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Centers of convex sets are geometrical objects that have received extensive attention in the mathematical

and optimization literature, both from a theoretical and practical standpoint. For instance, they serve as

initialization points for many algorithms such as interior-point, hit-and-run, or cutting-planes methods.

First, we observe that computing a Minkowski center of a convex set can be formulated as the solution of a

robust optimization problem. As such, we can derive tractable formulations for polyhedra and convex hulls.

Computationally, we illustrate that using Minkowski centers, instead of the analytic or Chebyshev center,

improves the convergence of hit-and-run and cutting-plane algorithms. We also provide efficient numerical

strategies for computing centers of the projection of polyhedra and of the intersection of two ellipsoids.
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1. Introduction

Centers of convex sets have played a fundamental role in all areas of applied mathematics, espe-

cially in mathematical programming. Historically, the development of efficient linear optimization

algorithms is deeply connected with the definition and computation of the center of a polytope.

The ellipsoid algorithm solves linear optimization problems by constructing a volume-decreasing

sequence of circumscribed ellipsoids (see Bland et al. 1981, for a review). Its convergence was

formally proved by Khachiyan (1979) and sparked interest on computing the minimum-volume

circumscribed ellipsoid of a polytope or a generic convex body (see, e.g., Todd 1982). Alternatively,

Tarasov et al. (1988) proposed the inscribed ellipsoid method, where, at each step, one needs to

compute numerically an approximation to the maximum-volume inscribed ellipsoid of a polytope.
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Since optimizing over ellipsoids is easier than over a general convex set, these two types of ellip-

soids (minimum-volume circumscribed and maximum-volume inscribed) provide inner and outer

approximations that can also be used to approximately solve optimization problems over a con-

vex set. Karmarkar (1984) introduced another polynomial-time interior point algorithm for linear

optimization. At each iteration, the algorithm constructs a mapping that transforms the feasible

region into a standard simplex and associates the current iterate with “the center” of the simplex,

without providing on a formal definition of center. Modern interior point methods rely mostly on

the analytic center due to its computational benefits (Huard 1967, Sonnevend 1986, Renegar 1988,

Jarre 1989).

Besides extremal ellipsoids problems, the Minkowski measure of symmetry (Minkowski 1911)

has been proposed as another geometric definition of the center of a convex set. Yet, compared to

the other definitions, the Minkowski center has driven mostly theoretical interest and there is, to

the best of our knowledge, no computational evidence on the tractability and the practical benefits

of Minkowski centers. The present paper provides a first answer to these questions.

1.1. Contributions and structure

The main contribution of this paper is to recognize that Minkowski centers of a convex set are

solutions of a robust optimization problem. Under this robust lens, we provide computationally

tractable reformulations or approximations for a series of sets including polyhedra and projections

of polyhedra. We can also derive known and new analytic expressions for the symmetry measure

of simple sets by analyzing the optimization formulation directly, instead of the geometry of the

set. We demonstrate numerically that Minkowski centers are credible alternatives to other centers,

such as the Chebyshev or analytic centers, and can fasten convergence of numerical algorithms.

After presenting the existing literature on centers of convex bodies in Section 1.3, the rest of the

paper is organized as follows:

• We introduce Minkowski centers in Section 2 and connect them with existing definitions of

centers. Namely, we show that Minkowski centers are special cases of Helly centers, like the cen-

troid, the John or the volumetric center. We then derive a robust optimization formulation for

computing Minkowksi centers of a convex set (Proposition 2). Under this lens, we derive tractable

reformulations of this optimization problem for polyhedra and the convex hull of a finite number

of points and provide known and new analytical bounds in simple cases.

• Numerically, the analytic center is widely used as the initialization of many algorithms despite

the fact that it is analytical and not geometric. We demonstrate empirically in Section 3 that using

the Minkowski center instead can provide substantial benefit in terms of algorithmic convergence,

using the hit-and-run and the cutting-plane algorithms as illustrating examples.
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• In Section 4, we consider the case of convex sets defined as the projection of a polyhedron. We

show that computing a Minkowski center for these sets is equivalent to solving an adjustable robust

optimization problem. We propose an approximation based on linear decision rules and evaluate

its practical relevance on numerical simulations.

• Finally, in Section 5, we propose a numerical strategy for approximating Minkowski centers of

the intersection of two ellipsoids. Our algorithm relies on a second-order cone relaxation and bisec-

tion search. We also provide a (numerically verifiable) condition under which our approximation is

tight, together with a constant factor approximation bound for our approach. We also discuss the

extension to intersection of m≥ 2 ellipsoids.

1.2. Notations

We use nonbold face characters (x) to denote scalars, lowercase bold faced characters (x) to denote

vectors, uppercase bold faced characters (X) to denote matrices, and bold calligraphic characters

such as X to denote sets. We let e (resp. 0) denote the vector of all 1’s (resp. 0’s), with dimension

implied by the context. We denote by ei the unit vector with 1 at the ith coordinate and zero

elsewhere. R, R+, and N denote the set of real numbers, non-negative real numbers, and non-

negative integers respectively. For a positive integer n ∈ N, we define [n] := {1, . . . , n}. Given two

n-dimensional vectors x,y, we use the notation x>y for the inner product of x and y, x>y :=∑
i∈[n] xiyi, and ‖x‖ for the Euclidean norm of x, ‖x‖ :=

√
x>x. For p ≥ 1, the p-norm of x is

defined as ‖x‖p =
(∑

i∈[n]|xi|p
)1/p

so that ‖x‖= ‖x‖2.

1.3. Literature review

In this section, we present the various definitions of centers that have been proposed in the applied

mathematics literature.

Historically, the first definition of a center is the center of mass (or barycenter), used primarly

in physics and motion geometry (Schwartz and Sharir 1988). The center of mass of a set is defined

as the weighted arithmetic mean position of all its points, i.e.,

1∫
Rn µ(x)dx

∫
Rn
xµ(x)dx,

where µ(·) is a given mass density function over the set of interest C. When µ is uniform, then

the center of mass is also called the centroid. In particular, the centroid of a finite number of m

points x1, . . . ,xm, is 1
m

∑
i∈[m]xi. In general, computing the centroid of a polytope is #P−hard

(Rademacher 2007), but it can be efficiently approximated via random sampling. In data science,

the notion of centroid is the building block of the k-means clustering algorithm (Kanungo et al.

2002).

For convex sets, an important geometrical definition of a center is the notion of Helly center or

H-center:
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Definition 1. For a convex set C, we say that xH ∈ C is a Helly center if for any chord [u,v]

passing through xH , we have
1

n+ 1
≤ ‖xH −u‖
‖v−u‖

≤ n

n+ 1
.

Klee (1963) proves that any convex compact body of Rn admits a Helly center, as a consequence

of Helly’s theorem. However, it is in general not unique. For instance, Barnes and Moretti (2005)

prove that an ellispoid admits an infinity of Helly centers (Theorem 2.5).

Another class of centers encompasses centers defined via extremal ellipsoids (see Güler and

Gürtuna 2012, for a complete treatment). For instance, the center of the minimum-volume ellip-

soid that contains a set C is referred to as the John (or Löwner-John) center of C. The John

center is well defined for convex bodies and unique (John 1948). Alternatively, the center of the

maximum-volume ellipsoid contained in C is called the volumetric center of C (Vaidya 1996). How-

ever, even for polyhedra, finding the maximum-volume ellipsoid and its center requires solving a

semi-definite optimization problem (Boyd and Vandenberghe 2004, Section 8.4.2). Recently, Zhen

and den Hertog (2018) use Fourier-Motzkin decomposition and adjustable robust optimization

techniques to approximate it in a tractable fashion for projection of polyhedra of the form {x :

∃z s.t. Axx+Azz ≤ b}. If we further restrict our attention to isotropic ellipsoids, the center of a

maximum-volume ball enclosed in C is called a Chebyshev center of C. The Chebyschev center of

a polyhedron can be computed by solving a linear optimization problem (see Boyd and Vanden-

berghe 2004, Section 4.3.1 and 8.5.1). Lee and Park (2011) use the Chebyshev center to accelerate

the convergence of a column generation scheme. Note that some authors, e.g., Eldar et al. (2008),

Xia et al. (2021), alternatively defined the Chebyshev center as the center of the minimum-volume

circumscribed ball, but we shall use the former definition in our numerical experiments. Finally,

the main limitation of centers defined via extremal ellipsoids is that they require the convex set C

to be fully-dimensional (or to restrict our attention to ellipsoids in the affine hull of C).

Finally, the most used definition of a center in optimization is certainly the analytic center:

Definition 2. The analytic center of the convex set C = {x : Ax= b; fi(x)≤ 0, ∀i ∈ [m]} is

the solution of the optimization problem

max
x

∑
i

log (−fi(x)) s.t. Ax= b.

The maximization problem above aims to find a strictly feasible point x∈ C with the largest sum

of log-slacks. When C is bounded, the logarithmic barrier terms log (−fi(x)) are bounded above,

the optimization problem is well defined, and the analytic center, when it exists, is unique. Being

defined as the solution of a convex optimization problem the analytic center can be computed

in a tractable fashion. However, a major deficiency of this definition is that it is not a geometry
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concept but rather depends on the analytical description of the set C. For example, the analytic

center of the n-dimensional standard simplex defined as {x ∈Rn+ : e>x= 1} is the vector 1
n
e, but

the analytic center of the geometrically equivalent set {x∈Rn+ : e>x≤ 1,e>x≥ 1} does not exist.

Similarly, duplicating or adding redundant constraints in the description of C pushes the analytic

center arbitrarily close to the boundary (Caron et al. 2002). Yet, the analytic center remains very

popular and a cornerstone in optimization algorithms since the seminal work of Renegar (1988).

2. Minkowski center and robust optimization formulation

In this paper, we study the Minkowski center of a closed, bounded, and convex body C ⊆Rn. The

Minkowski center is related to the notion of symmetry of the set. Let us first define the symmetry

of C with respect to a point x∈ C as

sym(x,C) := max
λ≥0

λ s.t. x+λ(x−y)∈ C, ∀y ∈ C.

This measure of symmetry, initially proposed by Minkowski, intuitively states that sym(x,C) is

the largest scalar λ such that every point y ∈ C can be reflected through x by the factor λ and still

lies in C. Among other properties, we have sym(x,C)≤ 1. We refer to Belloni and Freund (2007)

for an analysis of some fundamental properties of sym(x,C). Then, the Minkowski center is defined

as the point x∈ C maximizing symmetry, i.e.,

Definition 3. x? is called a Minkowski center or symmetric point of C if x? is a solution of the

optimization problem max
x∈C

sym(x,C). The optimal objective value, sym(C) := sym(x?,C), is called

the symmetry of C.

In particular, Minkowski centers are not necessarily unique and the set C is symmetric with respect

to some x0 (i.e., ∀x∈ C, 2x0−x∈ C) if and only if sym(C) = 1.

2.1. Minkowski centers are Helly centers

Here, we connect the definition of Minkowski center with other centers investigated in the literature,

namely Helly centers. We first provide a sufficient condition for a point x to be a Helly center.

Proposition 1. If x∈ C satisfies 1
n
≤ sym(x,C), then x is a Helly center of C.

The proof of Proposition 1 is provided in Appendix A.1. From Proposition 1, we can prove that

most definitions of centers are special cases of Helly centers:

Corollary 1. If C is full dimensional, (a) the centroid, xc, (b) the John center, xJ , (c) the

volumetric center, xv, (d) any Minkowski center, xM , are Helly centers.

Proof We prove that the symmetry of C at each center is at least 1/n. The results then follows

from Proposition 1. (a) Hammer (1951) proved that sym(xc,C) ≥ 1/n. (b) The John center is
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the center of the minimum-volume circumscribed ellipsoid E , C ⊆ E . John (1948) showed that

(1/n)E ⊆ C (Theorem 3), which implies that sym(xJ ,C)≥ 1/n. (c) Similarly, the maximum-volume

inscribed ellipsoid (whose center is the volumetric center) satisfies E ′ ⊆C ⊆ nE ′ so sym(xv,C)≥ 1/n.

(c) Since a Minkowski center maximizes symmetry, sym(xM ,C)≥ sym(xc,C)≥ 1/n. �

Corollary 1(b) provides a new proof of Barnes and Moretti (2005, Theorem 2.4).

2.2. Robust optimization formulation

As a starting point to our analysis, we would like to emphasize that Minkowski centers are the

solution of a robust optimization problem. From Definition 3, we can obviously write a Minkowski

center as the solution of:

max
x∈C,λ≥0

λ s.t. x+λ(x−y)∈ C, (∀y ∈ C), (1)

which resembles a robust optimization problem where the set C defines both the uncertainty set

and the constraints. However, the constraints involve products of decision variables, λx, hence

might be non-convex in (λ,x). Still, we can reformulate the above optimization problem into one

that is convex in its decision variables and uncertain parameters:

Proposition 2. Assume that C can be described via linear equality constraints and m convex

inequality constraints, i.e., C = {x | Ax= b; fi(x)≤ 0,∀i ∈ [m]}. Consider (w?, λ?), solutions of

the following robust convex optimization problem:

max
w,λ≥0

λ s.t. Aw= (1 +λ)b,

(1 +λ)fi

(
w

1 +λ

)
≤ 0, ∀i∈ [m],

fi (w−λy)≤ 0, ∀y ∈ C,∀i∈ [m].

(2)

Then, the point x? :=w?/(1 +λ?) is a Minkowski center of C (with symmetry measure λ?).

Note that (2) is a robust optimization problem with linear objective and constraints that are convex

in the decision variables and convex in the uncertain parameters y.

Proof Since λ≥ 0, 1 +λ> 0 and we can consider the bijective change of variable w= (1 +λ)x.

Problem (1) becomes

max
w,λ≥0

λ s.t.
w

1 +λ
∈ C, (3)

w−λy ∈ C, ∀y ∈ C.

To enforce w/(1 +λ)∈ C, we need to impose

A
w

1 +λ
= b ⇐⇒ Aw= (1 +λ)b,

fi

(
w

1 +λ

)
≤ 0 ⇐⇒ (1 +λ)fi

(
w

1 +λ

)
≤ 0, ∀i∈ [m].



den Hertog, Pauphilet and Soali: Minkowski Center via Robust Optimization
7

Observe that (x, t) 7→ tfi(x/t) is the perspective function of fi and is jointly convex in (x, t) over

dom(fi) × R+ (see Boyd and Vandenberghe 2004, Section 3.2.6). So all constraints are convex

constraints in (w, λ).

Regarding the robust constraints, w− λy ∈ C, ∀y ∈ C, we consider the equality and inequality

constraints separately. First, (w, λ) should satisfy Aw− λAy = b,∀y ∈ C. However, since Ay = b

for y ∈ C, these constraints are equivalent to Aw = (1 + λ)b, which are already enforced. Second,

the inequality constraints can be written as fi (w−λy)≤ 0,∀y ∈ C, which are robust constraints,

convex in the decision variables and convex in the uncertain parameters y. �

This observation prompts us to investigate whether tools and techniques developed for robust

optimization problems could be usefully and successfully applied to compute Minkowski centers of

convex sets.

2.3. Tractable reformulations for polyhedra

In robust optimization, tractable reformulations are obtained when the robust constraints are

concave in the uncertain parameter (Ben-Tal et al. 2015). When they are convex in the uncertain

parameter, like in (2), even computing the worst case scenario, i.e., solving maxy∈C fi(w−λy) for

a fixed (w, λ), is challenging. Accordingly, we first consider the easy case where the fi’s are linear,

hence both convex and concave.

First, we consider the case where C is described via linear constraints.

Proposition 3. Consider C = {x | Ax= b; Cx≤ d}, where C ∈ Rm×n, d ∈ Rm. For i ∈ [m],

define δi := miny∈C e
>
i Cy. Then, (2) is equivalent to

max
w,λ≥0

λ s.t. Aw= (1 +λ)b, Cw−λδ≤ d. (4)

Proof From Proposition 2, we know that a Minkowski center can be obtained by rescaling the

solution of the following optimization problem:

max
w,λ≥0

λ s.t. Aw= (1 +λ)b,

Cw≤ (1 +λ)d,

e>i Cw−λe>i Cy≤ e>i d, ∀y ∈ C,∀i∈ [m].

The ith robust constraint, i∈ [m], is equivalent to

e>i Cw+ max
y∈C

{
−λe>i Cy

}
≤ e>i d ⇐⇒ e>i Cw−λmin

y∈C

{
e>i Cy

}
≤ e>i d,

where the equivalence follows from the fact that λ> 0.

By definition of C, note that δi := min
y∈C

e>i Cy ≤ di, so that the constraints Cw−λδ≤ d imply

Cw≤ (1 +λ)d, which is then redundant with the robust constraint. �
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According to Proposition 3, computing a Minkowski center of a polyhedron can be achieved

by solving m+ 1 linear optimization problems, including m optimization problems over the same

feasible set C. Proposition 3 hence recovers the numerical approach presented in Belloni and Freund

(2007, Section 5.2), yet from an optimization perspective. Our approach is also numerically more

efficient. Indeed, the number of optimization problems to be solved, m, does not depend on the

number of equality constraints but only on the number of linear inequalities in the description of

C. On the contrary, Belloni and Freund (2007) applies to C described as C = {x | Ax≤ b; −Ax≤

−b; Cx≤ d}, which is more prodigal in linear inequalities.

Second, we consider the case where C is described as the convex hull of a finite number of points.

Consider m points x1, . . . ,xm ∈ Rn and C = conv {x1, . . . ,xm}. For notation convenience, let us

define Λm := {λ∈Rm+ |
∑

i∈[m] λi = 1}, so that C = {
∑

i∈[m] λixi, | λ∈Λm}.

Proposition 4. Consider m points x1, . . . ,xm ∈Rn and C = conv {x1, . . . ,xm}. The optimiza-

tion problem (2) is equivalent to

max
w,λ≥0,

ν1,...,νm∈Λm

λ s.t. w= λxi +
∑
j∈[m]

νijxj, ∀i∈ [m].

Proposition 4 (proved in Appendix A.2) recovers exactly the result provided in Belloni and

Freund (2007, Section 5.1). Unfortunately, this formulation involves in the order of m2 decision

variables and constraints, so column and variable generation procedures could be investigated to

improve practical tractability.

2.4. Analytic expressions for simple sets

Deriving analytic expression or bound for the symmetry measure of a set can be of theoretical

interest. For instance, in a robust optimization context, Bertsimas et al. (2011b) derived closed-form

expression for the symmetry measure of many uncertainty sets by using the following reformulation

of Belloni and Freund (2007, Eq. (40)):

Lemma 1. Consider C = {x | Ax= b; Cx≤ d}, where C ∈Rm×n, d ∈Rm. For i ∈ [m], define

δ?i := maxy∈C −e>i Cy. Then, for any x∈ C,

sym(x, S) = min
i∈[m]

di− c>i x
δ?i + c>i x

.

In particular, Lemma 1 remains valid if C is described as the intersection of an infinite number of

half-spaces. Based on this observation, Bertsimas et al. (2015) were able to derive explicit formulae

for the symmetry measure of some non-polyhedral sets.

In this section, we give new, direct, and simple proofs for some of these results. Our proof

technique relies on analyzing the robust optimization formulation (3) directly and naturally leads
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to generalizations to a broader class of sets than previously studied. In particular, we will consider

two special structures, namely permutation-invariant sets and packing constraints. Some examples

of convex sets and their symmetry measures are reported in Table 1.

First, we can easily compute the Minkowski measures of sets that are permutation-invariant.

Indeed, in this case, (3) simplifies into a two-dimensional problem:

Lemma 2. Assume that C is permutation-invariant, i.e., for any x∈ C and any permutation σ,

xσ := (xσ(1), . . . , xσ(n))∈ C. Then, there exists an optimal solution to (3) satisfying w= te for some

t∈R.

Proof Consider a feasible solution for (3), (λ,w). For any permutation σ, (λ,wσ) is also feasible,

with same objective value. Define w̄= 1
n!

∑
σ∈Σn

wσ, where Σn is the set of all permutations of [n].

Then (λ, w̄) is also feasible with objective value λ. Applying this construction with an optimal

solution w yields the result. �

To illustrate the implications of this observation, we consider the intersection of the p-norm unit

ball and the non-negative orthant:

Proposition 5. Consider B+
p =

{
x∈Rn+ | ‖x‖p ≤ 1

}
. Then, (λ?,w?) =

(
1

n1/p
,

1

n1/p
e

)
is an

optimal solution of (3).

The proof is deferred to Appendix A.3 and relies directly on applying Lemma 2 to B+
p . We now

consider a broad class of polyhedra referred to as packing constrained sets, i.e., sets of the form

P := {x≥ 0 | Ax≤ b}, where A∈Rm×n+ is a matrix with non-negative entries and b∈Rm+ . Among

others, such sets appear in the widely studied multi-dimensional knapsack problem (Kellerer et al.

(2004)). In robust optimization, the budgeted uncertainty set of Bertsimas and Sim (2004) is

a popular choice of uncertainty set and is of the aforementioned form. Other examples include

intersections of budgeted uncertainty sets, CLT sets (Bandi and Bertsimas 2012), and inclusion-

constrained budgeted sets (Gounaris et al. 2016).

Proposition 6. Consider P := {x ≥ 0 | Ax≤ b}, with A ∈ Rm×n+ and b ∈ Rm+ For i ∈ [n],

define

y?i := max
y∈P

e>i y= min
j∈[m]

(
bj
Aji

)
,

with the convention 1/0 = +∞. The Minkowski measure and a scaled Minkowski center of P are

λ? = min
j∈[m]

(
bj

e>j Ay
?

)
, w? = λ?y?.
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Among others, we can readily apply Proposition 6 to the budgeted uncertainty set. For example,

for the budgeted uncertainty set with equal weights, ∆e
k =

{
x∈ [0,1]n

∣∣∣ ∑i∈[n] xi ≤ k
}

, we have

y?i = min(1, k). If k ≥ n, we obtain λ? = 1, which is intuitive because in this case the budget

constraint is redundant and ∆e
k = [0,1]n is perfectly symmetric. If k ≤ n, λ? =

k

nmin(1, k)
. In

particular, if k ≤ 1, we have λ? = 1/n, which is consistent with the fact that ∆e
k corresponds to a

scaled simplex in this case. In the less trivial case where 1≤ k≤ n, we obtain λ? = k/n. A similar

discussion can be conducted for a generic budgeted uncertainty set.

Furthermore, a similar line of proof can be applied to the intersection of a class of generalized

ellipsoids with the non-negative orthant, that is, sets of the form E+
p := {x ≥ 0 | ‖Ax‖p ≤ 1},

where A∈Rm×n+ , as reported in Table 1. These “non-negative” ellipsoids are also important uncer-

tainty sets in the literature and have been used as baselines in many robust optimization settings

(Bertsimas et al. 2011a). The corresponding proofs can be found in Appendix A.4-A.5.

Table 1 Analytical expression of the Minkowski symmetry measure and Minkowski center of simple sets. A box

indicates results not already derived in the literature.

No Convex set Symmetry measure Minkowski center

1
p−norm unit ball 1

n1/p

1

n1/p + 1
eB+

p = {x≥ 0
∣∣∣ ‖x‖p ≤ 1}

2

Standard simplex
1

n

1

n+ 1
e∆ =

{
x≥ 0 |

∑
i∈[n] xi ≤ 1

}

3

Budgeted uncertainty set, equal weights

k

nmin(1, k)

kmin(1, k)

k+nmin(1, k)
e∆e

k =
{
x∈ [0,1]m |

∑
i∈[n] xi ≤ k

}
,

with k≤ n

4

Budgeted uncertainty set
k∑

i∈[n] min(ui, k)

k

k+
∑

i∈[n] min(ui, k)
e∆k =

{
x∈ [0,1]n |

∑
i∈[n] uixi ≤ k

}
,

with k≤
∑

i ui, and ui ≥ 0

5

p-norm ellipsoidal set λ? = 1
‖Ay?‖p λ?

1 +λ?
y?E+

p =
{
x∈Rn+ | ‖Ax‖p ≤ 1

}
,

with y?i = 1
‖A>ei‖p

, i∈ [n]
with A∈Rm×n+

2.5. Choosing among Minkowski centers

As previously discussed, Minkowksi centers are not uniquely defined. When C is a compact, convex

set with a nonempty interior, Proposition 6 of Belloni and Freund (2007) proved that the set of

its Minkowksi centers is a compact set with empty interior. Under our robust optimization lens,

multiplicity of Minkowski centers relates to the multiplicity of robust optimal solutions. Indeed, it
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has been observed (e.g., Iancu and Trichakis 2014) that different robust optimal solutions, although

leading to the same worst-case cost, can provide very different average performance. In this section,

we propose two methods to choose one center among the set of all Minkowksi centers and describe

them in the particular case of polyhedra.

The first method consists in computing a Minkowski center of the set of Minkowski centers. Let

λ? be the objective value of (3). The set of Minkowski centers of C can thus be described as

M(C) =

{
x

∣∣∣∣ x∈ C(1 +λ?)x−λ?y ∈ C, ∀y ∈ C

}
.

Hence, by applying Proposition 2 toM(C), we can obtain a Minkowski center ofM(C) by solving

the following optimization problem:

max
v,µ≥0

µ s.t. v/(1 +µ)∈M(C),

v−µz ∈M(C), ∀z ∈M(C).

The difficulty in the above formulation is that the description ofM(C) contains robust constraints

at three different places in the optimization problem: as constraints on v/(1 +µ), as constraints in

the uncertainty set (z ∈M(C)), and as constraints that need to be “robustified” (v−µz ∈M(C)).

Fortunately, we can obtain a tractable formulation in the case of polyhedra:

Proposition 7. Assume C = {x | Ax= b; Cx≤ d} and define δi := miny∈C e
>
i Cy for i∈ [m].

Let λ? denote the objective value of (4). The point v?/(1 +µ?), with (v?, µ?) solutions of

max
v,µ≥0

µ s.t. Av= (1 +µ)b,

(1 +λ?) (Cv−µδ)≤ d+λ?δ,

is a Minkowski center of M(C).

Proof From Proposition 3, we have that the set of Minkowski centers of C is a polyhedron

M(C) = {x | Ax= b;Cx≤ d̃}, with

d̃ :=
1

1 +λ?
(d+λ?δ).

In other words,M(C) is also a polyhedron defined with the same equality constraints as C and the

same inequality constraints except with a different right-hand side vector d̃.

Applying Proposition 3 to M(C), we can obtain a Minkowski center of M(C) by rescaling the

solution of:

max
v,µ≥0

µ s.t. Av= (1 +µ)b, Cv−µδ≤ d̃.

�
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Since Minkowski centers can be viewed as robust optimal solutions of a given optimization

problem, the second method we propose to select one center is to consider Pareto robust optimal

solutions, as defined in Iancu and Trichakis (2014).

Definition 4. Consider a polyhedron C = {x | Ax= b; Cx≤ d} with m inequality constraints.

Denote δi := miny∈C e
>
i Cy for i∈ [m] and λ? the objective value of (4). Then, we call a solution of

the optimization problem

max
x
v>(d− (1 +λ?)Cx+λ?Cȳ) s.t. Ax= b, (1 +λ?)Cx≤ d+λ?δ,

for some ȳ in the relative interior of C and some valuation of the constraints v ∈ Rm+ , a Pareto-

optimal Minkowski center of C.

In other words, a Pareto-optimal Minkowski center is a center that maximizes the penalized sum

of the slacks in the constraints (1 +λ?)Cx−λ?Cȳ≤ d, at some predefined point ȳ.

3. Practical benefits of Minkowski centers

While Minkowski centers have mostly been regarded as theoretical objects, the previous section

showed that it can be expressed as the solution of a tractable linear optimization problem for

polyhedra. In this section, we investigate numerically the practical benefits from using Minkowski

centers (instead of available alternatives) in two popular algorithms.

3.1. Computational tractability

We first evaluate the numerical scalability of computing Minkowski centers of polyhedra and how

it compares to other known and used centers, namely the analytic and Chebyshev centers, on 78

polyhedra from the NETLIB library (Gay 1985) and 37 from the MIPLIB library. As reported

in Table 2, these computational times are one order of magnitude higher than those needed to

compute the analytic and Chebyshev centers. To the best of our knowledge, our paper is the first

to investigate the numerical tractability of Minkowski centers, although it has been extensively

used for theoretical purposes. We also report measures of centrality: the measure of symmetry

sym(x,C), the depth, and the average sum of log-slacks 1
m

∑
i∈[m] log(di − e>i Cx). These three

metrics are maximized (by definition) by Minkowski, Chebyshev and analytic centers respectively.

By reporting these measures, we want to emphasize how complex and ambiguous it is to properly

define a center of a set and how varied the current definitions are. In the next two sections, we adopt

a more pragmatic approach and evaluate the benefit from using Minkowski centers as initialization

points of two numerical algorithms.
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Table 2 Median (and inter-quartile range) for runtime and 3 performance metrics for analytic, Chebyshev and

Minkowski centers. We report runtime (in seconds), the symmetry measure sym(x,C) and the average sum of

log-slacks 1
m

∑
log(di− e>i Cx).

Method Runtime Symmetry measure Depth Average sum of log slacks

Chebyshev 0.014 (0.036) 0.0 (0.004) 0.025 (0.598) -1.584 (20.371)
Analytic 0.231 (0.349) 0.009 (0.075) 0.0 (0.148) 0.066 (7.172)

Minkowski 5.308 (23.278) 0.056 (0.13) 0.0 (0.109) -0.756 (5.322)

3.2. Hit-And-Run algorithm

Hit-and-run (Smith 1984) is a standard algorithm for sampling random points from an arbitrarily

density on a high dimensional Euclidian space (see Chen and Schmeiser 1993, for a comparison

of sampling schemes), initially proposed by Boneh and Golan (1979), Smith (1984). In particular

here, we apply it to sample points uniformly at random over a polyhedron P.

The hit-and-run (HAR) algorithm starts at an initial point x0 ∈ P and generates a sequence

x1, . . . ,xm in P with random increments xm+1−xm. Precisely, at step m, we generate a random

direction dm. The half-line starting from xm with direction dm hits the boundary of P at some point

ym. We sample xm+1 uniformly over the segment [xm,ym]. Algorithm 2 describes the algorithm in

pseudo-code for a polyhedron P described as the intersection of halfspaces. The extension to generic

compact convex sets is described in Bélisle et al. (1993). It was later shown to have polynomial

mixing time for sampling from convex sets (Lovász 1999), and seems to be much faster in practice.

We refer to Bélisle et al. (1998) for a careful review of literature.

The sequence of points generated x0,x1, . . . ,xm is an ergodic Markov chain that geometrically

converges to the uniform distribution over P (Chen and Schmeiser 1993, Section 2-3). To estimate

the expected value of some functional of x̃, E[h(x̃)] using N uniformly sampled points from P, two

options are possible: (a) Run Algorithm 2 N times and consider {x(i)
m , i∈ [N ]}; (b) Run Algorithm

2 with m×N steps and consider {xim, i ∈ [N ]}. Generally speaking, for a fixed value of m×N ,

option (b) will provide better point estimates but worse standard errors, due to auto-correlations

between the samples (see Chen and Schmeiser 1993, Section 5.1). In any case, it is crucial that the

distribution of the sequence generated by the algorithm converges as fast as possible (in terms of

number of steps m) towards the uniform distribution. Intuitively, starting from a “central” point

x0 should fasten convergence.

Formally, we want to test the null hypothesis:

(Hm
0 ) : x̃m is uniformly distributed on P

using an i.i.d. random sample of size N = 5,000. Dı́az et al. (2006) developed a method for testing

this hypothesis called the distance to boundary (DB) test.
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For a compact subset of Rn, C, define the distance of any point x to the boundary as D(x, ∂C) =

min{‖x−y‖ : y ∈ ∂C} and denote by R the maximum distance to boundary that can be attained

on C, i.e., R = max{D(x, ∂C) : x ∈ C}. The quantity R is sometimes called the depth of C and

D(x, δC)/R the relative depth at x. For a wide class of sets, namely sets that are “invariant

by erosion”, Dı́az et al. (2006) showed that, under (Hm
0 ), the relative depth ỹm = D(x̃m, δS)/R

follows a beta distribution with parameters (1, d), i.e., its cumulative distribution function is y 7→

1− (1− y)d, for y ∈ [0,1]. Accordingly, we can test (Hm
0 ) by testing whether ỹm follows the right

distribution via a Kolmogorov-Smirnov test. In particular, this result holds for convex polyhedron

circumscribed to a ball, i.e., defined as the intersection of halfspaces that are all tangent to a ball.

We will use this type of polyhedra in our experiments.

For our experiment, we generate random convex polyhedra circumscribed to a ball in dimension

n∈ {10,20,50,100} (see Algorithm 3). We run the HAR algorithm with different initial points x0.

In particular, we compare the Minkowski, Chebyshev, and analytic centers. Figure 1 represents

the p-value of the DB-Test for (Hm
0 ) as a function of the number of steps m. Recall that one

can reject the null hypothesis (Hm
0 ) (i.e., conclude that the sample is not uniformly distributed)

when the p-value is low. We also display a 0.05 cut-off. We observe that the hit-and-run algorithm

initialized with a Minkowski center converges faster to a uniform distribution than when initialized

with either the analytic or Chebyshev center. In particular, the benefit from a Minkowski center

increases as the dimension of the space n increases.

(a) n= 20 (b) n= 50 (c) n= 100

Figure 1 p-value of a DB-Test for the hit-and-run algorithm, as the number of interactions m increases. Results

are averaged over 20 random polyhedra defined as the intersection of 10 halfspaces.

We also compute, for each initialization point, the number of iterations m required for Algorithm

2 to achieve a p-value of 0.051. Table 3 reports the average number additional iterations required

with the analytic center vs. the Minkowski center and confirms the benefit from the Minkowski

center, especially in high dimensions. In low dimension, we observe that the analytic center seems

to perform better when more constraints define the polyhedron. We confirm these findings by

doing a regression analysis of the number of additional iterations (in log terms) as a function of
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the dimension n and the number of halfspaces defining the polyhedron (see Table 6 in Appendix

C.1). In Appendix C.1 Table 5, we conduct a similar analysis for the Chebyshev center and observe

similar (though marginally stronger) benefits.

Table 3 Number of additional iterations required by Algorithm 2 when initialized with the analytic center vs.

the Minkowski center. We report the average number over 20 random polyhedra (and standard errors).

# halfspaces (p)
Dimension (n) 10 20 30 40 50

10 0.3 (0.3) -1.0 (0.5) -3.1 (0.5) -2.8 (0.7) -3.2 (0.6)
20 4.1 (1.3) 3.8 (1.1) 1.6 (1.3) -4.0 (1.2) -5.6 (1.3)
50 47.9 (5.3) 69.5 (4.3) 61.8 (5.5) 54.9 (4.0) 44.7 (4.6)
100 283.6 (8.9) 362.1 (4.9) 362.0 (7.4) 375.4 (7.4) 376.1 (6.7)

3.3. Cutting-plane algorithm

Cutting-plane methods (CPMs) are a broad family of algorithms for solving convex or quasiconvex

nondifferentiable optimization problems (see Elhedhli et al. 2009, for a comprehensive overview).

In this section, we consider the basic implementation of a CPM algorithm to minimize a piece-

wise linear convex function and evaluate its performance on random instances by following the

methodology of Boyd et al. (2008).

We consider a generic problem of the form

min
x,t

t s.t. (x, t)∈ C, (5)

where C is a convex set. Typically, (5) arises as the epigraph formulation of a constrained mini-

mization problem. In our implementation, we will consider the minimization of a piecewise linear

function, i.e.,

min
x

t s.t. a>i x+ bi ≤ t,∀i∈ [m].

In order to apply the CPM described in Algorithm 1, three ingredients are needed: First, the

ability to test whether the current solution is feasible, (xk, tk) ∈ C. Second, an oracle that, given

an infeasible solution (xk, tk), provides an hyperplane that separates the current solution from the

feasible set C. In our case, we will simply add the most violated linear constraint. For generic convex

functions, separating hyperplanes can be obtained by linearizing one violated constraint around

the current solution. Finally, and most relevant to our experiments, we need a query function that

returns a point from a given polyhedron. From a convergence perspective, it is understood that

the query point should be “central” so that the volume of Pk decreases fast. In our experiments,

we will numerically compare the convergence of this algorithm when a Minkowski, analytic, or
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Chebyshev center is used as a query point. We shall denote the variants MC-, AC-, and CC-CPM

algorithms. Regarding the termination criterion, we impose a limit on the total number of iterations

(400 in our experiments) and the bound gap (10−4). We consider instances in n∈ {10,20,50,100}

dimensions and with m∈ {100,200,300,400,500} linear pieces. As in Boyd et al. (2008), instances

are generated randomly by sampling the entries of ai and the bi independently from a standard

normal distribution. We use P0 = C as our initial polyhedron.

Algorithm 1: Cutting-Plane Method (CPM) for solving (5)

Input: Initial polytope P0 enclosing C.

Output: A solution x to (5).

1 query a point (x0, t0)∈P0.

2 while termination criterion not met do
3 if (xk, tk)∈ C then
4 set Pk+1 =Pk ∩{(x, t) | t≤ tk}.
5 else
6 an oracle finds a separating hyperplane, i.e., (a, a, b) s.t. a>xk + atk > b but

C ⊆ {(x, t) |a>x+ at≤ b}.

7 set Pk+1 =Pk ∩{(x, t) |a>x+ at≤ b}.
8 query (xk+1, tk+1)∈Pk+1.

Figure 2 displays the convergence profile of the suboptimality gap, averaged over 20 instances in

dimension n= 50 with m= 500 linear pieces. We observe that when initialized with a Minkowski

center, the CPM algorithm converges much faster than with the analytic center. Compared with

the Chebyshev center, however, the benefit is not univocal: In the beginning of the algorithm, MC-

CPM converges faster. After a few iterations though, its convergence slows down and CC-CPM

eventually terminates first.

To verify this finding across various problem sizes, we compare, for each instance and each epoch,

the value of the incumbent solution for the MC-CPM and CC-CPM implementations. Namely, we

compute the sign of their difference so that a positive sign indicates that the MC-CPM achieves

a lower (i.e., better) objective value at this iteration than CC-CPM. We average the results over

the 20 random instances with same values of n and m and display the results in Figure 3. In other

words, up to an affine scaling, Figure 3 displays the proportion of instances for which the CPM

algorithm initialized with a Minkowski center outperforms CPM initialized with the Chebyshev

center, as the number of iteration increases. These observations confirm our previous claim: In the

beginning of the algorithm, a Minkowski center leads to better incumbent solutions but convergence
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Figure 2 Convergence profile of the CPM for different query points. Results are averaged over 20 random

instances in dimension n= 50 with m= 500 linear pieces.

slows down and the CC-CPM implementation eventually obtains a better solution. The benefit

from Minkowski centers increases with the number of linear pieces m and decreases with the overall

dimension n. On the other hand, we observe a clear and robust benefit of Minkowski centers over

the analytic center across all problem sizes (see Figure 7).

4. Tractable approximations for projections of polyhedra

In this section, we consider the important case where the convex set C is the projection of a

polyhedron. Precisely, we consider a polyhedron

P =
{

(x,z)∈Rnx+nz |Axx+Azz = b, Cxx+Czz ≤ d
}
,

and its projection onto the x−space, i.e, Px = {x∈Rnx |∃z ∈Rnz s.t. (x,z)∈P }. In optimiza-

tion, and combinatorial optimization in particular, such definition of sets as the projection of a

polyhedron are commonly referred to as extended or lifted formulations (Conforti et al. 2010).

The general approach for computing a (Minkowski) center for Px would be to first derive an

explicit algebraic description of Px which does not rely on any additional variables z, for instance

by using Fourier-Motzkin elimination (FME) algorithm (Motzkin 1936). However, the number of

constraints resulting from this procedure grows exponentially in nz. Moreover, Fourier-Motzkin

elimination introduces many redundant constraints which would need to be identified and removed

or might negatively impact the quality of the analytic center. Hence, an algorithm that could

compute a center of Px by working directly on its lifted description would be extremely tractable

and valuable.

Also, the projection of a Minkowski center of P seems like a natural candidate for a Minkowski

center of Px. However, we show that this approach fails.
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(a) n= 10 (b) n= 20

(c) n= 50 (d) n= 100

Figure 3 Fraction of instances where the incumbent solution of MC-CPM achieves a lower objective value than

CC-CPM. Each panel corresponds to a different dimension n and each curve to a different number of

linear pieces m. Results are computed over 20 random instances.

Lemma 3. The projection onto the x-space of a Minkowski center of P is not necessarily a

Minkowski center of Px.

Proof Our proof is based on the following counter example. In dimension n, consider the set

Pn = {x ∈ Rn+ |e>x ≤ 1}. The Minkowski center of Pn is the vector 1
n+1
e and its measure of

symmetry is 1
n

. In particular, P1 = [0,1] and its center is 1/2. If we consider the projection of

Pn onto the first coordinate, we recover P1. However, the projection of the Minkowski center is

1/(n+ 1) 6= 1/2 for n≥ 2. �

Actually, the proof of Lemma 3 shows that, as the dimension n increases, the projection of the

Minkowski center of Pn onto the first coordinate converges to 0, i.e., gets arbitrarly close to the

boundary of the set P1. Furthermore, one can show that projection can only improve symmetry:

Lemma 4. sym(P)≤ sym(Px).

Proof Consider a center of Minkowski of P, (x,z). Then, sym(x,Px)≥ sym(P). �
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4.1. Adjustable robust optimization reformulation

We now derive an analogous of Proposition 2 which applies to the case where the set is described

as the projection of a polyhedron directly.

Proposition 8. Consider the set

Px = {x∈Rnx | ∃z ∈Rnz : Axx+Azz = b, Cxx+Czz ≤ d} .

Let (w?,z?w, λ
?) be solution of the robust adjustable optimization problem

max
w,zw,λ≥0

λ s.t. Axw+Azzw = (1 +λ)b,

Cxw+Czzw ≤ (1 +λ)d,

∀(y,zy)∈P, ∃z : (w−λy,z)∈P.

(6)

Then x? =w?/(1 +λ?) is a Minkowski center for Px.

Proof From the proof of Proposition 2, we know that the result holds with (w?, λ?) solution of

max
w,λ≥0

λ s.t.
w

1 +λ
∈Px,

w−λy ∈Px, ∀y ∈Px.

By an appropriate rescaling of the additional variables,

w

1 +λ
∈Px ⇐⇒ ∃zw : Axw+Azzw = (1 +λ)b, Cxw+Czzw ≤ (1 +λ)d.

Finally, the robust constraints can be rewritten as

∀(y,zy)∈P, ∃z : (w−λy,z)∈P.

�

The term “adjustable” comes from the fact that in the robust constraints, the additional variable

z, needed to certify that w−λy ∈Px, can be adjusted to the uncertain parameter y. Effectively,

z is a function of y (and potentially of zy as well). Instead of solving (6) exactly, we can obtain

tractable approximations by restricting our attention to parametrized functional forms for z (as a

function of y and zy).

For instance, if we restrict our attention to z of the form z = zw−λzy, we obtain a lower bound

on (6)’s objective value:

max
w,zw,λ≥0

λ s.t. Axw+Azzw = (1 +λ)b,

Cxw+Czzw ≤ (1 +λ)d,

∀(y,zy)∈P, (w−λy,zw−λzy)∈P.
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In other words, this approximation is equivalent to solving

max
w,zw,λ≥0

λ s.t. (w,zw)/(1 +λ)∈P,

∀(y,zy)∈P, (w,zw)−λ(y,zy)∈P,

i.e., computing a Minkowski center for P and taking its projection onto the x-space.2 Exploring

a larger class of policies might lead to stronger formulations and better approximations. In the

following section, we propose restricting the scope to general affine decision rules to derive tractable

approximations of Minkowski centers, and a lower bound on the symmetry measure of Px.

4.2. Approximations with computationable sub-optimality gaps

We restrict our attention to adjustable variables of the form

z =Y y+Zzy +z0,

where Y ,Z,z0 are here-and-now decision variables. For instance, taking Y = 0, Z =−λI, and z0 =

zw recovers the projection of a Minkowski center of P. Among others, such affine policies are simple,

tractable (Ben-Tal et al. 2004), and often enjoy strong empirical and theoretical performance for

adjustable robust optimization problems (Bertsimas et al. 2010, Bertsimas and Goyal 2012, Housni

and Goyal 2021).

All in all, we solve

max
w,zw,Z,Y ,z0,λ≥0

λ s.t. Axw+Azzw = (1 +λ)b,

Cxw+Czzw ≤ (1 +λ)d,

∀(y,zy)∈P, (w−λy,Y y+Zzy +z0)∈P.

(7)

The objective value of the above optimization problem λ?LDR provides a lower bound on the actual

symmetry of Px, i.e., λ?LDR ≤ sym(Px). Among others, (Bertsimas et al. 2010, Ben-Ameur et al.

2018) show that linear decision rules are optimal (hence, the inequality is tight) when the uncer-

tainty set (here, P) is a standard simplex.

The robust constraints in (7) can be written explicitly

∀(y,zy)∈P, Axw−λAxy+AzY y+AzZzy +Azz0 = b,

Cxw−λCxy+CzY y+CzZzy +Czz0 ≤ d.

They can then be enforced numerically either by adopting a cutting-plane approach or by comput-

ing the robust counterpart of each constraint separately via strong duality (Bertsimas et al. 2016),

thus leading to a linear optimization problem. We implement the later approach for our numerical

experiments.
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To measure the quality of the approximation provided by using linear decision rules, we also

derive an upper-bound on sym(Px) using the generic approach for adjustable robust opimization

presented in Hadjiyiannis et al. (2011) which is known to guarantee tight upper bounds for a

large class of ARO problems and applications. In short, their approach consists of solving the

fully adjustable problem (6), but replacing the uncertainty set Px by a finite number of scenarios.

Precisely, given y1, . . . ,yk ∈Px, we solve

max
w,zw,z(1),...,z(k),λ≥0

λ s.t. Axw+Azzw = (1 +λ)b,

Cxw+Czzw ≤ (1 +λ)d,

∀i∈ [k], (w−λy(i),z(i))∈P.

(8)

We denote the objective value of (8) λkHGK . Since (8) is less constrained than (6), we have sym(Px)≤

λkHGK . To identify the scenarios yj , j ∈ [k], Hadjiyiannis et al. (2011) suggest considering each

robust constraint and compute the binding scenarios for each of them, the decision variables being

fixed. We follow their recommendation in our implementation.

Finally, observe that, for a given x∈Px, we can add the constraint w= (1+λ)x to the optimiza-

tion problems (7)-(8), hence obtaining bounds on sym(x,Px), λ?LDR(x)≤ sym(x,Px)≤ λkHGK(x).

4.3. Numerical experiments

In this section, we evaluate the performance of our method for computing approximate values of

the Minkowski measure (lower bounds via (7) and upper bounds via (8)) for polytopic projections.

First, we generate random polyhedra, following the same generation methodology as Section

3.2, in n = 10 dimensions and using p = 10 linear inequalities. For each polyhedron, we consider

its projection onto the first nx coordinates, nx ∈ [n]. Hence, n− nx corresponds to the number of

dimensions eliminated. We compute the approximate Minkowski center obtained by solving (7),

λ∗LDR, and λ∗HGK . Alternatively, we perform a FME procedure to obtain an explicit description

of the projected polyhedron and then compute its Minkowski center by solving (4). Following

the approach in Zhen et al. (2018), after each step of the FME algorithm, we remove redundant

constraints. As displayed in Table 7, this redundant constraint screening step is computation-

ally expensive but drastically reduces the number of constraints in our formulation, which would

otherwise exponentially grow with n−nx.

Figure 4 compares the lower and upper-bounds, λ∗LDR and λ∗HGK , with the exact value of sym(Px)

for different values of nx. Notice that nx = n= 10 corresponds to the case P =Px so we naturally

expect λ∗LDR = λ∗HGK = sym(Px). At the other extreme, when nx = 1, Px is a segment, which is

perfectly symmetric so one should conclude that sym(Px) = 1. First of all, we observe that the

lower bound, the upper bound and the exact value of symmetry sym(Px) are non-increasing with
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nx. In other words, projecting increases symmetry, which validates experimentally Lemma 4. We

also observe on Figure 4 that our adjustable robust optimization approach provides valid and small

(within 5%) intervals on sym(Px). In particular, the upper-bound derived from (8) is almost tight.

Further improvement should thus mainly come from improving the lower-bound. Note, however,

that the width of the interval [λ∗LDR, λ
∗
HGK ] does not necessarily imply a bound on the distance

between the returned solution and the set of Minkowski centers for Px, although intuition suggests

the tighter the interval the closer the solution is to an actual Minkowski center (see Figure 8 in

Appendix C.3).

Figure 4 Comparison of λ∗LDR, λ∗HGK , sym(Px) for different values of nx. Results are averaged over 20 polyhedra

in dimension n= 10.

In addition to providing high-quality solutions, the adjustable robust optimization approach is

also more tractable than the exact approach as reported in Table 4. Solving (7)-(8) is about an

order of magnitude more expensive than solving 4 for Px. However, after accounting for the time

required by the FME procedure, the adjustable robust optimization approach is 104 times faster

than the exact approach. We should also mention that FME requires substantial memory and we

could not perform simulations on larger instances with 16GB of RAM.

We conduct further experiments in higher dimensions, n∈ {10,20,50}, and for polyhedra defined

with p∈ {10,20,30,40,50} inequalities. Figure 5 replicates Figure 4, except without the exact value

of sym(Px), for polyhedra in dimension n= 50 and defined via p= 10 and 50 inequalities respec-

tively. We observe a similar qualitative behavior: the width of the interval [λ∗LDR, λ
∗
HGK ] increases

and then decreases with nx. To confirm the observations, Figure 6 represents the distribution of

the gap (λ∗HGK −λ∗LDR)/λ∗HGK for varying values of nx/n and varying values of n. A more detailed

regression analysis (Table 8) suggests that the gap scales as 0.9(nx/n)− 0.7(nx/n)2, hence max-

imized for nx/n ≈ 0.64, which is consistent with our observations. We also observe that the gap

increases with the total dimension n and with the number of inequality constraints defining P.
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Table 4 Average runtimes (in seconds) for the adjustable robust optimization approach (both lower and upper

bounds) compared with the exact approach consisting of FME followed by solving (4). Results are averaged over

20 iterations.

ARO Exact method
nx (7) (8) FME (4)

10 0.021 0.065 0.0 0.008
9 0.029 0.067 7.503 0.01
8 0.03 0.064 22.716 0.023
7 0.031 0.063 242.159 0.019
6 0.032 0.063 337.292 0.006
5 0.034 0.063 346.701 0.001
4 0.03 0.066 347.672 0.0
3 0.039 0.067 347.686 0.0
2 0.041 0.065 347.687 0.0
1 0.036 0.064 347.688 0.0

(a) p= 10 (b) p= 50

Figure 5 Comparison of λ∗LDR and λ∗HGK for different values of nx. Results are averaged over 20 polyhedra in

dimension n= 50.

Regarding computational time, we observe that the effort required solving (7) is fairly indepen-

dent of the number of linear inequalities p but depends primarily on the dimension of the projected

and of the full space, nx and n respectively. On the contrary, solving (8) primarily depends on p

and not on nx/n, which is intuitive since the number of constraints p directly impacts the num-

ber of binding scenarios involved in (8). Tables 9 and 10 in Appendix C.3 summarize the average

computational time required for both problems for varying input sizes.

5. Intersection of two ellipsoids

For i= 1,2, we define the ellipsoid Ei = {x∈Rn | ‖Ai(x−xi)‖ ≤ 1}, where xi ∈Rn and Ai ∈Rn×n.

We are interested in computing a Minkowski center of the intersection of these two ellipsoids,

E1 ∩E2. In this case, we make an additional assumption on the matrices A1 and A2.

Assumption 1. There exists an invertible matrix P such that, for i = 1,2, A>i Ai = P>DiP

for some diagonal matrix Di = diag(di).
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Figure 6 Distribution (box plot) of the gap (λ∗HGK −λ∗LDR)/λ∗HGK for varying values of nx/n and varying values

of n.

When matrices A>1 A1 and A>2 A2 satisfy Assumption 1, we say that they are “diagonalized simul-

taneously by a congruence relationship” (Uhlig 1973). For instance, Assumption 1 is satisfied

whenever one of the matrices A>i Ai is non-singular (Uhlig 1973, Theorem 0.2). After a proper

change of variable, w←Pw and y←Py, we can assume, without further loss of generality, that

the matrices Ai are diagonal, i.e., that we have

Ei = {x∈Rn | ‖D1/2
i (x−xi)‖ ≤ 1},

where D
1/2
i = diag(

√
d1, . . .

√
dn). Let us denote bi :=Dixi and ci :=x>i Dixi. The objective of this

section is to propose an efficient approach, based on second-order cone relaxation and bisection

search, to obtain a lower-bound on sym(E1∩E2) together with an approximate Minkowski center. We

also provide conditions (that can be numerically verified) under which our proposed approximation

is tight.

Remark 1. Assumption 1 is a much weaker assumption than simultaneous diagonalizability3.

If A>i Ai, i = 1,2, are simultaneously diagonalizable, then Assumption 1 is satisfied. The reverse

implication is not true.

5.1. Second-order cone approximation

We start by reformulating the optimization problem defining Minkowski centers of E1 ∩E2.

Lemma 5. For C = E1 ∩E2, Problem (2) is equivalent to

max
w,ξ,λ≥0
η?

λ s.t. d>i ξ− 2b>i w+ (1 +λ)ci ≤ (1 +λ), ∀i∈ {1,2},
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w2
j ≤ (1 +λ)ξj, ∀j ∈ [n],

‖D1/2
i (w−xi)‖22 + η?i (w,λ)≤ 1, ∀i∈ {1,2},

where each η?i (w, λ), i= 1,2, is the objective value of a non-convex quadratic optimization problem:

η?i (w, λ) = max
y,z

λ2d>i z− 2λ(w−xi)>Diy s.t. d>k z− 2b>k y≤ 1− ck, ∀k ∈ {1,2},

y2
j = zj, ∀j ∈ [n].

(9)

The proof of Lemma 5 relies on simple algebraic manipulations on Problem (2) and is hence deferred

to Appendix D.

The maximization problem defining η?i is not convex due to the quadratic equality constraints

zj = y2
j . Instead, we now propose a valid convex upper-bound on η?i , under constraint qualification

conditions.

Assumption 2. There exists x∈Rn such that, for all i∈ {1,2}, ‖Ai(x−xi)‖< 1.

In other words, we assume that E1 ∩E2 has a non-empty relative interior.

Lemma 6. Under Assumption 2, for each i∈ {1,2}, we have η?i (w, λ)≤ ηi(w, λ) with

ηi(w, λ) = min
u∈Rn+,v∈R

2
+,θ∈R

n
+

v1(1− c1) + v2(1− c2) +e>θ

s.t. λ2di− v1d1 + v2d2 +u≤ 0,

(v1b1,j + v2b2,j −λdi,j(wj −xi,j))2 ≤ ujθj, ∀j ∈ [n].

(10)

Proof Fix i ∈ {1,2}. Relaxing the constraint y2
j = zj into the second-order cone constraints

y2
j ≤ zj leads to η?i (w, λ)≤ ηi(w, λ) with

ηi(w, λ) = max
y,z

λ2d>i z− 2λ(w−xi)>Diy s.t. d>k z− 2b>k y≤ 1− ck, ∀k ∈ {1,2} [v]

y2
j ≤ zj, ∀j ∈ [n]. [u]

(11)

By introducing dual variables (v,u) for the constraints in (11), we have that

ηi(w, λ) = max
y,z≥0

min
u∈Rn+,v∈R

2
+

L(y,z;u,v)

where L is the Lagrangian of the problem and is defined as

L(y,z;u,v) = λ2d>i z− 2λ(w−xi)>Diy+
2∑
k=1

vk(1− ck−d>k z+ 2b>k y) +
∑
j∈[L]

uj(zj − y2
j ).

Assumption 2 implies that there exists a strictly feasible solution to (11). Hence, strong duality

holds and we can invert the order of the maximization and minimization. For a fixed (u,v), by

partially maximizing with respect to z, we obtain

max
z≥0

(
λ2di−

2∑
k=1

vkdk +u

)>
z =

{
0 if λ2di− v1d1− v2d2 +u≤ 0,

+∞ otherwise.
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Observe that for any a,u∈R,

max
y

{
ay−uy2

}
=

{
a2

4u
if u> 0

+∞ otherwise
= min

θ

{
θ s.t. a2 ≤ 4θu

}
.

So, maximizing with respect to yj,

max
yj

2e>j

(
−λDi(w−xi) +

2∑
k=1

vkbk

)
yj −ujy2

j ,

is equivalent to minimizing θj subject to the constraint detailed in the final formulation. �

Remark 2. Our approach could be generalized to matrices not satisfying Assumption 1. In this

case, however, (9) would involve the additional variables Z : Zi,j = yiyj and its convex relaxation

(11) would be a semidefinite optimization problem (instead of second-order cone) over (y,Z) :Z �

yy>. Hence, Assumption 1 substantially improves computational tractability without great loss of

generality in the case of two matrices.

5.2. Final formulation and numerical algorithm

Overall, an approximate Minkowski center for E1 ∩E2 can be obtained by solving

max
w,ξ,λ

(ηi,v1,i,v2,i,ui,θi)i=1,2

λ s.t. d>i ξ− 2b>i w+ (1 +λ)ci ≤ (1 +λ), ∀i∈ {1,2},

w2
j ≤ (1 +λ)ξj, ∀j ∈ [n],

‖Di(w−xi)‖22 + ηi ≤ 1, ∀i∈ {1,2},

v1,i(1− c1) + v2,i(1− c2) +e>θi ≤ ηi, ∀i∈ {1,2},

λ2di− v1,id1− v2,id2 +ui ≤ 0, ∀i∈ {1,2},

(v1,ib1,j + v2,ib2,j −λdi,j(wj −xi,j))2 ≤ ujθj, ∀i∈ {1,2}, j ∈ [n],

ξ,ui,θi ≥ 0,

λ, v1,i, v2,i ≥ 0.

(12)

In this formulation, the variables ηi satisfy ηi ≥ η?i (w, λ) so any solution (w, λ) feasible for (12) is

feasible for the original problem and solving (12) provides a lower-bound on sym(E1 ∩E2). Solving

(12) is challenging, however, due to the bilinear product of decision variables λdi,j(wj−xi,j) in the

constraints. To do so efficiently, we propose to conduct a bisection search over λ. Indeed, λ∈ [0,1]

and, for a fixed λ, (12) is a second-order cone optimization problem. Consequently, we can obtain an

ε-approximation of the objective value of (12) after solving log2(ε) second-order cone optimization

problems.
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5.3. Tightness

In this section, we fix i ∈ {1,2} and analyze the tightness of the relaxation ηi(w, λ). First, we

provide a (numerically verifiable) condition for our relaxation to be tight:

Proposition 9. Fix i ∈ {1,2}. Let (y?,z?,u?,v?) be a primal-dual optimal pair of (11)-(10).

If v?1v
?
2 = 0, then η?i (w, λ) = ηi(w, λ).

Proof The result is a special case of Ben-Tal and den Hertog (2014, Theorem 7) after noting

that assumption 5 in Ben-Tal and den Hertog (2014) is automatically satisfied in our case and that

their assumption 6 is equivalent to the condition v?1v
?
2 = 0. �

Second, we show that ηi(w, λ) provides a constant factor approximation on η?i (w, λ) under the

additional assumption that 0 lies in the relative interior of E1 ∩E2.

Proposition 10. Fix i∈ {1,2}. Further assume that Assumption 2 is satisfied for x= 0. Then,

η?i (w, λ)≥
(

1− γ√
2 + γ

)2

ηi(w, λ),

where γ = maxk ‖D1/2
k xk‖= maxk

√
ck.

The proof of Proposition 10 relies on a similar construction as in Xia et al. (2021, Theorem 8).

However, Xia et al. (2021) consider the special case of spheres, i.e., dk,j = 1 for all k ∈ {1,2}, j ∈ [p].

We extend their proof technique to the non-isotropic case (see details in Appendix D) after making

the following observation:

Lemma 7. There exists an optimal solution of (11), (y?,z?), such that, for any j ∈ [p],

(y?j )
2 < z?j =⇒ di,j > 0.

Proof Let (y?,z?) be an optimal solution of (11). Define J := {j ∈ [p] | (y?j )2 < z?j }. We assume

there exists j ∈J such that di,j = 0. Let us define ȳ= y? and

z̄j′ =

{
z?j′ if j′ 6= j,

(y?j )
2 if j′ = j

Then, (ȳ, z̄) satisfies

λ2d>i z̄− 2(w−xi)>Diȳ+ =−2(w−xi)>Diy
? +λ2d>i z

?,

d>k z̄− 2b>k ȳ≤ d>k z?− 2b>k y
? ≤ 1− ck, ∀k ∈ {1,2}.

In other words, (ȳ, z̄) is feasible and optimal for (11) and {j ∈ [p] | (ȳj)
2 < z̄j}=J \ {j}. �
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5.4. Discussion: Extension to the intersection of m≥ 2 ellipsoids

The approach we outlined in this section could be extended to the intersection of m≥ 2 ellipsoids.

However, the conditions for Assumption 1 are more stringent in this case and overly restrictive

(Grimus and Ecker 1986). Consequently, as mentioned in Remark 2, our approach in the case of

m ellipsoids would entail relaxing each non-convex problem (9) into a semidefinite optimization

problem, similar to the approach of Eldar et al. (2008) for the Chebyshev center of an inter-

section of ellipsoids. Eventually, the resulting formulation would be a semidefinite optimization

problem with m n × n semidefinite matrices to optimize over, analogous to the one described

in Ben-Tal et al. (2009, Chapter 7.2.1). Alternatively, one could follow the approach developed

in Bertsimas et al. (2021) to derive safe approximation in the case of m ellipsoids of the form

Ei = {y : ‖Ai(y−xi)‖ ≤ 1}. The resulting safe approximation would involve an additional uncer-

tain parameter, V ∈Rn×n, with bounded singular values. Again, the resulting robust counterpart

is a semidefinite optimization problem that can be approximated by a second-order cone problem

by bounding the matrix 2-norm by the Frobenius norm. Their approach could be also applied to

derive approximate Minkowski center of arbitrary convex sets.

6. Conclusion

This paper provides a robust optimization formulation for the Minkowski centers of convex sets.

Building up on this formulation, we propose tractable reformulations and efficient approximation

techniques to numerically compute the Minkowski centers of a variety of sets (polyhedra, convex

hulls, projections of polyhedra, intersections of ellipsoids). Theoretical benefits of Minkowski centers

are numerous and well documented: They are geometrically defined and do not depend on the

analytic description of the set (unlike the analytic center). Moreover, they naturally adapt to the

dimension of the convex set and do not require the set to be fully dimensional (unlike centers of

extremal ellipsoids such as Chebyshev centers). In addition, we illustrate their computational appeal

by analyzing the algorithmic convergence of hit-and-run and cutting-plane method examples. While

the actual gains ultimately depend on the particular algorithm and instance at hand, we believe

our work sheds new and practical light on Minkowski centers and exposes their potential benefits

as a computational tool.
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Appendix A: Robust perspective on Minkowski centers: Omitted proofs

This section details the proof of some of the results presented in Section 2.

A.1. Proof of Proposition 1

Proof Consider a chord [u,v] passing through x. Then, by definition of the symmetry measure (see

Bertsimas et al. 2011b, for a formal proof)

sym(x,C)≤min

(
‖x−u‖
‖x−v‖

,
‖x−v‖
‖x−u‖

)
≤ 1.

Assume without loss of generality that r :=
‖x−u‖
‖x−v‖

≤ 1, then
‖x−u‖
‖v−u‖

=
r

1 + r
. Since r ∈ [1/n,1] and

r 7→ r/(1 + r) is increasing in r,

1

1 +n
≤ ‖x−u‖
‖v−u‖

≤ 1

2
≤ n

n+ 1
.

In other words, x is a Helly center of C. �

A.2. Proof of Proposition 4

Proof We reformulate each constraint in (3) separately. By convexity

w−λy ∈ C,∀y ∈ C ⇐⇒ w−λxi ∈ C,∀i∈ [m]

We can enforce the ith constraint by introducing additional variables νi satisfying w− λxi =
∑

j∈[m] ν
i
jxj .

In particular, such a constraint ensures that

w

1 +λ
=

λ

1 +λ
xi +

∑
j∈[m]

νijxj ∈ conv {x1, . . . ,xm}= C.

�

A.3. Proof of Proposition 5

Proof First, remark that B+
p is permutation-invariant. According to Lemma (2), we can search for solu-

tions of the form w= t1 without loss of optimality. Hence, we solve

max
λ≥0,t≥0

λ s.t. n

(
t

1 +λ

)p
≤ 1,

te−λy ∈B+
p ,∀y ∈B+

p .

Evaluating the robust constraint at y = (1,0, ...,0) and y = 0, we get t≥ λ and ntp ≤ 1 respectively, which

leads to λ ≤ (1/n)1/p. Hence, we must have λ? ≤ (1/n)1/p. Finally, we verify that (λ, t) =
(

1
n1/p ,

1
n1/p

)
is

feasible. Indeed,

t

1 +λ
=

1

n1/p + 1
≤ 1

n1/p
,

and for every y ∈B+
p ,

t−λyi ≥ t−λ= 0, and
∑
i∈[n]

(t−λyi)p = λp
∑
i∈[n]

(1− yi)p ≤ λpn= 1,

so te−λy ∈B+
p . �
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A.4. Proof of Proposition 6

Proof Let (λ,w) be an optimal solution for (3) for C =P. The robust constraints can be reformulated as{
w≥ λy, ∀y ∈P
Aw≤ λAy+ b, ∀y ∈P

⇐⇒

{
w≥ λy?

Aw≤ b
,

where the equivalence follows by evaluating each constraint at the worst-case scenario (y? and 0 respectively).

By the non-negativity of A, λAy? ≤Aw so λAy? ≤ b and λ≤ λ? (as defined in the statement of Proposition

6). Hence, λ? constitutes an upper bound on the Minkowski measure of P. It remains to prove that this

bound is achievable.

To do so, it suffices to show that (λ?,w?) is feasible.

w?

1 +λ?
≥ 0,

A
w?

1 +λ?
=

λ?

1 +λ?
Ay? ≤ 1

1 +λ?
b≤ b

Also, for every y ∈ P, w? − λ?y ≥ w? − λ?y? = 0 and A(w? − λ?y) ≤ λ?Ay? − λ?A0 ≤ λ?Ay? ≤ b by

definition of λ?. �

A.5. Minkowski measure for a class of generalized ellipsoids

Proposition 11. Consider E+p := {x≥ 0 | ‖Ax‖
p
≤ 1} with A∈Rm×n+ . For i∈ [n], define

y?i := max
y∈E+p

e>i y=
1

‖A>ei‖p
.

Let λ? =
1

‖Ay?‖p
and w? = λ?y?. Then, (λ?,w?) are the Minkowski measure and a scaled Minkowski center

of E+p .

Proof The proof structure is analogous to the proof of Proposition 6. Let (λ,w) be an optimal solution of

(3). We first provide an upper bound on the value of λ. By evaluating the robust (non-negativity) constraint

in (3) at y= y?, we obtain wi ≥ λy?i for every i∈ [n]. Since the entries of A are non-negative, we get Aw≥

λAy? and λ‖Ay?‖p ≤ ‖Aw‖p. Evaluating the robust (p-norm) constraint in (3) at y = 0 yields ‖Aw‖p ≤ 1

so λ≤ λ?.

Finally, we verify that the proposed solution (λ?,w?) is feasible. Obviously, w?/(1 +λ?)≥ 0.∥∥∥∥A w?

1 +λ?

∥∥∥∥
p

=
λ?

1 +λ?
‖Ay?‖p =

1

1 +λ?
≤ 1.

Finally, for any y ∈ E+p , w?−λ?y≥w?−λ?y? = 0 and

‖A (w?−λ?y)‖p ≤ ‖Aw
?‖p = 1.

�

Appendix B: Pseudo-codes

We report here the detailed pseudocode of the hit-and-run algorithm and the random polyhedron generation

methodology.
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Algorithm 2: Hit-and-run (HAR) algorithm

Input: A polytope P = {x | Ax≤ b}, a starting point x0 ∈P, number of iterations m∈N

Output: Sample path x1, . . . ,xm ∈P

1 Initialize x0 ∈P

2 for i= 0,1, ...,m− 1 do
3 Generate a random direction on the hypersphere di = ui

‖ui‖2
where ui ∼N (0n,In).

4 Let λk =
bk−A>k xi
A>
k
di

for each constraint k.

5 Set λ+ = min{λk | λk ≥ 0}, λ− = max{λk | λk ≤ 0}.

6 Define xi+1 =xi +λdi, with λ∼U([λ−, λ+]).

B.1. Hit-and-Run

Algorithm 2 describes the hit-and-run algorithm for a polyhedron defined as the intersection of halfspaces,

P = {x|Ax≤ b}.

B.2. Random polyhedron generation

Algorithm 3 presents the methodology we use to generate a random polyhedron circumscribed to a sphere of

radius R. To avoid generating unbounded polyhedra, we add the constraints −R≤x≤R. In our experiments,

we typically take R= 1000, n∈ {10,20,50,100}, and p∈ {10,20,30,40,50}.

Algorithm 3: Generation of a polyhedron circumscribed to a sphere

Input: Dimension n, number of tangents p, radius R

Output: Polyhedron P = {x∈Rn | −R≤x≤R; c>i x≤ di,∀i∈ [p]}

1 for i= 1, ..., p do
2 Generate a random direction on the hypersphere ci =R ũi

‖ũi‖2
where ũi ∼N (0n,In).

3 Set di =R.

Appendix C: Additional numerical results

In this section, we provide additional supporting evidence to our numerical experiments.

C.1. Convergence of the Hit-And-Run algorithm

In Section 3.2, we quantify the benefit from using a Minkowski center on the convergence of the HAR

algorithm. In particular, we compute the number of iterations m required for the DB-test to achieve a p-value

of 0.05.

Table 5 reports the average number of additional iterations required when using the Chebyshev center

vs. the Minkowski center. Table 6 reports the results from a regression analysis predicting the additional

number of iterations required (in log terms) when using the analytic and Chebyshev center as a function of

the problem size, i.e., the dimension n and the number of halfspaces defining the polyhedron p.
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Table 5 Number of additional iterations required by Algorithm 2 when initialized with the Chebyshev center vs.

the Minkowski center. We report the average number over 20 random polyhedra (and standard errors).

# halfspaces (p)
Dimension (n) 10 20 30 40 50

10 1.5 (0.5) 1.4 (0.5) 0.0 (0.4) 0.4 (0.6) 0.2 (0.7)
20 6.1 (1.3) 7.5 (1.3) 6.4 (1.1) 3.9 (1.2) 2.6 (0.9)
50 58.4 (3.8) 78.0 (4.8) 69.9 (6.6) 70.8 (5.6) 61.2 (5.2)
100 284.1 (9.4) 381.7 (5.4) 389.8 (6.6) 395.8 (5.6) 397.0 (4.7)

Table 6 Regression analysis of the benefit from using the Minkowski center to initialize Algorithm 2. The

outcome variable is the number of iterations saved (in log terms).

Analytic Chebyshev
Coefficient (SE) p-value Coefficient (SE) p-value

(Intercept) 2.542 (0.043) < 10−16 2.651 (0.029) < 10−16

Dimension n 0.035 (0.001) < 10−16 0.033 (0.003) < 10−16

# halfspaces p -0.004 (0.001) 2 · 10−4

Adjusted R2 0.9374 0.9668

Number of observations: 400

C.2. Convergence of the Cutting-Plane Method

In Section 3.3, we observed that initializing the CPM with a Minkowski center provides faster convergence

than with the analytic center. To verify this finding across various problem sizes, we compare, for each

instance and each epoch, the value of the incumbent solution for the MC-CPM and AC-CPM implementa-

tions. Namely, Figure 7 displays the fraction of instances for which the CPM algorithm initialized with a

Minkowski center outperforms CPM initialized with the analytic center, as the number of iteration increases,

and for various problem sizes (n and m). We observe that the value of the incumbent solution is consistently

better (i.e., lower) when using a Minkowski center instead of the analytic one.

C.3. Approximation for projections of polyhedra

In Section 4.3, we evaluate numerically the relevance of our approximation to the center of a polytopic

projection. Our method provides both a lower and an upper bound on the true symmetry of the projection,

sym(Px).

On small instances (n= 10,m= 10), we were able to compute exactly a Minkowski center of Px by first

obtaining an explicit description of this polyhedron via FME and then solving (4). Table 7 reports the

computational time required by the FME procedure. In particular, this procedure comprises two steps: a

variable elimination step that eliminates the nx + 1 variable from all the constraints, followed by a screening

step that removes redundant constraints.

Figure 8 displays the distance between the approximate Minkowski center obtained by solving (7) to one

Minkowski center of Px, for different values of nx and n= 10. The distance is normalized by the depth of the

original polyhedron P, i.e., the radius of the inscribed sphere in this case. Comparing Figure 8 with Figure

4 partially corroborates the intuition that the quality of our approximation in terms of symmetry measure
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(a) n= 10 (b) n= 20

(c) n= 50 (d) n= 100

Figure 7 Fraction of instances where the incumbent solution of MC-CPM achieves a lower objective value than

AC-CPM. Each panel corresponds to a different dimension n and each curve to a different number of

linear pieces m. Results are computed over 20 random instances.

Table 7 Average number of constraints and runtime for after each step of the FME procedure. Results are

averaged over 20 iterations.

Variable Elimination Redundant Constraint Screening
nx # New Constraints Runtime # New Constraints Runtime

9 34.0 2.9 32.1 4.6
8 264.9 0.2 71.0 15.0
7 1219.6 0.0 66.6 219.4
6 980.0 0.0 26.9 95.1
5 213.4 0.0 5.4 9.4
4 34.0 0.0 1.0 1.0
3 2.0 0.0 0.0 0.0
2 1.0 0.0 0.0 0.0
1 1.0 0.0 0.0 0.0
0 1.0 0.0 0.0 0.2

(i.e., the width of the interval [λ∗LDR, λ
∗
HGK ]) is related with the quality of the approximation in terms of

Minkowski center.
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Figure 8 Average distance between the solution of (7) and a Minkowski center of Px. The distance is normalized

by the depth of the original polyhedron P.

To further quantify the dependency of our adaptivity gap (λ∗HGK −λ∗LDR)/λ∗HGK on characteristics of the

polyhedron P and its projection Px, we conduct further experiments in higher dimensions, n∈ {10,20,50},
and for polyhedra defined with p∈ {10,20,30,40,50} inequalities. We perform a regression analysis, regressing

(λ∗HGK−λ∗LDR)/λ∗HGK over the dimensions of the problem, and report its results in Table 8. We observe that

the gap generally increases with the dimension n and the number of inequalities defining the polyhedron m.

Yet, the fraction of projected dimensions nx/n seems to have a non-monotonous impact on the gap, first

increasing then decreasing, thus confirming the behavior depicted on Figure 6.

Table 8 Regression analysis of the adaptivity gap (λ∗HGK −λ∗LDR)/λ∗HGK depending on characteristics of the

polyhedron.

Coefficient p-value

(Intercept) -0.249 < 10−16

Dimension n 0.002 < 10−16

# halfspaces p 0.002 < 10−16

nx/n 0.891 < 10−16

(nx/n)2 -0.722 < 10−16

Adjusted R2 0.478

Number of observations: 3,000

Finally, Tables 9 and 10 summarize the average computational time required for solving (7) (the lower-

bound) and (8) (the upper-bound) respectively, for varying input sizes.

Appendix D: Intersection of ellipsoids: Omitted proofs

We detail the proofs of Section 5 in this section.

D.1. Proof of Lemma 5

Proof Problem (2) is equivalent to

max
w,λ≥0

λ s.t.
w

1 +λ
∈ Ei, ∀i∈ {1,2},
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Table 9 Average computational time (in seconds) for solving (7) as a funtion of n and nx/n. Results are

averaged over 20× 5 = 100 polyhedra.

n nx/n
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 0.098 0.156 0.199 0.163 0.175 0.149 0.134 0.088 0.078
20 0.797 0.523 0.548 0.439 0.381 0.416 0.309 0.337 0.375
50 26.315 18.842 14.932 15.044 12.382 10.916 10.178 8.689 5.3

Table 10 Average computational time (in seconds) for solving (8) as a funtion of n and p. Results are averaged

over 20× 10 = 200 polyhedra.

m
n 10 20 30 40 50

10 0.065 0.161 0.306 0.522 0.807
20 0.195 0.516 1.049 1.807 2.721
50 1.56 4.413 8.334 13.47 20.12

max
y∈E1∩E2

‖D1/2
i (w−λy−xi)‖2 ≤ 1,∀i∈ {1,2}.

First, let us reformulate the membership constraints. Fix i∈ {1,2}.

w

1 +λ
∈ Ei ⇐⇒

∥∥∥∥ 1

1 +λ
D1/2
i w−D1/2

i xi

∥∥∥∥2 ≤ 1

⇐⇒ 1

(1 +λ)2

∑
j∈[n]

di,jw
2
j −

2

1 +λ
x>i Diw+x>i Dixi ≤ 1

⇐⇒ 1

(1 +λ)

∑
j∈[n]

di,jw
2
j − 2x>i Di︸ ︷︷ ︸

b>
i

w+ (1 +λ)x>i Dixi︸ ︷︷ ︸
ci

≤ (1 +λ).

To obtain the final formulation, we encode the quantity 1
1+λ

w2
j by the additional variable ξj satisfying

w2
j ≤ (1 +λ)ξj . Note that the latter constraint is second-order cone representable as∥∥∥∥ wj

ξj−(1+λ)
2

∥∥∥∥≤ ξj + (1 +λ)

2
.

Second, let us reformulate the robust constraints. Fix i∈ {1,2} and consider the constraint

max
y∈E1∩E2

‖D1/2
i (w−λy−xi)‖2 ≤ 1. (13)

We expand the norm-square term in the objective of the maximization problem in (13):

‖D1/2
i (w−λy−xi)‖2 = ‖D1/2

i (w−xi)‖2− 2λ(w−xi)>Diy+λ2‖D1/2
i y‖2

= ‖D1/2
i (w−xi)‖2− 2λ(w−xi)>Diy+λ2

∑
j∈[n]

di,jy
2
j

Similarly, the constraint y ∈ Ek, for k= 1,2, write as follows

‖D1/2
k (y−xk)‖2 ≤ 1 ⇐⇒ ‖D1/2

k y‖2− 2x>kDky+ ‖D1/2
k xk‖2 ≤ 1

⇐⇒
∑
j∈[n]

dk,jy
2
j − 2x>kDk︸ ︷︷ ︸

b>
k

y≤ 1−x>kDkxk︸ ︷︷ ︸
ck

.



36

Hence, (13) is equivalent to ‖D1/2
i (w−xi)‖2 + η?i (w, λ)≤ 1, with

η?i (w, λ) = max
y

λ2
∑
j∈[n]

di,jy
2
j − 2λ(w−xi)>Diy s.t.

∑
j∈[n]

dk,jy
2
j − 2b>k y≤ 1− ck, ∀k ∈ {1,2}.

Introducing additional variables zj ’s such that zj = y2j , ∀j ∈ [n] yields the desired formulation. �

D.2. Proof of Proposition 10

Proof Let us consider an optimal solution of (11), (y?,z?). For any j ∈ [n], let us consider tj ∈ R such

that z?j = (y?j )
2 + t2j . According to Lemma 7, we can assume without loss of generality that ‖D1/2

i t‖2 > 0.

For any β, consider the vector y(β) = y? +βt. For β = 0,

λ2‖D1/2
i y(0)‖2− 2λ(w−xi)>Diy(0)≤ λ2d>i z

?− 2λ(w−xi)>Diy
? = ηi(w, λ),

while for β→∞,

λ2‖D1/2
i y(β)‖2− 2λ(w−xi)>Diy(β)∼ ‖D1/2

i t‖2β2→+∞.

So there must exist a value of β such that

λ2‖D1/2
i y(β)‖2− 2λ(w−xi)>Diy(β) = ηi(w, λ). (14)

We fix β to this value in the remainder of the proof. We can now follow a similar construction as Xia

et al. (2021, Theorem 8). Define u1 = 1/
√

1 +β2, u2 = β/
√

1 +β2, s1 = u1y
? + u2t, and s2 = u2y

?− u1t. In

particular, for any j ∈ [p],

s21,j + s22,j = (y?j )
2 + t2j = z?j and u1s1,j +u2s2,j = (y?j ).

Note that Xia et al. (2021) consider the case of balls, i.e., isotropic quadratic form. As a result, they can use

the weaker relationships: s>1 s1 + s>2 s2 = z and u1s1 +u2s2 = y?.

With these notations, we get

λ2

∥∥∥∥D1/2
i

sk
uk

∥∥∥∥2− 2λ(w−xi)>Di

sk
uk

= ηi(w, λ), (15)

for any k ∈ {1,2}. Indeed, for k= 1 we have

(14) ⇐⇒ λ2

∥∥∥∥D1/2
i

s1
u1

∥∥∥∥2− 2λ(w−xi)>Di

s1
u1

= ηi(w, λ),

and for k= 2,

λ2
∑
j

di,jz
?2
j − 2λ(w−xi)>Diy

? = ηi(w, λ)

⇐⇒ λ2‖D1/2
i s1‖2− 2u1λ(w−xi)>Dis1 +λ2‖D1/2

i s2‖2− 2u2λ(w−xi)>Dis2 = ηi(w, λ)

⇐⇒ u2
1ηi(w, λ) +λ2‖D1/2

i s2‖2− 2u2λ(w−xi)>Dis2 = ηi(w, λ)

⇐⇒ λ2

∥∥∥∥D1/2
i

s2
u2

∥∥∥∥2− 2λ(w−xi)>Di

s2
u2

= ηi(w, λ).

Then, from the feasibility of (y?,z?), we have, for any k ∈ {1,2},

‖D1/2
k s1−u1D

1/2
k xk‖2 + ‖D1/2

k s2−u2D
1/2
k xk‖2 ≤ 1− ck + ‖D1/2

k xk‖2 = 1.
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Consequently,

min

{
max
k

1

u2
1

‖D1/2
k s1−u1D

1/2
k xk‖2, max

k

1

u2
2

‖D1/2
k s2−u2D

1/2
k xk‖2

}
≤min

{
1

u2
1

,
1

u2
2

}
≤ 2.

So there exists `∈ {1,2} such that

‖D1/2
k (s`/u`)−D1/2

k xk‖ ≤
√

2, ∀k ∈ {1,2}.

Finally, we define

ȳ=

{
s`/ul if − 2λ(w−xi)>Dis` ≥ 0,

−s`/ul otherwise.

For k ∈ {1,2},

‖D1/2
k ȳ−D1/2

k xk‖ ≤max
{
‖D1/2

k (s`/ul)−D1/2
k xk‖,‖D1/2

k (−s`/ul)−D1/2
k xk‖

}
≤
√

2 + 2‖D1/2
k xk‖.

So for any τ ∈ [0,1],

‖D1/2
k τ ȳ−D1/2

k xk‖=
∥∥∥τ (D1/2

k ȳ−D1/2
k xk

)
+ (1− τ)D1/2

k xk

∥∥∥
≤ τ

(√
2 + 2‖D1/2

k xk‖
)

+ (1− τ)‖D1/2
k xk‖

= ‖D1/2
k xk‖+ τ

(√
2 + ‖D1/2

k xk‖
)
.

Hence, τ ȳ is feasible if

τ ≤ min
k∈{1,2}

1−‖D1/2
k xk‖√

2 + ‖D1/2
k xk‖

=
1−maxk ‖D1/2

k xk‖√
2 + maxk ‖D1/2

k xk‖
.

In addition, τ ∈ [0,1], we have

λ2‖D1/2
i τ ȳ‖2− 2τλ(w−xi)>Diȳ= τ2

∥∥∥∥D1/2
i

s`
u`

∥∥∥∥2 + 2τλ

∣∣∣∣(w−xi)>Di

s`
u`

∣∣∣∣
≥ τ2

(∥∥∥∥D1/2
i

s`
u`

∥∥∥∥2 + 2λ

∣∣∣∣(w−xi)>Di

s`
u`

∣∣∣∣
)

≥ τ2
(∥∥∥∥D1/2

i

s`
u`

∥∥∥∥2− 2λ(w−xi)>Di

s`
u`

)
= τ2ηi(w, λ).

Denoting γ = maxk ‖D1/2
k xk‖= maxk

√
ck and fixing τ =

1− γ√
2 + γ

yields the result. �
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