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Abstract

In this paper we study the well-known Chvátal-Gomory (CG) procedure for the class of
integer semidefinite programs (ISDPs). We prove several results regarding the hierarchy of
relaxations obtained by iterating this procedure. We also study different formulations of the
elementary closure of spectrahedra. A polyhedral description of the elementary closure for a
specific type of spectrahedra is derived by exploiting total dual integrality for SDPs. Moreover,
we show how to exploit (strengthened) CG cuts in a branch-and-cut framework for ISDPs.
Different from existing algorithms in the literature, the separation routine in our approach
exploits both the semidefinite and the integrality constraints. We provide separation routines
for several common classes of binary SDPs resulting from combinatorial optimization problems.
In the second part of the paper we present a comprehensive application of our approach to
the quadratic traveling salesman problem (QTSP). Based on the algebraic connectivity of the
directed Hamiltonian cycle, two ISDPs that model the QTSP are introduced. We show that
the CG cuts resulting from these formulations contain several well-known families of cutting
planes. Numerical results illustrate the practical strength of the CG cuts in our branch-and-cut
algorithm, which outperforms alternative ISDP solvers and is able to solve large QTSP instances
to optimality.

Keywords integer semidefinite programming, Chvátal-Gomory procedure, total dual integrality,
branch-and-cut, quadratic traveling salesman problem

1 Introduction

Convex integer nonlinear programs (CINLPs) are optimization problems in which the objective
function is convex and the continuous relaxation of the feasible region is a convex set. Nonlinearities
in CINLPs can appear in both the objective function and/or the constraints. Motivated by their
numerous applications and their ability to generalize several well-known problem classes, CINLPs
have been studied for decades. In this paper we focus on a specific class of CINLPs: the integer
semidefinite programs (ISDPs). These problems can be formulated as:

sup b⊤x s.t. C−
m∑
i=1

Aixi ⪰ 0, x ∈ Zm, (1)

with b ∈ Rm, C,Ai ∈ Sn, where Sn denotes the cone of symmetric matrices of order n. Note that
C−

∑m
i=1 Aixi ⪰ 0 is referred to as a linear matrix inequality (LMI) and it is the SDP analogue of

a system of linear inequalities defining a polyhedron. Since integer linear programs belong to the
family of ISDPs, problems of the form (1) are generally NP-hard to solve.

Although CINLPs have been studied extensively, see e.g., the survey of Bonami et al. [11], the
special case of ISDPs has received attention only very recently. This is remarkable, as the mixture
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of positive semidefiniteness and integrality leads naturally to a broad range of applications, e.g., in
architecture [16, 71], signal processing [39, 55] and combinatorial optimization [40, 60]. For a more
detailed overview of applications of ISDPs, we refer the reader to [40, 46].

Only a few solution approaches for solving SDPs with integrality constraints have been considered.
Gally et al. [40] propose a general framework called SCIP-SDP for solving mixed integer semidef-
inite programs (MISDPs) using a branch-and-bound (B&B) procedure with continuous SDPs as
subproblems. They show that strict duality of the relaxations is maintained in the B&B tree and
study several solver components. Alternatively, Kobayashi and Takano [46] propose a cutting-plane
algorithm that initially relaxes the positive semidefinite (PSD) constraint and solves a mixed integer
linear programming problem, where the PSD constraint is imposed dynamically via cutting planes.
This leads to a general branch-and-cut (B&C) algorithm for solving MISDPs. A third project that
encounters general ISDPs is YALMIP [49]. However, it is noted by the authors of [40] and [46] that
the branch-and-bound ISDP solver in YALMIP is not yet competitive to the performance of the other
two methods. Recently, Matter and Pfetsch [50] study different presolving strategies for MISDPs for
both the B&B and B&C approach.

Apart from solution methods for solving general ISDPs or MISDPs, there are several other
approaches in the literature that aim to solve integer problems by utilizing SDP relaxations in a B&B
framework. Although these approaches are very related to problems of the form (1) in the sense
that they also combine semidefinite programs with a branching strategy, they differ in the sense that
the problem at hand is not necessarily formulated as a MISDP. Examples are the BiqCrunch solver
for constrained binary quadratic problems [47] and the Biq Mac solver for unconstrained binary
quadratic problems [60].

In the light of improving the performance of the B&C algorithm of [46], we consider the exploitation
of cutting planes for ISDPs. Practical algorithms for CINLPs have benefited a lot from the addition
of strong cutting planes, see e.g., [4, 5, 8, 65], where many of these cutting plane frameworks are based
on generalizations from integer linear programming. Among the most well-known cutting planes for
integer linear programs (ILPs) are the Chvátal-Gomory (CG) cuts [17, 43]. Gomory [43] introduced
these cuts to design the first finite cutting plane algorithm for ILPs. Chvátal [17] later generalized
this notion and introduced the closure of all such cuts that leads to a hierarchy of relaxations of
the ILP with increasing strength. Chvátal [17] and Schrijver [62] prove that this hierarchy is finite
for bounded real polyhedra and rational polyhedra, respectively. Later on, the CG procedure is
introduced for more general convex sets, see e.g., [25, 21, 26, 12, 22]. In particular, Çezik and Iyengar
[15] show how to generate CG cuts for CINLPs where the continuous relaxation of the feasible region
is conic representable.

A leading application in this work is a combinatorial optimization problem that can be modelled
as an ISDP: the quadratic traveling salesman problem (QTSP). Jäger and Molitor [45] introduce
the QTSP as the problem of finding a Hamiltonian cycle in a graph that minimizes the total
interaction costs among consecutive arcs. The problem is motivated by an important application
in bioinformatics [45, 35], but has also applications in telecommunication, precision farming and
robotics, see e.g., [68, 30, 1]. The QTSP is NP-hard in the strong sense and is currently considered
as one of the hardest combinatorial optimization problems to solve in practice.

Several papers have studied the QTSP. In [33, 34, 37] the polyhedral structure of the asymmetric
and symmetric QTSP–polytope is discussed. Rostami et al. [61] provide several lower bounding
procedures for the QTSP, including a column generation approach. Woods and Punnen [69] provide
different classes of neighbourhoods for the QTSP, while Staněk et al. [63] discuss several heuristics
for the quadratic traveling salesman problem in the plane. The linearization problem for the QTSP
is studied in [56]. Fischer et al. [35, 36] introduce several exact algorithms and heuristics for the
asymmetric QTSP, while Aichholzer et al. [2] consider exact solution methods for the minimization
and maximization version of the symmetric QTSP.

1.1 Main results and outline

In this paper we consider the Chvátal-Gomory procedure for ISDPs from a theoretical as well as
a practical point of view. On the theoretical side, we derive several results on the elementary
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closure of all CG cuts for spectrahedra. On the practical side, we show how to apply these cuts in a
generic branch-and-cut algorithm for ISDPs that exploits both the positive semidefiniteness and the
integrality of the problem. We extensively study the application of this new approach to the QTSP,
which confirms the practical strength of the proposed method.

We start by reformulating a CG cut for a spectrahedron in terms of its data matrices in combination
with the elements from the dual cone. This leads to a constructive description of the elementary
closure of spectrahedra rather than the implicit description that is known for general convex sets.
Equivalent to the case of polyhedra, the elementary closure operation can be repeated, leading to a
hierarchy of stronger approximations of the integer hull of the spectrahedron. For the case of bounded
spectrahedra, we provide a compact proof of a homogeneity property for the elementary closure
operation that is based on a theorem of alternatives and Dirichlet’s approximation theorem. We prove
this property for halfspaces that are sufficient to describe any compact convex set. Homogeneity is
the cornerstone in showing that the elementary closure of a bounded spectrahedron is polyhedral.
Although the latter result is known in the literature, our proof significantly simplifies compared to
the general proofs given in [22, 12]. Finally, we exploit the recently introduced notion of total dual
integrality for SDPs [13] to derive a closed-form expression for the elementary closure of spectrahedra
defined by a totally dual integral linear matrix inequality. We additionally provide a characterization
of bounded spectrahedra with this property and several more general sufficient conditions.

It is known that the practical strength of CG cuts in integer linear programming is mainly due to
their application in branch-and-bound methods. In this vein, we propose a generic branch-and-cut
(B&C) framework for ISDPs. Our algorithm initially relaxes the PSD constraint and solves a mixed
integer linear program (MILP), where the PSD constraint is imposed iteratively via CG and/or
strengthened CG cuts. To derive strengthened CG cuts, we use a similar approach to the one for
rational polyhedra by Dash et al. [24]. Our B&C algorithm is an extension of the algorithm of [46], in
which separation is only based on positive semidefiniteness without taking into account the integrality
of the variables. Our approach also builds up on the work by Çezik and Iyengar [15], in which the
authors leave the separation of CG cuts for conic problems as an open problem and do not include
these cuts in their computational study. We provide an example of our approach for a common class
of binary SDPs that frequently appears in combinatorial optimization.

In the third part of this paper we apply our results to a difficult-to-solve combinatorial optimization
problem: the quadratic traveling salesman problem. We derive two ISDP formulations of this problem
based on the notion of algebaic connectivity. To solve these models using our B&C algorithm, we
propose several CG separation routines and show that various of these routines lead to well-known
cuts for the QTSP. Computational results on a large set of benchmark QTSP instances show that
the practical potential of our new method is twofold. The method significantly outperforms the ISDP
solvers from the literature, whereas it also provides competitive results to the state-of-the-art QTSP
solution method of [35].

The paper is organized as follows. In Section 2 we study the Chvátal-Gomory procedure for
spectrahedra. Section 3 provides a CG-based B&C framework for general ISDPs and provides specific
CG separation routines for two classes of binary SDPs. In Section 4 we formally define the QTSP
and present two ISDP formulations of this problem. Numerical results are given in Section 5.

1.2 Notation

A directed graph is given by G = (N,A), where N is a set of nodes and A ⊆ N ×N is a set of arcs.
We use Kn to denote the complete directed graph on n nodes, i.e., a directed graph in which every
pair of nodes is connected by a bidirectional edge.

We denote by 0n ∈ Rn the vector of all zeros, and by 1n ∈ Rn the vector of all ones. The identity
matrix and the matrix of ones of order n are denoted by In and Jn, respectively. We omit the
subscripts of these matrices when there is no confusion about the order. The i-th elementary vector
is denoted by ei and we define Eij := eie

⊤
j . For any two matrices A and B, the direct sum is defined

as A⊕B =
[
A 0
0 B

]
.

The set of integer numbers and non-negative integer numbers is denoted by Z and Z+, respectively.
For any integer vector c ∈ Zm, we let gcd(c) denote the greatest common divisor of the entries in c.
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We define the floor (resp. ceil) operator ⌊·⌋ (resp. ⌈·⌉) as the largest (resp. smallest) integer smaller
(resp. larger) than or equal to the input number. For n ∈ Z+, we define the set [n] := {1, . . . , n}.
Also, for any S ⊆ [n], we let 1S be the binary indicator vector of S.

We let Sn be the set of all n× n real symmetric matrices and denote by X ⪰ 0 that a symmetric
matrix X is positive semidefinite. We use X ⪶ 0 to denote that X is positive semidefinite, but
not equal to the zero matrix. The cone of symmetric positive semidefinite matrices is defined as
Sn
+ := {X ∈ Sn : X ⪰ 0}. The trace of a square matrix X = (xij) is given by tr(X) =

∑
i xii. For

any X,Y ∈ Rn×n the trace inner product is defined as ⟨X,Y⟩ := tr(X⊤Y) =
∑n

i=1

∑n
j=1 xijyij .

The operator diag : Rn×n → Rn maps a square matrix to a vector consisting of its diagonal
elements. We denote by Diag : Rn → Rn×n its adjoint operator.

2 The Chvátal-Gomory procedure for ISDPs

In this section we study the extension of the cutting-plane procedure by Chvátal [17] and Gomory [43]
for integer linear programs to the class of integer semidefinite programs. We show that several
concepts, such as the Chvátal-Gomory closure and the Chvátal rank, can be generalized to ISDPs.
We start by recollecting the procedure for general convex sets.

2.1 The Chvátal-Gomory procedure

Let C ⊆ Rm be a non-empty closed convex set and let CI be its integer hull, i.e., CI := Conv(C∩Zm).
The Chvátal-Gomory cutting-plane procedure is introduced by Chvátal [17] and Gomory [43] and is
regarded to be among the most celebrated results in integer programming. The CG procedure aims
at systematically identifying valid inequalities for C that cut off non-integer solutions. By adding
these new cuts to the relaxation and repeating this process, one obtains a hierarchy of stronger
relaxations that converges to CI .

The CG procedure relies on the notion of rational halfspaces. A rational halfspace is of the form
H = {x ∈ Rm : c⊤x ≤ d} for some c ∈ Qm, d ∈ Q. It is known that all such halfspaces can be
represented by c ∈ Zm such that the entries of c are relatively prime. If H = {x ∈ Rm : c⊤x ≤ d}
with c ∈ Zm, gcd(c) = 1, then HI = {x ∈ Rm : c⊤x ≤ ⌊d⌋}.

Definition 1. The elementary closure of a closed convex set C is the set

clCG(C) :=
⋂

(c,d)∈Qm×Q
C⊆H={x : c⊤x≤d}

HI . (2)

Equivalently, the elementary closure of C can be written as:

clCG(C) =
⋂

(c,d)∈Zm×R
C⊆{x : c⊤x≤d}

{
x ∈ Rm : c⊤x ≤ ⌊d⌋

}
, (3)

and we will primarily use this form in this work. The inequalities that define clCG(C) in (3) are
known as CG cuts [43]. One can verify that CI ⊆ clCG(C). When C is compact, we can exploit the
following proposition due to Dadush et al. [21] and De Carli Silva and Tunçel [13].

Proposition 1. If C ⊆ Rm is a compact convex set, then

C =
⋂

(c,d)∈Zm×R
C⊆{x : c⊤x≤d}

{
x ∈ Rm : c⊤x ≤ d

}
.

It follows from Proposition 1 that for compact convex sets C we have clCG(C) ⊆ C. We can now
repeat the procedure by defining C(0) := C and C(k+1) := clCG(C

(k)) for all integer k ≥ 0, where
C(k) is referred to as the kth CG closure of C. For any compact convex set C this leads to the
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hierarchy CI ⊆ . . . ⊆ C(k+1) ⊆ C(k) ⊆ . . . ⊆ C(0) = C. The smallest k for which CI = C(k) is known
as the Chvátal rank of C. In the same vein, the Chvátal rank of an inequality c⊤x ≤ d valid for CI

is defined as the smallest k such that C(k) ⊆ {x ∈ Rm : c⊤x ≤ d}.

Remark 1. Observe that for an unbounded closed convex set C, clCG(C) ⊆ C does not have to hold.
For instance, the irrational halfspace {x ∈ R2 : x1 +

√
2x2 ≤ 0} is not contained in any halfspace of

the form {x ∈ R2 : c⊤x ≤ d} with c ∈ Z2. Therefore, clCG(C) is the intersection over an empty set
of halfspaces, resulting in clCG(C) = R2.

The finiteness of the Chvátal rank is proven in the literature for bounded real polyhedra [17],
unbounded rational polyhedra [62] and conic representable sets in the 0/1-cube [15]. However, the
Chvátal rank for unbounded real polyhedra can be infinite as shown by Schrijver [62]. Schrijver
also shows that the elementary closure of a rational polyhedron is a rational polyhedron. This
result is later generalized to irrational polytopes [26], bounded rational ellipsoids [25], strictly convex
bodies [21] and general compact convex sets [22, 12]. As a consequence, the Chvátal rank of these
sets is also known to be finite.

2.2 The elementary closure of spectrahedra

We now apply the notions from Section 2.1 to integer semidefinite programming problems in standard
primal and dual forms. On top of the general definition given in the previous section, we derive
alternative formulations of the elementary closure of spectrahedra.

Let b ∈ Rm, C ∈ Sn and Ai ∈ Sn for all i ∈ [m]. An ISDP in standard primal form is given by:

(PISDP )

{
inf ⟨C,X⟩
s.t. ⟨Ai,X⟩ = bi ∀i ∈ [m], X ⪰ 0, X ∈ Zn×n,

(4)

while an ISDP in standard dual form is given by:

(DISDP )


sup b⊤x

s.t. C−
m∑
i=1

Aixi ⪰ 0, x ∈ Zm.
(5)

Using standard techniques, one can syntactically rewrite an integer SDP from primal form to dual
form and vice versa. Consistent with most of the literature, we mainly consider, but not restrict
ourselves to, ISDPs in dual form.

The continuous relaxation of the feasible set of (5) is defined as follows:

P :=

{
x ∈ Rm : C−

m∑
i=1

Aixi ⪰ 0

}
. (6)

The set P is a spectrahedron that is closed, semialgebraic and convex, which we assume to be
non-empty. Throughout the paper, we make the following non-restrictive assumption on the linear
matrix inequality defining P . In case P is not full-dimensional, i.e., the subspace L := Aff(P )⊥ is
nontrivial, we extend C and Ai, i ∈ [m], to

C⊕Diag(Lx0)⊕−Diag(Lx0) and Ai ⊕Diag(ℓi)⊕−Diag(ℓi) for all i ∈ [m]

where L := [ℓ1 . . . ℓm] ∈ Rdim(L)×m is a matrix whose rows form a basis for L and x0 ∈ P . Observe
that the resulting extended map has no effect on the spectrahedron P itself. We only include it to
obtain a more proper algebraic representation, see also [57, 51]. We define the integer hull of P to
be PI := Conv(P ∩ Zm), i.e., the convex hull of the integral points in P . We briefly consider some
illustrative examples of spectrahedra and their integer hulls.
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Example 1 (Examples in R2). Let C = [ 0 3
3 3 ],A1 =

[−3 1
1 1

]
and A2 =

[
1
2 1
1 0

]
. Then, the induced

spectrahedron P in the dual form (6) is the semialgebraic set of points in R2 described by the quadratic
inequality 4x2

1+x2
2 ≤ 15x1+4 1

2x2−1 1
2x1x2−9. This spectrahedron is bounded and given in Figure 1a.

Let Q be described by (6) with C = [ 1 0
0 0 ],A1 =

[
0 −1
−1 0

]
and A2 =

[
0 0
0 −2

]
. The spectrahedron Q

is the unbounded semialgebraic set {x ∈ R2 : x2 ≥ 1
2x

2
1}, see Figure 1b.

(a) Bounded spectrahedron P (b) Unbounded spectrahedron Q

Figure 1: Spectrahedra P and Q defined in Example 1. Their corresponding integer hulls are given
by the dark gradient areas.

Example 2 (Example in R3). Let C = [ 1 2
2 2 ]⊕ [ 5 0

0 5 ],A1 =
[
−1 1

2
1
2 1

]
⊕ [ 0 0

0 0 ],A2 =
[
− 3

5
3
10

3
10 0

]
⊕
[
1 0
0 −1

]
and A3 =

[
1
2 2
2 −3

]
⊕ [ 0 0

0 0 ] and let P be the induced spectrahedron of the form (6). Then, P is the

semialgebraic set in R3 described by the inequalities 1 1
4x

2
1+

9
100x

2
2+5 1

2x
2
3 ≤ −2+3x1+2 2

5x2+10x3−
9
10x1x2 +

3
5x2x3 + 11

2x1x3, 1 + x1 +
3
5x2 − 1

2x3 ≥ 0, 2 − x1 + 3x3 ≥ 0, −5 ≤ x2 and x2 ≤ 5, see
Figure 2.

Figure 2: Spectrahedron P in R3 defined in Example 2.

In the remaining part of this section we study the elementary closure, see Definition 1, of
spectrahedra in primal and dual standard forms. The proofs of several results that will follow
rely on the following semidefinite version of the theorem of alternatives, see e.g., Balakrishnan and
Vandenberghe [6].

Proposition 2 (Theorem of the alternatives for SDP [6]). Let C,A1, . . . ,Am ∈ Sn. Then at most
one of the following is true:

1. There exists an X ≻ 0, ⟨Ai,X⟩ = 0 for all i ∈ [m] and ⟨C,X⟩ ≤ 0;
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2. There exists an x ∈ Rm such that C−
∑m

i=1 Aixi ⪶ 0.

Moreover, if there exists no x ∈ Rm such that
∑m

i=1 Aixi ⪶ 0, then exactly one of the statements
above is true.

Using the fact that a matrix C −
∑m

i=1 Aixi is positive semidefinite if and only if ⟨C −∑m
i=1 Aixi,U⟩ ≥ 0 for all U ∈ Sn

+, we can rewrite P as follows:

P =

{
x ∈ Rm : ⟨C−

m∑
i=1

Aixi,U⟩ ≥ 0, U ∈ Sn
+

}

=
⋂

U∈Sn
+

{
x ∈ Rm :

m∑
i=1

xi⟨Ai,U⟩ ≤ ⟨C,U⟩

}
. (7)

Moreover, since P is a closed convex set, we can write P as the intersection of the halfspaces that
contain it:

P =
⋂

(c,d)∈Rm+1

P⊆{x : c⊤x≤d}

{
x ∈ Rm : c⊤x ≤ d

}
. (8)

It is clear that all halfspaces in the intersection of (7) are contained in the intersection (8). The
converse statement is also true, as stated by the following theorem.This theorem was proven in [51]
and also related to the algebraic polar studied in [57].

Theorem 1 ([51, 57]). Let P = {x ∈ Rm : C−
∑m

i=1 Aixi ⪰ 0} be a non-empty spectrahedron. Let
(c, d) ∈ Rm+1 be such that P ⊆ {x ∈ Rm : c⊤x ≤ d}. Then there exists a matrix U ∈ Sn

+ such that
⟨Ai,U⟩ = ci for all i ∈ [m] and ⟨C,U⟩ ≤ d.

Using the representation of P given by (7) and the result of Theorem 1, we now provide an
alternative formulation of the elementary closure for spectrahedra of the form P . We have,

clCG(P ) =
⋂

U∈Sn
+ s.t.

⟨Ai,U⟩∈Z, i∈[m]

{
x ∈ Rm :

m∑
i=1

xi⟨Ai,U⟩ ≤ ⌊⟨C,U⟩⌋

}
. (9)

Hence, any possible CG cut for a spectrahedron is constructed by a matrix U ∈ Sn
+ such that

⟨Ai,U⟩ ∈ Z for i ∈ [m].
A similar alternative definition of the elementary closure of spectrahedra in standard primal form

can be obtained. Let Q ⊆ Sn denote the continuous relaxation of the feasible set of (4), i.e.,

Q = {X ∈ Sn : ⟨Ai,X⟩ = bi, i ∈ [m], X ⪰ 0}
=
{
X ∈ Sn : ⟨Ai,X⟩ = bi, i ∈ [m], ⟨X,U⟩ ≥ 0, U ∈ Sn

+

}
=

{
X ∈ Sn :

〈
X,U+

m∑
i=1

Aiλi

〉
≥

m∑
i=1

biλi, U ∈ Sn
+, λ ∈ Rm

}
,

where the last equality follows from the fact that the choices (U,λ) = (0, ei) and (U,λ) = (0,−ei)
lead to the cuts ⟨Ai,X⟩ ≥ bi and ⟨Ai,X⟩ ≤ bi, respectively. Now, the elementary closure of Q can
be described by the following intersection of CG cuts:

clCG(Q) =
⋂

(U,λ)∈Sn
+×Rm s.t.

U+
∑m

i=1 Aiλi∈Zn×n

{
X ∈ Sn :

〈
X,U+

m∑
i=1

Aiλi

〉
≥

⌈
m∑
i=1

biλi

⌉}
. (10)

For many SDPs resulting from applications the spectrahedra that define the feasible sets are contained
in the cone of non-negative vectors or matrices. When P ⊆ Rm

+ or Q ⊆ {X ∈ Rn×n : X ≥ 0},
alternative equivalent formulations of the elementary closure can be given, see also [15].
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Theorem 2. Let P =
{
x ∈ Rm

+ : C−
∑m

i=1 Aixi ⪰ 0
}

be a non-empty spectrahedron. Then
clCG(P ) can equivalently be written as

clCG(P ) =
⋂

U∈Sn
+

{
x ∈ Rm :

m∑
i=1

xi⌊⟨Ai,U⟩⌋ ≤ ⌊⟨C,U⟩⌋

}
. (11)

Similarly, let Q = {X ∈ Sn : ⟨Ai,X⟩ = bi, i ∈ [m],X ⪰ 0,X ≥ 0}. Then clCG(Q) can equivalently
be written as

clCG(Q) =
⋂

(U,λ)∈Sn
+×Rm

{
X ∈ Sn :

〈
X,

⌈
U+

m∑
i=1

Aiλi

⌉〉
≥

⌈
m∑
i=1

biλi

⌉}
. (12)

Proof. We prove the statement for the dual form (11). The proof for the primal form is similar.
Let clCG(P ) :=

⋂
U∈Sn

+
{x ∈ Rm :

∑m
i=1 xi⌊⟨Ai,U⟩⌋ ≤ ⌊⟨C,U⟩⌋} and let clCG(P ) be as given

in (9). The inclusion clCG(P ) ⊆ clCG(P ) is obvious, as any halfspace in the intersection defining
clCG(P ) is also in the intersection defining clCG(P ). Now, consider a halfspace H̄ = {x ∈ Rm :∑m

i=1 xi⌊⟨Ai,U⟩⌋ ≤ ⌊⟨C,U⟩⌋} for some U ∈ Sn
+, that is included in the intersection defining clCG(P ).

Since P ⊆ Rn
+, we know

P ⊆

{
x ∈ Rm

+ :
m∑
i=1

xi⟨Ai,U⟩ ≤ ⟨C,U⟩

}
⊆

{
x ∈ Rm

+ :
m∑
i=1

xi⌊⟨Ai,U⟩⌋ ≤ ⟨C,U⟩

}

⊆

{
x ∈ Rm :

m∑
i=1

xi⌊⟨Ai,U⟩⌋ ≤ ⟨C,U⟩

}
.

Now we apply Theorem 1 to the latter halfspace. It follows that there exists a matrix V ∈ Sn
+ such

that
⟨Ai,V⟩ = ⌊⟨Ai,U⟩⌋ for all i ∈ [m], and ⟨C,V⟩ ≤ ⟨C,U⟩.

We define the halfspace H := {x ∈ Rm :
∑m

i=1 xi⟨Ai,V⟩ ≤ ⌊⟨C,V⟩⌋}. Since ⌊⟨C,V⟩⌋ ≤ ⌊⟨C,U⟩⌋,
it follows that the halfspace H̄ contains the halfspace H, while H is contained in the intersection of
clCG(P ) given in (9). Since this construction can be repeated for all halfspaces in the intersection
(11) defining clCG(P ), it follows that clCG(P ) ⊆ clCG(P ).

Example 3. Let us reconsider the
bounded spectrahedron P defined in
Example 1. The elementary closure
clCG(P ) of this spectrahedron is the
intersection of six rational halfs-
paces, represented by the dashed
lines in Figure 3. Each such halfs-
pace is obtained from a rational half-
space {x ∈ R2 : c⊤x ≤ d} contain-
ing P , where d is shifted towards PI

until the corresponding hyperplane
hits an integral point. The integer
hull PI is the intersection of only
five halfspaces. Thus, for this ex-
ample we have PI ⊊ clCG(P ) ⊊ P .

Figure 3: Spectrahedron P , its integer hull PI and its ele-
mentary closure clCG(P ).

In Section 2.4 we provide a polyhedral description of the elementary closure of spectrahedra that
satisfy the notion of total dual integrality.
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2.3 The Chvátal rank of bounded spectrahedra

In this section we derive several results on the sequence of relaxations resulting from the Chvátal-
Gomory procedure. Although some of these results are already known for general compact convex
sets, we provide simplified proofs for the case of bounded spectrahedra. Throughout this section we
assume P to be a spectrahedron of the form (6) that is bounded. For unbounded sets it is in general
not even clear whether C(k+1) ⊆ C(k).

It is known that the Chvátal rank of a compact convex set is finite, including the special case of
bounded spectrahedra. This result follows from the polyhedrality result of Dadush et al. [22] and the
folklore that the Chvátal rank of a rational polytope is finite due to Chvátal [17].

Proposition 3 ([17, 22]). Let P = {x ∈ Rm : C−
∑m

i=1 Aixi ⪰ 0} be bounded. Then, P (k) = PI

for some finite k.

Next, we aim to prove a homogeneity property of the CG procedure for bounded spectrahedra,
which states that the elementary closure operation commutes with taking the intersection with
supporting hyperplanes. This property plays a key role in showing that the elementary closure of P is
a rational polytope, following the proof of Braun and Pokutta [12]. We provide a simplified proof of
this property for bounded spectrahedra, which can be seen as the conic analogue to a polyhedral result
of Schrijver [62]. In the proof we restrict ourselves to halfspaces of the form {x ∈ Rm : w⊤x ≤ d}
where w ∈ Zm and d ∈ R. It follows from Proposition 1 that these halfspaces are sufficient to
describe a compact convex set.

Before we show the main theorem, we need a chain of intermediate results, starting with a
proposition regarding the condition of Proposition 2.

Proposition 4. Let P = {x ∈ Rm : C−
∑m

i=1 Aixi ⪰ 0} be a non-empty and bounded spectrahe-
dron. Then there does not exist an x ∈ Rm such that

∑m
i=1 Aixi ⪶ 0.

Proof. Since P is non-empty, there exists a point x∗ ∈ P , i.e., C−
∑m

i=1 Aix
∗
i ⪰ 0. Now suppose

there exists a point x̂ such that
∑m

i=1 Aix̂i ⪶ 0. Then clearly x̂ ̸= 0m and for all t ≥ 0 we have

C−
m∑
i=1

Aix
∗
i + t

m∑
i=1

Aix̂i = C−
m∑
i=1

Ai(x
∗
i − tx̂i) ⪰ 0,

i.e., x∗ − tx̂ ∈ P for all t ≥ 0. Thus, P is unbounded, so such x̂ cannot exist.

We also need Dirichlet’s approximation theorem and its weakened version.

Proposition 5 (Dirichlet’s Approximation Theorem). Let d ∈ R and N ≥ 2 be a positive integer.
Then there exist integers p and q with 1 ≤ p ≤ N such that |pd− q| ≤ 1

N .

We now derive its one-sided variant below.

Corollary 1 (One-sided Approximation Theorem). Let d ∈ R and N ≥ 2 be a positive integer
number. Then there exists an integer p ∈ Z+ such that d− ⌊pd⌋ ≤ 1

N .

Proof. By Dirichlet’s Theorem, we know that for the given d and N , there exist integers q1 and q2 with
1 ≤ q1 ≤ N such that |q1d−q2| ≤ 1

N . If q1d ≥ q2, then we have q1d−⌊q1d⌋ ≤ q1d−q2 = |q1d−q2| ≤ 1
N ,

so the choice p = q1 leads to the desired result. Next, we consider the case q1d < q2, for which we have
− 1

N ≤ q1d− q2 < 0. Let M ≥ 1 be the smallest integer such that M(q1d− q2) ≤ −N−1
N , which exists

because q1d− q2 < 0. For this M we must have −1 ≤ M(q1d− q2). Namely, if M(q1d− q2) < −1,
then (M − 1)(q1d− q2) ≤ −N−1

N , contradicting the minimality of M . Thus,

−1 ≤ M(q1d− q2) ≤ −N − 1

N
⇐⇒ 0 ≤ Mq1d− (Mq2 − 1) ≤ 1

N
.

Since Mq2 − 1 is integer, it follows that Mq1d − ⌊Mq1d⌋ ≤ Mq1d − (Mq2 − 1) ≤ 1/N, so taking
p = Mq1 gives the desired result.
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We are now ready to present a simplified proof of Braun and Pokutta [12] for the homogeneity
property of the elementary closure of bounded spectrahedra, see also Proposition 1 in [22].

Theorem 3 (Homogeneity property of elementary closure). Let P = {x ∈ Rm : C−
∑m

i=1 Aixi ⪰ 0}
be a bounded spectrahedron that is contained in a halfspace {x ∈ Rm : w⊤x ≤ d} with w ∈ Zm and
d ∈ R. Let K := {x ∈ Rm : w⊤x = d}. Then clCG(P ) ∩K = clCG(P ∩K).

Proof. If P is empty the claim is obvious, hence we assume that P is non-empty.
The inclusion clCG(P ∩K) ⊆ clCG(P ) ∩K is trivial. In order to prove the reverse statement, we

assume that H is a rational halfspace containing P ∩K, i.e., H = {x ∈ Rm : v⊤x ≤ α} where v
is a vector of relative prime integers. It suffices to show that there exists a halfspace Ĥ containing
P such that ĤI ∩ K ⊆ HI . As P ∩ K is the intersection of all such halfspaces H, we establish
clCG(P ) ∩K ⊆ clCG(P ∩K).

For each i ∈ [m] we define the following extended matrix Ãi ∈ Sn+2: Ãi :=

[
Ai 0 0

0⊤ −wi 0

0⊤ 0 −vi

]
.

We first show that there does not exist an x ∈ Rm such that
∑m

i=1 Ãixi ⪶ 0. For the sake of
contradiction, suppose such a vector exists, i.e., we have

∑m
i=1 Aix̃i ⪰ 0, w⊤x̃ ≤ 0 and v⊤x̃ ≤ 0 for

some x̃, but not all of them are satisfied with equality. Since P is non-empty and bounded, it follows
from Proposition 4 that there does not exist an x ∈ Rm such that

∑m
i=1 Aixi ⪶ 0. Hence, we must

have
∑m

i=1 Aix̃i = 0. This implies that either w⊤x̃ < 0 or v⊤x̃ < 0, or both.
Since P is contained in {x ∈ Rm : w⊤x ≤ d}, it follows from Theorem 1 that there exists

T ⪰ 0 such that ⟨Ai,T⟩ = wi for all i ∈ [m]. Since
∑m

i=1 Aix̃i = 0, we have ⟨
∑m

i=1 Aix̃i,T⟩ =∑m
i=1 x̃i⟨Ai,T⟩ = w⊤x̃ = 0.
Since P ∩K is contained in H = {x ∈ Rm : v⊤x ≤ α}, we can in a similar fashion show that

vi = ⟨Ai,S⟩+ βwi for some S ⪰ 0 and β ∈ R. From this it follows that v⊤x̃ = 0. We conclude that
there exists no x ∈ Rm such that

∑m
i=1 Ãixi ⪶ 0.

Next, we define the following extended matrix C̃ ∈ Sn+2 and parameter ϵ > 0:

C̃ :=

C 0 0
0⊤ −d 0
0⊤ 0 −(α+ ϵ)

 and ϵ :=

{
1
2 (⌈α⌉ − α) if α is not integer,
1
2 otherwise.

Since P ∩K is contained in H, it follows that (P ∩K)∩ {x ∈ Rm : v⊤x ≥ α+ ϵ} = ∅. Equivalently,
we know that there does not exist an x ∈ Rm such that C̃ −

∑m
i=1 Ãixi ⪶ 0. We can now apply

Proposition 2 to this system, from where it follows that the first of the two alternative statements
should be satisfied. Hence, there exist Û ≻ 0, λ > 0 and µ > 0 such that ⟨Ai, Û⟩ − wiλ− viµ = 0
for all i ∈ [m] and ⟨C, Û⟩ − dλ− (α+ ϵ)µ ≤ 0. Without loss of generality, we may assume that µ = 1
and we define

α̂ := ⟨C, Û⟩ and v̂i := ⟨Ai, Û⟩ for all i ∈ [m].

It follows from above that this particular α̂ and v̂ satisfy

α̂ ≤ α+ ϵ+ dλ and v̂i = vi + wiλ for all i ∈ [m]. (13)

Also, since Û ≻ 0, we know that for all x ∈ P we have

v̂⊤x =

m∑
i=1

⟨Ai, Û⟩xi =

〈
m∑
i=1

Aixi, Û

〉
≤ ⟨C, Û⟩ = α̂, (14)

where we use the fact that ⟨C −
∑m

i=1 Aixi, Û⟩ ≥ 0. Observe that the tuple (λ, v̂, α̂) can be
replaced by (λ+ λ0, v̂ + λ0w, α̂+ λ0d) for all λ0 ≥ 0 without affecting (13) and (14), where for the
maintenance of (14) we use the fact that P ⊆ {x ∈ Rm : w⊤x ≤ d}. Now we choose λ0 such that
λ+λ0 ∈ Z+ and d(λ+λ0)−⌊d(λ+λ0)⌋ < ϵ, which can be done by Corollary 1. Moreover, we define
df := d(λ+ λ0)− ⌊d(λ+ λ0)⌋.
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Define Ĥ := {x ∈ Rm : (v̂ + λ0w)⊤x ≤ α̂+ λ0d}. It follows from (14) that P ⊆ Ĥ. Moreover,
we have

ĤI ∩K ⊆ {x ∈ Rm : (v̂ + λ0w)⊤x ≤ ⌊α̂+ λ0d⌋} ∩ {x ∈ Rm : w⊤x = d}
⊆ {x ∈ Rm : v⊤x+w⊤x(λ+ λ0) ≤ ⌊α+ ϵ+ d(λ+ λ0)⌋,w⊤x = d}
⊆ {x ∈ Rm : v⊤x+ df ≤ ⌊α+ ϵ+ df⌋}
⊆ {x ∈ Rm : v⊤x ≤ ⌊α⌋} = HI ,

where the last inclusion follows from the fact that df ≥ 0 and ϵ + df < 1 if α is integer and
ϵ+ df < ⌈α⌉ − α otherwise.

The result of Theorem 3 holds for any halfspace {x ∈ Rm : w⊤x ≤ d} with w ∈ Zm containing
P . In particular, it holds for all such halfspaces that support P , meaning that P ∩K ̸= ∅, where K
is the corresponding hyperplane. In such case, the set P ∩K defines a face of the spectrahedron. It
is known that all proper faces of spectrahedra are exposed, meaning that they can be obtained as
the intersection of P with a supporting hyperplane. Note, however, that for the faces of bounded
spectrahedra these hyperplanes are not necessarily such that the entries in w are integral, even if the
data matrices describing the spectrahedron are rational (as is the case for polyhedra).

Homogeneity plays a key role in Braun and Pokutta’s [12] proof for the polyhedrality of the
elementary closure of compact convex sets. For the sake of completeness, we include this result here
for the case of bounded spectrahedra.

Theorem 4 (Dadush et al., [22], Braun and Pokutta [12]). The elementary closure clCG(P ) of a
bounded spectrahedron P is a rational polytope.

From Theorem 4 and the fact that the elementary closure of a rational polytope is again a rational
polytope [62], it follows that the finite sequence

P = P (0) ⊇ P (1) ⊇ . . . ⊇ P (k) ⊇ P (k+1) ⊇ . . . ⊇ PI ,

consists of rational polyhedra from the first closure onwards. Observe that the boundedness assumption
cannot be relaxed. Indeed, if P is unbounded, it is not even clear whether PI is a polyhedron, as the
following example suggests.

Example 4. Consider the spectrahedron Q in Example 1. The integer hull QI is the convex
hull of the integer points in the epigraph of f(x1) =

1
2x

2
1. This convex hull is not polyhedral. To

verify this, observe that the recession cone of QI is contained in the recession cone of Q, which is
rec(Q) := {x ∈ R2 : x2 ≥ 0, x1 = 0}. Since QI is unbounded and rec(Q) has only one ray, the
recession cone of QI must also be rec(Q). If QI would be polyhedral, this implies that the halfspace
x1 ≤ N supports QI for some finite value of N . However, this cannot be true as QI contains integral
points (x1, x2) ∈ Z2 for arbitrarily large x1.

One can verify that clCG(Q) = QI . Namely, each facet of QI is induced by a line between the
points (2k, 2k2), (2(k − 1), 2(k − 1)2) ∈ Z2 for any k ∈ Z. Let such line for a fixed k be described by
x2 = cx1 + d with c, d ∈ Z. Then, the parallel line x2 = cx1 + d− 1 lies strictly below Q. This implies
that the halfspace x2 ≥ cx1+d−1+ϵ for any ϵ > 0 contains Q and that its integer hull is x2 ≥ cx1+d.
Therefore, all facet-defining inequalities of QI have Chvátal rank one and clCG(Q) = QI . This shows
that clCG(Q) is not a polyhedron.

2.4 The elementary closure of spectrahedra and total dual integrality

In this section we derive a class of spectrahedra for which we can find an explicit expression for
the elementary closure. For rational polyhedra such an expression can be derived from a total
dual integral representation of the linear system [62]. It is therefore not surprising that a similar
construction can be applied for bounded spectrahedra, albeit with a bit more technicalities. After
connecting total dual integrality for SDPs to the elementary closure, we derive a characterization
and several sufficient conditions for a linear matrix inequality to be totally dual integral.
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Recently, De Carli Silva and Tunçel [13] introduced a notion of total dual integrality for SDPs.
The authors of [13] argue that the term integrality in SDPs should be defined with care. For instance,
the rank-one property that is sometimes used in the literature as the notion of SDP integrality is
proven to be primal-dual asymmetric and therefore not the favoured choice. Instead, the authors
of [13] propose a notion of SDP integrality that is based on a set of integer generating matrices.

Definition 2 (Property (PZ)V). Let V := {V1, . . . ,Vk} ⊆ Sn
+ be a finite set of integer PSD matrices.

A matrix X ∈ S+
n satisfies integrality property (PZ)V if

X =
∑
j∈[k]

yjVj for some y ∈ Zk
+. (PZ)V

The authors of [13] restricted to the set V = {1S1
⊤
S : S ⊆ [n]}, which could be seen as a natural

embedding for the combinatorial problems that are considered in [13]. One could argue, however, that
this embedding is rather arbitrary. For that reason, we consider a general set of generating matrices.
Note that the matrices X that satisfy property (PZ)V are also integral in the sense that X ∈ Zn×n.
To overcome confusion between these definitions, we will always explicitly refer to property (PZ)V if
that notion is meant.

Now we present the definition of total dual integrality for SDPs, see also [13].

Definition 3 (Total dual integrality). Let Z ⊆ Zm. A linear matrix inequality C−
∑m

i=1 Aixi ⪰ 0
is called totally dual integral (TDI) on Z if there exists some finite set of integer PSD matrices V such
that, for every b ∈ Z, the SDP dual to sup

{
b⊤x : C−

∑m
i=1 Aixi ⪰ 0

}
has an optimal solution

satisfying property (PZ)V whenever it has an optimal solution.

A main difference with the original definition of total dual integrality for polyhedra, see e.g. [28],
is that we restrict the objective vectors for which dual integrality should hold to a subset Z of Zm.
As explained in [13], this follows from the fact that semidefinite programs often follow from lifted
formulations. For instance, Z could be the range from a linear lifting map, e.g., Z = {0⊕ b′ : b′ ∈
Zm−1}.

Based on this restriction to vectors in Z, it makes sense to consider a relaxed version of the CG
closure in which we take the intersection of halfspaces induced by coefficient vectors in Z. More
precisely, we define the CG closure with respect to Z as

clCG(P,Z) :=
⋂

(c,d)∈Z×R
P⊆{x : c⊤x≤d}

{
x ∈ Rm : c⊤x ≤ ⌊d⌋

}
. (15)

This relaxation of the CG closure is also considered in the literature, see e.g., [21, 22]. The standard
CG closure clCG(P ) that we considered so far equals clCG(P,Zm).

The following theorem shows that if a spectrahedron is defined by an LMI that is TDI on Z, its
(relaxed) CG closure clCG(P,Z) can be explicitly defined.

Theorem 5. Let P = {x ∈ Rm : C−
∑m

i=1 Aixi ⪰ 0} be such that the LMI C−
∑m

i=1 Aixi ⪰ 0 is
TDI on Z and satisfies Slater’s condition. Let V = {V1, . . . ,Vk} denote the corresponding generating

set of integer PSD matrices and suppose
[
⟨Vj,A1⟩ · · · ⟨Vj,Am⟩

]⊤ ∈ Z for all j ∈ [k]. Define
B ∈ Zk×m and d ∈ Zk such that: Bj,i := ⟨Ai,Vj⟩ and dj := ⌊⟨C,Vj⟩⌋ , for all j ∈ [k] and i ∈ [m].
Then, clCG(P,Z) = Q := {x ∈ Rm : Bx ≤ d} .

Proof. To prove that clCG(P,Z) ⊆ Q, observe that Vj ⪰ 0 with
[
⟨Vj,A1⟩ · · · ⟨Vj,Am⟩

]⊤ ∈ Z
for all j ∈ [k]. Consequently, we know that P ⊆ {x ∈ Rm :

∑m
i=1 xi⟨Ai,Vj⟩ ≤ ⟨C,Vj⟩}. It follows

from (15) that clCG(P,Z) ⊆ {x ∈ Rm :
∑m

i=1 xi⟨Ai,Vj⟩ ≤ ⌊⟨C,Vj⟩⌋}. Since all inequalities in
Bx ≤ d are of this form, it follows that clCG(P,Z) ⊆ Q.

To prove the reverse direction, let H :=
{
x ∈ Rm : b⊤x ≤ q

}
be a halfspace containing P with

b ∈ Z. Since P ⊆ H, we have

q ≥ sup
x

{
b⊤x : C−

m∑
i=1

Aixi ⪰ 0

}
(16)
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= inf
X

{⟨C,X⟩ : ⟨Ai,X⟩ = bi, i ∈ [m], X ⪰ 0} , (17)

where strong duality among (16) and (17) holds since the former problem has a Slater feasible point.
By the same argument, we know that the infimum in (17) is attained. Since C−

∑m
i=1 Aixi ⪰ 0 is

TDI on Z, it follows that there exists an optimal solution X̂ to (17) satisfying property (PZ)V . In
other words, there exists an ŷ ∈ Zk

+ such that

X̂ =
∑
j∈[k]

ŷjVj, ⟨Ai, X̂⟩ = bi for all i ∈ [m], X̂ ⪰ 0.

Consequently, we have ⌊q⌋ ≥ ⌊⟨C, X̂⟩⌋ =
⌊∑

j∈[k] ŷj ⟨C,Vj⟩
⌋
≥
∑

j∈[k] ŷj ⌊⟨C,Vj⟩⌋ = d⊤ŷ. Now,

consider the following linear optimization problem and its corresponding dual:

max{b⊤x : Bx ≤ d} = min{d⊤y : y ≥ 0,y⊤B = b⊤}.

Since ŷ ≥ 0 and (ŷ⊤B)i =
∑

j∈[k] ŷj⟨Ai,Vj⟩ = ⟨Ai, X̂⟩ = bi, the solution ŷ is feasible for the

minimization problem above. This yields max{b⊤x : Bx ≤ d} ≤ d⊤ŷ ≤ ⌊q⌋. Hence, Q ⊆{
x ∈ Rm : b⊤x ≤ ⌊q⌋

}
. Since this holds for all halfspaces H induced by coefficient vectors in Z, it

follows that Q ⊆ clCG(P,Z).

For the special case where Z = Zm, Theorem 5 provides a closed-form expression for clCG(P ).

Observe that for that special case the condition that
[
⟨Vj,A1⟩ · · · ⟨Vj,Am⟩

]⊤ ∈ Z for all j ∈ [k]
can be simplified to ⟨Ai,Vj⟩ ∈ Z for all i ∈ [m] and j ∈ [k].

Besides providing a closed-form expression for clCG(P ), Theorem 5 can be used to identify bounded
spectrahedra for which P = PI . Namely, if the matrix C is such that ⟨C,Vj⟩ ∈ Z for all j ∈ [k], then
P ⊆ Q. For spectrahedra that are bounded, this implies that the chain Q = clCG(P ) ⊆ P ⊆ Q holds
with equality, hence clCG(P ) = P . As P (k) = PI for some finite k for all bounded spectrahedra, we
must have P = PI . De Carli Silva and Tunçel [13] show that this, for example, happens for the SDP
formulation of the Lovász theta function when the underlying graph is perfect.

A natural question is under which conditions a linear matrix inequality is TDI on a certain set Z.
Below we first derive a full characterization of LMIs that are totally dual integral on the full set Zm.
The characterization relates to the faces of the spectrahedron induced by the LMI. It is well-known
that the faces of Sn

+ are associated with linear subspaces of Rn, see e.g., [7]. In the same vein, the
facial structure of a spectrahedron can be characterized as follows.

Lemma 1 (Ramana and Goldman [57]). Let P = {x ∈ Rm : C−
∑m

i=1 Aixi ⪰ 0} be a spectrahedron
and let F ⊆ P be a nonempty face of P . Then, there exists a subspace RF ⊆ Rn such that

F =

{
x ∈ P : RF ⊆ Nul

(
C−

m∑
i=1

Aixi

)}
,

where any point x in the relative interior of F satisfies Nul
(
C−

∑m
i=1 Aixi

)
= RF .

Lemma 1 implies that in the particular case where the face F of P is an extreme point x̄, we
have Rx̄ = Nul(C −

∑m
i=1 Aix̄i). For any nonempty face F of P , we define the cone of objective

vectors b for which the elements in F maximize b⊤x over P , i.e.,

K(F ) :=
{
b ∈ Rm : b⊤y = max{b⊤x : x ∈ P} for all y ∈ F

}
. (18)

For any proper face F ⊆ P , the cone K(F ) is nonempty and equals the intersection over all normal
cones of P at the points in F .

Next, we recall the definition of a so-called Hilbert basis.

Definition 4. A set {v1, . . . ,vk} ⊆ Zm is a Hilbert basis if every integral vector x ∈ cone({v1, . . . ,vk})
can be written as x =

∑k
j=1 αjvj , αj ≥ 0, αj ∈ Z, for all j ∈ [k].
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By abuse of terminology, we will refer to an LMI whose solution set is bounded as a bounded
LMI. The following theorem provides a full characterization of bounded LMIs that are TDI on the
full set of integer vectors.

Theorem 6. Let the linear matrix inequality C−
∑m

i=1 Aixi ⪰ 0 be bounded and assume Slater’s
condition holds. Then, C−

∑m
i=1 Aixi ⪰ 0 is totally dual integral on Zm if and only if there exists

some finite set of integer PSD matrices V = {V1, . . . ,Vk} such that for each extreme point x̄ of the
induced spectrahedron P = {x ∈ Rm : C−

∑m
i=1 Aixi ⪰ 0} with K(x̄) ∩ Zm ̸= ∅, the vectors

gj :=
[
⟨A1,Vj⟩ . . . ⟨Am,Vj⟩

]⊤
for j ∈ J := {j ∈ [k] : Col(Vj) ⊆ Rx̄}

form a Hilbert basis of K(x̄).

Proof. Let b ∈ Zm. Since P is bounded, the maximum of b⊤x over x ∈ P is attained at a face of P .
Thus, there exists an extreme point x̄ of P with b ∈ K(x̄). As P contains a Slater feasible point, we
have

max
x

{
b⊤x : x ∈ P

}
= min

X
{⟨C,X⟩ : ⟨Ai,X⟩ = bi, i ∈ [m], X ⪰ 0} . (19)

The point x̄ is optimal for the maximization problem above. Complementary slackness then implies
that any X optimal to the dual problem should satisfy (C−

∑m
i=1 Aix̄i)X = 0, or equivalently,

Col(X) ⊆ Nul(C −
∑m

i=1 Aix̄i) = Rx̄. To show that gj is contained in K(x̄) for j ∈ J , we first
observe that Vj is feasible for the minimization problem

min
X

{⟨C,X⟩ : ⟨Ai,X⟩ = (gj)i, i ∈ [m], X ⪰ 0} .

Then, since Col(Vj) ⊆ Rx̄, we know that (C −
∑m

i=1 Aix̄i)Vj = 0. Therefore, x̄ and Vj are
optimal solutions to maxx

{
gj

⊤x : x ∈ P
}
and minX{⟨C,X⟩ : ⟨Ai,X⟩ = (gj)i, i ∈ [m], X ⪰ 0},

respectively. This implies that gj is indeed contained in K(x̄) for j ∈ J .
Now, suppose that the vectors gj, j ∈ J form a Hilbert basis ofK(x̄). Then, we have b =

∑
j∈J αjgj

for some αj ≥ 0, αj ∈ Z, j ∈ J . Consequently, X :=
∑

j∈J αjVj is feasible for the minimization
problem in (19) with Col(X) ⊆ Rx̄. Since this establishes complementary slackness between X and
x̄, it follows that X is a dual optimal solution that satisfies property (PZ)V .

Conversely, if the LMI is totally dual integral on Zm, it follows that the dual problem in (19)

has an optimal solution X satisfying property (PZ)V . Therefore, X =
∑k

j=1 αjVj for some αj ≥ 0,

αj ∈ Z, j ∈ [k]. Now, let JC := [k] \ J . Then,

X =
∑
j∈J

αjVj +
∑
j∈JC

αjVj.

By complementary slackness, we have Col(X) ⊆ Rx̄, implying that Col(
∑

j∈JC αjVj) = Col(X −∑
j∈J αjVj) ⊆ Rx̄. Since the Vj’s are positive semidefinite, we also know that Col(αjVj) ⊆

Col(
∑

j∈JC αjVj) ⊆ Rx̄ for all j ∈ JC . However, by the definition of JC we have Col(Vj) ⊈ Rx̄, so

we must have αj = 0 for all j ∈ JC . We conclude that X is a nonnegative integer combination of the
matrices Vj with j ∈ J . By the constraints of the minimization problem in (19), it finally follows
that b =

∑
j∈J αjgj. As the construction can be repeated for all b ∈ Zm in K(x̄), we conclude that

{gj : j ∈ J} indeed forms a Hilbert basis of K(x̄). The same holds for all other extreme points x̄
for which K(x̄) ∩ Zm ̸= ∅.

Theorem 6 has a significant implication on the structure of the induced spectrahedron of a
bounded LMI that is TDI on Zm.

Corollary 2. If a bounded LMI C−
∑m

i=1 Aixi ⪰ 0 that satisfies Slater’s condition is totally dual
integral on Zm, the spectrahedron P = {x ∈ Rm : C−

∑m
i=1 Aixi ⪰ 0} is polyhedral.

14



Proof. Let hP : Rm → R denote the support function of P , i.e., hP (x) := supa∈P {x⊤a} and let
(c, d) ∈ Zm × R be such that P ⊆ {x ∈ Rm : c⊤x ≤ d}. Then, there exists an extreme point x̄ of P
such that c ∈ K(x̄). By Theorem 6, it follows that there exists a subset J ⊆ [k] and αj ≥ 0, αj ∈ Z,
j ∈ J such that c =

∑
j∈J αjgj. Obviously, hP (c) = c⊤x̄ and, since gj ∈ K(x̄), hP (gj) = gj

⊤x̄

for all j ∈ J . Now, the conical combination of the inequalities gj
⊤x ≤ hP (gj), each with weight

αj , results in
∑

j∈J αjgj
⊤x ≤

∑
j∈J αjhP (gj) =

∑
j∈J αjgj

⊤x̄ = c⊤x̄ ≤ d. Since the left-hand side

equals c⊤x, the halfspace {x ∈ Rm : c⊤x ≤ d} is implied by the inequalities gj
⊤x ≤ hP (gj), j ∈ [k].

Since this construction can be repeated for all halfspaces of the form {x ∈ Rm : c⊤x ≤ d} where
(c, d) ∈ Zm ×R, and P equals the intersection of all such halfspaces, see Proposition 1, it follows that
P is contained in the polyhedron induced by gj

⊤x ≤ hP (gj), j ∈ [k]. Since the converse inclusion is
also true, P is polyhedral.

Corollary 2 implies that the only bounded linear matrix inequalities that may be TDI on Zm

can be described by a finite number of linear inequalities. This is the case, for instance, when
the matrices C and Ai, i ∈ [m], are diagonal or simultaneously diagonalizable. In general, it is
NP-hard to decide whether a spectrahedron is polyhedral, see Ramana [58]. The following result
provides a characterization of polyhedral spectrahedra that are full-dimensional. Observe that any
spectrahedron can be transformed to a full-dimensional spectrahedron by a restriction to its affine
hull.

Theorem 7 (Ramana [58]). Let P = {x ∈ Rm : C −
∑m

i=1 Aixi ⪰ 0} be a full-dimensional
spectrahedron. Then, P is polyhedral if and only if there exists a non-singular matrix M ∈ Rn×n and
d,ai ∈ Rℓ, C′,Ai

′ ∈ Sn−ℓ, i ∈ [m], with ℓ ≤ n such that for all x ∈ Rm we have

M

(
C−

m∑
i=1

Aixi

)
M⊤ =

[
C′ −

∑m
i=1 Ai

′xi 0
0 Diag(d)−

∑m
i=1 Diag(ai)xi

]
(20)

with P = {x ∈ Rm : Diag(d)−
∑m

i=1 Diag(ai)xi ⪰ 0}.

It is well-known that any rational polyhedron P can be described by a totally dual integral system
of linear inequalities, see Giles and Pulleyblank [42]. Hence, if a spectrahedron P satisfies Theorem 7
with rational d,ai for all i ∈ [m], then P is totally dual integral on Zm with respect to generating
matrices V = {Diag(e1), . . . ,Diag(en)} ⊆ Sℓ

+.
By relaxing the notion of total dual integrality to a strict subset Z of Zm, it might be possible to

identify other conditions of TDIness that go beyond polyhedrality. In return, the best one can hope
for is a description of clCG(P,Z), see Theorem 5.

As shown by Bhardwaj et al. [10], any full-dimensional spectrahedron P can be expressed by a
linear matrix inequality in the form of (20), even if P is non-polyhedral. When the residual linear
matrix form C′ −

∑m
i=1 Ai

′xi cannot be further diagonalized, the form on the right-hand side of (20)
is called the normal form of the linear matrix inequality. Intuitively speaking, the bottom right block
of (20) can be viewed as the polyhedral part of the spectrahedron. As an extension of the result by
Giles and Pulleyblank [42], the following result shows that the polyhedral part of a spectrahedron
can, under mild conditions, be made totally dual integral on an appropriate set Z.

Theorem 8. Let P = {x ∈ Rm : C −
∑m

i=1 Aixi ⪰ 0} be a full-dimensional spectrahedron that
can be written in the normal form (20) for some non-singular matrix M ∈ Rn×n and d,ai ∈ Qℓ,
C′,Ai

′ ∈ Sn−ℓ, i ∈ [m] with 1 ≤ ℓ ≤ n. Let Z ⊆ Zm be such that

max
x

{
b⊤x : x ∈ P

}
= max

x

{
b⊤x : Diag(d)−

m∑
i=1

Diag(ai)xi ⪰ 0

}

for all b ∈ Z. Then there exists a linear matrix inequality describing P that is totally dual integral
on Z.

Proof. Let Q = {x ∈ Rm : Diag(d) −
∑m

i=1 Diag(ai)xi ⪰ 0}. Since d and ai are rational for
all i ∈ [ℓ], it follows from Giles and Pulleyblank [42] that there exists some totally dual integral
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representation of Q, i.e., Q = {x ∈ Rm : Âx ≤ d̂} for some Â ∈ Zℓ′×m, d̂ ∈ Qℓ′ with Âx ≤ d̂ TDI.
For all i ∈ [m], let âi denote the ith column of Â. Then, P can be written as

P =

{
x ∈ Rm :

[
C′ −

∑m
i=1 Ai

′xi 0

0 Diag(d̂)−
∑m

i=1 Diag(âi)xi

]
⪰ 0

}
. (21)

We will show that the LMI in (21) is totally dual integral on Z. For any b ∈ Z, we have that

max
x

{
b⊤x : x ∈ P

}
= max

x

{
b⊤x : x ∈ Q

}
= min

y

{
d̂⊤y : y ≥ 0, y⊤Â = b⊤

}
.

By construction, the minimization problem above has an optimal solution ŷ ∈ Zℓ′

+. Now, we define

X̂ :=

[
0 0
0 Diag(ŷ)

]
∈ Sn−ℓ

+ ⊕ Sℓ
′

+.

It follows from above that
〈[

C′ 0
0 Diag(d̂)

]
, X̂
〉
= d̂⊤ŷ and

〈[
Ai

′ 0
0 Diag(âi)

]
, X̂
〉
= bi for all i ∈ [m].

Therefore, X̂ is optimal to the SDP dual to maxx{b⊤x : x ∈ P}. By construction, X̂ is an integer
conical combination of matrices in the set V = {0⊕Diag(ei) : i ∈ [ℓ′]} of integer PSD matrices. We
conclude that the LMI given in (21) is totally dual integral on Z.

Our final condition for total dual integrality on a set Z is not related to the polyhedrality of
the spectrahedron induced by the linear matrix inequality, but related to the feasible set of its
corresponding dual problem to be polyhedral. It is possible for a spectrahedron to be non-polyhedral,
while the feasible set of its dual problem is polyhedral. For instance, consider the non-polyhedral
spectrahedron Q = {x ∈ R2 : x2 ≥ x2

1/2} considered in Example 1. For any b ∈ Z2
−, its dual feasible

set is given by
{
[ x1 x2
x2 x3

] ∈ S2 : x1 ≥ −b21/2b2, x2 = −1/2b1, x3 = −1/2b2
}
, which is polyhedral. Let

us formalize the criterion of polyhedrality of the dual feasible set.

Definition 5. The set {A1, . . . ,Am} is called finitely generative on Z ⊆ Zm if there exists a finite
set of integer PSD matrices V = {V1, . . . ,Vk} such that {X : ⟨Ai,X⟩ = bi, i ∈ [m], X ⪰ 0} is
contained in cone(V) for all integer vectors b ∈ Z.

The condition of the dual feasible set to be polyhedral is also considered in recent works on SDP
exactness [67]. Observe that if {A1, . . . ,Am} is finitely generative, then {X : ⟨Ai,X⟩ = bi, i ∈
[m], X ⪰ 0} is polyhedral for all b ∈ Z (since cone(V) ⊆ Sn

+). Moreover, if {A1, . . . ,Am} is finitely
generative on Z, then {tA1, . . . , tAm} is also finitely generative on Z for any scalar t > 0.

As shown below, the constraint matrices being finitely generative and integer is a sufficient
condition for the existence of a totally dual integral description of the spectrahedron.

Theorem 9. Let C−
∑m

i=1 Aixi ⪰ 0 be an LMI satisfying Slater’s condition with {A1, . . . ,Am} ⊆
Zn×n finitely generative on Z. Then, the spectrahedron P = {x ∈ Rm : C−

∑m
i=1 Aixi ⪰ 0} can be

described by a linear matrix inequality that is totally dual integral on Z.

Proof. Let V = {V1, . . . ,Vk} denote the finite set of integer PSD matrices corresponding to
{A1, . . . ,Am} in Definition 5. Let b ∈ Z and let t > 0 be a positive rational number. We consider
the following semidefinite program and its dual:

sup
x

{
b⊤x : tC−

m∑
i=1

tAixi ⪰ 0

}
= inf

X
{⟨tC,X⟩ : ⟨tAi,X⟩ = bi, i ∈ [m], X ⪰ 0} . (22)

Based on the fact that {A1, . . . ,Am} is finitely generative, we know that the feasible set of the
minimization problem in (22) is contained in cone(V). Since we also know the minimum is attained
due to Slater’s condition, we can rewrite the dual problem as follows:

min
X

{
⟨tC,X⟩ : ⟨tAi,X⟩ = bi, i ∈ [m], X = α1V1 + · · ·+ αkVk, α ≥ 0

}
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=min
X

{
⟨tC,X⟩ :

t triu(Ai)
⊤svec(X) = bi, i ∈ [m], α ≥ 0

svec(X)− α1svec(V1)− · · · − αksvec(Vk) = 0

}

=min
X

{
⟨tC,X⟩ :

[
tA′ 0
I −V′

] [
svec(X)

α

]
=

[
b
0

]
, α ≥ 0

}
,

where A′ :=
[
triu(A1) . . . triu(Am)

]⊤
, V′ :=

[
svec(V1) . . . svec(Vk)

]
, triu : Sn → R 1

2 (n
2+n)

is the operator that maps a matrix to a vector containing its upper-triangular entries and svec :
Sn → R 1

2 (n
2+n) is the symmetric vectorization operator that maps a matrix to a column vector

containing its upper-triangular part with weight two on the off-diagonal elements and weight one on
the diagonal elements. The linear system in the dual problem above can be written as

t

[
A′ 0
I −V′

] [
svec(X)

α

]
=

[
b
0

]
, or equivalently,

[
A′ 0
I −V′

] [
svec(X)

α

]
=

1

t

[
b
0

]
.

Each basic feasible solution to this system with α ≥ 0 is the unique solution to one of its non-
singular subsystems. Following the proof by Giles and Pulleyblank [42], it is possible to find a
rational number t∗ such that for all b ∈ Z, there exists an optimal solution that satisfies svec(X) ∈
Z 1

2 (n
2+n) and α ∈ Zk. When mapping svec(X) back to X ∈ Sn, it follows that the SDP dual

to max{b⊤x : t∗C −
∑m

i=1 t
∗Aixi ⪰ 0} for all b ∈ Z has an optimal solution X satisfying

X =
∑

j∈[k] αjVj, αj ≥ 0, j ∈ [k]. with α integer. Hence, property (PZ)V holds for X. We conclude

that t∗C−
∑m

i=1 t
∗Aixi ⪰ 0 is a linear matrix inequality describing P that is totally dual integral

on Z.

2.5 Strengthened Chvátal-Gomory cuts

Dash et al. [24] consider a strengthening of the CG cuts for rational polyhedra. We briefly present
here their approach that can be applied to general convex sets.

For all c ∈ Zm such that P ⊆ {x ∈ Rm : c⊤x ≤ d}, the corresponding CG cut is c⊤x ≤ ⌊d⌋.
The validity of this cut follows from the inequality ⌊d⌋ ≥ max

{
c⊤x : c⊤x ≤ d, x ∈ Zm

}
, where

equality holds if the entries in c are relatively prime. However, the gap between ⌊d⌋ and max{c⊤x :
x ∈ P ∩ Zm} can generally be very large. In order to reduce this gap, suppose that we know that
P ∩ Zm is contained in some set S ⊆ Zm. Given a valid inequality c⊤x ≤ d for P , we define

⌊d⌋S,c := max
{
c⊤x : c⊤x ≤ d, x ∈ S

}
. (23)

By construction, c⊤x ≤ ⌊d⌋S,c is valid for P ∩Zm. We refer to these type of cuts as S-Chvátal-Gomory
(S-CG) cuts. These cuts are at least as strong as standard CG cuts, since taking S = Zm provides
the standard CG cut. The geometric interpretation of an S-CG cut is that we shift the hyperplane
{x ∈ Rm : c⊤x = d} in the direction of P ∩ Zm until it hits a point in S. An example for S is the
set {0, 1}m in the case of binary optimization problems.

3 A CG-based branch-and-cut algorithm for ISDPs

Solving ISDPs is a relatively new field of research for which only a few general-purpose solution
approaches have been proposed. Gally et al. [40] present a B&B algorithm called SCIP-SDP for
solving (M)ISDPs with continuous SDPs as subproblems. Alternatively, Kobayashi and Takano [46]
propose a B&C algorithm that initially relaxes the PSD constraint and solves a mixed integer linear
program (MILP), where the PSD constraint is imposed dynamically via cutting planes. Numerical
results in [46] show that the B&C algorithm of [46] outperforms the B&B algorithm of [40]. The
difference can be explained by the high performance of the current MILP solvers compared to the
much less robust conic interior point methods that are used in [40]. It has to be noted, however, that
an older version of SCIP-SDP with DSDP [9] as SDP solver was used in the computational results of
[46]. The authors of [50] also compare the two approaches and conclude that SCIP-SDP is much
faster on average than the approach by Kobayashi and Takano. However, they use Mosek [54] as an
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SDP solver and an improved implementation of SCIP-SDP. Another project that encounters MISDPs
is YALMIP [49], although its performance is inferior compared to the other two methods [40, 46].

In this section we present a generic B&C algorithm for solving ISDPs that exploits CG cuts of
the underlying spectrahedron. This algorithm can be seen as an extension of the works of [46, 15].
In Section 3.1 we provide a general B&C framework for ISDPs which uses a cut generation routine
based on S-CG cuts. Section 3.2 presents a separation routine for the special class of binary SDPs.

3.1 Generic Branch-and-Cut framework

We start this section by presenting the B&C framework proposed by Kobayashi and Takano [46] for
ISDPs in standard dual form, see (5). However, the approach can be extended to problems in primal
form in a straightforward way. We define

F :=

{
x ∈ Rm : diag

(
C−

m∑
i=1

Aixi

)
≥ 0

}
, (24)

which can be seen as the polyhedral part of the spectrahedron P , see (6). We assume that the
problem of maximizing b⊤x over F is bounded, which is a non-restrictive assumption whenever the
original ISDP is bounded.

The B&C algorithm of [46] is based on a dynamic constraint generation known as a lazy constraint
callback. The algorithm starts with optimizing over the set F ∩ Zm, i.e.,

max
{
b⊤x : x ∈ F ∩ Zm

}
, (25)

which can be solved using a B&B algorithm. Whenever an integer point x̂ is found in the branching
tree, it is verified whether C −

∑m
i=1 Aix̂i ⪰ 0 is satisfied. If so, the solution is feasible for

(DISDP ) and provides a possibly better lower bound to prune other nodes in the tree. If not,
then ⟨C−

∑m
i=1 Aix̂i,dd

⊤⟩ < 0 where d is a normalized eigenvector corresponding to the smallest
eigenvalue of C−

∑m
i=1 Aix̂i. This leads to the following valid constraint for (DISDP ):〈

C−
m∑
i=1

Aixi,dd
⊤

〉
≥ 0, or equivalently,

m∑
i=1

⟨Ai,dd
⊤⟩xi ≤ ⟨C,dd⊤⟩, (26)

which separates x̂ from P . Now, the algorithm adds to F a cut of type (26) to cut off the current
point and continues the branching scheme using this additional constraint. This process is iterated
until the optimality of a solution for (DISDP ) is guaranteed by the B&B procedure.

It follows from the Rayleigh principle that ⟨C−
∑m

i=1 Aix̂i,U⟩ is minimized by taking U = dd⊤

with d as defined above. In that sense, the cut (26) is the strongest cut with respect to violation in
the PSD constraint. However, this type of separator ignores the fact that an optimal solution is also
integer. We now propose an alternative stronger separator based on the CG procedure that exploits
both the PSD and the integrality constraint.

Let S ⊆ Zm be a set containing the feasible set of (DISDP ), with S = Zm in case of no prior
knowledge about the problem. If x̂ /∈ P , and consequently x̂ /∈ clCG(P ), it follows from (9) that there
exists a dual multiplier U ∈ Sn

+ with ⟨Ai,U⟩ ∈ Z for all i ∈ [m], such that
∑m

i=1⟨Ai,U⟩x̂i > ⌊⟨C,U⟩⌋.
Taking such U and defining v(U) := (⟨A1,U⟩, . . . , ⟨Am,U⟩)⊤, we obtain the following S-CG cut:

m∑
i=1

⟨Ai,U⟩xi ≤ ⌊⟨C,U⟩⌋S,v(U), (27)

see (23). The cut (27) exploits both the PSD and the integrality constraints in (DISDP ) by separating
x̂ from clCG(P ) instead of only from P . As clCG(P ) ⊆ P for bounded spectrahedra, this type of cut
is possibly stronger than the eigenvalue cut (26) for all S containing P ∩ Zm. Figure 4 depicts a
simplified example indicating the geometric difference between the cuts (26) and (27).
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Figure 4: Simplified example of strengthened
separation routine on spectrahedron P from Ex-
ample 1. The dotted line shows an eigenvalue cut
(26) separating x̂ from P , the solid line shows a
CG cut (27) separating x̂ from clCG(P ), where
S = Zm.

It is not clear in general how to find an appro-
priate cut (27) separating x̂ from clCG(P ). Indeed,
this is closely related to the CG separation prob-
lem, which was proven to be NP-hard even for
polytopes contained in the unit hypercube, see
Cornuéjols et al. [18]. Fischetti and Lodi [38] show
how to solve the separation problem for polyhe-
dra using a mixed integer programming problem.
Extending their procedure to the class of spectra-
hedra, implies solving a MISDP. Instead, we can
adopt problem-specific separation routines that are
efficient and provide strong cuts. For instance, in
the next subsection we present a separation rou-
tine for binary SDPs in primal form. Moreover, we
later provide various separation routines for cuts of
the form (27) for the quadratic traveling salesman
problem.

Alongside extending the approach of Kobayashi
and Takano [46], our framework also continues on
the work of Çezik and Iyengar [15]. In [15] CG cuts for binary conic programs are introduced. It is
noted that there is no method known for separating CG cuts from fractional points, and consequently
the CG cuts are not included in the numerical experiments of [15]. Since our approach separates
on integer points only, we partly resolve this issue for certain classes of problems by exploiting the
underlying structure of the programs. As a result, we present the first practical algorithm that
utilizes CG cuts in conic problems.

We end this section by providing a pseudocode of the B&C framework, see Algorithm 1. Suppose
SeparationRoutine is a separation routine for constructing CG cuts of the form (27), where we
assume this routine can generate multiple dual matrices at a time.

Algorithm 1: CG-based B&C algorithm for solving (DISDP )

Input: C,Ai, i ∈ [m] , S, ϵ > 0, Output: x̂, OPT := b⊤x
1 Initialize F as defined in (24).
2 B&B procedure: Start or continue the branch-and-bound algorithm for solving the MILP

max
{
b⊤x : x ∈ F ∩ Zm

}
incorporating the callback function below at each node in the branching tree.

3 Callback procedure: if an integer point x̂ ∈ F is found then
4 if λmin

(
C−

∑m
i=1 Aix̂i

)
< −ϵ then

5 Call SeparationRoutine(C,A1, . . . ,Am, S, x̂) which provides matrices Uj, j ∈ [K]. Add the cuts∑m
i=1⟨Ai,Uj⟩xi ≤ ⌊⟨C,Uj⟩⌋S,v(Uj)

for j ∈ [K] to F .

6 else
7 Use x̂ to cut off other nodes in the branching tree.
8 end
9 Return to Step 2

10 end

3.2 A separation routine for binary SDPs

We now focus on binary semidefinite programming problems in primal form, i.e.,
inf ⟨C,X⟩
s.t. ⟨Ai,X⟩ = bi for all i ∈ [m]

X ⪰ 0, X ∈ {0, 1}n×n.

(PBSDP )

In this section we present a separation routine for generating CG cuts for problems of the form
(PBSDP ) and provide an illustrative example. To do so, we use the following characterization of
binary PSD matrices.
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Proposition 6 (Letchford and Sørensen [48]). Let X ∈ {0, 1}n×n be a symmetric matrix. Then

X ⪰ 0 if and only if X =
∑k

i=1 xixi
⊤ for some xi ∈ {0, 1}n, i ∈ [k].

Each vector xi in Proposition 6 may be thought of as the characteristic vector of a clique in the
complete graph Kn. Therefore, X provides a decomposition of Kn into a set of non-overlapping
cliques.

Suppose we solve (PBSDP ) using the B&C algorithm presented in Section 3.1. In a certain node
in the branching tree we have obtained a symmetric matrix X̂ ∈ {0, 1}n×n that satisfies ⟨Ai, X̂⟩ = bi
for all i ∈ [m]. The separation oracle that we present below distinguishes two types of certificates
for X̂ not being positive semidefinite. The first one is obtained by a so-called dominated diagonal,
i.e., X̂ii = 0, while X̂ij = 1 for some j, which clearly implies that X̂ ⪰̸ 0. The second certificate is
the presence of a so-called conflicting vertex, i.e., a vertex that is contained in two separate cliques
implied by X̂. By Proposition 6, it follows that X̂ ⪰̸ 0. These certificates correspond to the existence

of the following induced submatrices in X̂ (up to a permutation of the rows and columns):

[ i j

i 0 1
j 1 ⋆

]
and


i j k

i 1 1 1
j 1 1 0
k 1 0 1

,
where ⋆ indicates a position that can be either 0 or 1. The following result shows that these certificates
are necessary and sufficient to characterize positive semidefiniteness.

Proposition 7. Let X̂ = (x̂ij) be binary and symmetric. Then, X̂ is positive semidefinite if and

only if X̂ contains no dominated diagonal or conflicting vertex.

Proof. Necessity follows from the discussion above. To prove sufficiency, let D(i) := {j ∈ [n] : x̂ij =
1} for all i ∈ [n] with x̂ii = 1. If x̂ij = 1 and x̂ik = 1, it must follow that x̂jk = 1, otherwise i would

be conflicting. Hence, the sets D(i) for all i with X̂ii = 1 are cliques. Since i ∈ D(j) if and only if
j ∈ D(i), it follows that the collection D of all distinct sets D(i) is a set of non-overlapping cliques.
Then, X̂ =

∑
D∈D 1D1D

⊤, hence X̂ ⪰ 0 by Proposition 6.

In case of a dominated diagonal, i.e., indices i, j ∈ [n], i ̸= j with x̂ii = 0 and x̂ij = 1, the

dual matrix U = (ei − ej)(ei − ej)
⊤ separates X̂ from Sn+. In case of a conflicting vertex, say i,

with x̂ij = 1, x̂ik = 1, but x̂jk = 0, the dual matrix U = (ej + ek − ei)(ej + ek − ei)
⊤ provides a

separating hyperplane. Since dominated diagonals and conflicting vertices can be found efficiently by
enumeration, this approach defines an efficient separation routine for binary SDPs in primal form.

The cuts ⟨U,X⟩ ≥ 0 can be further strengthened by exploiting the affine constraints in a CG
rounding step. We show how this can be done for a class of binary semidefinite programming problems
that often appears in relaxations of combinatorial problems.

Example 5 (Binary SDPs over the simplex). Many combinatorial optimization problems have
formulations including a constraint on the trace of the matrix variable, i.e.,

inf ⟨C,X⟩
s.t. ⟨Ai,X⟩ = bi for all i ∈ [m]

tr(X) = K, X ⪰ 0, X ∈ {0, 1}n×n,

(P2)

for some K ∈ N. One can solve (P2) using Algorithm 1 with F := {X ∈ Sn : ⟨Ai,X⟩ =
bi, i ∈ [m], tr(X) = K, 0 ≤ X ≤ J}. Assume that the separation routine provides a dual matrix
U = (ej+ek−ei)(ej+ek−ei)

⊤ for some distinct i, j, k. Taking the linear combination of ⟨U,X⟩ ≥ 0,
tr(X) = K and xll ≥ 0 for all l /∈ {i, j, k}, each with weight 1

2 , yields:〈
1

2
U+

1

2
I+

1

2

∑
l/∈{i,j,k}

Ell, X

〉
≥ 1

2
K.

For K odd, we can strengthen the cut by replacing the right-hand side by ⌈ 1
2K⌉. This procedure can

be repeated for dual matrices resulting from a dominated diagonal certificate.
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4 The Chvátal-Gomory procedure for ISDP formulations of
the QTSP

In this section we provide an in-depth study on solving the Quadratic Traveling Salesman Problem
using our B&C approach. We formally define the QTSP in Section 4.1. In Section 4.2 we derive
two ISDP formulations of the QTSP. Our first ISDP model exploits the algebraic connectivity of
a directed tour. Our second formulation exploits the algebraic connectivity of a directed tour and
the distance two matrix that originates from the product of a tour matrix with itself. Finally, in
Section 4.3 we derive CG cuts for the two ISDPs and show that we can obtain various classes of
well-known cuts in this way.

4.1 The Quadratic Traveling Salesman Problem

Let G = (N,A) be a directed simple graph on n := |N | nodes and m := |A| arcs. A directed cycle C
in G that visits all the nodes exactly once is called a directed Hamiltonian cycle or a directed tour in
G. For the sake of simplicity, we often omit the adjective ‘directed’ in the sequel.

A tour in G can be represented by a binary matrix X = (xij) ∈ {0, 1}n×n such that xij = 1 if
and only if arc (i, j) is used in the tour. We refer to such a matrix as a tour matrix. The set of all
tour matrices in G is defined as follows:

Tn(G) :=
{
XC ∈ {0, 1}n×n : xC

ij = 1 if and only if (i, j) ∈ C for Hamiltonian cycle C
}
. (28)

It follows from (28) that for all X ∈ Tn(G) we have xij = 0 if (i, j) /∈ A. In particular, diag(X) = 0n.
Given a distance matrix D = (dij) ∈ Rn×n, the (linear) traveling salesman problem (TSP) is the
problem of finding a Hamiltonian cycle C of G that minimizes

∑
(i,j)∈C dij . As G is directed and D

is not necessarily symmetric, this version of the problem is sometimes referred to as the asymmetric
traveling salesman problem. Using the set defined in (28), we can state the TSP as follows:

TSP (D, G) := min


n∑

i=1

n∑
j=1

dijxij : X ∈ Tn(G)

 . (29)

We now define the quadratic version of the TSP, where the total cost is given by the sum of
interaction costs between arcs used in the tour. In accordance with most of the literature, we
assume that a quadratic cost is incurred only if two arcs are placed in succession on the tour, see
e.g., [33, 34, 35, 45, 61]. To model this problem, we define the set of the so-called 2-arcs of G, i.e.,

A := {(i, j, k) : (i, j), (j, k) ∈ A, |{i, j, k}| = 3} , (30)

which consists of all node triples of G that can be placed in succession on a cycle. Now let
Q = (qijk) ∈ Rn×n×n be a cost matrix such that qijk = 0 if (i, j, k) /∈ A. Then the quadratic traveling
salesman problem (QTSP) is formulated as:

QTSP (Q, G) := min


n∑

i=1

n∑
j=1

n∑
k=1

qijkxijxjk : X ∈ Tn(G)

 . (31)

Since the in- and outdegree of each node on a Hamiltonian cycle is exactly one, we have X1 = 1
and X⊤1 = 1 for all X ∈ Tn(G). The set of square binary matrices that satisfy this property is
known as the set of permutation matrices Πn, i.e., Πn :=

{
X ∈ {0, 1}n×n : X1 = 1, X⊤1 = 1

}
.

The permutation matrices that additionally satisfy diag(X) = 0n induce a disjoint cycle cover in Kn.
Similar to the definition of Tn(G), we can also restrict Πn to the entries induced by G. That is,

Πn(G) has a zero on position (i, j) whenever (i, j) /∈ A.
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4.2 ISDP based on algebraic connectivity in directed graphs

Cvetković et al. [19] derive an ISDP formulation of the symmetric linear TSP based on algebraic
connectivity. We now exploit the equivalent of this notion for directed graphs to derive two ISDP
formulations of the QTSP. Different from our approach, there was no attempt in [19] to solve the
ISDP itself, only its SDP relaxation.

Let DG be an n × n diagonal matrix that contains the outdegrees of the nodes of G on the
diagonal. Moreover, let AG denote the adjacency matrix of G. That is, (AG)ij = 1 if there exists
an arc from i to j in G, and (AG)ij = 0 otherwise. We define the directed out-degree Laplacian
matrix of G as LG := DG −AG. The matrix LG can be asymmetric and has a zero eigenvalue with
corresponding eigenvector 1n. Observe that there exist also other ways for defining the directed
graph Laplacian of G, see e.g., [14]. Wu [70] generalized Fiedler’s notion of algebraic connectivity of
an undirected graph [32] to directed graphs, by exploiting the out-degree Laplacian matrix.

Definition 6. The algebraic connectivity of a directed graph G is given by

a(G) := min
x∈S

x⊤LGx = min
x∈Rn

x̸=0,x⊥1n

x⊤LGx

x⊤x
= λmin

(
1

2
W⊤

(
LG + LG

⊤
)
W

)
,

where S := {x ∈ Rn : x ⊥ 1n , ∥x∥2 = 1} and W ∈ Rn×(n−1) is a matrix whose columns form an
orthonormal basis for 1⊥

n .

The last equality in Definition 6 follows from the Courant-Fischer theorem. Observe that a(G) is
not necessarily equal to the second smallest eigenvalue of the directed Laplacian matrix, which is the
definition of its undirected counterpart. The algebraic connectivity a(G) as defined in Definition 6 is
a real number that can be negative.

A directed graph is called balanced if for each node its indegree is equal to its outdegree. Let
B ∈ {−1, 0, 1}n×m be the signed incidence matrix of G, i.e., Bi,e = −1 if arc leaves node i, Bi,e = 1
if e enters node i and Bi,e = 0 otherwise. One can verify that G is balanced if and only if

LG + LG
⊤ = BB⊤. This implies that for balanced graphs the matrix 1

2 (LG + LG
⊤) is positive

semidefinite. Wu [70] observes that if G is balanced, then a(G) = λ2((LG +LG
⊤)/2) ≥ 0. A directed

graph is called strongly connected if for every pair of distinct nodes u, v ∈ N there exists a directed
path from u to v in G. The balanced graphs that are strongly connected are characterized by their
algebraic connectivity, see Proposition 8 below. Connectedness of directed graphs is also studied in
[14, 66].

Proposition 8 (Wu [70]). Let a directed graph G be balanced. Then, a(G) > 0 if and only if G is
strongly connected.

This characterization can be exploited to derive a certificate for a tour matrix via a linear
matrix inequality. In order to do so, we consider the spectrum of a Hamiltonian cycle. Let C be
a Hamiltonian cycle in G corresponding to the tour matrix X ∈ Tn(G), see (28). We then have
1
2

(
LC + LC

⊤
)
= In − 1

2 (X+X⊤). The matrix X+X⊤ with X ∈ Tn(G) has the same spectrum as

the adjacency matrix of the standard undirected n-cycle. As a result, the spectrum of 1
2 (X+X⊤) is

given by cos
(
2πj
n

)
for j ∈ [n] see e.g., [19]. From this, it follows that the spectrum of 1

2

(
LC + LC

⊤
)

is given by 1− cos (2πj/n) for j ∈ [n], and the algebraic connectivity of a directed Hamiltonian cycle
C is a(C) = 1− cos(2π/n). We define:

kn := cos

(
2π

n

)
and hn := 1− kn. (32)

Next, we extend a result by Cvetković et al. [19] from undirected to directed Hamiltonian cycles.

Theorem 10. Let H be a spanning subgraph of a directed graph G where the in- and outdegree equals
one for all nodes in H. Let X be its adjacency matrix and let α, β ∈ R be such that α ≥ hn/n and
kn ≤ β < 1, with kn, hn as defined in (32). Then, H is a directed Hamiltonian cycle if and only if

Z := βIn + αJn − 1

2

(
X+X⊤) ⪰ 0.
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Proof. Let LH be the Laplacian matrix of H and let W be as given in Definition 6. Then a(H) =

λmin

(
1
2W

⊤
(
LH + LH

⊤
)
W
)
. Let Z ⪰ 0. This implies that W⊤ZW ⪰ 0, i.e.,

W⊤ZW = W⊤
(
βIn + αJn − 1

2

(
X+X⊤))W = βW⊤W + αW⊤JnW − 1

2
W⊤ (X+X⊤)W

= βIn−1 − 1

2
W⊤ (X+X⊤)W = (β − 1)In−1 +

1

2
W⊤

(
LH + LH

⊤
)
W ⪰ 0,

where we used the fact that JnW = 0 and 1
2 (LH + LH

⊤) = In − 1
2 (X +X⊤). The linear matrix

inequality above can be rewritten as

1

2
W⊤

(
LH + LH

⊤
)
W ⪰ (1− β)In−1 =⇒ a(H) = λmin

(
1

2
W⊤

(
LH + LH

⊤
)
W

)
≥ 1− β.

Since β < 1, we have α(H) > 0. Because H is balanced, it follows from Proposition 8 that H is
strongly connected and, thus, H is a directed Hamiltonian cycle.

Conversely, letH be a directed Hamiltonian cycle. Then, a(H) = λmin

(
1
2W

⊤
(
LH + LH

⊤
)
W
)
=

1−kn. Since β ≥ kn, we have
1
2W

⊤
(
LH + LH

⊤
)
W− (1−β)In−1 ⪰ 0 ⇐⇒ W⊤ZW ⪰ 0, following

the same derivation as above. Now, let x ∈ Rn. Since the columns of W form a basis for 1⊥
n , x can

be written as x = Wy + δ1n for some y ∈ Rn−1 and δ ∈ R. This yields:

x⊤Zx = y⊤W⊤ZWy + 2δy⊤W⊤Z1n + δ21⊤
nZ1n

= y⊤W⊤ZWy︸ ︷︷ ︸
≥0

+2δy⊤W⊤ ((β − 1)1n + αn1n)︸ ︷︷ ︸
=0

+ δ2n ((β − 1) + αn)︸ ︷︷ ︸
≥0

,

where we used the facts that W⊤ZW ⪰ 0,W⊤1n = 0 and β − 1 + αn ≥ kn − 1 + n 1−kn

n = 0. Thus,
Z ⪰ 0.

In order to present our first ISDP formulation of the QTSP, we derive an explicit expression
for the set Tn(G) and linearize the objective function. The former can be done using Theorem 10.
The set Tn(G) can be fully characterized by the permutation matrices that satisfy a linear matrix
inequality. That is,

Tn(G) = Πn(G) ∩
{
X ∈ Sn : βIn + αJn − 1

2
(X+X⊤) ⪰ 0

}
, (33)

for all α ≥ hn/n and kn ≤ β < 1. Recall that Πn(G) is the set of permutation matrices implied by
G, see Section 4.1.

To linearize the objective function, we follow the same construction as proposed by Fischer et
al. [35]. For all two-arcs (i, j, k) ∈ A, see (30), we define a variable yijk := xijxjk. This equality can
be guaranteed by the introduction of the following set of linear coupling constraints:

xij =
∑
k∈N :

(k,i,j)∈A

ykij =
∑
k∈N :

(i,j,k)∈A

yijk for all (i, j) ∈ A and yijk ≥ 0 for all (i, j, k) ∈ A.

We define the following set:

F1 :=

(y,X) ∈ {0, 1}A ×Πn(G) : xij =
∑
k∈N :

(k,i,j)∈A

ykij =
∑
k∈N :

(i,j,k)∈A

yijk ∀(i, j) ∈ A

 . (34)

Now, our first ISDP formulation of the QTSP is as follows:
min

∑
(i,j,k)∈A

qijkyijk

s.t. βIn + αJn − 1

2

(
X+X⊤) ⪰ 0, (y,X) ∈ F1,

(ISDP1)
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where α ≥ hn/n and kn ≤ β < 1. One can verify that setting α = hn/n and β = kn leads to the
strongest linear matrix inequality among all possible values for α and β. Thus, we use these values
in the computational results of Section 5.

Remark 2. In fact, we do not need to enforce integrality on y explicitly. Namely, if X ∈ Tn(G), it
follows from the integrality of X and the coupling constraints that yijk = 1 if (i, j, k) ∈ A is used in
the tour and 0 otherwise. Hence, when optimizing over F1 using a B&B or B&C algorithm, we relax
the integrality constraint on y and branch on X only.

In what follows, we further exploit properties of tour matrices to derive our second ISDP

formulation of the QTSP. Let X ∈ Tn(G) be a tour matrix and define X(2) = (x
(2)
ij ) := X ·X. For

i, k ∈ N we have x
(2)
ik =

∑n
j=1 xijxjk =

∑
j∈N :(i,j,k)∈A yijk, where the last equality follows from the

definition of y. Thus, X(2) is a binary matrix and x
(2)
ik = 1 if and only if the length of the shortest

directed path from i to k in the subgraph induced by X is equal to two.
We can again characterize a tour matrix as in Theorem 10 by combining the variables X and

X(2). Observe that the directed graph induced by X(2) is balanced with in- and outdegree one, and
circulant (but not strongly connected for even n). Moreover, the circulant graph C2 corresponding
to X + X(2) is strongly connected and balanced with in- and outdegree two. The spectrum of
1
2 ((X+X(2)) + (X+X(2))⊤) for any X ∈ Tn(G) and X(2) = X ·X is given by

cos

(
2πj

n

)
+ cos

(
4πj

n

)
for j ∈ [n], (35)

which results in the algebraic connectivity of C2 being a(C2) = 2 − (cos(2π/n) + cos(4π/n)). We
define

k(2)n := cos

(
2π

n

)
+ cos

(
4π

n

)
and h(2)

n := 2− k(2)n . (36)

Now, we are ready to state the following theorem.

Theorem 11. Let H be a spanning subgraph of a directed graph G where the in- and outdegree equals
one for all nodes in H. Let X be its adjacency matrix and let X(2) := X ·X be the distance two

adjacency matrix. Let α(2), β(2) ∈ R be such that α(2) ≥ h
(2)
n /n and k

(2)
n ≤ β(2) < 2, with k

(2)
n , h

(2)
n

as defined in (36). Then H is a directed Hamiltonian cycle if and only if

Z := β(2)In + α(2)Jn − 1

2

(
(X+X(2)) + (X+X(2))⊤

)
⪰ 0.

Proof. Let H̃ be the subgraph of G that has adjacency matrix X+X(2). Observe that H̃ is balanced,
and thus, H̃ is strongly connected if and only if a(H̃) > 0.

Let Z ⪰ 0, which implies that W⊤ZW ⪰ 0. Now we can use a similar derivation as in the proof
of Theorem 10, which results in the following:

1

2
W⊤

(
LH̃ + LH̃

⊤
)
W ⪰

(
2− β(2)

)
In−1 =⇒ a(H̃) = λmin

(
1

2
W⊤

(
LH̃ + LH̃

⊤
)
W

)
≥ 2− β(2).

Since β(2) < 2, we have a(H̃) > 0, and thus, H̃ is strongly connected. As H̃ is the union of a directed
cycle cover and its implied distance two graph, H̃ can only be strongly connected if H is strongly
connected. We conclude that H is a Hamiltonian cycle.

Conversely, let H be a Hamiltonian cycle. In that case, the algebraic connectivity of H̃ is

a(H̃) = 2− k
(2)
n , i.e., λmin

(
1
2W

⊤
(
LH̃ + LH̃

⊤
)
W
)
= 2− k

(2)
n . Since β(2) ≥ k

(2)
n , this yields

1

2
W⊤

(
LH̃ + LH̃

⊤
)
W −

(
2− β(2)

)
In−1 ⪰ 0 ⇐⇒ W⊤ZW ⪰ 0.

Now we can use the same argument as in the proof of Theorem 10 to show that Z ⪰ 0 where β, α

and kn are replaced by β(2), α(2) and k
(2)
n , respectively.
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We define the set F2 as follows:

F2 :=


(
y,X,X(2)

)
∈ F1 ×Πn(G

2) : x
(2)
ik =

n∑
j∈N :

(i,j,k)∈A

yijk ∀(i, k) ∈ A2

 , (37)

where

Πn(G
2) :=

{
X(2) ∈ {0, 1}n×n : X(2)1 = 1, (X(2))⊤1 = 1, diag(X(2)) = 0, x

(2)
ij = 0 ∀(i, j) /∈ A2

}
,

and A2 is the set of node pairs (i, j) for which there exists a directed path from i to j of length 2.
The set F2 and the result of Theorem 11 lead to our second ISDP formulation of the QTSP:

min
∑

(i,j,k)∈A

Qijkyijk

s.t. βIn + αJn − 1

2

(
X+X⊤) ⪰ 0

β(2)In + α(2)Jn − 1

2

(
(X+X(2)) + (X+X(2))⊤

)
⪰ 0, (y,X,X(2)) ∈ F2,

(ISDP2)

where α ≥ hn/n, kn ≤ β < 1, α(2) ≥ h
(2)
n /n and k

(2)
n ≤ β(2) < 2. Again the choice of α, β, α(2) and

β(2) equal to their lower bounds provides the strongest continuous relaxation.
It follows from Theorem 11 that one can remove the first linear matrix inequality in (ISDP2)

and still obtain an exact formulation of the QTSP. However, the bound obtained from the SDP
relaxation of (ISDP2) dominates the bound obtained from the SDP relaxation of (ISDP1). In
that sense, the formulation (ISDP2) can be seen as a level two formulation of the QTSP, whose
continuous relaxation is stronger than that of the first level formulation. An additional advantage of
the level two formulation is that both linear matrix inequalities may be used to generate CG cuts, as
we show in the following section.

In the same vein, one can construct level k formulations of the QTSP for k = 3, . . . , n. This leads
to a hierarchy of formulations, whose SDP relaxations are of increasing strength and complexity.

4.3 Chvátal-Gomory cuts for the ISDPs of the QTSP

In order to solve (ISDP1) and (ISDP2) using our B&C algorithm, we study various CG-based
separation routines for the QTSP. We first derive a general CG cut generator for the formulations
(ISDP1) and (ISDP2). Thereafter, we show how different types of well-known inequalities for the
QTSP can be derived as CG cuts of the formulations (ISDP1) and (ISDP2).

Let us consider (ISDP1). The set F1, see (34), consists of all tuples (y,X) where X represents a
node-disjoint cycle cover in G. Our B&C algorithm starts with optimizing over the set F1, where
we are allowed to relax the integrality of y at no cost, see Remark 2. If an integer point (ŷ, X̂) is

found in the branching tree, it is verified whether λmin

(
βIn + αJn − 1

2

(
X̂+ X̂⊤

))
≥ 0. If so, then

X̂ ∈ Tn(G) and we have found a possibly new incumbent solution. If not, then X̂ is the adjacency
matrix of a node-disjoint cycle cover that is not a Hamiltonian cycle. Therefore we have to generate
dual matrices that cut off the current point.

The first separation routine that we present is based on finding a set of integer eigenvectors

corresponding to a negative eigenvalue of βIn + αJn − 1
2

(
X̂+ X̂⊤

)
.

Proposition 9. Let X ∈ Πn(G) be the adjacency matrix of a directed node-disjoint cycle cover
consisting of k ≥ 2 cycles. Let {S1, . . . , Sk} be the partition of the nodes implied by the cycle cover
and define for each l ∈ [k] the vector

vli :=

{
n− |Sl| if i ∈ Sl

−|Sl| if i /∈ Sl.
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Then
〈
vl(vl)⊤, βIn + αJn − 1

2 (X+X⊤)
〉
< 0 for all l ∈ [k].

Proof. The vectors vl are eigenvectors of X and X⊤ corresponding to eigenvalue 1. Therefore we
have:(

βIn + αJn − 1

2
(X+X⊤)

)
vl = βvl + α ((n− |Sl|) · |Sl|+ (n− |Sl|) · (−|Sl|))1− 1

2
vl − 1

2
vl

= (β − 1)vl,

from where it follows that vl is an eigenvector of βIn+αJn− 1
2 (X+X⊤) corresponding to eigenvalue

β − 1. Since we assume β < 1, this eigenvalue is negative, from which the conclusion follows.

The result of Proposition 9 can be used within our B&C algorithm in the following way. Let
{S1, . . . , Sk} be the partition of the nodes implied by the current solution X̂ and let Ul := vl(vl)⊤

where vl is as defined in Proposition 9. Then for each l ∈ [k] we construct the following CG cuts:〈
Ul,

1

2
(X+X⊤)

〉
≤
⌊
⟨Ul, βIn + αJn⟩

⌋
⇐⇒

〈
Ul,X

〉
≤
⌊
⟨Ul, βIn + αJn⟩

⌋
, (38)

which cut off the current point. Observe that the choice α = hn/n and β = kn leads to non-integer
values for α and β, i.e., the CG rounding step provides a strengthened eigenvalue cut.

Since the result of Proposition 9 can be repeated for the extended linear matrix inequality in
Theorem 11, we also obtain the following CG cuts with respect to (ISDP2):〈

Ul,X+X(2)
〉
≤
⌊
⟨Ul, β(2)In + α(2)Jn⟩

⌋
∀l ∈ [k]. (39)

Next, we consider the class of subtour elimination constraints. It has been shown by Çezik and
Iyengar [15] that the ordinary subtour elimination constraints defined by Dantzig et al. [23] can be
obtained as CG cuts for the symmetric TSP, provided that α and β equal their lower bounds. We
extend the result from [15] and present five types of subtour elimination constraints that are in fact
(strengthened) CG cuts of (ISDP1) and/or (ISDP2), see Table 1. Many of these constraints do not
follow directly from the linear matrix inequalities, but require the addition of a positive multiple of a
subset of the affine constraints. It is shown by Fischer [34] that the inequalities IV and V of Table 1
define facets of the asymmetric quadratic traveling salesman polytope.

In Appendix A, we explicitly derive these inequalities as (strengthened) CG cuts.

5 Computational Results

In this section we test our ISDP formulations of the QTSP, see Section 4. We solve the ISDPs using
various settings of our CG-based B&C framework, see Algorithm 1, where we include different sets of
cuts from Section 4.3 in the separation routines. We compare the performance of our approach with
the two other ISDP solvers from the literature.

5.1 Design of numerical experiments

In total we compare seven different approaches, among which two from the literature and five variants
of our B&C approach. The former class consists of the following:

� KT : The B&C algorithm of Kobayashi and Takano [46], see Section 3.1.

� SCIP-SDP : The general ISDP solver of Gally et al. [40]. This approach is based on solving
continuous SDPs in a B&B framework.

A third project that is known for its ability to solve ISDPs is YALMIP [49]. Preliminary experiments
show, however, that the solver of [49] is significantly outperformed by the solvers from [40] and [46].
Therefore, we do not take the solver of YALMIP into account.

On top of the approaches from the literature, we consider five variants of our B&C procedure
that differ in the initial feasible set and the type of cuts that we add in the separation routine:
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Inequality Description

I
∑
i∈S
j∈S

xij ≤ |S| − 1, ∀S ⊂ N, 2 ≤ |S| < n
CG cut of βIn + αJn − 1

2

(
X+X⊤)

⪰ 0 with dual

multiplier U = 1S1S
⊤.

II
∑
i∈S
j /∈S

xij ≥ 1, ∀S ⊂ N, 2 ≤ |S| < n
CG cut of βIn + αJn − 1

2

(
X+X⊤)

⪰ 0 with dual

multiplier U = 1S1S
⊤ and −X1 = −1 with dual

multiplier 1S.

III

k∑
l=1

∑
i∈Sl
j∈Sl

xij −
∑
l ̸=p

∑
i∈Sl
j∈Sp

xij ≤ n− 2k

∀(S1, . . . , Sk),∪k
l=1Sl = N,Sl ∩ Sp = ∅ ∀l ̸= p

CG cut of βIn + αJn − 1
2

(
X+X⊤)

⪰ 0 with dual

multiplier U = 2
∑k

l=1 1Sl
1Sl

⊤ and −X1 = −1 with
dual multiplier 1.

IV

xij + xji +
∑

k∈N :
(i,k,j)∈A

yikj +
∑

k∈N :
(j,k,i)∈A

yjki ≤ 1

∀i, j ∈ N, i ̸= j, n ≥ 5

S-CG cut of β(2)In + α(2)Jn − 1
2

(
(X+X(2))

+(X+X(2))⊤
)
⪰ 0 with dual multiplier

U = 1{i,j}1{i,j}
⊤ and

∑
k∈N :

(i,k,j)∈A
yikj − x

(2)
ij = 0,∑

k∈N :
(j,k,i)∈A

yjki − x
(2)
ji = 0, −xii = 0, −xjj = 0,

−x
(2)
ii = 0 and −x

(2)
jj = 0, each with dual multiplier 1.

V

∑
i∈S
j∈S

xij +
∑
i∈S
j∈S

∑
k∈N\S:
(i,k,j)∈A

yikj ≤ |S| − 1

∀S ⊂ N, 2 ≤ |S| < 1
2
n

S-CG cut of β(2)In + α(2)Jn − 1
2

(
(X+X(2))

+(X+X(2))⊤
)
⪰ 0 with dual multiplier

U = 1S1S
⊤ and

∑
k∈N :(i,k,j)∈A yikj − x

(2)
ij = 0, for all

i, j ∈ S, each with dual multiplier 1, and −yikj ≤ 0
for all (i, k, j) ∈ A with i, k, j ∈ S, each with dual
multiplier 1.

Table 1: Five types of subtour elimination constraints for the QTSP that can be obtained as
(strengthened) CG cuts of (ISDP1) and/or (ISDP2). The third column describes which (in)equalities
and dual multipliers are used to construct the inequality.

� CG1 : In this setting we solve (ISDP1) where we initially optimize over F1, see (34). In the
separation routine we add the CG cut of the form (38) for each subtour present in the current
candidate solution.

� CG2 : In this setting we solve the second QTSP formulation (ISDP2). We initially optimize
over F2, see (37), and in each callback iteration we add the CG cuts of the form (38) and (39)
for each subtour in the current candidate solution.

� SEC-simple: In this setting we solve (ISDP1) by starting from optimizing over F1, see (34).
In the callback procedure, we add the ordinary subtour elimination constraints, see Type I in
Table 1, for all subtours in the current candidate solution.

� SEC : This setting solves (ISDP2) with subtour elimination constraints of Type I, IV and V
from Table 1. The latter type of constraint is added only for the subtours of size less than
1
2n. Since the order two variables X(2) in this setting do not appear directly in the cutting
planes, we eliminate them also from the initial MILP based on preliminary tests. That is, we
start optimizing over F1, see (34). Moreover, based on a result by Fischer et al. [35] we also
add additional cuts to forbid subtours of three nodes. For a triple i, j, k of distinct nodes, the
following cut is valid for any tour: yijk+ykij ≤ xij . We add this cut for all distinct i, j, k ∈ S in
the separation routine whenever a subtour on S with |S| = 3 is present in the current candidate
solution. Observe that there are six of them for each triple of nodes.

� SEC-CG: This setting solves (ISDP2), starting from F2, see (37). In the separation routines,
we add all the cuts that are included in the previous setting SEC. Moreover, on top of that we
also add the CG cuts (38) and (39) in the callback procedure.

27



Recall that the separation routines are only called at integer points, which represent cycle covers of
G. Therefore, the separation of all mentioned cuts boils down to identifying the subtours in the cycle
cover. Also, recall that the integrality of y is relaxed in all settings, see Remark 2.

The setting SEC looks similar to the best exact QTSP solving strategy of Fischer et al. [34].
However, there are two main differences between the methods. First, our separation routine is only
called on integer points, while the algorithm of [35] separates on fractional points. The separation on
integer points is computationally very cheap compared to the fractional separation method applied
by [35]. Consequently, the former separation can lead to superior behavior, as observed by Aichholzer
et al. [2] for the symmetric QTSP. Second, our approach results from a more general B&C framework
for solving integer SDPs, which is not limited to the QTSP.

Notice that the derived CG cuts of Type II and III from Table 1 are not added in the test settings.
Preliminary experiments have shown that the cut-set subtour elimination constraints (Type II of
Table 1) have similar practical behaviour compared to the ordinary subtour elimination constraints.
Also, preliminary tests show that the addition of one merged Type III cut instead of all separate
Type I cuts leads to worse behaviour in terms of overall computation time. We expect this difference
to be caused by the sparsity of the Type I cuts, compared to the very dense Type III cuts.

For our tests, we consider three types of instances1:

� Real instances from bioinformatics: Jäger and Molitor [45], Fischer [34] and Fischer et
al. [35, 36] consider an important application of the QTSP in computational biology. In order to
recognise transcription factor binding sites or RNA splice sites in a given set of DNA sequences,
Permuted Markov (PM) models [29] or Permuted Variable Length Markov (PVLM) models [72]
can be used. Finding the optimal order two PM or PVLM model boils down to solving a
QTSP instance. We consider three classes of bioinformatics instances used in [33, 34], which
are denoted by ‘bma’, ‘map’ and ‘ml’. Each class consists of 38 instances with n ∈ {3, . . . , 40}.

� Reload instances: The reload instances are the same as the ones used by Rostami et al. [61]
and De Meijer and Sotirov [53]. The reload model [68] is inspired by logistics and energy
distribution, where a certain cost is incurred whenever the underlying type of arc in a network
changes, e.g., the means of transport. Let G be a directed graph where each arc (i, j) is
present with probability p. Each arc in G is randomly assigned a color from a color set L with
cardinality c. If two successive arcs e and f have colors s and t, respectively, the quadratic
cost among e and f equals r(s, t), where r : L × L → R is a reload cost function such that
r(s, s) = 0 for all s ∈ L. We consider two types of reload classes:

– Reload class 1 : For each pair of distinct colors s, t ∈ L the reload cost equals r(s, t) = 1;

– Reload class 2 : For each pair of distinct colors s, t ∈ L, the reload cost r(s, t) is chosen
uniformly at random from {1, . . . , 10}.

For each class, we consider 10 distinct instances for each possible combination of n ∈
{10, 15, 20, 25}, p ∈ {0.5, 1} and c ∈ {5, 10, 20}, except for the combination between n = 25
and p = 1 due to extremely large computation times. Thus, in total we consider 420 reload
instances.

� Turn cost instances: The special case of the QTSP where the nodes are points in Euclidean
space and the angle cost of a tour is the sum of the direction changes at the points is called the
Angular-Metric Traveling Salesman Problem (Angle-TSP) [1]. The Angle-TSP is motivated
by VLSI design and proven to be NP-hard [1]. The problem is in the literature also known as
the Minimum Bends Traveling Salesman Problem [64]. We consider two classes of this type:

– TSPLIB instances: The TSP library (TSPLIB) [59] contains a broad set of TSP test
instances, among which a large number of Euclidean instances. We construct a correspond-
ing QTSP instance as follows: Given points v1, . . . , vn in R2, we let G be the complete

1Instances can be downloaded from https://github.com/frankdemeijer/CGforISDP.
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graph on n vertices. For i, j, k, i ̸= j, j ̸= k, i ̸= k, we define qijk to be proportional to
the angle between edges {i, j} and {j, k}. More precisely,

qijk :=

⌈
10 ·

(
1− 1

π
arccos

(
(vi − vj)

⊤(vk − vj)

∥vi − vj∥ · ∥vj − vk∥

))⌉
.

This cost structure is similar to the angle-distance costs considered in Fischer et al. [35]
and De Meijer and Sotirov [52]. In total, we consider 9 TSPLIB instances with n ranging
from 15 to 70. Figure 5a depicts one of the TSPLIB instances including its optimal tour
with respect to the defined quadratic cost structure.

– Grid instances: Fekete and Krupke [30, 31] consider problems of computing optimal
covering tours and cycle covers under a turn cost model, see also Arkin et al. [3]. These
problems have many practical applications, such as pest control and precision farming.
Following this line, we consider the Angle-TSP on grid graphs. We construct a 2D
connected grid graph using the Type II instance generator of [31]. Given the vertex
coordinate vectors v1, . . . , vn ∈ {0, . . . , N1} × {0, . . . , N2} for integers N1, N2, we include
an edge between vertex i and j if and only if (vi1 = vj1 and |vi2 − vj2| = 1) or (vi2 = vj2 and

|vi1 − vj1| = 1). If two edges {i, j} and {j, k} are present, the quadratic costs are computed
similar as for the TSPLIB instances. In total we consider 9 grid instances with N1 and
N2 running from 20 to 80, corresponding to n ranging from 430 to 2646. An example of a
grid instance including its minimum bend tour is given in Figure 5b.

Both types of turn cost instances are in fact instances of the symmetric QTSP, as they are
defined on undirected graphs. To account for this, we use symmetrized versions of (ISDP1)
and (ISDP2) instead. We refer to Appendix B for the construction of these formulations.

(a) Instance ‘kn57’ (b) Instance ‘grid1’

Figure 5: Optimal tours of two turn instances: the TSPLIB instance ‘kn57’ (n = 57) and the grid
instance ‘grid1’ (n = 430). Each square in Figure 2b represents a vertex in the grid graph.

All our algorithms, including the algorithm of Kobayashi and Takano [46], are implemented in
Julia 1.5.3 using JuMP v0.21.10 [27] to model the mathematical optimization problems. In particular,
we exploit the solver-independent lazy constraint callback option of JuMP to include the separation
routines. Solving the underlying MILP in the subproblems is done using Gurobi v9.10 [44] in the
default settings including built-in cuts. Experiments are carried out on a PC with an Intel(R)
Core(TM) i7-8700 CPU, 3.20GHz, 8GB RAM. To run SCIP-SDP, we use SCIP-SDP version 3.2.0 on
the NEOS Server [20], where the B&B framework of SCIP 7.0.0 [41] and the SDP solver Mosek 9.2 [54]
are combined in the default configuration.

Observe that an older version of SCIP-SDP with DSDP [9] as SDP solver was used in the
numerical experiments of [46], which partly explains the poor behaviour of SCIP-SDP compared
to the B&C algorithm of [46]. However, our computational study that uses SCIP-SDP with the
state-of-the-art SDP solver Mosek [54] also shows superior behaviour of the B&C algorithms.
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We test all seven settings on the bioinformatics and reload instances. Since these instance classes
give a clear and consistent overview of the superior approaches, we restrict ourselves to the best three
settings for the turn cost instances. The maximum computation time for all our approaches is set to
8 hours, which is in correspondence with the maximum computation time on the NEOS Server [20].

5.2 Comparison of approaches

Table 2 and Figure 6 provide an overview of the performance on the instances from bioinformatics.
For each setting, the average values in Table 2 are only computed over the instances that could be
solved to optimality for that setting. An extended table on the results per instance can be found in
Appendix C. Observe that the percentage of instances solved is quite similar over the three instance
classes. This indicates that it is mainly the size rather than the cost structure that determines
whether a bioinformatics instance can be solved or not. It is clear that our B&C settings significantly
outperform the other two ISDP solvers SCIP-SDP and KT, which can solve at most 60% of the
instances to optimality. Since the separation routine of CG1 is based on the identification of an
integer eigenvector corresponding to a negative eigenvalue, the settings KT and CG1 are almost
identical apart from the CG rounding step. The large decrease in the number of branching nodes
of CG1 compared to KT is remarkable. This indicates that the effect of deeper cuts as shown in
Figure 4 is not solely theoretical, but also turns out to be substantial from a practical point of view.

When comparing the five different separation routines of our B&C approach, we also see a clear
pattern. The settings SEC and SEC-CG turn out to be superior, being able to solve all instances
within short computation times. Although SEC generally provides the fastest algorithm, it sometimes
happens that SEC-CG solves the instance faster, see Figure 6, due to the smaller number of B&C
nodes. This shows that the additional CG cuts can sometimes improve on the subtour elimination
constraints. The two approaches are followed by SEC-simple, which is able to solve instances up to
n = 35 to optimality. This difference is mainly due to the strengthened subtour elimination cuts
(type IV and V in Table 1) that work well for the bioinformatics instances, as also noted by Fischer
et al. [35]. Finally, the settings CG1 and CG2 are only able to solve instances up to n = 32 and
n = 27, respectively. Although the distance two CG cuts (39) significantly reduce the number of
needed branching steps, the overall computation time is larger due to the increase in the number of
variables and constraints in CG2.

Type Statistic SCIP-SDP KT CG1 CG2 SEC-simple SEC SEC-CG

bma Instances solved (%) 34.21 60.53 78.95 65.79 84.21 100 100
Average comp. time 1519 1581 846.1 639.40 817.43 28.31 182.3
Average B&C nodes 30308 854964 119144 42515 85984 200.4 142.5
Average time per node 0.025 0.001 0.002 0.006 0.005 0.184 1.158

map Instances solved (%) 34.21 57.89 78.95 65.79 81.58 100 100
Average comp. time 2247 1721 1768 806.6 911.4 25.83 199.6
Average B&C nodes 30385 896340 245732 56197 79869 244 173
Average time per node 0.037 0.001 0.002 0.009 0.004 0.496 2.094

ml Instances solved (%) 34.21 57.89 76.32 65.79 81.58 100 100
Average comp. time 2891 1315 460.9 805.6 520.2 27.34 221.7
Average B&C nodes 33185 658640 86743 44342 51495 252.0 186.3
Average time per node 0.034 0.001 0.002 0.007 0.005 0.096 0.961

Table 2: Summary table of the performance on the bioinformatics instances per setting and per
instance type. The best performing setting per row is given in bold.
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Figure 6: Computation times versus instance size for the bioinformatics classes ‘bma’ (top), ‘map’
(middle) and ‘ml’ (bottom). The computation times are given on a logarithmic scale.

Next, we discuss the results on the set of reload instances. For both class 1 and 2 and for each
value of n, p and c we consider 10 randomly generated instances. The averaged results for each
combination of parameters can be found in Appendix C, see Table 12, 13 and 14. In general, we see
that the computation times increase with the number of nodes n and the graph density p. On the
other hand, if the number of colors c increases, the instances become easier to solve as the number
of (optimal) solutions will decrease. Table 3 shows a summary of the results accumulated over the
number of colors c. Accordingly, Figure 7 shows the spread of the computation times, where we also
accumulate both reload classes.

When comparing the different settings, we draw similar conclusions as before. Note that SCIP-
SDP performs very poorly on the reload instances. The difference between KT and CG1 is not as
significant as before, although CG1 is still favourable above KT on almost all instance types. The
settings that involve the variables X(2) in the root node, i.e., CG2 and SEC-CG, are outperformed
by SEC-simple and SEC. Apparently, the increase in the number of variables does not contribute
much to the pruning of the branching tree. In fact, the results in Appendix C even suggest that
the number of branching nodes sometimes becomes larger. The large spread in computation times
for these settings, see Figure 7, also suggests that (ISDP2) leads to a search process that is less
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robust and that this effect becomes more visible as the instances become larger. However, the S-CG
cuts resulting from (ISDP2) do contribute to the pruning of the tree, as is suggested by the strong
performance of SEC. The settings SEC and SEC-simple overall perform best. None of the two
algorithms outperforms the other in terms of computation time, even when the problem size goes up,
see the additional numerical results in Table 14 of Appendix C.

Instance Average computation times (s)

Class n p OPT SCIP-SDP KT CG1 CG2 SEC-simple SEC SEC-CG

1 10 0.5 6.233 0.161 0.035 0.028 0.035 0.024 0.019 0.031
10 1 3.3 1.627 0.133 0.127 0.165 0.128 0.113 0.171
15 0.5 6.367 2.256 0.158 0.160 0.251 0.142 0.139 0.223
15 1 2.8 244.0 1.426 1.124 4.503 1.095 1.040 2.825
20 0.5 6.2 82.08 0.610 0.625 1.510 0.483 0.465 1.237
20 1 2.314 3908 183.8 91.56 1910 162.5 43.21 3278
25 0.5 6.6 - 76.20 35.70 1141 17.10 16.30 249.1

2 10 0.5 22.74 0.185 0.036 0.039 0.049 0.029 0.029 0.044
10 1 8.2 0.962 0.164 0.148 0.152 0.116 0.139 0.157
15 0.5 22.73 2.989 0.193 0.174 0.255 0.173 0.172 0.261
15 1 6.767 277.5 1.363 1.768 4.643 1.293 1.190 3.290
20 0.5 18.1 58.68 0.575 0.585 1.246 0.552 0.576 1.352
20 1 4.745 2689 43.99 20.88 1187 11.89 16.88 850.2
25 0.5 16.37 - 1298 315.1 5159 94.81 75.81 1701

Table 3: Overview of average computation times for the reload instances. Each row provides averages
of 30 instances, namely 10 random instances for each value of c = 5, 10, 20.

32



Figure 7: Boxplots showing the computation times for the reload instances for different values of
n and p, accumulated over the reload class and the number of colors c. We omit the results of
SCIP-SDP, since these computation times are several magnitudes larger.

Finally, we consider the turn cost instances. From the class of bioinformatics and reload instances
it is clear that the settings SEC-simple, SEC and SEC-CG generally perform best. Hence, we restrict
the numerical results on the turn cost instances to these three settings. Table 4 and 5 show the
computation times and number of branching nodes for the TSPLIB and grid instances, respectively.

The TSPLIB graphs are complete graphs, and hence we can only solve up to n = 70 for this
instance type. We are able to solve all TSPLIB instances in a time span 900 seconds. Since the
grid instances are more sparse, we can solve much larger instance sizes to optimality. For this type,
instances up to 2646 nodes (!) can be solved to optimality within 15 seconds. These are currently the
largest solved QTSP instances in the literature.

When comparing the three settings, we see that SEC-simple and SEC perform slightly better
than SEC-CG on the turn cost instances. Since the different separation routines lead to different
relaxations, the branching strategy between the methods can differ. Not surprisingly, the favourable
setting is often the one with the smallest number of B&C nodes, regardless of the time per branching
node. Taking both the TSPLIB and grid instances into account, this happens slightly more often for
the setting SEC-simple.

6 Conclusions

In this work we study the Chvátal-Gomory cuts for spectrahedra and their strength in solving
integer semidefinite programs resulting from combinatorial optimization problems. Accordingly, this
paper increases the theoretical understanding of integer semidefinite programming, which in turn
contributes to new solution techniques for this type of problems.

In Section 2 we study the elementary closure of spectrahedra and the hierarchy obtained by
iterating this procedure. Using an alternative formulation of the elementary closure, see (9), we provide
simple proofs of several properties, including a homogeneity property for bounded spectrahedra, see
Theorem 3. Although some of the here presented results are already known in the literature, the
proofs we present are considerably simpler and are mainly based on concepts from mathematical
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SEC-simple SEC SEC-CG

Instance n m OPT
Comput.
time (s)

Number
of nodes

Comput.
time (s)

Number
of nodes

Comput.
time (s)

Number
of nodes

lau15 15 105 47 0.278 1 0.458 1 0.115 1
wg22 22 231 63 0.643 1 0.436 1 0.490 1
bays29 29 406 78 1.519 96 0.905 93 0.949 78

dantzig42 42 861 96 11.25 994 12.04 1059 21.20 1458
att48 48 1128 105 53.07 4104 47.64 3627 55.52 3375

berlin52 52 1326 118 702.9 36523 1115 49265 1070 41041
kn57 57 1596 120 153.1 2425 110.8 1539 138.6 1804
wg59 59 1711 121 391.2 10503 898.7 13627 650.1 10269
st70 70 2415 137 861.8 8596 838.1 4649 1862 12222

Table 4: Computation times and number of branching nodes for the TSPLIB instances.

SEC-simple SEC SEC-CG

Instance n m OPT
Comput.
time (s)

Number
of nodes

Comput.
time (s)

Number
of nodes

Comput.
time (s)

Number
of nodes

grid1 430 795 620 1.431 6 1.538 1 1.020 1
grid2 734 1393 460 14.86 2781 20.29 7942 19.33 2562
grid3 880 1672 590 3.303 30 5.019 78 5.945 207
grid4 960 1802 840 4.954 3 3.731 1 7.507 1
grid5 1038 1965 440 8.452 24 4.514 16 8.192 10
grid6 1214 2335 480 19.67 57 15.61 25 23.27 55
grid7 1302 2493 730 9.121 330 17.83 177 14.65 181
grid8 1788 3469 540 4.800 1 4.917 1 4.619 1
grid9 2646 5172 760 13.79 1 13.80 1 13.39 1

Table 5: Computation times and number of branching nodes for the grid instances.

optimization and number theory. We also present the polyhedral description of the elementary closure
of spectrahedra whose defining linear matrix inequality is totally dual integral, see Theorem 5. To the
best of our knowledge, this is the first such description for the elementary closure of a non-polyhedral
set. A full characterization of bounded LMIs that are TDI on Zm is given in Theorem 6. Sufficient
conditions for TDI-ness on an appropriate set Z ⊆ Zm are given in Theorem 8 and 9.

A generic B&C algorithm for ISDPs based on strengthened CG cuts is presented in Section 3,
see Algorithm 1. Our algorithm is a refinement of the algorithm from [46], where the authors use
eigenvector based inequalities to separate infeasible integer points. Moreover, our work can be seen
as an extension of [15], in which the authors introduce CG cuts for conic programs, but leave the
efficient separation of CG cuts as an open problem. Our numerical results indicate the effectiveness
of the use of deeper CG cuts. We also provide a separation routine for binary SDPs originating from
combinatorial optimization problems, see Section 3.2.

In Section 4 we extensively study the application of our approach to the quadratic traveling
salesman problem. Based on a generalization of the notion of algebraic connectivity to directed
graphs, we present two exact ISDP formulations of the QTSP, see (ISDP1) and (ISDP2). We show
that the simplest CG separation routine boils down to finding integer eigenvectors of the adjacency
matrix of a node-disjoint cycle cover, see Proposition 9. However, more intricate dual multipliers
lead to some well-known families of cuts, e.g., the ordinary and strengthened versions of the subtour
elimination constraints, see Table 1. We test several variants of our B&C procedure that involve
different separation routines.

Numerical results on the QTSP show that our B&C algorithm significantly outperforms the two
alternative ISDP solvers of [40] and [46]. For the real instances from bioinformatics [35, 36], these
solvers are able to solve instances up to only n = 15 and n = 25, respectively, whereas our method
can solve all instances up to n = 40 in a short timespan. As one would expect, the extension to CG
inequalities leads to deeper cuts, which successfully reduces the size of the branching tree compared
to [46]. From all considered separation routines, it turns out that the setting SEC, see page 27, is
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overall most effective. This setting was able to solve almost all of the 552 tested QTSP instances to
optimality within 5 minutes, where the largest instance contains m = 5172 arcs. This is currently
the largest solved QTSP instance in the literature.

Our work inspires several future research directions. It would be interesting to study the perfor-
mance of our B&C algorithm when applied to other optimization problems that can be formulated
as ISDPs. We expect the exploitation of CG cuts in the branching scheme to be effective for such
ISDPs. Moreover, as for the QTSP many known classes of cuts turned out to be (strengthened) CG
cuts with respect to the ISDP formulation, it would be interesting to know whether this also holds
for other problems.
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[11] P. Bonami, M. Kilinç, and J. Linderoth. Mixed Integer Nonlinear Programs, volume 154 of The
IMA Volumes in Mathematics and its Applications, chapter Algorithms and Software for Convex
Mixed Integer Nonlinear Programs, pages 1–39. Springer, New York, NY, 2012.

[12] G. Braun and S. Pokutta. A short proof for the polyhedrality of the Chvátal-Gomory closure of
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Program., 2021. https://doi.org/10.1007/s10107-021-01697-0.
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A Derivation of subtour elimination constraints as CG cuts

In this appendix we elaborate on the construction of the five types of subtour elimination constraints
given in Table 1 as (S-)CG cuts.

A.1 Ordinary subtour elimination constraint

Let S ⊆ N with |S| < n. The well-known subtour elimination constraint corresponding to S can be
obtained as a CG cut, see also [15]. Let 1S be the indicator vector of the set of nodes S. Then〈

1S1S
⊤, βIn + αJn − 1

2

(
X+X⊤)〉 ≥ 0

is a valid cut. Applying the CG procedure to this cut, yields〈
1S1S

⊤,
1

2
(X+X⊤)

〉
≤
⌊〈
1S1S

⊤, βIn + αJn

〉⌋
⇐⇒

∑
i∈S,j∈S

xij ≤ ⌊|S| (β + α|S|)⌋ .

If β = kn and α = hn/n, then for all S with |S| < n we have β + α|S| < 1. Hence, the CG cut above
implies ∑

i∈S,j∈S

xij ≤ |S| − 1. (40)

The cut (40) is the common subtour elimination constraint introduced by Dantzig et al. [23].

A.2 Cut-set subtour elimination constraints

The cut-set subtour elimination constraints are known to be equivalent to the ordinary subtour
elimination constraints of [23]. It is therefore no surprise that these cuts can be obtained similarly as
the ordinary subtour elimination constraints.

Let U = 1S1S
⊤ be the dual multiplier of the linear matrix inequality βIn + αJn − 1

2

(
X+X⊤)

and let 1S be the dual multiplier of the constraints −X1 = −1. The sum of these constraints yields〈
1S1S

⊤,
1

2
(X+X⊤)

〉
− 1S

⊤X1 ≤
⌊〈
1S1S

⊤, βIn + αJn

〉
− 1S

⊤1
⌋

⇐⇒ −
∑

i∈S,j /∈S

xij ≤ ⌊|S| (β + α|S|)⌋ − |S|.

If β = kn and α = hn/n, then the right-hand side becomes |S| − 1 − |S| = −1, which yields the
desired cut.
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A.3 Merged subtour elimination constraint

Let (S1, . . . , Sk) be a partition of the node set of G, i.e.,
⋃k

l=1 Sl = N and Sl ∩ Sp = ∅ for all l ̸= p.
We can obtain a merged subtour elimination constraint via the CG procedure in the following way.

Let U = 2
∑k

l=1 1Sl
1Sl

⊤ be the dual multiplier for βIn + αJn − 1
2

(
X+X⊤). Since each dual

multiplier 1Sl
1Sl

⊤ leads to a CG cut of Type I in Table 1, its weighted sum also belongs to the
elementary closure and looks as follows:

2

k∑
l=1

∑
i∈Sl
j∈Sl

xij ≤ 2

k∑
l=1

(|Sl| − 1) = 2(n− k).

Now we add to this cut the equality −X1 = −1 with dual multiplier 1, which yields the desired
merged cut

2

k∑
l=1

∑
i∈Sl
j∈Sl

xij − 1⊤X1 ≤ 2(n− k)− 1⊤1 ⇐⇒
k∑

l=1

∑
i∈Sl
j∈Sl

xij −
∑
l ̸=p

∑
i∈Sl
j∈Sp

xij ≤ n− 2k.

A.4 Strengthened subtour elimination constraints of size two

Let i ̸= j and define U = 1{i,j}1{i,j}
⊤. Taking U as the dual multiplier with respect to β(2)In +

α(2)Jn − 1
2

(
(X+X(2)) + (X+X(2))⊤

)
⪰ 0, provides the following valid cut:〈

1{i,j}1{i,j}
⊤, β(2)In + α(2)Jn − 1

2

(
(X+X(2)) + (X+X(2))⊤

)〉
≥ 0.

Moreover, adding the coupling constraints
∑

k∈N :(i,k,j)∈A yikj − x
(2)
ij = 0 and

∑
k∈N :(j,k,i)∈A yjki −

x
(2)
ji = 0, each with dual multiplier 1, and the constraints −xii = 0, −xjj = 0, −x

(2)
ii = 0 and

−x
(2)
jj = 0, also each with dual mulitplier 1, gives

xij + xji +
∑
k∈N :

(i,k,j)∈A

yikj +
∑
k∈N :

(j,k,i)∈A

yjki ≤ 2β(2) + 4α(2).

We now take β(2) = k
(2)
n and α(2) = h

(2)
n /n. Applying the standard CG procedure to this inequality

results in the cut

xij + xji +
∑
k∈N :

(i,k,j)∈A

yikj +
∑
k∈N :

(j,k,i)∈A

yjki ≤

⌊
2k(2)n + 4

h
(2)
n

n

⌋
. (41)

The right-hand side of this cut equals one if 5 ≤ n ≤ 7, two if 8 ≤ n ≤ 12 and three if n ≥ 13.
For n ≥ 5, we can strengthen this cut by applying the S-CG procedure as explained in Section 2.5.

Since the cut (41) only involves variables y and X, we can restrict the set S to the space corresponding
to these variables. Let S = F1 ∩

(
{0, 1}A × Tn(G)

)
and let c1 be the coefficient vector of the left

hand side in (41). Then the strengthened rounding looks as follows:

⌊
2k(2)n + 4

h
(2)
n

n

⌋
S,c1

:= max

xij + xji +
∑
k∈N :

(i,k,j)∈A

yikj +
∑
k∈N :

(j,k,i)∈A

yjki : (41), (y,X) ∈ S

 .

One can verify that the value of this maximization is equal to 1 for n ≥ 5. Namely, if it would
be greater than 1, this implies a subtour of size two (if xij = xji = 1), size three (e.g., if xij = 1
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and yjki = 1 for some k ∈ N \ {i, j}) or size four (e.g., if yikj = 1 and yjli = 1 for some distinct

k, l ∈ N \{i, j}), which contradicts the fact that X ∈ Tn(G). We conclude that
⌊
2k

(2)
n + 4

h(2)
n

n

⌋
S,c1

= 1.

Thus, we obtain the strengthened CG cut

xij + xji +
∑
k∈N :

(i,k,j)∈A

yikj +
∑
k∈N :

(j,k,i)∈A

yjki ≤ 1.

A.5 Strenghtened subtour elimination constraints

Let S ⊂ N with 2 ≤ |S| < 1
2n and define U = 1S1S

⊤. Taking U as the dual multiplier with respect

to β(2)In + α(2)Jn − 1
2

(
(X+X(2)) + (X+X(2))⊤

)
⪰ 0 provides the inequality〈

1S1S
⊤, β(2)In + α(2)Jn − 1

2

(
(X+X(2)) + (X+X(2))⊤

)〉
≥ 0.

For all i, j ∈ S we now add the coupling constraints
∑

k∈N :(i,k,j)∈A yikj−x
(2)
ij = 0 with dual multiplier

1. Moreover, for all (i, k, j) ∈ A with i, k, j ∈ S we add the constraint −yikj ≤ 0 with multiplier 1.
This yields the following valid cut∑

i∈S
j∈S

xij +
∑
i∈S
j∈S

∑
k∈N\S:
(i,k,j)∈A

yikj ≤ |S|β(2) + |S|2α(2).

Again, we take β(2) = k
(2)
n and α(2) = h

(2)
n /n. The standard CG rounding step yields

∑
i∈S
j∈S

xij +
∑
i∈S
j∈S

∑
k∈N\S:
(i,k,j)∈A

yikj ≤

⌊
|S|

(
k(2)n + |S|h

(2)
n

n

)⌋
. (42)

Since |S| < 1
2n, we know⌊

|S|

(
k(2)n + |S|h

(2)
n

n

)⌋
≤

⌊
|S|

(
k(2)n +

1

2
n
2− k

(2)
n

n

)⌋
=

⌊
|S|
(
1 +

1

2
k(2)n

)⌋
≤ 2|S| − 1.

However, similar to the approach in Appendix A.4, we obtain a tighter bound if we apply the
strengthened CG procedure. Let T = F1 ∩

(
{0, 1}A × Tn(G)

)
and let c2 be the coefficient vector of

the left hand side of (42). Then,

⌊
|S|

(
k(2)n + |S|h

(2)
n

n

)⌋
T,c2

:= max


∑
i∈S
j∈S

xij +
∑
i∈S
j∈S

∑
k∈N\S:
(i,k,j)∈A

yikj : (42), (y,X) ∈ T

 .

It can be verified that this maximum is equal to |S|−1 for all S with |S| < 1
2n. Namely, if (y,X) ∈ T ,

we cannot have both xij = 1 and yikj = 1 for some k ∈ N . Hence, xij +
∑

k∈N\S:(i,k,j)∈A yikj ≤ 1 for

all i, j ∈ S. If we now sum over all i, j ∈ S, the result must be at most |S| − 1, otherwise a subtour
would exist. The strengthened CG cut corresponding to (42) becomes∑

i∈S
j∈S

xij +
∑
i∈S
j∈S

∑
k∈N\S:
(i,k,j)∈A

yikj ≤ |S| − 1.
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B The symmetric quadratic traveling salesman problem

In this appendix we briefly consider the symmetric quadratic traveling salesman problem (SQTSP).
Although this problem is very related to the asymmetric version used in the rest of the paper (that
we continue to denote by QTSP), the underlying model is different. We show how to construct this
model and how all cuts for the QTSP can be extended to the symmetric case.

Let G = (V,E) be an undirected graph, where E consists of undirected pairs of nodes {i, j}
(= {j, i}), i, j ∈ V . We define E = {⟨i, j, k⟩ = ⟨k, j, i⟩ : i, j, k ∈ V, |{i, j, k}| = 3} to be the set of
two-edges in G, where a two-edge is a sequence of three distinct nodes where the reverse sequence is
regarded as identical. Given is a quadratic cost matrix Q = (qijk), where a cost is zero if ⟨i, j, k⟩ /∈ E .

The goal of the SQTSP is to find an undirected Hamiltonian cycle in G such that the total
quadratic cost is minimized. To model this problem, let x̄ ∈ {0, 1}E and ȳ ∈ {0, 1}E denote indicator
vectors that are 1 if and edge, respectively two-edge, is present in the solution and 0 otherwise. We aim
to find a tuple (x̄, ȳ) with ȳijk = x̄ij x̄jk, representing a Hamiltonian cycle such that

∑
⟨i,jk⟩∈E qijkyijk

is minimized.
The symmetric equivalent of the set F1, see (34), is now given by:

Fs
1 :=

(ȳ, x̄) ∈ {0, 1}E × {0, 1}E :

∑
e∈δ(i)

x̄e = 2 ∀i ∈ V

x̄ij =
∑
k∈V

⟨i,j,k⟩∈E

ȳijk =
∑
k∈V

⟨k,i,j⟩∈E

ȳkij ∀{i, j} ∈ E

 ,

where δ(i) ∈ V denotes the set of edges that are incident to i. The formulation used in Fs
1 is

introduced by Fischer and Helmberg [37] where it is shown that the equation ȳijk = x̄ij x̄jk is indeed
established for all ⟨i, j, k⟩ ∈ E . Moreover, similar to the asymmetric case, we can relax the integrality
of ȳ, since it is enforced by the integrality of x̄ and the coupling constraints, see Remark 2. It follows
that the tuples in Fs

1 are characteristic vectors of node-disjoint cycle covers in G, where the smallest
cycles have size 3 due to the definition of E .

The B&C algorithm presented in Section 3 can now be applied to the SQTSP, starting from
optimizing over Fs

1 . In order to cut off solutions that do not correspond to a Hamiltonian cycle in G,
we need separation routines for the symmetric version. Instead of providing symmetric equivalents
to all QTSP cutting planes derived in Section 4.3, we present a transformation that maps any
valid cut for the asymmetric version to a cut for the SQTSP. To that end, we introduce a directed
graph H = (V,A) that is defined on the same set of nodes as the undirected graph G, where A is
such that it contains both pairs (i, j) and (j, i) whenever the corresponding edge {i, j} is contained
in G. Moreover, we define the cost of each two-arc (i, j, k) in H to be equal to q⟨i,j,k⟩ for the
corresponding two-edge ⟨i, j, k⟩ in G. Let IS denote the original SQTSP instance and let IA denote
the corresponding asymmetric instance.

The variables in the two programs can now be related as follows: Let (y,X) be variables in
IA and define the tuple (ȳ, x̄) by x̄ij = xij + xji for all {i, j} ∈ E, and ȳijk = yijk + ykji for all
⟨i, j, k⟩ ∈ E .

From the constraints in F1 and Fs
1 , it follows that any solution (y,X) in IA leads to a solution

(ȳ, x̄) in IS with the same objective value. Reversely, any solution (ȳ, x̄) in IS leads to a solution
(or actually two solutions, one for each direction) (y,X) in IA with the same objective value. As a
result, any valid cut for IA is also valid for IS.

This implies that all cuts defined in Section 4.3 can be converted to cuts for the SQTSP. Namely,
given a cut for IA, we define the coefficient on x̄ij to be the sum of the coefficients on xij and xji

for all edges {i, j} ∈ E. Similarly, we define the coefficient on ȳijk to be the sum of the coefficients
on yijk and ykji for all two-edges ⟨i, j, k⟩ ∈ E . If no more violated cuts can be found in IA, the
corresponding solution in IS is also optimal. This proves the validity of the B&C algorithm for the
symmetric version of the problem.
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C Extended computational results

In this appendix we present a complete overview of the computational results from which the
summarized results in Section 5 follow. We start by considering the instances from bioinformatics,
after which we present results for the reload instances. No additional results are presented for the
turn instances, since for these instances the complete overview is already given in Section 5.

In all tables showing computation times, the setting that provides the shortest time is presented
in bold for each instance. Moreover, a ‘-’ indicates that a given algorithm could not solve the instance
within 8 hours.

The computation times and the number of branching nodes for the class of ‘bma’ instances from
bioinformatics are given in Table 6 and 7, respectively. Table 8 and 9 provide computation times and
number of branching nodes for the ‘map’ instances, respectively. The computation times and the
number of branching nodes for the ‘ml’ instances are presented in Table 10 and 11, respectively.

Finally, we present a more elaborate overview of the reload instances. For each of the two classes
and for different values of n, p and c, 10 randomly generated instances are considered. In order to
save space, we only present the results that are averaged over these 10 similar instances. Table 12
and 13 present the computation times and number of branching nodes, respectively. Table 14 shows
the computation times on 72 additional reload instances on both reload classes with n ∈ {21, . . . , 26},
p ∈ {0.5, 0.8} and c ∈ {5, 10, 20} in order to further investigate the difference between the settings
SEC-simple and SEC. As indicated in Section 5, the results in Table 14 are still not decisive on which
of the two settings performs better.
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Instance Average computation times (s)

Class n (p, c) OPT SCIP-SDP KT CG1 CG2 SEC-simple SEC SEC-CG

1 10 (0.5,5) 5.2 0.131 0.049 0.025 0.029 0.018 0.020 0.030
10 (0.5,10) 5.8 0.135 0.034 0.038 0.042 0.029 0.020 0.031
10 (0.5,20) 7.7 0.218 0.022 0.023 0.035 0.024 0.017 0.033
10 (1,5) 2 2.135 0.177 0.160 0.210 0.163 0.152 0.236
10 (1,10) 3.4 1.888 0.121 0.135 0.176 0.129 0.121 0.182
10 (1,20) 4.5 0.857 0.100 0.086 0.108 0.092 0.065 0.095

Average 4.8 0.894 0.084 0.078 0.100 0.076 0.066 0.101

15 (0.5,5) 4.1 3.187 0.211 0.202 0.386 0.185 0.185 0.280
15 (0.5,10) 6.5 2.131 0.160 0.182 0.197 0.146 0.134 0.235
15 (0.5,20) 8.5 1.450 0.102 0.097 0.171 0.095 0.098 0.153
15 (1,5) 0.4 450.1 2.657 1.720 9.566 1.884 1.835 5.209
15 (1,10) 2.9 204.4 1.065 1.064 2.697 0.887 0.788 2.243
15 (1,20) 5.1 77.44 0.557 0.587 1.246 0.514 0.497 1.022

Average 4.583 123.1 0.792 0.642 2.377 0.619 0.589 1.524

20 (0.5,5) 3.2 169.6 0.869 0.938 2.521 0.690 0.629 1.994
20 (0.5,10) 6.1 19.67 0.543 0.541 1.111 0.424 0.473 0.957
20 (0.5,20) 9.3 56.92 0.419 0.396 0.897 0.335 0.294 0.759
20 (1,5) 0 1985 496.3 235.2 5464 458.0 102.1 9648
20 (1,10) 2.143 6549 48.71 32.95 245.7 24.89 23.69 174.2
20 (1,20) 4.8 3189 6.223 6.422 19.26 4.733 3.808 12.04

Average 4.257 1995 92.19 46.09 955.7 81.51 21.83 1639

25 (0.5,5) 2.6 - 218.6 97.39 3390 42.47 41.41 727.6
25 (0.5,10) 6.4 - 6.876 6.253 22.05 6.361 5.287 14.56
25 (0.5,20) 10.8 - 3.029 3.356 11.725 2.544 2.127 5.156

Average 6.6 - 76.19 35.66 1141 17.12 16.27 249.1

2 10 (0.5,5) 16.1 0.185 0.036 0.038 0.061 0.028 0.031 0.043
10 (0.5,10) 22 0.117 0.031 0.038 0.043 0.025 0.023 0.040
10 (0.5,20) 30.11 0.252 0.040 0.042 0.044 0.034 0.033 0.048
10 (1,5) 4.6 1.316 0.260 0.227 0.166 0.110 0.201 0.200
10 (1,10) 8.4 0.833 0.111 0.106 0.151 0.108 0.117 0.136
10 (1,20) 11.6 0.736 0.120 0.110 0.141 0.131 0.098 0.136

Average 15.46 0.573 0.100 0.094 0.101 0.073 0.084 0.101

15 (0.5,5) 17.7 1.967 0.160 0.182 0.256 0.164 0.141 0.263
15 (0.5,10) 23.3 2.476 0.198 0.150 0.241 0.183 0.169 0.259
15 (0.5,20) 27.2 4.525 0.221 0.191 0.269 0.173 0.206 0.260
15 (1,5) 2.1 660.9 2.440 3.639 10.80 2.430 2.051 7.077
15 (1,10) 6.5 118.2 0.925 0.911 1.697 0.829 0.855 1.590
15 (1,20) 11.7 53.32 0.723 0.753 1.427 0.621 0.664 1.203

Average 14.75 140.2 0.778 0.971 2.449 0.733 0.681 1.775

20 (0.5,5) 8.3 72.89 0.661 0.646 1.377 0.593 0.641 1.580
20 (0.5,10) 19.2 68.31 0.544 0.528 1.057 0.545 0.517 1.289
20 (0.5,20) 26.8 34.82 0.521 0.582 1.304 0.517 0.571 1.186
20 (1,5) 0 1313 103.2 38.98 3452 16.93 33.99 2472
20 (1,10) 4.125 5659 23.31 17.48 95.82 13.71 12.45 68.51
20 (1,20) 10.11 1094 5.451 6.179 13.59 5.029 4.203 9.496

Average 11.42 1374 22.28 10.73 594.2 6.223 8.730 425.7

25 (0.5,5) 8.3 - 3886 935.3 15452 276.2 219.9 5077
25 (0.5,10) 17.7 - 5.649 5.672 17.37 4.408 4.231 13.89
25 (0.5,20) 23.1 - 4.142 4.364 9.869 3.760 3.280 10.88

Average 16.4 - 1298 315.1 5159 94.80 75.81 1701

Table 12: Computation times of the reload instances averaged over 10 generated instances for given
values of n, p and c.
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Instance Number of branching nodes

Class n (p, c) SCIP-SDP KT CG1 CG2 SEC-simple SEC SEC-CG

1 10 (0.5,5) 19.7 1.1 1.7 1.4 0.7 0.7 0.8
10 (0.5,10) 16.6 2.2 2.1 3.8 0.8 0.7 0.8
10 (0.5,20) 43.4 4.3 3.9 0.7 0.7 1.8 2.6
10 (1,5) 132 125.9 173.1 168.6 74.6 69.4 99.4
10 (1,10) 115 79 82.4 72.3 43.2 32.5 43.4
10 (1,20) 46.5 15.4 15.4 11.6 9.5 4.6 7.1

Average 62.2 37.98 46.433 43.06 21.58 18.28 25.68

15 (0.5,5) 155.9 99.4 92.9 111 73.5 67 53.2
15 (0.5,10) 91.8 70.9 105.1 76.9 45.7 28.4 46.8
15 (0.5,20) 48.3 34.9 17.3 28.3 11.6 12.9 7.6
15 (1,5) 3001 3606 2506 3607 2643 2215 2084
15 (1,10) 1692 1223 1176 1293 921.2 533.8 618.6
15 (1,20) 405.1 279.4 170.5 241.1 157.1 140.1 108.5

Average 899.3 885.8 678.1 893.2 642.0 499.5 486.5

20 (0.5,5) 1929 1312.8 1522 1534 991 637.5 685.4
20 (0.5,10) 293.6 336 369.1 266.7 159.9 148.5 152
20 (0.5,20) 459.4 188.4 175.6 165.9 97.7 50.3 75.7
20 (1,5) 13529 65622 54077 44724 125560 27878 67724
20 (1,10) 18062 29287 21583 18798 15521 10308 12110
20 (1,20) 4749 3114 3400 3312 2499 1525 1507

Average 6503 16643 13521 11467 24138 6758 13709

25 (0.5,5) - 131626 73671 106956 45480 34390 40735
25 (0.5,10) - 6051 5405 6423 5548 4605 3778
25 (0.5,20) - 3123 3280 3827 2352 1823 1500

Average - 46933 27452 39069 17793 13606 15337

2 10 (0.5,5) 19 5.6 5.6 0.9 3.7 4.2 0.9
10 (0.5,10) 7.778 2.667 1.5556 2.333 1.556 0.778 2.444
10 (0.5,20) 29.56 3.889 3.556 3.333 3.222 3.888 2.667
10 (1,5) 88.6 63.4 68.1 76.6 46.9 22.2 68.1
10 (1,10) 35.6 27.2 35 35.4 18 17 16.7
10 (1,20) 28.5 27.3 21.6 19.5 16.2 18.1 20.3

Average 34.84 21.68 22.59 23.01 14.93 11.03 18.52

15 (0.5,5) 81.2 73.7 105.1 75.3 58.2 43.1 46
15 (0.5,10) 93.5 67.6 50.5 81.6 63.3 49.1 65.4
15 (0.5,20) 188.1 67.7 65.8 65.1 48.7 38.6 50.3
15 (1,5) 5588 3306 5257 4394 4016 2734 2594
15 (1,10) 715.2 1052 861.3 778.3 669 619.9 502.4
15 (1,20) 317.8 442.3 393.3 451.3 349 307.7 315.8

Average 1164 834.9 1122 974.4 867.4 632.1 595.6

20 (0.5,5) 664.2 689.6 596.8 469.2 335.9 335.2 426.1
20 (0.5,10) 746.9 317 218.8 240.3 237.3 195.1 153.7
20 (0.5,20) 372.8 374 474.4 320.6 258.9 340.2 328.6
20 (1,5) 7213 23766 16086 44835 8717 9182 20919
20 (1,10) 13725 15129 11001 10907 8124 6421 5870
20 (1,20) 2091 2995 2789 3253 2564 1753 1667

Average 4136 7212 5195 10004 3373 3038 4894

25 (0.5,5) - 353522 222429 311712 100967 86978 107318
25 (0.5,10) - 4673 3975 4156 3335 2965 3421
25 (0.5,20) - 2766 2973 2779 2583 2537 2533

Average - 120320 76459 106216 35628 30827 37757

Table 13: Number of branching nodes for the reload instances averaged over 10 generated instances
for given values of n, p and c.
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n p c Class OPT SEC-simple SEC

21 0.5 5 1 2 0.787 0.771
2 4 0.738 0.751

10 1 8 2.767 2.342
2 13 0.521 0.543

20 1 9 0.501 0.841
2 31 0.395 0.407

0.8 5 1 2 169.1 231.1
2 4 198.8 249.6

10 1 4 4.973 7.479
2 8 6.993 9.556

20 1 6 2.479 1.680
2 13 2.157 3.265

22 0.5 5 1 2 2.469 8.384
2 9 0.681 0.851

10 1 8 1.530 1.143
2 19 0.481 0.782

20 1 10 0.890 0.808
2 27 1.289 1.193

0.8 5 1 2 399.4 764.4
2 0 17.18 11.65

10 1 3 8.797 7.626
2 8 62.52 24.11

20 1 6 6.435 7.146
2 17 13.23 8.686

23 0.5 5 1 2 8.852 8.528
2 10 27.23 20.34

10 1 7 3.754 2.791
2 10 7.896 4.142

20 1 11 0.460 0.395
2 19 1.128 0.870

23 0.8 5 1 0 84.41 27.89
2 4 3655 2366

10 1 3 52.55 59.89
2 8 153.8 63.12

20 1 7 19.18 10.07
2 14 12.80 12.12

n p c Class OPT SEC-simple SEC

24 0.5 5 1 3 37.95 29.45
2 10 13.90 17.00

10 1 8 1.947 2.045
2 22 1.295 2.501

20 1 11 1.636 1.631
2 28 5.907 9.120

0.8 5 1 - - -
2 2 8249 10517

10 1 3 101.8 132.4
2 6 168.2 143.9

20 1 7 6.754 8.559
2 13 31.22 44.26

25 0.5 5 1 2 88.49 57.76
2 8 1.701 1.367

10 1 8 18.29 18.18
2 18 18.21 17.08

20 1 11 2.821 1.554
2 18 1.431 1.838

0.8 5 1 0 9479 273.1
2 4 14175 8042

10 1 2 68.52 94.96
2 8 30.53 55.61

20 1 6 35.54 49.12
2 13 68.26 67.23

26 0.5 5 1 2 491.6 562.8
2 6 13.74 11.77

10 1 6 18.41 16.05
2 18 6.667 8.945

20 1 9 1.877 1.800
2 26 8.740 8.587

26 0.8 5 1 - - -
2 - - -

10 1 3 127.6 159.1
2 8 3327 3104

20 1 7 183.3 86.4
2 12 115.7 92.15

Table 14: Computation times of SEC-simple and SEC on 72 additional reload instances for given
values of n, p and c.
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