ>(Is −M)γ =
(
b> − λ>(Is −M)

)
γ + λ>L|γ| .

This optimality condition is violated if and only if there is at least one index k < s such
that γ = −sgn(bk − λ>(Is −M)ek)ek satisfies

0 >
(
b> − λ> (Is −M)

)
γ + λ>L|γ| = −

∣∣∣b> − λ>(Is −M)
∣∣∣ ek + λ>Lek (9)

with σk = 0. Here, the fact that |zs(x)| does not contribute to the value of f(x, z)
and therefore does not lead to a nonsmoothness, has to be taken into account. Hence,
k = s must not be considered in the unconstrained case. If the optimality condition
does not hold one possible strategy is to choose the index k for which the right-hand
side of Eq. (9) is minimal, which represents a heuristic as known for example from active
set methods [24]. By updating σ+ = σ + γ, the resulting signature vector σ+ has one
component less that equals zero. This can be interpreted as releasing a kink in that one
does not insist anymore that the corresponding absolute value is evaluated at zero.
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Figure 2: Illustration of the unconstrained case from Ex. 3.1

These considerations result in the Active Signature Method that is described in much
more detail in [9].

3 Optimality conditions of the constrained optimization
problem

In this section, we derive optimality conditions for the constrained optimization prob-
lem (CALOP) as defined in Sec. 1 and show that they can be verified in polynomial time
at a given point. In [14, 16], for the more general class abs-smooth problems optimality
conditions that can be verified in polynomial time were already derived. However, since
we restrict ourselves to the special class of abs-linear functions and admit both z and
|z| as arguments for all functions, we prove the optimality conditions directly for our
notation instead of showing the equivalence of the problem formulations in [14, 16, 15].
This allows also to make a direct connection to the termination criteria of the CASM
algorithm presented and analysed in the next section.

For the constrained optimization problem (CALOP), the functions G and H may or
may not depend on the value |zs| as illustrated in the next example. Therefore, we denote
the total number of all switching variables zi that occur as arguments in an evaluation
of the absolute value function in the target function or in the constraints by s̃ ≤ s and
assume that they are located in the first s̃ switching variables. If this is not the case,
the abs-linear representation of (CALOP) can be adapted correspondingly such that
s̃ ∈ {s− 1, s}.

Example 3.1. Let the function ϕ(x1, x2) = max{0, x1−|x2|} be given. This nonsmooth
nonconvex function is illustrated on the left hand side of Fig. 2. Using the reformulation
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of the max-function given in Eq. (2), we obtain

ϕ(x1, x2) =
1

2

(
x1 − |x2|+

∣∣− x1 + |x2|
∣∣) ,

which can be converted into the following abs-linear form, see Eq. (1):

z =

z1

z2

z3

 =

 x2

−x1 + |z1|
−1

2 |z1|+ 1
2 |z2|


=

0
0
0

+

 0 1
−1 0
0 0

(x1

x2

)
+

0 0 0
0 0 0
0 0 0

z1

z2

z3

+

 0 0 0
1 0 0
−1

2
1
2 0

|z1|
|z2|
|z3|


y = 0 +

(
1
2 0

)(x1

x2

)
+
(
0 0 1

)z1

z2

z3

 = f(x, z) .

If we consider this function as objective of an unconstrained optimization problem as in
Sec. 2, the polyhedra resulting from definite signature vectors are shown in Fig. 2, where
we used the corresponding signature vectors as labels for the polyhedra. The blue lines
mark the arguments that cause the nonsmoothness and the light blue lines correspond to
the last component of the switching vector that does not leads to any nonsmoothness in
the target function. Now, we add the constraint

|z3| =
∣∣∣∣−1

2
|x2|+

1

2

∣∣∣− x1 + |x2|
∣∣∣∣∣∣∣ ≤ 2

that can be formulated as

H(x, z, |z|) = −2 +
[
0 0

](x1

x2

)
+
[
0 0 0

]z1

z2

z3

+
[
0 0 1

]|z1|
|z2|
|z3|

 ≤ 0

to obtain a constrained optimization problem of the form (CALOP). Then, |z3| con-
tributes explicitly to the evaluation of the abs-linear constraint.

Fig. 3 shows for the constrained situation the polyhedra resulting from the definite
signature vectors using the corresponding σ as label. In comparison to the unconstrained
case, further kinks are added resulting in more polyhedra. The red area represents the
feasible set. All points that lie inside or on the edges of the red area are feasible.

Next, we define polyhedra that take the additional constraints into account:

Definition 3.2 (Feasible (extended) signature domain). For a fixed signature vector
σ ∈ {−1, 0, 1}s, we define

Fσ≡

x ∈ Rn
∣∣∣∣∣∣
G(x, z(x),Σz(x)) = 0,
H(x, z(x),Σz(x)) ≤ 0,
sgn(z(x)) = σ,

⊂ Fσ≡
x ∈ Rn

∣∣∣∣∣∣
G(x, z(x), |z(x)|) = 0,
H(x, z(x), |z(x)|) ≤ 0,
Σz(x) = |z(x)|

 .

The set Fσ is called feasible signature domain and Fσ the feasible extended signature
domain.
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Figure 3: Polyhedra for the definite signature vectors in the constrained case of Ex. 3.1.

With these definitions, the inclusions Fσ ⊂ Pσ andFσ ⊂Pσ hold, where Fσ may be
empty. In a similar way as we introduced the signature vector for kinks, we define a
vector containing the signs of the inequality constraints.

Definition 3.3 (Signature vector and signature matrix of inequality constraints). Let a
point x ∈ Rn be given that fulfills the equality and inequality constraints of (CALOP).
We define the signature vector of the inequality constraints as

ω(x) ≡ sgn(H(x, z, |z|)) ∈ {−1, 0}p .

The jth inequality constraint is called active if ωj(x) = 0 and inactive otherwise. The
signature matrix of the inequality constraints is denoted by Ω(x) = diag(ω(x)). Fur-
thermore, I ≡ I(x) collects the indices of the active inequality constraints at x. The
projection onto the active components of H(x) is defined as PI ≡ (e>i )i∈I ∈ R|I|×p with
ei denoting the ith unit vector of appropriate size.

Next, we prepare the formulation of optimality conditions that can be verified in
polynomial time. For this purpose, we introduce the following notations:

Definition 3.4 (Active switching variables). A switching variable zi is called active at
x if zi(x) = 0. The active switching set α(x) collects all indices of active switching
variables that directly depend on x and occur as arguments of the absolute value, i.e.,

α(x) ≡ {i ∈ {1, . . . , s̃} | zi(x) = 0} .

The projection onto the active components of z(x) is defined as Pα ≡ (e>i )i∈α ∈ R|α|×s
with ei denoting the ith unit vector of appropriate size.
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For each fixed signature vector σ ∈ {−1, 0, 1}s, we obtain from (CALOP) similar to
Eq. (7) the smooth optimization problem

min
x∈Rn,z∈Rs

a>x+ b>z (10a)

s.t. 0 = g +Ax+Bz + CΣz , (10b)

0 ≥ h+Dx+ Ez + FΣz , (10c)

z = c+ Zx+Mz + LΣz , (10d)

0 = (Is − |Σ|)z , (10e)

0 ≤ Σz . (10f)

Now, we can extend the concept of signature optimality to the situation considered in
this section:

Definition 3.5 (Feasible signature optimal point). Let an optimization problem of the
form (CALOP) be given. Consider a fixed signature vector σ ∈ {−1, 0, 1}s. A minimizer
xσ ∈ Fσ of the optimization problem (10) is called feasible signature optimal point of
the original, constrained optimization problem (CALOP).

To reformulate the optimization problem (10), we define

Z̃ = (Is −M − LΣ)−1Z and c̃ = (Is −M − LΣ)−1c . (11)

Then one can combine Eqs. (10d) and (10e) to one equality constraint and obtains the
following optimization problem that is equivalent to the one stated in Eq. (10)

min
x∈Rn,z∈Rs

a>x+ b>|Σ|z (12a)

s.t. 0 = g +Ax+B|Σ|z + CΣz , (12b)

0 ≥ h+Dx+ E|Σ|z + FΣz , (12c)

0 = |Σ|z − c̃− Z̃x , (12d)

0 ≤ Σz . (12e)

Since we consider only linear constraints, one has for the optimization problem (12)
that the set of feasible directions at x coincides with the tangent cone at x, see [24,
Lem. 12.7]. In this case, no further constraint qualification is needed to ensure the
existence of Lagrange multipliers but then their uniqueness is not guaranteed. Our goal
is to derive optimality conditions that can be verified in polynomial time. Hence, any
dependence on the signature vectors that would lead to a combinatorial complexity in
2s in the worst case must be avoided. Therefore, we have to ensure that the Lagrange
multipliers are unique, see also [11]. For this reason, we adapt the kink qualification
LIKQ that was introduced in [7] for the unconstrained case appropriately. In [16], LIKQ
has already been extended for constrained nonsmooth nonlinear optimization problems.
However, since we focus in this paper on the piecewise linear case, LIKQ can be specified
in its matrix representation.
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In the unconstrained case, LIKQ requires the full rank of the matrix PαZ̃, i.e., the
active Jacobian of the reformulated switching system. To derive a similar result for the
constrained case, we analyze the optimization problem (12) for a feasible point xσ in
more detail. Due to the continuity of all involved functions and the relation Σz = |z|,
the components zi, i /∈ α, of the vector z determined by Eq. (12d) will not drop to zero
in an open neighborhood U(xσ) of xσ. In combination with the identity Σz = Σ|Σ|z, in
this neighborhood U(xσ) the optimization problem (12) is then equivalent to

min
x∈U(xσ)

a>x+ b>|Σ|(c̃+ Z̃x) (13a)

s.t. 0 = g +Ax+B|Σ|(c̃+ Z̃x) + CΣ(c̃+ Z̃x) , (13b)

0 ≥ h+Dx+ E|Σ|(c̃+ Z̃x) + FΣ(c̃+ Z̃x) , (13c)

0 = Pα(c̃+ Z̃x) . (13d)

Definition 3.6 (Active Jacobian). Consider for the constrained optimization problem
(CALOP) and a given signature vector σ ∈ {−1, 0, 1}s a point xσ that is feasible for the
problem given by Eq. (13). The active Jacobian at xσ is given by

Jσ ≡

 A+B|Σ|Z̃ + CΣZ̃

PI(D + E|Σ|Z̃ + FΣZ̃)

PαZ̃

 ∈ R(m+|I|+|α|)×n .

Now, the required kink qualification can be stated for the setting considered in this
paper:

Definition 3.7 (LIKQ (constrained case)). Let a constrained optimization problem of
the form (CALOP) and a signature vector σ ∈ {−1, 0, 1}s be given. We say that the
Linear Independence Kink Qualification (LIKQ) holds at a feasible point xσ if the active
Jacobian Jσ at xσ has full row rank m+ |I|+ |α|.

After these preparations, we are able to show that the optimality of a feasible signature
optimal point can be verified in polynomial time extending the results given in [10] to
the constrained case.

Theorem 3.8 (Necessary and sufficient optimality conditions). Let a constrained opti-
mization problem of the form (CALOP) and a signature vector σ ∈ {−1, 0, 1}s be given.
Assume that xσ is feasible signature optimal for (CALOP) and that LIKQ holds at xσ.
Then xσ is a local minimizer of (CALOP) if and only if there exist unique Lagrange
multipliers δ ∈ Rm, 0 ≤ ν ∈ Rp and λ ∈ Rs, such that

0 = a>+ b>|Σ|Z̃ + δ>(A+B|Σ|Z̃ + CΣZ̃) + ν>(D + E|Σ|Z̃ + FΣZ̃)− λ>P>αPαZ̃ , (14)

0 = b>|Σ|+ δ> (B|Σ|+ CΣ) + ν> (E|Σ|+ FΣ) + λ>|Σ| (15)

and

|Pα(b+B>δ + E>ν + λ)| ≤ Pα(C>δ + F>ν − L̃>λ) (16)
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with L̃ given by

L̃ = (Is −M − LΣ)−1L .

Proof. First, let xσ be a local minimizer of (CALOP). Since xσ is feasible signature
optimal for the given signature vector σ, xσ is also a minimizer of the optimization
problem (13). Then, we obtain from standard KKT theory that there exist unique
Lagrange multipliers δ ∈ Rm, 0 ≤ ν ∈ Rp and λ̌ ∈ R|α| associated with the equality
constraint (13b), the inequality constraint (13c) and the reformulated switching system
(13d) such that

0 = a> + b>|Σ|Z̃ + δ>(A+B|Σ|Z̃ + CΣZ̃) + ν>(D + E|Σ|Z̃ + FΣZ̃) + λ̌>PαZ̃ .

Hence, together with δ ∈ Rm and 0 ≤ ν ∈ Rp, each vector λ ∈ Rs such that λ̌ = −Pαλ
fulfills Eq. (14).

As introduced before, ω = ω(xσ) denotes the signature vector of the inequality con-
straints. Then, it is necessary and sufficient for local minimality that (xσ, z(xσ)) is a
minimizer of f(., .) as defined in Eq. (3) on all feasible extended signature domainsF σ̃
with definite σ̃ � σ. Any such σ̃ � σ can be written as σ̃ = σ + γ with γ ∈ {−1, 0, 1}s
structurally orthogonal to σ such that for Γ ≡ diag(γ) we have the matrix equations

Σ̃ = Σ + Γ and ΣΓ = 0 = |Σ|Γ . (17)

Then we can express z(x) = zσ̃(x) for x ∈ Pσ̃ as

zσ̃(x) = zσ+γ(x) = (Is −M − LΣ− LΓ)−1(c+ Zx) = (Is − L̃Γ)−1(c̃+ Z̃x) . (18)

Since xσ must be a minimizer of the objective function also on F σ̃, it solves the smooth
optimization problem

min
x∈Rn,z∈Rs

a>x+ b> (|Σ|+ |Γ|) z (19a)

s.t. 0 = g +Ax+B (|Σ|+ |Γ|) z + C(Σ + Γ)z , (19b)

0 ≥ h+Dx+ E (|Σ|+ |Γ|) z + F (Σ + Γ)z , (19c)

0 = (Is − L̃Γ)z − c̃− Z̃x , (19d)

0 ≤ PαΓz . (19e)

Once more, we obtain from KKT theory that there exist Lagrange multipliers δ ∈ Rm,
0 ≤ ν ∈ Rp, λ ∈ Rs and 0 ≤ µ ∈ R|α| associated with the equality constraint, the
inequality constraint, the reformulated switching system and the sign conditions such
that

0 = a> + δ>A+ ν>D − λ>Z̃ and (20)

0 = b> (|Σ|+ |Γ|) + δ> (B (|Σ|+ |Γ|) + C(Σ + Γ))

+ ν> (E (|Σ|+ |Γ|) + F (Σ + Γ)) + λ>
(
Is − L̃Γ

)
− µ>PαΓ .

(21)
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Since the optimization problem (19) is linear, these, together with the feasibility of the
variables and the complementarity condition, are necessary and sufficient for xσ to be
a minimizer. Multiplying the last equation from the right by |Σ|Z̃, we obtain with the
identity Σ = Σ|Σ| and Eq. (17)

0 = b>|Σ|Z̃ + δ> (B|Σ|+ CΣ) Z̃ + ν> (E|Σ|+ FΣ) Z̃ + λ>|Σ|Z̃ . (22)

Adding this equation to (20) and exploiting

Is = |Σ|+ P>α Pα (23)

yields

0 = a>+b>|Σ|Z̃+δ>(A+B|Σ|Z̃+CΣZ̃)+ν>(D+E|Σ|Z̃+FΣZ̃)−λ>P>α PαZ̃ . (24)

Hence, it follows that the Lagrange multipliers δ ∈ Rm, ν ∈ Rp, λ ∈ Rs fulfill Eq. (14)
with λ̌ = −Pαλ. Due to the kink qualification LIKQ, one also has that the vectors
δ ∈ Rm and ν ∈ Rp as well as the components Pαλ ∈ R|α| are determined uniquely. The
remaining components of λ ∈ Rs can be obtained by multiplying Eq. (21) this time only
with |Σ| from the right yielding

0 = b>|Σ|+ δ> (B|Σ|+ CΣ) + ν> (E|Σ|+ FΣ) + λ>|Σ|

and thus Eq. (15). To derive the third condition (16), we multiply Eq. (21) from the
right by ΓP>α . Using

P>α Pα = ΓΓ = |Γ| and PαP
>
α = I|α| (25)

and µ ≥ 0, it follows that

−(b> + δ>B + ν>E + λ>)ΓP>α = (δ>C + ν>F − λ>L̃)ΓΓP>α − µ>

≤ (δ>C + ν>F − λ>L̃)P>α .

Now the key observation is that this condition is linear in Γ and is strongest for the
choice γi = −sgn(λ> + b> + δ>B + ν>E)i for i ∈ α yielding the inequalities

|(b+B>δ + E>ν + λ)i| ≤ ei(C>δ + F>ν − L̃>λ) for i ∈ α

showing Eq. (16) and therefore the necessary optimality conditions.
Second, we show that these conditions are also sufficient. For this purpose, we consider

again all adjacent extended signature domains F σ̃. Therefore, we multiply Eq. (21) again
from the right by ΓP>α and use Eqs. (25) and (16) to obtain

µ> =
(
b> + δ>B + ν>E + λ>

)
ΓP>α +

(
δ>C + ν>F − λ>L̃

)
P>α ≥ 0
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and thus the feasibility. Exploiting Eq. (23), Eq. (15) multiplied from the right by Z̃
and Eq. (14) yields

λ>Z̃ = λ>
(
|Σ|+ P>α Pα

)
Z̃ = λ>|Σ|Z̃ + λ>P>α PαZ̃

= −b>|Σ|Z̃ − δ> (B|Σ|+ CΣ) Z̃ − ν> (E|Σ|+ FΣ) Z̃

+ a> + b>|Σ|Z̃ + δ>
(
A+B|Σ|Z̃ + CΣZ̃

)
+ ν>

(
D + E|Σ|Z̃ + FΣZ̃

)
= a> + δ>A+ ν>D

and hence Eq. (20). Using Eq. (23), Eq. (21) holds if and only if

0 = b> (|Σ|+ |Γ|) + δ> (B (|Σ|+ |Γ|) + C(Σ + Γ))

+ ν> (E (|Σ|+ |Γ|) + F (Σ + Γ)) + λ>
(
|Σ|+ P>α Pα − L̃Γ

)
− µ>PαΓ

holds true. Using Eq. (15) the last equation is equivalent to

0 = b>|Γ|+ δ> (B|Γ|+ CΓ) + ν> (E|Γ|+ FΓ) + λ>
(
P>α Pα − L̃Γ

)
− µ>PαΓ

Multiplying the last equation from the right by ΓP>α and exploiting Eq. (25), we obtain

µ> = −λ>L̃P>α +
(
b> + δ>B + ν>E + λ>

)
ΓP>α +

(
δ>C + ν>F

)
P>α .

Thus, defining the Lagrange multiplier µ as given above, it satisfies Eq. (21) by using
Eq. (15) and (23)

b> (|Σ|+ |Γ|) + δ> (B (|Σ|+ |Γ|) + C (Σ + Γ))

+ ν> (E (|Σ|+ |Γ|) + F (Σ + Γ)) + λ>
(
Is − L̃Γ

)
−
(
−λ>L̃P>α +

(
b> + δ>B + ν>E + λ>

)
ΓP>α +

(
δ>C + ν>F

)
P>α

)
PαΓ

= b> (|Σ|+ |Γ|) + δ> (B (|Σ|+ |Γ|) + C (Σ + Γ))

+ ν> (E (|Σ|+ |Γ|) + F (Σ + Γ)) + λ>
(
Is − L̃Γ

)
+ λ>L̃Γ−

(
b>|Γ|+ δ>B|Γ|+ ν>E|Γ|+ λ>|Γ|+ δ>CΓ + ν>FΓ

)
=− λ>|Σ|+ λ>L̃Γ− λ>|Γ|+ λ>Is − λ>L̃Γ

=− λ>|Σ| − λ>|Γ|+ λ>|Σ|+ λ>P>α Pα = −λ>|Γ|+ λ>ΓΓ = −λ>|Γ|+ λ>|Γ| = 0 .

Since the optimization problem (19) is a linear optimization problem, the KKT condi-
tions are necessary and sufficient for the minimality of xσ. Thus, we have shown that
xσ satisfies the KKT conditions for all adjacent extended signature domains. Therefore,
xσ is also a minimizer of (19) and hence of (CALOP).

For the uniqueness of the Lagrange multipliers, see again the first paragraph of this
proof. There it was stated that the Lagrange multipliers δ and ν as well as the compo-
nents λi belonging to the index set α(xσ) are unique. Finally, for the remaining i ∈ αC ,
the complement of α, the components λi can be uniquely determined by Eq. (15).
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It is important to note that for given Lagrange multipliers δ, ν, and λ, it can be verified
in polynomial time whether the conditions (14)–(16) hold. Hence, this optimality test
at a feasible signature optimal point is independent from the combinatorial complexity
caused by all the possible values of Γ.

Furthermore, for the unconstrained case, i.e., A = 0, B = 0, C = 0, D = 0, E = 0,
F = 0 in the appropriate dimensions, one rediscovers the conditions

0 = a> + b>|Σ|Z̃ + λ>PαZ̃ and |Pα(b+ λ)| ≤ Pα(−L̃>λ) ,

i.e., tangential stationarity and normal growth as introduced in [7].

4 The active signature method for constrained problems

In this section, we extend the ASM described in Sec. 2 to problems with abs-linear
constraints of the form (CALOP). It should be mentioned that due to the additional
equality and inequality constraints, the set of feasible points could be empty. Through-
out, we assume that this is not the case such that the iteration can start with a feasible
point. Subsequently, feasibility is maintained, i.e., the derived algorithm is a feasible
point method. If no feasible starting point is given from the application context, one
can calculate such a starting point with a Phase-I-like method known from linear opti-
mization (cf. [24, Chapter 16]). If a feasible starting point exists, one can show that the
resulting algorithm terminates within a finite number of iterations.

In the following we divide the section into two subsections. In the first one, the
algorithm itself is described and in the second one the convergence is analyzed.

4.1 The Algorithm

To explain the algorithm and its individual parts, we divide this subsection into different
paragraphs. For the given iterate, first, a search direction is calculated as described in
the following first paragraph. Then, for the search direction, a step size is calculated
as explained in the second paragraph. The third paragraph deals with the optimality
condition and the control of σ and ω in case of nonoptimality. Based on these three main
components the whole algorithm is described in the final paragraph of this subsection.

Computing a direction for given σ and ω Similar to the unconstrained case, we add
a quadratic penalty term with a positive definite matrix Q = Q> ∈ Rn×n to the target
function ensuring that the problem is bounded from below. Hence, we want to solve

min
x∈Rn,z∈Rs

a>x+ b>|Σ|z +
1

2
x>Qx (26a)

s.t. 0 = g +Ax+B|Σ|z + CΣz , (26b)

0 ≥ h+Dx+ E|Σ|z + FΣz , (26c)

0 = |Σ|z − c̃− Z̃x , (26d)

0 ≤ Σz , (26e)
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with Z̃ and c̃ as defined in Eq. (11). Due to the fixed signature vector, this optimization
problem is smooth with a quadratic target function and linear constraints. Hence, it
could be solved with a standard QP method. However, we want to exploit the structure
provided by the signature vector as additional feature.

Once more, standard KKT theory can be applied. With Lagrange multipliers δ ∈
Rm, ν ∈ Rp, λ ∈ Rs and µ ∈ Rs, we obtain the following necessary optimality conditions

0 = a> + x>Q+ δ>A+ ν>D − λ>Z̃ , (27a)

0 = b>|Σ|+ δ>(B|Σ|+ CΣ) + ν>(E|Σ|+ FΣ) + λ>|Σ| − µ>Σ , (27b)

0 = g +Ax+B|Σ|z + CΣz , (27c)

0 ≥ h+Dx+ E|Σ|z + FΣz , (27d)

0 = |Σ|z − c̃− Z̃x , (27e)

0 ≤ Σz , 0 ≤ µ , 0 = µ>Σz , (27f)

0 ≤ ν , 0 = ν>(h+Dx+ E|Σ|z + FΣz) . (27g)

Multiplying Eq. (27b) by Σ from the right and using Eq. (27f) yields

0 ≤ µ>|Σ| = b>Σ + δ>(BΣ + C|Σ|) + ν>(EΣ + F |Σ|) + λ>Σ . (28)

Due to the complementarity condition µ>Σz = 0, this inequality must hold as an equal-
ity. Hence, it follows that

−b>Σ = δ>(BΣ + C|Σ|) + ν>(EΣ + F |Σ|) + λ>Σ .

Thus with ω = sgn(H(x, |z|)) and Ω = diag(ω) denoting as before the projection onto
the active inequality constraints, we get the linear system

Q 0 −Z̃> A> D>

0 0 Σ ΣB>+|Σ|C> ΣE>+|Σ|F>
Z̃ −|Σ| 0 0 0
A B|Σ|+CΣ 0 0 0

Ω̄D Ω̄(E|Σ|+FΣ) 0 0 Ω



x̂
ẑ
λ
δ
ν

 = −


a

Σb
c̃
g

Ω̄h

 , (29)

where Ω̄ = Ip − |Ω| forces the inactive inequalities to vanish. The matrix Ω in the
right lower corner ensures that ν is zero for the inactive inequality constraints. As in
the unconstrained case, see Eq. (5), due to its consistency and the assumption that a
feasible starting point exists, the system of equations (29) always has a solution, which
in general does not necessarily have to be unique. We denote a solution by (x̂, ẑ, λ, δ, ν)
and define for the current iterate x and z

∆x := x̂− x and ∆z := ẑ − z (30)

as directions towards the next iterate.
If ∆x = 0 one also has ∆z = 0 due to the assumed structure when computing z.

Furthermore, for ∆x = 0 and ∆z = 0 it follows from Eqs. (29) and (26e) that already
x and z satisfy the KKT conditions for the optimization problem (26), i.e., x is feasible
signature optimal. Hence, in this case one can directly check the optimality conditions.
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Computing a step size β Given (x̂, ẑ) as solution of (29), we must now check whether
σ(x̂) = σ is still valid and that the inequality constraints of Eq. (27) still hold to ensure
feasibility. For this purpose, we calculate two step sizes. As in the unconstrained case,
the first step size is the step length from the current iterate x in the direction ∆x to a
possible kink, i.e., a sign change in one component of z. Therefore, this step size is also
denoted by βz and defined as

βz = inf
1≤l≤s

{
βzl ≡

−zl
ẑl − zl

∣∣∣∣ (ẑl − zl)σl < 0

}
∈ (0,∞] . (31)

Once more, if βz < ∞ the first index for which the minimum is attained is denoted
by jz. For βz ≤ 1, there exists a blocking kink with the same consequences as in the
unconstrained case. Note that due to the fact that for a given signature vector σ and
x ∈ Pσ one has that for σi 6= 0 also zi(x) 6= 0 holds. Thus, for σ with σi 6= 0 one has
zi(x) 6= 0 and βz > 0 must hold.

The second step size is the step length from the current iterate x in the direction ∆x
to a possible inequality constraint Hl(x, z,Σz), 1 ≤ l ≤ p, that becomes active. In a
similar way to the computation of βz this step size βH is given by

βH = inf
1≤l≤p

{
βHl ≡

Hl

Hl − Ĥl

∣∣∣∣ (Ĥl −Hl)ωl < 0

}
∈ (0,∞] , (32)

where H ≡ H(x, z,Σz), Ĥ ≡ H(x̂, ẑ,Σẑ) and l denotes the lth component of H and Ĥ,
respectively. Similar to the first step size, we denote by jH the smallest index for which
the minimum is attained. For βH < 1, there exists a blocking inequality constraint,
i.e., the solution x̂ is not feasible. Therefore, the new iterate x+ should be chosen such
that the jHth components of H(x+, z+,Σz+) and ω(x+) drop to zero in comparison to
H(x, z,Σz) and ω, respectively. Setting ω+

jH
= 0 changes the optimality system (27) and

a new solution of system (29) has to be computed. If βH ≤ βz then we have zjH ẑjH ≥ 0
such that the iterate x̂ is still contained in Pσ, i.e., σ(x̂) = σ is still valid. Since all active
constraints are encoded in ω, one must have βH > 0.

The step sizes βz and βH are illustrated in Fig. 4, where the blue line represents
a blocking kink and the red one a blocking inequality constraint. The yellow arrows
indicate the corresponding step sizes, i.e., on the left hand side βz and on the right hand
side βH .

Finally, we determine the actual step size

β = min{βz, βH , 1} ∈ (0, 1] , (33)

where the upper bound 1 on β ensures with the update

x+ = (1− β)x+ βx̂ = x+ β∆x

that the next iterate is still contained in Fσ. As can be seen, the case β < 1 corresponds
to the activation of a kink or inequality constraint, respectively. Therefore, we will refer
to this situation as a restriction of σ of ω, respectively. If β = 1, one has for the new
iterate x+ = x̂ that σ(x+) = σ and ω(x+) = ω. In this case, x+ is called signature
stationary since the two signature vectors are kept.
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Figure 4: The two different step sizes βz and βH

Checking the optimality If x+ is signature stationary on the current polyhedron Pσ,
one has to check whether x+ is a minimizer of (CALOP). If this is the case the iteration
stops. Otherwise, the optimization continues in one of the neighboring polyhedra Pσ̃
with σ̃ � σ. Such a σ̃ can be again decomposed into σ+ γ where |σ|>|γ| = 0. Replacing
Σ in the optimality conditions (27) by the corresponding Σ + Γ and using Eq. (18) we
see that most of the relations are still fulfilled by the current values x̂, ẑ and λ. The only
thing that changes is that Eq. (28) has as many new nontrivial component as γ which
can be written as

0 ≤ µ>|Γ| = b>Γ + δ>(BΓ + C|Γ|) + ν>(EΓ + F |Γ|) + λ>(Is − L̃Γ)Γ

= (b> + δ>B + ν>E + λ>)Γ + (δ>C + ν>F − λ>L̃)|Γ| .

This condition is violated if and only if there exists at least one index k such that
γ ≡ −sgn(bk + δ>Bek + ν>Eek + λk)ek satisfies using Γ = diag(γ)

0 > (δ>C + ν>F − λ>L̃)ek −
∣∣∣b> + δ>B + ν>E + λ>

∣∣∣ ek and (34)

σk = 0 .

As mentioned in the proof of Theo. 3.8 this is the strongest condition. This is due to
the fact that this condition relates directly to the optimality condition (16) derived in
Theo. 3.8. In addition we must check whether any one of the components νl for 1 ≤ l ≤ p
of the Lagrange multiplier ν associated with the inequality constraints is negative. If
such a violation occurs, one possible strategy is to take the most negative component of
ν and Eq. (34) as discussed in the next paragraph in more detail.

If ν ≥ 0 does not holds, we choose the component for which ν ≥ 0 is most violated
and drop the corresponding constraint. Hence, the associated entry of ω is set to −1
relaxing ω. If ν ≥ 0 holds, the current iterate is feasible signature optimal. Therefore,
we check the optimality condition given by Eq. (34). If Eq. (34) is fulfilled for at least
one index k the current point is not a minimizer of (CALOP) and we leave a kink by
relaxing σ, i.e., setting the corresponding entry σk to a nonzero value via σ+ = σ + γ.
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Algorithm 1 Constrained active signature method (CASM)

Require: Feasible start point x ∈ Rn, n ∈ N, s,m, p ∈ N∪{0}, a ∈ Rn, b, c ∈ Rs,
Z ∈ Rs×n, L,M ∈ Rs×s strictly lower triangular, Q = Q> ∈ Rn×n positive definite,
g ∈ Rm, h ∈ Rp, A ∈ Rm×n, B,C ∈ Rm×s, D ∈ Rp×n, E,F ∈ Rp×s, β = 0
Set: z := z(x) via Eq. (1a), σ := σ(x) and ω := ω(x)

1: loop
2: Compute (x̂, ẑ, λ, δ, ν) by solving Eq. (29)
3: Compute βz via Eq. (31), βH via Eq. (32) and β via Eq. (33)
4: Set (x+, z+) = (1− β)(x, z) + β(x̂, ẑ)
5: if βH = β then Restrict ω . Add constraint

6: if βz = β then Restrict σ . Add kink

7: if β = 1 then . x+ is feasible signature stationary
8: if ν � 0 then
9: Relax ω, set β = 0 . Drop constraint

10: else . x+ is feasible signature optimal
11: if Eq. (34) holds true then
12: Relax σ, set β = 0 . Drop kink
13: else . x+ is local optimal
14: return (x+, z+) . Problem solved

15: Set (x, z) = (x+, z+)

The overall algorithm Combining all the considerations described above, one obtains
Algo. 1 that consists of three main parts: First, the computation of the search di-
rection (cf. line 2 of Algo. 1). Second, computing the step size and in case of block-
ing kinks and/or inequality constraints restrict σ and/or ω, respectively (cf. line 3-6).
Third, checking the optimality and relaxing kinks or constraints in case of nonoptimality
(cf. line 7-14).

4.2 Convergence analysis of CASM

Next, we analyze the convergence behavior of Algo. 1. For this purpose, we first examine
the question, whether CASM yields a monotone decreasing sequence of function values.
In each iteration, the optimality system (29) is solved which corresponds to the compu-
tation of a Newton step for the smooth optimization problem (26) when one ignores the
inequality constraints.

First, we will show that under mild assumptions solving the saddle point system (29)
yields a descent direction. The existence of such a descent direction when the tangential
stationarity, the positivity of the Lagrange multiplier ν or the normal growth condition
is violated is shown in the dissertation [18]. Since the proof is rather technical without
offering any major mathematical added benefit, we refer here to the corresponding result
in the thesis, i.e., [18, Lemma 4.10].

Next, we examine the optimization problem which belongs directly to our saddle
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point system (29), i.e., only the active inequality constraints, again denoted by I (cf.
section 3), are taken into account in addition to the equality constraints:

min
x∈Rn,z∈Rs

a>x+ b>|Σ|z +
1

2
x>Qx

s.t. 0 = g +Ax+B|Σ|z + CΣz

0 = PI(h+Dx+ E|Σ|z + FΣz)

0 = |Σ|z − c̃− Z̃x .

(35)

Based on the search directions defined in Eq. (30), it is possible to reformulate problem
(35). For this purpose, we denote by fQ(x, z) = a>x + b>|Σ|z + 1

2x
>Qx the target

function and by (x̄, z̄) the current point to obtain

fQ(x̄+ ∆x, z̄ + ∆z) = a>(x̄+ ∆x) + b>|Σ|(z̄ + ∆z) +
1

2
(x̄+ ∆x)>Q(x̄+ ∆x)

= a>x̄+ b>|Σ|z̄ +
1

2
x̄>Qx̄︸ ︷︷ ︸

=fQ(x̄,z̄)=const.

+a>∆x+ b>|Σ|∆z +
1

2
∆x>Q∆x+

1

2
x̄>Q∆x+

1

2
∆x>Qx̄︸ ︷︷ ︸

=x̄>Q∆z

= (a> + x̄>Q)∆x+ b>|Σ|∆z +
1

2
∆x>Q∆x+ fQ(x̄, z̄). (36)

Moreover, we consider only the equality constraints and active inequality constraints,
yielding with ϕ(∆x,∆z) := (a+Qx̄)>∆x+b>|Σ|∆z+ 1

2∆x>Q∆x the following problem

min
(∆x,∆z)∈Rn+s

ϕ(∆x,∆z)

s.t. 0 = A∆x+B|Σ|∆z + CΣ∆z ,

0 = P>I (D∆x+ E|Σ|∆z + FΣ∆z) ,

0 = |Σ|∆z − Z̃∆x .

(37)

This optimization problem considers exactly the same constraints, i.e. the same active
inequality constraints, as the saddle point system (29). The only difference is that
here we minimize (37) along the search direction for fixed x̄ and z̄, whereas in the
original problem (35) we search for the point where the minimum is attained. After this
reformulation, we can show that this gives a descent direction.

Lemma 4.1. Suppose that (∆x∗,∆z∗) is the solution of (37) with ∆x∗ 6= 0 and let
the zero vector be no solution of (37). Then the objective function fQ(·, ·) is strictly
decreasing along the direction (∆x∗,∆z∗). If LIKQ holds, then this direction is unique.

Proof. Since the zero vector is a feasible point but no solution of (37) and (∆x∗,∆z∗) is
a solution, one has that

ϕ(∆x∗,∆z∗) < ϕ(0) ⇒ (a+Qx̄)>∆x∗ + b>|Σ|∆z∗ +
1

2
∆x∗Q∆x∗ < 0 (38)
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Since Q is positive definite, we have 1
2(∆x∗)>Q∆x∗ > 0 and it follows with Eq. (38):

(a+Qx̄)>∆x∗ + b>|Σ|∆z∗ < 0.

Therefore, Eq. (36) yields

fQ(x̄+ α∆x∗, z̄ + α∆z∗) = fQ(x̄, z̄) + α(a+Qx̄)>∆x∗ + αb>|Σ|∆z∗ +
1

2
α2∆x∗Q∆x∗︸ ︷︷ ︸

<0

< fQ(x, z)

for all α > 0 sufficiently small. The uniqueness follows from the assumption that LIKQ
holds true (cf. Section 3).

Now, we analyze the convergence of the Algo. 1.

Theorem 4.2. Suppose that an optimization problem of the form (CALOP) is given
and that x ∈ Rn is a feasible starting point for (CALOP). Let Q = Q> ∈ Rn×n be
a positive definite matrix. Then, Algo. 1 terminates after finitely many iterations at a
minimizer of the quadratically penalized optimization problem

min
x∈Rn,z∈Rs

a>x+ b>z +
1

2
x>Qx

s.t. 0 = g +Ax+Bz + C|z|
0 ≥ h+Dx+ Ez + F |z|
z = c+ Zx+Mz + L|z| .

(39)

Proof. Algo. 1 prioritizes the multiplier ω of the inequality constraints, see line 8 versus
line 11 of Algo. 1. Therefore, as long as the signature vector σ does not change, the
proposed approach resembles an active set method to solve QPs. Furthermore, we always
ensure a decrease in the function value, see Lemma 4.1, and the fact that β > 0. Such an
approach determines a minimizer of problems with the structure (26) in finitely many
steps, see, e.g., [24, Chap. 16].

If the current iterate is a feasible signature stationary point of (26) onFσ, Algo. 1
may change also the signature vector σ, see line 12, resulting in a change to a different
polyhedronF σ̃. However, since there are only finitely many polyhedra and the value of
the function value is consistently reduced, Algo. 1 can modify the signature vector only
finitely many times leading to a finite convergence of the overall algorithm.

The theorem considers the penalized version (39) of the original optimization task
(CALOP). This ensures also that the optimization problem is bounded below such that
a minimizer must exist. Hence, when Algo. 1 stops at a local minimizer of (39) in line 14,
one has to check the first optimality condition (14) given in Theo. 3.8 to verify that the
current point is also a minimizer of (CALOP). If this is not the case, one has to reduce
the influence of the quadratic penalty term and start Algo. 1 again. If (CALOP) has a
minimizer and the influence of the penalty term is driven to zero in finitely many steps
this yields convergence to a minimizer of (CALOP) as proven next. In our numerical
tests preformed so far, such a reduction was not necessary.
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Iteration xi σi ωi

0 (8.00, 3.00) ( 1, -1, 1) -1
1 (7.33, 3.66) ( 1, -1, 0) -1
2 (0.00, 0.00) ( 1, 0, 0) -1
3 (0.00, 0.00) ( 1, 0, 0) -1

Table 1: Optimization history of Algo. 1 for Ex. 5.1.

Theorem 4.3. Let f be bounded from below on the feasible set given by (CALOP),
denoted by F . Then, for Q → 0 the solutions generated by Algo. 1 converge to the
solution of the optimization problem (CALOP).

Proof. Since f is bounded from below it attains a minimum on F . The optimality
conditions (27b) to (27g) are independent from Q and therefore coincide with the corre-
sponding optimality conditions of (CALOP) (cf. Theo. 3.8). Thus, the only optimality
condition that depends on Q is stated in Eq. (27a). For reasons of continuity, if Q tends
to zero, Eq. (27a) converges to the same optimality condition as given in Eq. (20). Thus,
the solution generated by Algo. 1 coincides with the solution of (CALOP).

5 Numerical results

To illustrate the algorithm proposed in this paper, we implemented Algo. 1 in Matlab
and applied it to some constrained piecewise linear test problems.

Example 5.1. Consider again the constrained optimization problem given in Ex. 3.1.
For the starting point x0 = (8, 3), Fig. 5.1 shows the iterates generated by Algo. 1. Once
more, the resulting kinks are given by the blue lines and the feasible set is marked by the
red area. Four iterations are performed. The corresponding iterates are stated in Table 1
together with the signature vector σ and the signature vector of the constraints ω.

−4 4 8

−4

4
x0

x1

x2 = x3 x1

x2

Figure 5: Iterates generated by Algo. 1 for Ex. 5.1.
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Example 5.2. (Constrained HUL) As mentioned already before, Hiriart-Urruty and
Lemaréchal considered the piecewise linear and convex function ϕ : Rn → R,

ϕ(x) = max{max{−100, 2x1 + 5|x2|}, 3x1 + 2|x2|} .

To test our algorithm, we add the two constraints

H1(x) = −0.25x1 − x2 − 10 ≤ 0 ,

H2(x) = 2− 0.2|x1 + 9| − |x2 + 1| ≤ 0 ,

and choose the feasible starting point x0 = (9,−2.5). This optimization problem requires
six switching variables, e.g., one has n = 2, s = 6, m = 0 and p = 2. Using Algo. 1, 15
iterations are needed.

Fig. 6 shows a plot of the resulting kinks originating from the objective function (blue
lines) and from the constraints (cyan blue lines). The inequality constraints are marked
by the red lines and therefore the red area represents the feasible set. Finally, the iterates
generated by Algo. 1 are denoted by the black dots. In the plot only eight of the 15
iterations are marked. This is due to the fact that some of the iterations duplicate the
point x when σ and ω are restricted or relaxed, i.e., kinks or constraints are activated
or deactivated.
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Figure 6: Iterates generated by Algo. 1 for Ex. 5.2.

Example 5.3. (Constrained Rosenbrock-Nesterov II) According to [13], Nesterov sug-
gested the Rosenbrock-like test function

ϕ : Rn → R, ϕ(x) =
1

4
|x1 − 1|+

n−1∑
i=1

|xi+1 − 2|xi|+ 1|
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that is piecewise linear and nonconvex. It has the unique global minimizer x∗ = (1, 1,
. . . , 1) ∈ Rn and 2n−1−1 other Clarke stationary points non of which is a local minimizer.
For the starting point

x0
1 = −1, x0

i = 1 for 2 ≤ i ≤ n ,

the paper [9] contains numerical results and comparisons to other solvers showing that
nonsmooth optimization algorithms may get stuck at one of these stationary points that
are no minimizers. From the literature [13, 9] it is known that the selected starting point
is particularly well suited, since from this initial point most algorithms first run through
all stationary points. Since we consider constrained problems in this paper, we add the
piecewise linear constraint

n∑
i=1

|xi − 1| ≥ 1

2n
.

Hence, there is an n-dimensional rhombus around the global optimum which is cut out
of the Rn. The remaining 2n−1 − 1 stationary points are still feasible. To derive an
abs-linear representation of this constrained optimization problem, we define s = 3n− 1
switching variables, namely

zi = xi for 1 ≤ i < n, zn+i = xi+1 − 1 for 0 ≤ i < n,

z2n+i = xi+2 − 2 |zi+1|+ 1 for 0 ≤ i < n− 1, z3n−1 =
1

4
|zn|+

n−2∑
i=0

|z2n+i| .

Hence, we obtain the matrices and vectors

Z =



1 0 0
0 In−2 0
1 0 0
0 In−2 0
0 0 1
0 In−2 0
0 0 1
0 0 0


∈ Rs×n, L =

 0 0 0 0 0
−2 In−1 0 0 0 0

0 1
4 0 1> 0

 ∈ Rs×s, M = 0 ,

h = 1
2n , D = 0, E = 0, F = (0, . . . , 0︸ ︷︷ ︸

n−1

,−1, . . . ,−1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n

) ,

a = 0 ∈ Rn, b = e3n−1 ∈ Rs, c = (0, . . . , 0︸ ︷︷ ︸
n−1

,−1, . . . ,−1︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n−1

, 0)

with 1 ∈ Rn−1 as the vector with 1 in every component. Consider the point

x∗i = 1− 2i−1

2n − 1
· 1

2n
∈ (0, 1) for 1 ≤ i ≤ n .
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n 1 2 3 4 5 6 7 8 9 10 11 12

# 2 5 14 27 64 117 238 439 856 1685 3382 6807

n 13 14 15 16 17 18 19 20

# 13592 26285 42994 82995 131096 262173 605342 1119907

Table 2: Ex. 5.3: Number of iterations for different values of n.

Then one has

σ(x∗) = (1, . . . , 1︸ ︷︷ ︸
n−1

,−1, . . . ,−1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n

)> ⇒ α = {2n, . . . , 3n− 2} and ω(x∗) = 0 .

Note that the index 3n− 1 is not contained in α according to Def. 3.4, since z3n−1 does
not occur as an argument of an absolute value. Then, one obtains

[
PI(D + E|Σ|Z̃ + FΣZ̃)

PαZ̃

]
=



1 1 · · · · · · · · · 1
−2 1 0 0
0 −2 1 0 0

. . .
. . .

. . .
. . . 0

. . .
. . .

. . . 0
0 −2 1


∈ R(n−1)×n,

such that LIKQ holds. The optimality conditions (14), (15) and (16) require

ν> = λ>P>α PαZ̃ , ν> = −λ>|Σ| and |Pαλ| ≤ −PαL̃>λ .

These three conditions hold for ν = 0 ∈ R and λ = 0 ∈ Rs. Hence, x∗ is a minimizer.
For varying values of n, the number of iterations required by Algo. 1 is shown in

Table 2. The number of switches is given by s = 3n − 1. As can be seen from the
iteration counts, the number of visited polyedra is much less than the total number of
polyhedra with definite signatures given by 2s. We also applied MPBNGC solver [23]
that is a multiobjective proximal bundle method for nonconvex, nonsmooth and generally
constrained minimization. For n = 1, seven iterations are needed. Already for n = 2, the
solver gets stuck after seven iterations at a stationary point. The same can be observed
for larger values of n.

Example 5.4. As a fourth example, we consider a linear complementarity problem
(LCP) given by

Mx+ q ≥ 0 and x>(Mx+ q) = 0 (40)

for 0 ≤ x ∈ Rn, M ∈ Rn×n and q ∈ Rn. In [2], the LCP is formulated as a system of
piecewise linear equations

min(x,Mx+ q) = 0 , (41)
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where the minimum operator acts componentwise. In the same paper, the authors present
an algorithm that can be viewed as a semismooth Newton method and show nonconver-
gence for a special choice of the matrix M . They pointed out that the problem has a
unique solution for any q ∈ Rn if and only if M is a P-matrix, i.e., M has positive
principal minors detMII > 0 for all nonempty I ⊂ {1, . . . , n}.

To solve Eq. (41) with Algo. 1 we reformulate the problem (40) as

min
x∈Rn

n∑
i=1

|min(xi, (Mx+ q)i)| .

For the matrix M , we set

M3 ≡

1 0 2
2 1 0
0 2 1

 and M4 ≡


1 0 1

2
4
3

4
3 1 0 1

2
1
2

4
3 1 0

0 1
2

4
3 1


and q = 1 as the vector with 1 in every component of appropriate dimension as considered
also in [2]. As starting point we use the first unit vector in Rn as proposed in [2]. Then,
Algo. 1 needs five iterations in both cases, i.e., for M3 and M4, respectively, to reach
the solution 0 as zero vector of the appropriate dimension. In [2, Proposition 3.7] it is
shown that the algorithm proposed in that paper does not converge but generates a circle
of three resp. four reoccurring iterates.

Bi-level problems, i.e., problems where a lower level optimization problem has to be
solved and its solution impacts the upper level optimization problem, play an important
role in many real-world applications and are closely related to linear complementarity
problems as in Ex. 5.4. Here, we consider a bi-level problem, where all functions ap-
pearing as objective functions of the upper and lower level as well as all constraints are
linear. For the lower level problem we use standard KKT theory to convert it into a set of
equations and inequalities representing the necessary and sufficient optimality conditions
for the lower level. Subsequently, these constraints substitute the lower level problem.
However, the resulting complementarity condition is no longer a linear function. For
the application of CASM, we can reformulate this constraint analogous to Eq. (41) as a
piecewise linear function. Thus, the Lagrange multipliers from the lower problem also
become optimization variables.

Example 5.5. Consider the following linear bi-level problem taken from [28, Chap. 7]:

min
x,y

3x1 + 2x2 + y1 + y2

s. t. x1 + x2 + y1 + y2 ≤ 4 ,

y ∈ argmin
ỹ

4ỹ1 + ỹ2

s. t. 3x1 + 5x2 + 6ỹ1 + 2ỹ2 ≥ 15 ,

x ∈ R2
≥0, y ∈ R2

≥0 .

27



We use the starting point

x = (2.5, 1.5) , y = (0, 0) , and µ = (0, 4, 1) ,

where µ represents the Lagrange multiplier resulting from the lower level problem as
described above. Table 3 shows the iterates when solving this problem with CASM. In
[28], a structurally quite different algorithm is used to solve the problem, making it
difficult to compare the effort. Both algorithms perform some preparatory work in that
a pre-solve is performed before applying the algorithm proposed in [28] and a feasible
starting point has to be determined for CASM. Subsequently, the algorithm presented in
[28] requires three iterations, each of which requires the solution of two linear programs.
CASM needed six iterations, where one system of equations with a 27×27 system matrix
must be solved in each iteration. Both algorithms attain the same solution.

i xi yi µi σi ωi

0 (2.5, 1.5) (0, 0) (0.0, 4.0, 1.0) (0, 1, 1) ( 0, -1, -1, 0, 0, 0, 0, -1, -1)
1 (2.5, 1.5) (0, 0) (0.0, 4.0, 1.0) (0, 1, 1) (-1, -1, -1, 0, 0, 0, 0, -1, -1)
2 (0.0, 3.0) (0, 0) (0.0, 4.0, 1.0) (0, 1, 1) (-1, 0, -1, 0, 0, 0, 0, -1, -1)
3 (0.0, 3.0) (0, 0) (0.0, 4.0, 1.0) (0, 1, 1) (-1, 0, -1, 0, -1, 0, 0, -1, -1)
4 (0.0, 3.0) (0, 0) (0.0, 4.0, 1.0) (0, 1, 1) (-1, 0, -1, 0, -1, 0, -1, -1, -1)
5 (0.0, 3.0) (0, 0) (0.0, 4.0, 1.0) (1, 1, 1) (-1, 0, -1, 0, -1, 0, -1, -1, -1)
6 (0.0, 3.0) (0, 0) (0.5, 4.0, 0.0) (1, 1, 0) (-1, 0, -1, 0, -1, 0, -1, -1, 0)

Table 3: Optimization history of Algo. 1 for Ex. 5.5.

6 Summary and outlook

In this paper, we considered optimization problems with a piecewise linear target func-
tion and piecewise linear constraints as they arise for example in linear complementarity
problems or certain bi-level optimization problems.

Using the approach of abs-linearization, we have shown an alternative proof in compar-
ison to [14, 16] that we can verify the optimality of a given point with polynomial effort.
This is in contrast to most optimality conditions available for nonsmooth optimization.

Furthermore, starting from the already known Active Signature Method to solve un-
constrained piecewise linear optimization problems, we developed an extension for the
constrained case. For this purpose, we adapted the idea of decomposing the Rn into poly-
hedra such that the constraints are taken into account. On one such polyhedron, the
objective function was additionally penalized by a quadratic term ensuring the existence
of a minimizer on each polyhedron. This minimizer can be determined using an adapted
method to solve smooth quadratic problems. Employing the optimality conditions de-
rived before, a switching strategy between the polyhedra was derived that ensures finite
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convergence of the overall algorithm. Numerical results for several test cases illustrate
the performance of the resulting Constrained Active Signature Method.

The optimization problems solved in this paper have been of a purely academic nature.
In the future, we want to apply the algorithm to larger problems stemming from realistic
applications. For example, solution approaches for the optimization of gas networks yield
constrained piecewise linear subproblems, cf. [20, 21, 1]. First promising results in this
direction were already obtained, see [19]. The optimization problems considered there
are of much larger dimension than the test examples in this paper having more than 500
optimization variables, 1000 constraints and almost 2000 switches.

One remaining challenge is the determination of a feasible starting point. For some
real-world applications, such as the gas networks just mentioned, there are sometimes
simple ways to find such a feasible starting point, cf. [19]. However, for other problems,
such as general bi-level problem considered in the section on the numerical examples,
determining a feasible starting point has turned out to be complicated. There, the refor-
mulation of the lower level problem leads to new optimization variables corresponding
to the Lagrange multipliers for which there are no intuitive starting values. The devel-
opment of a suitable Phase-I method could help to overcome this challenge. An already
established Phase-I method, as known for linear optimization problems [24], is usually
not easily applicable, since the linear problems can be considered only on the polyhedra.
Thus it can happen that on some polyhedra no feasible point exists at all. A very costly
approach would then be to examine each polyhedron during a Phase-I method.

Furthermore, the Constrained Active Signature Method proposed in this paper could
be used as solver for the inner loop problem of a SALMIN approach [4] extended for con-
strained piecewise smooth problems,where a local piecewise linear model is considered.
However, similar to the smooth situation this might lead to non-feasible iterates in the
outer loop dealing with the nonlinear problem. Hence, suitable strategies to handle this
infeasibility have to be designed.
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