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Abstract Subspace minimization conjugate gradient (SMCG) methods are a class of high potential itera-

tive methods for unconstrained optimization. The orthogonality is an important property of linear conjugate

gradient method. It is however observed that the orthogonality of gradients in linear conjugate gradient

method is often lost, which usually causes the slow convergence of conjugate gradient method. Based on

SMCG BB (J. Optim. Theory Appl. 180(3), 879-906, 2019), we combine the limited memory technique with

subspace minimization conjugate gradient method and present a limited memory subspace minimization

conjugate gradient algorithm for unconstrained optimization in this paper. The proposed method includes

two types of iterations: SMCG iteration and quasi-Newton (QN) iteration. In the SMCG iteration, we

determine the search direction by solving the quadratic approximation problem, in which the important

parameter is estimated based on some properties of the objective function at the current iterative point. In

the QN iteration, a modified quasi-Newton method in the subspace is exploited to improved the orthogonal-

ity. Additionally, a modified strategy for choosing the initial stepsize is exploited. The global convergence of

the proposed method is established under weaker conditions. Some numerical results indicate that,for the

CUTEr library, the proposed method has a great improvement over SMCG BB, and is comparable to the

latest limited memory conjugate gradient software package CG DESCENT (6.8) (SIAM J. Optim. 23(4),

2150-2168, 2013) and is superior to the limited memory BFGS (L-BFGS) method.
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1 Introduction

Consider the following unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is continuously differentiable and its gradient is denoted by g.

Throughout this paper, gk = g(xk), fk = f(xk), sk−1 = xk − xk−1 and yk−1 = gk − gk−1. If x ∈ Rn and

S ⊂ Rn, then dist {x,S} = inf {‖y − x‖ , y ∈ S}.

Due to the simplicity, limited storage and nice numerical performance, conjugate gradient (CG) methods

are common and efficient methods for unconstrained optimization, especially when n is very large. Giving

an initial point x0, CG methods are the form of

xk+1 = xk + αkdk, k = 0, 1, 2, · · · , (2)

where αk is the stepsize and dk is the search direction determined by

dk =

−gk, if k = 0,

−gk + βkdk−1, if k > 0,
(3)

where βk is often called conjugate parameter.

Different choices of βk lead to different CG methods. Some well-known formulae for βk are called the

Fletcher-Reeves (FR) [1], Hestenes-Stiefel (HS) [2], Polak-Ribière-Polyak (PRP) [3] and Dai-Yuan (DY) [4]

formulae, and are given by

βFRk =
‖gk‖2

‖gk−1‖2
, βHSk =

gTk yk−1

dTk−1yk−1

, βPRPk =
gTk yk−1

‖gk−1‖2
, βDYk =

‖gk‖2

dTk−1yk−1

.

Subspace minimization conjugate gradient (SMCG) methods, which can be regarded as the generation

of classical CG method [5], are a class of high potential iterate methods for unconstrained optimization.

SMCG methods can be dated back to Yuan and Stoer’s work [5], and its search direction is determined by

solving the following problem:

min
dk∈Ω̄k

gTk dk +
1

2
dTkBkdk, (4)

where Ω̄k = Span {gk, sk−1} and Bk is a symmetric and positive definite approximation to the Hessian

matrix. From then now, SMCG methods have received some attentions [6, 7]. In 2016, motivated by the

Barzilai-Borwein (BB) method [8] and based on the SMCG method [5], Dai and Kou [9] presented some

efficient Barzilai-Borwein CG methods (BBCG) for strictly convex quadratic minimization problem:

min
x∈Rn

q (x) =
1

2
xTAx+ bT x, (5)
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where A ∈ Rn×n is a symmetric and positive definite matrix and b ∈ Rn; the numerical results in [9] indicated

that BBCG3 is the most efficient. Recently, Liu and Liu [10] extended BBCG3 to general unconstrained

optimization and presented an efficient Barzilai-Borwein conjugate gradient method with a generalized

Wolfe line search (SMCG BB), and the numerical results in [10] indicate that SMCG BB is comparable to

two well-known CG software packages CGOPT [11] and CG DESCENT (5.3) [12]. Based on SMCG BB [10],

some efficient SMCG methods [13–17] were later proposed.

Some remarkable properties of linear CG method include the conjugacy of the search directions and the

orthogonality of the gradients, which are also of great importance to the numerical performance of nonlinear

CG methods. It is however observed that the orthogonality is often lost when linear CG method solves

strictly convex minimization problems. Hager and Zhang [18] observed that, when solving the strictly convex

quadratic minimization problem PALMER1C in the CUTEr library [21], with the same exact line search

PRP+ CG method [19] converges much slower than the L-BFGS method [20], although these two methods

should generate exactly the same iterations theoretically; they thought that the slow convergence may be

caused by the loss of orthogonality. To improve the orthogonality, Hager and Zhang [18] first tried to use

the L-BFGS method to improve the orthogonality while detecting the loss of orthogonality, and presented

a limited memory conjugate gradient method (CG DESCENT(6.0)); the numerical results in [18] indicated

that CG DESCENT(6.0) has a great improvement over the memoryless version CG DESCENT(5.3) and

is also faster than the L-BFGS method for the test problems in CUTEr library [21].

Although the limited memory CG method [18] is pretty efficient, it also has some drawbacks: (i)The

limited memory CG method [18] can be regarded as a preconditioned version of CG method (9) with

βHZk =
gTk yk−1

dTk−1yk−1

−
‖yk−1‖2

dTk−1yk−1

gTk dk−1

dTk−1yk−1

. (6)

Its convergence is established by imposing the assumptions:

‖Pk‖ ≤ γ0, gTk+1Pkgk+1 ≥ γ1‖gk+1‖2, dTk P
−1
k dk ≥ γ2‖dk‖2, (7)

where γ0 > 0, γ1 > 0 and γ2 > 0, on its preconditioners:

Pk = I, Pk = ZkB̂
−1
k+1Z

T
k , Pk = ZkB̂

−1
k+1Z

T
k + σkZkZ

T
k , (8)

where σk is given by (4.2) of [18], B̂k+1 is an approximation to the Hessian matrix of f at the subspace

spanned by the previous search directions, and Zk and Zk are the matrices whose columns are the orthogonal

bases for the above subspace and its complement, respectively. It is obvious that the assumptions (7) are

quite strict and the preconditioners (8) are pretty complicated. (ii)CG DESCENT (6.0) with the AWolfe

line search [22]:

σgTk dk ≤ g(xk + αkdk)T dk ≤ (2δ − 1) gTk dk,
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where 0 < δ < 0.5 and δ ≤ σ < 1, has illustrated nice numerical performance, but there is no guarantee for

the convergence of CG DESCENT with the AWolfe line search [22]. While CG DESCENT (6.0) with the

standard Wolfe line search is globally convergent, but it performs significantly worse than CG DESCENT

(6.0) with the AWolfe line search.

What about the numerical behavior of the combination of SMCG method with the limited memory

technique? Can one overcome the above drawbacks when combining SMCG method with the limited mem-

ory technique? The aim of our work is to answer the above questions. In this paper, based on BBCG3 [9]

and SMCG BB [10], we present a limited memory SMCG method for unconstrained optimization, which

includes two types of iterations: SMCG iteration and quasi-Newton (QN) iteration. In the SMCG iteration,

the search directions are determined by solving the quadratic approximation problem, in which the impor-

tant parameter is estimated based on some important properties of f at xk. In the QN iteration, a modified

quasi-Newton method in the subspace spanned by some previous search directions is designed to improve

the orthogonality, and some properties about the quasi-Newton matrices are analyzed. A modified strategy

for choosing the initial stepsize is exploited. The global convergence of the proposed method is established

under weak conditions in comparison to the limited memory CG method [18]. Some numerical experiments

are conducted, which indicate that, for the test problems in the CUTEr library [21], the proposed method

has a tremendous improvement over SMCG BB, is superior to the latest limited memory CG software

package CG DESCENT (6.8) with the Wolfe line search, is also comparable to CG DESCENT (6.8) with

the default and very efficient line search—the hybridization of the Wolfe line search and AWolfe line search,

and is superior to L-BFGS method.

The remainder of this paper is organized as follows. In Sect. 2, we describe the type of the iteration,

determine the search directions in the SMCG iteration and design a modified quasi-Newton method to

improve the orthogonality in the QN iteration, in which some important properties of the QN matrices are

analyze; we also design a modified strategy for choosing the initial stepsize and describe a limited memory

SMCG algorithm detailed. In Sect. 3, the convergence of the proposed method is established under weaker

conditions. Some numerical experiments are conducted in Sect. 4. Conclusions are given in the last section.

2 The limited memory subspace minimization conjugate gradient algorithm

In the section, we describe the iteration types of the limited memory SMCG algorithm, determine the

search direction in the SMCG iteration by solving a quadratic approximation problem, design a modified

quasi-Newton method in the subspace Sk spanned by the previous m > 0 search directions

Sk = span {dk−1, dk−1, · · · , dk−m}

to improve the orthogonality in the QN iteration. We also develop a modified strategy for choosing the

initial stepsize and describe the limited memory SMCG algorithm detailed.
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2.1 The iteration type

The limited memory SMCG algorithm mainly includes two types of iterations which are SMCG iteration

and quasi-Newton (QN) iteration, respectively.

(1) SMCG iteration

The search directions in the SMCG iteration are generated by solving the problem (4), which are

described detailed as follows.

We denote the search direction

dk = ugk + vsk−1, (9)

where u, v ∈ R. Substituting (9) into (4) and using the standard secant equation Bksk−1 = yk−1 yield the

following quadratic approximation problem:

min
u,v∈R

 ‖gk‖2

gTk sk−1


T u

v

+
1

2

u

v


T  ρk gTk yk−1

gTk yk−1 s
T
k−1yk−1


u

v

 , (10)

where ρk = gTk Bkgk is remained to be determined.

Based on some properties of the objective f at the current xk, we determine ρk by the following cases.

(i)If the conditions

yTk−1yk−1

sTk−1yk−1

≤ ξ2 and
sTk−1yk−1

sTk−1sk−1

≥ ξ3√
k

(11)

hold, where ξ2 > 104 and 0 < ξ3 < 10−4, then the condition number of the Hessian matrix might be not

very large. Similar to BBCG3 [9], we also use 3
2
‖yk−1‖2
sTk−1yk−1

I to estimate Bk in the term ρk, which implies

ρk = 3
2
‖yk−1‖2
sTk−1yk−1

‖gk‖2. Substituting the resulting ρk into (10), we can easily obtain

uk =
1

∆k

(
gTk yk−1g

T
k sk−1 − sTk−1yk−1‖gk‖2

)
, vk =

1

∆k

(
gTk yk−1‖gk‖2 − ρkgTk sk−1

)
, (12)

where

∆k =

∣∣∣∣∣∣∣
ρk gTk yk−1

gTk yk−1 s
T
k−1yk−1

∣∣∣∣∣∣∣ = ρks
T
k−1yk−1 −

(
gTk yk−1

)2

> 0. (13)

Therefore, if the conditions (11) hold, the search direction in the SMCG iteration is determined by

dk = ukgk + vksk−1, (14)

where uk and vk are given by (12).

(ii) If the following conditions

yTk−1yk−1

sTk−1yk−1

> ξ2,
sTk−1yk−1

sTk−1sk−1

≥ ξ3√
k

and

∣∣∣sTk−1gky
T
k−1gk

∣∣∣
sTk−1yk−1‖gk‖2

≤ ξ1 (15)
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hold, where 0 < ξ1 ≤ 10−4, then the condition number of the Hessian matrix is likely to be very large. In

the case, it seems that it is too simple to use the scalar matrix 3
2
‖yk−1‖2
sTk−1yk−1

I to estimate Bk in ρk. Here we

set Bk = I +
yk−1y

T
k−1

sTk−1yk−1

, which implies ρk = ‖gk‖2 +
(gTk yk−1)

2

sTk−1yk−1
. Substituting the resulting ρk into (10), we

can easily obtain that

ūk = −1 +
gTk yk−1g

T
k sk−1

sTk−1yk−1‖gk‖2
, v̄k =

(
1−

gTk yk−1g
T
k sk−1

sTk−1yk−1‖gk‖2

)
gTk yk−1

sTk−1yk−1

−
gTk sk−1

sTk−1yk−1

. (16)

Therefore, if the conditions (15) hold, the search direction in the SMCG iteration is determined by

dk = ūkgk + v̄ksk−1, (17)

where ūk and v̄k are given by (16).

(iii)If neither (11) nor (15) holds, then dk = −gk.

In sum, the search directions in SMCG iteration are described as follows:

dk =


ukgk + vksk−1, if (11) holds,

ūkgk + v̄ksk−1, if (15) holds,

−gk, otherwise,

(18)

where uk and vk are given by (12), and ūk and v̄k are given by (16).

It is noted that the search direction (14) is similar to that in BBCG3 [9], and the search direction (17)

is similar to that in Case III in SMCG BB [10].

The SMCG iteration is continued until the loss of the orthogonality is detected. When the orthogonality

is lost, the iteration will turn to the following QN iteration.

(2) QN iteration

When the orthogonality of the successive gradients is lost, we develop a modified quasi-Newton method

in the subspace to improve the orthogonality. Specifically, while the loss of the orthogonality is detected,

the SMCG iteration is terminated temporarily and then a modified quasi-Newton method described in

Subsection 3.2 is used to improve the orthogonality. It is noted that the quasi-Newton direction in the

subspace Sk is always transformed to the full space Rn at each QN iteration. Once the orthogonality is

improved, the QN iteration is stopped and the SMCG iteration is evoked immediately.

2.2 A modified quasi-Newton method in the subspace for improving the orthogonality

We develop a modified quasi-Newton method in the subspace to improve the orthogonality in the

subsection.

Theorem 2.1 [23] Suppose that the iterate {xk} is generated by the linear conjugate gradient method with

the exact line search for minimizing the strictly convex quadratic minimization problem (5), and xk is not the
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solution point x∗. Then,

gTk di = 0, i = 0, 1, · · · , k − 1

and xk is the minimizer of (5) over the subset Ωk = {x|x = x0 + span {d0, d1, · · · , dk−1}}.

From Theorem 2.1, we observe that xk is the minimizer of (5) in the subset Ωk and thus each subset

Ωk has been fully utilized in this sense.

Let Sk ∈ Rn×m be such a matrix whose columns are dk−1, dk−2, . . . , dk−m. We suppose that the columns

of Sk are linearly independent. It is also observed that the case of linear dependence rarely occurs. Let the

QR factorization of Sk be Sk = ZkR̄k, where the columns of Zk ∈ Rn×m form the normal orthogonal basis

of Sk and R̄k ∈ Rm×m is the upper triangular matrix with positive diagonal entries.

If gk is almost in the subspace Sk, which can be measured by the distance of gk and Sk, namely,

dist {gk,Sk} ≤ η̃0 ‖gk‖ , (19)

where 0 < η̃0 < 1 and η̃0 is small, then it is obvious that the orthogonality of the successive gradients has

lost. Since the columns of Zk form the normal orthogonal basis of Sk, it is not difficult to know from the

definition of dist {gk,Sk} that (19) can be written as

(
1− η̃2

0

)
‖gk‖2 ≤

∥∥∥ZTk gk∥∥∥2

. (20)

In the case, according to Theorem 2.1, it is possible that xk is possible to be far away from the minimizer of

the objective function over the subset Ωk. Based on the above observation, it seems that when the inequality

(20) holds, it is better to optimize in the subspace Sk as the subspace Sk has not been fully utilized. As a

result, we stop the SMCG iteration and turn to optimize the objective function over Sk, namely,

min
z∈Sk

f (xk + z) . (21)

If the gradient gk+1 becomes sufficiently orthogonal to the subspace, which can be measured by

dist {gk+1,Sk} ≥ η̃1 ‖gk+1‖ , (22)

where 0 < η̃0 < η̃1 < 1, then the iteration will leave the subspace Sk. Similar to (20), the inequality (22)

can also be written as

(
1− η̃2

1

)
‖gk+1‖2 ≥

∥∥∥gTk+1Zk

∥∥∥2

. (23)

In the limited memory CG method [18], the L-BFGS method is used to solve the subproblem (21) for

restoring the orthogonality. It is, however, observed that it is required to impose the strict assumptions (7)

on the preconditioners (8) in the convergence analysis of the limited memory CG method [18]. Additionally,
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it is well-known that the L-BFGS method only enjoys linear convergence rate. Since the dimension m of

the subspace Sk is usually small, it may be more suitable to use a quasi-Newton method to solve (21).

Now we develop a modified quasi-Newton method in the subspace Sk for solving the subproblem (21).

The search direction of quasi-Newton method [23] for solving (1) is the form: dk = B−1
k gk, where Bk is

an approximation to the Hessian matrix. Li and Fukushima [24] presented a cautious quasi-Newton method

for nonconvex unconstrained optimization, where Bk is updated by

Bk+1 =

Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

sTk yk
, if

sTk yk
‖sk‖2

> υ‖gk‖α,

Bk, otherwise,

where v > 0 and α > 0.

In what follows, the symbol with hat means that it belongs to the subspace Sk, distinguishing from the

corresponding symbol in the full space Rn.

Let x̂ = (x̂1, x̂2, · · · , x̂m)T ∈ Rm. The subproblem (21) can be stated as

min
x̂∈Rm

f̂ (x̂) = f (xk + x̂1dk−1 + x̂2dk−2 + · · ·+ x̂mdk−m) . (24)

The search direction of the modified quasi-Newton method for solving subproblem (24) takes the form of

d̂k+1 = −B̂−1
k+1ĝk+1, (25)

where B̂k+1 ∈ Rm×m is a symmetric and positive definite approximation to the Hessian matrix of f̂ . To

ensure good convergence, the matrix B̂k will be reset to the identity matrix Î ∈ Rm×m after it is updated

l times, where

l = max
(
m2, 45

)
. (26)

Motivated by [24] , the search direction of the modified quasi-Newton method for subproblem is (25) with

B̂k+1 =


B̂k −

B̂k ŝk ŝ
T
k B̂k

ŝTk B̂k ŝk
+

ŷkŷ
T
k

ŝTk ŷk
, if mod (k, l) 6= 0 and

ŝTk ŷk
ŝTk ŝk

≥ υ,

Î, otherwise,

(27)

where mod (k, l) denotes the residue for k modulo n and υ > 0. It is not difficult to verify that B̂k+1 is

symmetric and positive definitive when B̂k is symmetric and positive definitive and ŝTk ŷk > 0.

In the practice, the search direction d̂k+1 ∈ Rm of the modified quasi-Newton method is always trans-

formed to the full space Rn at each QN iteration. According to the QR factorization of Sk, it is not difficult

to obtain the search direction in the full space Rn:

dk+1 = −Pkgk+1, (28)
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where

Pk = ZkB̂
−1
k+1Z

T
k (29)

and B̂k+1 is given by (27).

Remark 1 It is noted that, when the orthogonality is improved, the limited memory CG method [18] first

performs the iteration with the complicated preconditioner corresponding to the third term in (8) and then

takes the iteration with Pk = I, while our method performs the SMCG iteration immediately. It is clear

that our method is simpler.

We do the following assumptions and then study some important properties of the QN matrices (27)

and (29).

Assumption 2.1 (i) The objective function f(x) is continuously differentiable on Rn (ii)The objective function

f(x) is bounded below on Rn; (iii) The gradient g(x) is Lipschitz continuous on Rn, namely, there exists L > 0

such that

‖ g(x)− g(y) ‖≤ L ‖ x− y ‖, ∀x, y ∈ Rn.

Lemma 2.1 Assume that f satisfies Assumption 2.1. Then, for B̂k+1 in (27), there exist three constants ξ̄1 >

0, ξ̄2 > 0 and ξ̄3 > 0 such that

λmax

(
B̂k+1

)
≤ ξ̄1, λmax

(
B̂−1
k+1

)
≤ ξ̄2,

∥∥∥B̂−1
k+1

∥∥∥ ≤ ξ̄3.
Proof Since the columns of Zk forms the normal orthogonal basis for Sk and m < +∞, it follows that

there exists ξ0 > 0 such that ‖Zk‖ ≤ ξ0. According to Assumption 2.1 (iii), (27) and the property of the

maximum eigenvalue function λmax (·): λmax (A1 +A2) ≤ λmax (A1) + λmax (A2), where A1 ∈ Rm×m and

A2 ∈ Rm×m are symmetric matrices, we have λmax

(
B̂k+1

)
= 1 or

λmax

(
B̂k+1

)
≤ λmax

(
B̂k

)
+ λmax

(
− B̂k ŝk ŝ

T
k B̂k

ŝTk B̂k ŝk

)
+ λmax

(
ŷkŷ

T
k

ŝTk ŷk

)
≤ λmax

(
B̂k

)
+
ŷTk ŷk

ŝTk ŷk

≤ λ̂max

(
B̂k

)
+ L2ξ2

0
‖ŝk‖2

ŝTk ŷk

≤ λ̂max

(
B̂k

)
+
L2ξ2

0

υ
.

Since B̂k will be set to Î after updating at most l times, we obtain λ
(
B̂k+1

)
≤ 1 +

lL2ξ20
υ , ξ̄1.

Let P̂k = B̂−1
k+1. According to (27), after some matrix operations we obtain P̂k = Î or

P̂k =

(
Î − ŷk ŝ

T
k

ŝTk ŷk

)T
P̂k−1

(
Î − ŷk ŝ

T
k

ŝTk ŷk

)
+
ŝk ŝ

T
k

ŝTk ŷk
. (30)
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It is not difficult to see that λmax

((
Î − ŷk ŝ

T
k

ŝTk yk

)T (
Î − ŷk ŝ

T
k

ŝTk ŷk

))
= ‖ŷk‖2‖ŝk‖2

(ŝTk ŷk)2 . For any ẑ 6= 0 ∈ Rm and P̂k in

(30), we have

ẑT P̂k ẑ = ẑT
(
Î − ŷk ŝ

T
k

ŝTk ŷk

)T
P̂k−1

(
Î − ŷk ŝ

T
k

ŝTk ŷk

)
ẑ +

(
ŝTk ẑ

)2

ŝTk ŷk

≤ λ̂max

(
P̂k−1

)
ẑT
(
Î − ŷk ŝ

T
k

ŝTk ŷk

)T (
Î − ŷk ŝ

T
k

ŝTk ŷk

)
ẑ +

(
ŝTk ẑ

)2

ŝTk ŷk

≤ λmax

(
P̂k−1

)
λmax

((
Î − ŷk ŝ

T
k

ŝTk ŷk

)T (
I − ŷk ŝ

T
k

ŝTk ŷk

))
‖ẑ‖2 +

(
ŝTk ẑ

)2

ŝTk ŷk

≤ λ̂max

(
P̂k−1

) ‖ŷk‖2‖ŝk‖2(
ŝTk ŷk

)2 ‖ẑ‖2 +
‖ŝk‖2

ŝTk ŷk
‖ẑ‖2.

Dividing the above inequality by ‖ẑ‖2 and maximizing the resulting inequality, we can obtain

λmax

(
P̂k

)
≤ λmax

(
P̂k−1

) ‖ŷk‖2‖ŝk‖2(
ŝTk ŷk

)2 +
‖ŝk‖2

ŝTk ŷk

≤ λmax

(
P̂k−1

)
L2ξ2

0
‖ŝk‖4(
ŝTk ŷk

)2 +
‖ŝk‖2

ŝTk ŷk

≤ L2ξ2
0

v2
λmax

(
P̂k−1

)
+

1

v
.

The above second inequality comes from Assumption 2.1 (iii). Since P̂k will be set to Î after updating at

most l times, we can easily know that there exists a constant ξ̄2 > 0 such that λ
(
B̂−1
k+1

)
= λ

(
P̂k

)
≤ ξ̄2.

Since B̂−1
k+1 is a symmetric and positive definite matrix, we have that

∥∥∥B̂−1
k+1

∥∥∥2

2
= λmax

(
B̂−1
k+1

)
≤ ξ̄2.

Therefore, by the equivalence of matrix norm in finite dimensional space and B̂−1
k+1 ∈ Rm×m, we know that

there exists ξ̄3 > 0 such that
∥∥∥B̂−1

k+1

∥∥∥ < ξ̄3. The proof is completed. �

Lemma 2.2 Assume that f satisfies Assumption 2.1. Then, for Pk in (29), there exist three constants γ0 > 0,

γ1 > 0 and γ2 > 0 such that

‖Pk‖ ≤ γ0, gTk+1Pkgk+1 ≥ γ1‖gk+1‖2, dTk P
−1
k dk ≥ γ2‖dk‖2,

where P−1
k denotes the pseudoinverse of Pk.

Proof By (23) and Lemma 2.1, we obtain

‖Pk‖ =
∥∥∥ZkB̂−1

k+1Z
T
k

∥∥∥ =
∥∥∥B̂−1

k+1

∥∥∥ ≤ ξ̄3 ∆
= γ0,

gTk+1Pkgk+1 = gTk+1ZkB̂
−1
k+1Z

T
k gk+1 = ĝTk+1B̂

−1
k+1ĝk+1 ≥ λmin

(
B̂−1
k+1

)
‖ĝk+1‖2 ≥

1

ξ̄1

(
1− η̃2

1

)
‖gk+1‖2

∆
= γ1‖gk+1‖2,

dTk P
−1
k dk = dTk ZkB̂k+1Z

T
k dk = d̂Tk B̂k+1d̂k ≥

1

ξ̄2

∥∥∥d̂k∥∥∥2

=
1

ξ̄2
‖dk‖2

∆
= γ2‖dk‖2.

Therefore, we can obtain the conclusions. The proof is completed. �
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2.3 A modified strategy for choosing the initial stepsize

As we know, the choice of the initial stepsize is of great importance to the numerical performance of an

optimization method. Based on the strategy in SMCG BB [10], we design a modified strategy for choosing

the initial stepsize in this subsection.

As same as SMCG BB, the initial stepsize α0
k(k = 0) at the first iteration is determined by

α0
0 =



1, if |f | ≤ 10−30 and ‖x0‖∞ ≤ 10−30,

2 |f | / ‖g0‖ , if |f | > 10−30 and ‖x0‖∞ ≤ 10−30,

min
{

1, ‖x0‖∞/‖g0‖∞
}
, if ‖g0‖∞ < 107 and ‖x0‖∞ > 10−30,

min
{

1,max
{

1, ‖x0‖∞
}
/‖g0‖∞

}
, if ‖g0‖∞ ≥ 107 and ‖x0‖∞ > 10−30.

(31)

As for the initial stepsize α0
k(k > 0), we determine it based on the following observations.

According to [25],

µk =

∣∣∣∣∣∣
2
(
fk−1 − fk + gTk sk−1

)
sTk−1yk−1

− 1

∣∣∣∣∣∣ (32)

is a quantity showing how f(x) is close to a quadratic function on the line segment between xk−1 and xk.

If the following condition [26,27] holds, i.e.,

µk ≤ ξ5 or max {µk, µk−1} ≤ ξ6, (33)

where 0 < ξ5 < ξ6, then f may be close to a quadratic function on the line segment between xk−1 and xk.

It is universally acknowledged that the linear CG method with the exact line search enjoys the quadrat-

ic termination for strictly convex quadratic functions. Additionally, Andrei [28] thought that the higher

accuracy of the stepsize, the faster convergence rate of a CG method. Based on the above observations, if f

is close to a quadratic function on the line segment between xk−1 and xk, then it is reasonable to choose the

minimizer of the interpolation function q
(
φk (0) , φk

′ (0) , φk (α)
)

as the initial stepsize for a CG method,

where φk (α) = f (xk + αdk) and α > 0 is a trial stepsize.

We first consider the initial stepsize for the search direction in the QN iteration.

(i)The initial stepsize for the search direction (28) with B̂k 6= Î.

Since the search direction d̂k is a quasi-Newton direction in the subspace, it is natural to choose α0
k = 1

as the trial initial stepsize.

Let

ᾱk = min q
(
φk (0) , φk

′ (0) , φk (1)
)
. (34)

If the condition (33) holds and ᾱk > 0, then we set the initial stepsize as

α̂k = min {max {ᾱk, αmin} , αmax} , (35)
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where αmax > 0 is very large and αmin > 0 is very small. Therefore, the initial stepsize for the search

dirction (28) with B̂k 6= Î is determined by

α0
k =

 α̂k, if (33) holds and ᾱk > 0,

1, otherwise.
(36)

(ii)The initial stepsize for the search direction (28) with B̂k = Î.

It is well-known that the BB stepsizes [8], especially the adaptive BB stepsizes [30], are very efficient for

gradient method. Here we design an adaptive BB stepsize for the search direction (28) with B̂k = Î. If the

exact line search is adopted, then gTk sk−1 = 0, which implies that if gTk sk−1 > 0, then the stepsize αk−1 is

larger than the exact stepsize αesk−1 = arg min
α>0

f (xk−1 + αdk−1). In order to compensate the gap, the initial

stepsize α0
k should be determined by the short BB stepsize αBB2

k =
sTk−1yk−1

‖yk−1‖2 . Similarly, if gTk sk−1 ≤ 0, the

initial stepsize α0
k should be determined by the long BB stepsize αBB1

k = ‖sk−1‖2
sTk−1yk−1

. Therefore, the initial

trial stepsize is determined by

αk =


{

min
{
αBB2

k , αmax

}
, αmin

}
, if gTk sk−1 > 0,{

min
{
αBB1

k , αmax

}
, αmin

}
, if gTk sk−1 ≤ 0.

(37)

Let ˜̃αk = min q
(
φk (0) , φk

′ (0) , φk
(
max

(
αk, 5αk−1

)))
. (38)

If ˜̃αk > 0, then the initial stepsize is determined by

α̃k = min
{

max
{˜̃αk, αmin

}
, αmax

}
. (39)

Therefore, the initial stepsize for the search direction (28) with B̂k = Î is determined by

α0
k =

 α̃k, if (33) holds, and ˜̃αk > 0,

αk, otherwise.
(40)

As for the initial stepsize for the search direction in SMCG iteration, it is mainly determined by the

way similar to that in SMCG BB [10].

Therefore, the initial stepsize α0
k(k > 0) can be described as follows. If the search direction dk is computed

by (18) with dk 6= −gk or by (28) with B̂k 6= Î, then the initial stepsize is determined by

α0
k =


α̂k, if (iteration = SMCG, ᾱk > 0 and (33)) or

(iteration = QN, ᾱk > 0, wk < c3 and (33)) hold,

1, otherwise,

(41)
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where wk = φk(1)−φk(0)
0.001+|φ(0)| , c3 > 0 and α̂k is given by (35). If the search direction dk is computed by (18) with

dk = −gk or by (28) with B̂k = Î, then the initial stepsize is given by

α0
k =


α̃k, if

(
iteration = SMCG, ‖gk‖2 ≤ 1, ˜̃αk > 0 and (33)

)
or(

iteration = QN, wk < c3, ˜̃αk > 0 and (33)
)

hold,

¯̄αk, otherwise,

(42)

where α̃k, ˜̃αk and ¯̄αk are determined by (39), (38) and (37), respectively.

2.4 Description of the limited memory subspace minimization conjugate gradient algorithm

As commented by Dai and Kou [9], it is important to design a suitable line search when extending BBCG3

to unconstrained optimization. A generalized Wolfe line search is developed in SMCG BB [10]. As same as

SMCG BB, we also use the generalized Wolfe line search in the limited memory SMCG algorithm, which

is described here for completeness.

The generalized Wolfe line search in SMCG BB is

f (xk + αkdk) ≤ f (xk) + ηk + σαkg
T
k dk (43)

gTk+1dk ≥ δg
T
k dk, (44)

where 0 < σ < δ < 1 and ηk is required to satisfy lim
k→+∞

kηk = 0. Here we take

ηk =

 0, if k = 0,

min
{

1
k lg(k/n+12)

, Ck − f (xk)
}
, if k ≥ 1,

(45)

where Ck is given by

C0 = f (x0) , Q0 = 1, Qk+1 = tkQk + 1, Ck+1 =
tkQkCk + fk+1

Qk+1
(46)

and 0 ≤ ηmin ≤ tk ≤ ηmax ≤ 1.

We describe the limited memory SMCG algorithm in detail.

Algorithm 1. The limited memory SMCG algorithm (LMSMCG BB)

Step 0. Given x0 ∈ Rn, ε > 0, αmin, αmax, σ, δ, η̃0, η̃1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, υ, MaxRestart and MinQuad.

Set IterRestart :=0, Numgrad :=0, IterQuad :=0, Numcongrad :=0, iteration= “SMCG iteration”

and k := 0.

Step 1. If ||gk||∞ ≤ ε, then stop.

Step 2. Compute the search direction.

If (iteration =“SMCG iteration”), then

If k = 0, then d0 = −g0 and Numgrad :=1, and go to Step 3.
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elseif (neither (11) nor (15) holds), or (Numcongrad=MaxRestar) or (IterQuad=MinQuad and

IterRestart 6= IterQuad), compute the search direction by dk = −gk . Set Numgrad :=

Numgrad+1, Numcongrad := 0 and IterRestart := 0, and go to Step 3.

elseif the conditions (11) hold, compute dk by (14). Set Numgrad := 0 and Numcongrad:=

Numcongrad+1, and go to Step 3.

elseif the conditions (15) hold, compute dk by (17). Set Numgrad := 0 and Numcongrad:=

Numcongrad+1, and go to Step 3.

end

elseif (iteration =“QN iteration”), then

Compute B̂k by (27) and Pk by (29), and determine the search direction dk by (28).

end

Step 3. Compute the initial stepsize. If k = 0, then compute α0
0 by (31) and go to Step 4, otherwise,

compute the initial stepsize by (41) or (42), and go to Step 4.

Step 4. Line search. Determine αk satisfying the generalized Wolfe line search (43) and (44) with α0
k.

Step 5. Set xk+1 = xk + αkdk.

Step 6. Update IterRestart and IterQuad. Set IterRestart :=IterRestart+1. If
∣∣∣ 2(fk+1−fk)

(gk+1+gk)T sk
− 1
∣∣∣ ≤ ξ7 [11]

or
∣∣∣fk+1 − fk − 0.5

(
gTk+1sk + gTk sk

)∣∣∣ ≤ ξ8 [10] holds, then IterQuad := IterQuad+1, otherwise,

IterQuad :=0.

Step 7.Update the type of the iteration.

if (iteration=“SMCG iteration”), then

if (20) holds, then iteration=“QN iteration”.

elseif(iteration=“QN iteration”), then

if (23) holds, then iteration=“SMCG iteration”.

end

Step 8. Set k := k + 1, go to Step 1.

3 Convergence analysis

In the section, under the Assumption 2.1, we establish the global convergence of Algorithm 1, and analyze

the R-linear convergence of Algorithm 1 for uniformly convex functions .

We first study some important properties of the new search directions (18) and (28).

Lemma 3.1 Assume that f satisfies Assumption 2.1. Then, there exists a constant c̄1 > 0 such that the search

directions (18) and (28) satisfy the sufficient descent condition:

gTk dk ≤ −c̄1‖gk‖
2. (47)



A Limited Memory Subspace Minimization Conjugate Gradient Algorithm for Unconstrained Optimization 15

Proof We prove it in the following two cases.

(i) The search direction is given by (18). Similar to the proof of Lemma 3.1 of [10], we can obtain

gTk dk ≤ −c1‖gk‖
2,

where c1 =
2

3ξ2
and ξ2 is the same as that in (11).

(ii) The search direction is given by (28). By Lemma 2.2, we obtain gTk dk = −gTk Pk−1gk ≤ −γ1‖gk‖2.

By setting c̄1 = min {c1, γ1}, we can obtain (47). The proof is completed. �

Lemma 3.2 Assume that f satisfies Assumption 2.1. Then, there exists two constants c̄2 > 0 and c̄3 > 0 such

that the search directions (18) and (28) satisfy

‖dk‖2 ≤ (c̄2 + c̄3k) ‖gk‖2 . (48)

Proof We prove it in the following two cases.

(i) The search direction is given by (18). Similar to the proof of Lemma 3.2 [10], we obtain that

‖dk‖2 ≤ (c2 + c3k) ‖gk‖2 ,

where c2 and c3 are the same as those in Lemma 3.2 of [10].

(ii) The search direction is given by (28). By Lemma 2.2, we obtain ‖dk‖2 = ‖−Pk−1gk‖2 ≤ γ2
0‖gk‖

2.

By setting c̄2 = max
{
γ2

0 , c2
}

and c̄3 = c3, we can obtain (48). The proof is completed. �

The following lemma is used to prove the convergence of Algorithm 1.

Lemma 3.3 Assume that f satisfies Assumption 2.1. Then,

αk ≥
(1− δ) c̄1

(c̄2 + c̄3k)L
,

where c̄1, c̄2, c̄3 and δ are given by (47), (48) and (44), respectively.

Proof By (44) and Assumption 2.1, we have that

(δ − 1) gTk dk ≤ g (xk + αkdk)T dk − gTk dk = (g (xk + αkdk)− gk)T dk ≤ Lαk‖dk‖2,

which yields

αk ≥
(δ − 1) gTk dk

L‖dk‖2
. (49)

By (49), Lemma 3.1 and Lemma 3.2, we obtain that

αk ≥
(δ − 1) gTk dk

L‖dk‖2
≥ c̄1 (1− δ)

L

‖gk‖2

‖dk‖2
≥ (1− δ) c̄1
L (c̄2 + c̄3k)

. (50)

The proof is completed. �
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Theorem 3.1 Assume that f satisfies Assumption 2.1, and let {xk} be generated by Algorithm 1. Then,

lim inf
k→+∞

‖gk‖ = 0. (51)

Proof By Lemmas 3.1 and 3.2, we know that the search directions (18) and (28) satisfy the sufficient

descent condition (47) and (48). Therefore, by Lemma 3.3 and the generalized Wolfe line search (43) and

(44), similar to the proof of Theorem 4.1 in [10], we can obtain (51). The proof is completed. �

The following theorem indicates that SMCG BB is R-linearly convergent for uniformly convex functions.

Theorem 3.2 Suppose that f is uniformly convex with unique minimizer x, ηmax < 1, the gradient g is Lipschitz

continuous on bounded sets, and there exists µmax > 0 such that αk ≤ µmax for all k. Then, there exists θ ∈ ]0, 1[

such that

fk − f
(
x∗
)
≤ θk

(
f0 − f

(
x∗
))
.

Proof By Lemmas 3.1 and 3.2, we know that the search directions (18) and (28) satisfy the sufficient

descent direction and (48). Therefore, similar to the proof of Theorem 4.3 in [10], we can obtain the

desirable inequality fk − f (x∗) ≤ θk (f0 − f (x∗)). The proof is completed. �

Remark 2 It is noted that the convergence of the proposed method is established under Assumption 2.1

without the strict assumptions (7).

4 Numerical experiments

We compare the performance of LMSMCG BB with that of SMCG BB [10], the latest limited memory

conjugate gradient software package CG DESCENT (6.8) [18] and the limited memory BFGS method

(L-BFGS) [20]. The C codes of CG DESCENT (6.8) and SMCG BB can be downloaded from http://

users.clas.ufl.edu/hager/papers/Software and http://web.xidian.edu.cn/xdliuhongwei/en/paper.html,

respectively. LMSMCG BB, the code of which will be available in our website finally, is implemented based

on the C code of SMCG BB. Setting the LBFGS parameter in CG DESCENT (6.8) to TRUE yields to L-

BFGS method [18]. The test collection includes 145 problems from the CUTEr library [21], and can be found

in http://users.clas.ufl.edu/hager/papers/CG/results6.0.txt; the initial points and the dimensions of

the test problems are default. The numerical experiments are done on Ubuntu 10.04 LTS.

In the numerical experiments, we choose the following parameter values for LMSMCG BB: ε = 10−6, σ =

0.01, δ = 0.9999, υ = 10−8, αmin = 10−30, αmax = 1030, tk = 0.9999, η̃0 = 10−6, η̃1 = 0.4, ξ2 = 106, ξ3 =

10−8, ξ5 = 5× 10−4, ξ6 = 5× 10−3, ξ7 = 5× 10−7, ξ8 = 10−8, m = 11, MinQuad=3 and MaxRestar= 4n,

and other parameter values in LMSMCG BB are the same as SMCG BB. SMCG BB, L-BFGS method

and CG DESCENT (6.8) use all default parameter values but the stopping condition. It is noted that the

number of memory for all test methods is 11. All test methods are terminated if ‖ gk‖∞ ≤ 10−6 is satisfied.

http://users.clas.ufl.edu/hager/papers/Software
http://users.clas.ufl.edu/hager/papers/Software
http://web.xidian.edu.cn/xdliuhongwei/en/paper.html
http://users.clas.ufl.edu/hager/papers/ CG/results6.0.txt
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The performance profiles introduced by Dolan and Moré [32] are used to display the performances of the

test methods. In the following figures, “Niter”, “Nf”, “Ng” and “Tcpu” represent the number of iterations,

the number of function evaluations, the number of gradient evaluations and CPU time (s), respectively.

We divide the numerical experiments into three groups.

In the first group of the numerical experiments, we compare LMSMCG BB to SMCG BB. Figs 1, 2, 3 and

4 illustrate the performance profiles of LMSMCG BB and SMCG BB in term of the number of iterations,

the number of function evaluations, the number of gradient evaluations and CPU time. LMSMCG BB and

SMCG BB both successfully solve 141 test problems, respectively. As shown in Figs 1, 2, 3 and 4, we

observe that LMSMCG BB is superior much to SMCG BB in term of the number of iterations, the number

of function evaluations, the number of gradient evaluations and CPU time. It indicates that the limited

memory technique equipped in LMSMCG BB indeed brings quite significant numerical improvements.

In the second group of the numerical experiments, we compare LMSMCG BB to CG DESCENT (6.8)

with different line search procedures. In the C code of CG DESCENT (6.8), the Wolfe line search and AWolfe

line search were both implemented, and the most efficient line search is the hybridization of the Wolfe line

search and AWolfe line search, which is also the default line search in CG DESCENT (6.8) [18]. We first com-

pare LMSMCG BB to CG DESCENT(6.8) with the Wolfe line search (called CG DESCENT(6.8)+Wolfe).

LMSMCG BB successfully solves 141 problems, while CG DESCENT (6.8)+Wolfe only successfully solves

115 test problems, and all test problems that CG DESCENT (6.8)+Wolfe failed are due to the failure of
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the Wolfe line search in the process of seeking suitable stepsize. As shown in Figs. 5 and 6, we observe

that LMSMCG BB performs slightly better than CG DESCENT(6.8)+Wolfe in term of the number of

iterations and the number of function evaluations, and Fig. 7 indicates that LMSMCG BB has relatively

large improvement over CG DESCENT(6.8)+Wolfe in term of the number of gradient evaluations. We see

from Fig. 8 that LMSMCG BB is much faster than CG DESCENT(6.8)+Wolfe for the CUTEr library.
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We then compare LMSMCG BB to CG DESCENT(6.8) with the hybridization of the Wolfe line search

and AWolfe line search (called CG DESCENT(6.8)+(Wolfe+AWolfe)). CG DESCENT(6.8)+(Wolfe+AWolfe)
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successfully solves 145 problems. Though Fig.9 and Fig.10 illustrate that LMSMCG BB is at a little

disadvantage over CG DESCENT(6.8)+(Wolfe+AWolfe) in term of the number of iterations and the

number of function evaluations, we can see from Fig.11 that LMSMCG BB performs much better than

CG DESCENT(6.8)+(Wolfe+AWolfe) in term of the number of gradient evaluations, since LMSMCG BB is

better for about 71% test problems with the least gradient evaluations, while the percentage of CG DESCENT

(6.8)+(Wolfe+AWolfe) is only about 38%. As shown in Fig. 12, we can observe that LMSMCG BB is slightly

faster than CG DESCENT(6.8)+(Wolfe+AWolfe).

Though the AWolfe line search is very efficient, there is no guarantee for the global convergence of

CG DESCENT with the AWolfe line search [29]. It follows from Theorem 3.1 in Sect. 3 that LMSMCG BB

with the generalized Wolfe line search (43) and (44) used is globally convergent. The second group of

the numerical experiments indicates that LMSMCG BB is superior much to CG DESCENT(6.8) with the

Wolfe line search which can keep the global convergence, and is also comparable with CG DESCENT(6.8)

with the hybridization of the Wolfe line search and AWolfe line search for which there is no guarantee for

the global convergence.

In the third group of the numerical experiments, we compare LMSMCG BB to L-BFGS method with

the hybridization of the Wolfe line search and AWolfe line search (called L-BFGS+(Wolfe+AWolfe)). The

Fortran code of L-BFGS method on Jorge Nocedal’s web page was executed for solving the 145 test

problems in the CUTEr library, and it failed in 33 of the 145 test problems [18], while the version of

L-BFGS with the Wolfe line search contained in CG DESCENT (6.8) can only solve successfully 116 test

problems, and the version of L-BFGS with the hybridization of the Wolfe line search and AWolfe line search

contained in CG DESCENT (6.8) can successfully solve 144 test problems. So the version of L-BFGS with

the hybridization of the Wolfe line search and AWolfe line search contained in CG DESCENT (6.8) was

used to compare with LMSMCG BB. Though Figs.13 and 14 illustrate that LMSMCG BB is at a little

advantage over L-BFGS+(Wolfe+AWolfe) in term of the number of iterations and the number of function

evaluations, we can see from Fig.15 that LMSMCG BB is superior much to L-BFGS+(Wolfe+AWolfe) in

term of the number of gradient evaluations, since LMSMCG BB is better for about 69% test problems with

the least gradient evaluations, while the percentage of L-BFGS+(Wolfe+AWolfe) is only about 38%. As we
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know, the gradient evaluation generally requires much more computational cost compared with the function

evaluation. In Fig.16, we can observe that LMSMCG BB is much faster than L-BFGS+(Wolfe+AWolfe),

one of the most efficient optimization methods for large unconstrained optimization.
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Fig. 13 Performance profile based on Niter
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Fig. 14 Performance profile based on Nf
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Fig. 15 Performance profile based on Ng
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Fig. 16 Performance profile based on Tcpu

5 Conclusions

We present a limited memory subspace minimization conjugate gradient method (LMSMCG BB) for uncon-

strained optimization in this paper. LMSMCG BB only includes two types of iterations, which is different

from the limited memory CG method [18] that uses three preconditioners (8). Unlike the limited memory

CG method [18], the convergence of LMSMCG BB with the generalize Wolfe line search used is established

under the mild assumption without the strict assumption (7). The numerical results indicate that, for the

CUTEr library, LMSMCG BB has a quit great improvement over SMCG BB, is superior to the latest

limited memory CG software package CG DESCENT (6.8) with the Wolfe line search, is also comparable

to CG DESCENT (6.8) with the efficient the hybridization of the Wolfe line search and AWolfe line search,

and is superior to L-BFGS method with the hybridization of the Wolfe line search and AWolfe line search,

one of the most efficient optimization methods for large unconstrained optimization.
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