
An Algorithm for Stochastic Convex-Concave Fractional
Programs with Applications to Production Efficiency and

Equitable Resource Allocation

Shibshankar Deya, Cheolmin Kima, Sanjay Mehrotraa,∗

aDepartment of Industrial Engineering and Management Sciences, Northwestern
University, Evanston, IL, 60208

Abstract

We propose an algorithm to solve convex and concave fractional programs and

their stochastic counterparts in a common framework. Our approach is based on

a novel reformulation that involves differences of square terms in the constraints,

and subsequent employment of piecewise-linear approximations of the concave

terms. Using the branch-and-bound (B&B) framework, our algorithm adap-

tively refines the piecewise-linear approximations and iteratively solves convex

approximation problems. The convergence analysis provides a bound on the

optimality gap as a function of approximation errors. Based on this bound,

we prove that the proposed B&B algorithm terminates in a finite number of

iterations and the worst-case bound to obtain an ϵ-optimal solution recipro-

cally depends on the square root of ϵ. Numerical experiments on Cobb-Douglas

production efficiency and equitable resource allocation problems support that

the algorithm efficiently finds a highly accurate solution while significantly out-

performing the benchmark algorithms for all the small size problem instances

solved. A modified branching strategy that takes the advantage of non-linearity

in convex functions further improves the performance. Results are also discussed

when solving a dual reformulation and using a cutting surface algorithm to solve

∗Corresponding author
Email addresses: shibshankardey2025@u.northwestern.edu (Shibshankar Dey),

cheolminkim2019@u.northwestern.edu (Cheolmin Kim), mehrotra@northwestern.edu
(Sanjay Mehrotra)

Preprint submitted to European Journal of Operational Research December 8, 2023

distributionally robust counterpart of the Cobb-Douglas example models.

Keywords: Fractional programming, Second order cone approximation,

Branch and bound algorithm, Stochastic production efficiency problem,

Equitable resource allocation

1. Introduction

Let us consider fractional optimization models of the form

min
x∈X

K∑
k=1

pk
fk(x)

gk(x)
, (1)

where X ⊆ Rn and pk ≥ 0 for every k ∈ [K] := {1, 2, · · · ,K}. If the vector

p ∈ RK+ satisfies
∑K
k=1 pk = 1, the model can be viewed as a stochastic fractional

program with finite support. Moreover, by taking pk = 1/K the model can5

be understood as a sample average approximation of a stochastic fractional

program:

min
x∈X

h̄(x) := EP

[
f̃(x)

g̃(x)

]
, (2)

where the expectation is defined using a measure from the probability space

(Ω,B,P), and f̃(·), g̃(·) denote functions with random parameters following a

probability distribution P.10

We study two optimization models of (1). In the first model, fk are convex

and gk are concave, and fk(x) > 0 and gk(x) > 0 for all x ∈ X and k ∈ [K].

This model is called the convex fractional program. The second model is the

concave fractional program, which has the form of maxx∈X
∑K
k=1 pk

f ′
k(x)
g′k(x)

where

f ′k are concave and g′k are convex, and f ′k(x) > 0 and g′k(x) > 0 for all x ∈ X15

and k ∈ [K]. Converting it to a minimization problem, we can represent this

model in the form of (1). These two models have been studied independently

in the literature. In this work, we provide a unified framework that covers not

only the convex and concave fractional programs but also their distributionally

robust counterparts. We give two motivating examples below.20

2

1.1. Motivating Examples

Our consideration of (1) is motivated from the following two applications.

The first one is the stochastic version of the equitable resource allocation prob-

lem, which aims to allocate resources to entities in an equitable manner. This

allocation model is useful when the available resources from the suppliers are in25

short supply. The second application model is a stochastic generalization of the

classical Cobb-Douglas model for measuring production efficiency.

1.1.1. Stochastic Equitable Resource Allocation Problem

Suppose that we have m suppliers and n customers. Let ri be the amount

of resources supplier i can provide and dj be the requirement of customer j.30

Let bij be the benefit each unit resource from supplier i brings to customer

j. The decision variable xij allocates resources from supplier i to customer j.

A classical model, without equity considerations, maximizes total benefits by

solving

θ∗ := max

m∑
i=1

n∑
j=1

bijxij

s.t.
n∑
j=1

xij ≤ ri,
m∑
i=1

bijxij ≤ dj , xij ≥ 0, i ∈ [m], j ∈ [n].

(3)

However, a solution to (3) may lead to unfair allocation of available resources to35

the customers. An equitable resource allocation model balances benefit maxi-

mization with allocation equity. The objective function in the equitable resource

allocation model minimizes an equity-based objective function, while ensuring

that the total benefits from the allocation do not fall below a certain threshold

δθ∗, where δ ∈ [0, 1] and θ∗ is the maximum value in (3). With this considera-40

3

tion, the equitable resource allocation problem is formulated as

min

n∑
j=1

∣∣∣∣∣
∑m
i=1 bijxij∑m

i=1

∑n
j=1 bijxij

− 1

n

∣∣∣∣∣
s.t.

n∑
j=1

xij ≤ ri,
m∑
i=1

bijxij ≤ dj , xij ≥ 0, i ∈ [m], j ∈ [n],

m∑
i=1

n∑
j=1

bijxij ≥ δθ∗.

(4)

This model allocates the resources so that each customer achieves a nearly

equal share of the total benefit. In problem (4), f(x) =
∑n
j=1 |

∑m
i=1 bijxij −∑m

i=1

∑n
j=1 bijxij |/n and g(x) = |

∑m
i=1

∑n
j=1 bijxij |.

∑m
i=1

∑n
j=1 bijxij ≥ 0

holds for all x ≥ 0, since bij ≥ 0, thus g(x) :=
∑m
i=1

∑n
j=1 bijxij is a linear45

function and the model in (4) is a convex fractional program.

In the above model if parameters b, r, d are random and they follow a discrete

probability distribution, we have the stochastic equitable resource allocation

problem:

min

K∑
k=1

pk

n∑
j=1

∣∣∣∣∣
∑m
i=1 b

k
ijxij∑m

i=1

∑n
j=1 b

k
ijxij

− 1

n

∣∣∣∣∣
s.t.

n∑
j=1

xij ≤ rki ,
m∑
i=1

bkijxij ≤ dkj , xij ≥ 0, i ∈ [m], j ∈ [n], k ∈ [K]

K∑
k=1

pk

m∑
i=1

n∑
j=1

bkijxij ≥ δθ
∗
.

(5)

where K is the total number of scenarios, pk ≥ 0 is the probability of scenario k,50 ∑K
k=1 pk = 1, all scenario specific parameters are superscripted with k, δ ∈ [0, 1]

has same interpretation as discussed for (4) and θ
∗

is the optimal value to

stochastic variant of (3) as follows:

θ
∗
:= max

K∑
k=1

pk

m∑
i=1

n∑
j=1

bkijxij (6)

s.t.
n∑
j=1

xij ≤ rki ,
m∑
i=1

bkijxij ≤ dkj , xij ≥ 0, i ∈ [m], j ∈ [n], k ∈ [K].

4

1.1.2. Stochastic Cobb-Douglas Production Efficiency Problem

The Cobb-Douglas production function (Cobb & Douglas, 1928) aggregates55

economy-wide information. Historically, it was the first production function

that was estimated and used for analysis. The analysis of this function re-

sulted in a landmark step in modeling macroeconomics from the microeconomics

perspective (Filipe & Adams, 2005). The Cobb-Douglas model in (Bradley &

Frey Jr, 1974) uses the profit function of a firm as f(x) = a0
∏n
i=1 x

ai
i where60

xj are production factors, and a1, a2, · · · , an are nonnegative parameters such

that
∑n
i=1 ai = 1. Due to this constraint on a1, a2, · · · , an, the function f

is concave in x. The set X ∈ Rn++ describes the domain of production fac-

tors. The total cost is a linear function of production factors and it is given by

g(x) =
∑n
i=1 cixi + c0. The production efficiency problem is formulated as65

max
x∈X

a0
∏n
i=1 x

ai
i∑n

i=1 cixi + c0
. (7)

In this model, we may assume that the parameters follow a probability dis-

tribution P. This results in the stochastic programming generalization of the

Cobb-Douglas model. More generally, assuming that the model parameters a

and c follow an unknown probability distribution P, which is contained in a set

of probability distributions D, called an ambiguity set, a distributionally robust70

Cobb-Douglas production efficiency model can be formulated as:

max
x∈X

min
P∈D

E(ã,c̃)∼P

[
ã0
∏n
i=1 x

ãi
j∑n

i=1 c̃ixi + c̃0

]
. (8)

The model (8) specializes to a concave fractional program if the set D is a

singleton and its element P has finite support.

1.1.3. Other Applications

While the development of solution approaches in this paper is motivated from75

(4) and (8), the developed methodology can be applied to other applications

such as those arising in information theory (Meister & Oettli, 1967; Aggarwal

& Sharma, 1970), cluster analysis (Rao, 1971), portfolio investment problems

5

(Ziemba et al., 2013) and inventory problems (Hodgson & Lowe, 1982). For

more applications, see Stancu-Minasian (1997).80

1.2. Contributions

This paper studies convex and concave fractional programming problems and

their stochastic counterparts in a common framework. This is a non-convex

optimization problem. We reformulate the problem through piecewise linear

approximation by using the concept introduced in Kim & Mehrotra (2021) for85

stochastic fractional linear programs. We show that the sample average approx-

imation (SAA) of stochastic convex and concave fractional programs converge

to its true optima with increasing sample size, and also provide a result sim-

ilar to the central limit theorem. An algorithm is developed that adaptively

refines this piecewise-linear approximation by dividing a hyper-rectangle and90

solving a convex approximation problem for each sub-hyper-rectangle to update

the lower bound and the incumbent solution. The basic idea of approximating

the difference of quadratic functions using a piecewise-linear approximation was

introduced in Kim & Mehrotra (2021) in the context of linear fractional pro-

gramming and its stochastic counterparts. This work generalizes its applicability95

to a much broader setting. A convergence analysis shows that the algorithm

attains an ϵ-optimal solution after a finite number of iterations. Specifically,

the worst-case bound for the number of iterations is in the order of O(1/
√
ϵ).

This is an improvement of O(1/
√
ϵ) over the previous results, and indicates its

efficiency in finding a more accurate solution.100

The experimental results show that with a 12-hour time limit the pro-

posed branch-and-bound algorithm outperforms benchmark algorithms on test

instances for both problems. For 10-scenario stochastic resource allocation prob-

lem, the proposed algorithm achieves given relative optimality gap within the

time limit for majority of the instances. Two to four digit accuracy is achieved105

in the remaining instances. However, previously known benchmark algorithms

cannot achieve any digit accuracy. For the Cobb-Douglas instances of dimension

up to 15, the proposed algorithm attains the desired solution accuracy for all

6

cases while benchmark algorithms never attain this accuracy when used with

a 12 hour time limit. A novel LP-relaxation based branching strategy further110

improves the efficiency by about 50% on average.

We discuss two solution approaches for the distributionally robust formula-

tions. They are based on a dual reformulation and the cutting surface algorithm

in Section 6. The dual approach is applicable when it is possible to dualize the

ambiguity set D without an optimality gap and the introduction of dual vari-115

ables does not change the structure of the model formulation, as in the case

when D has a polyhedral description. The cutting surface approach allows

the use of a general convex set when specifying D. For distributionally robust

Cobb-Douglas production efficiency problems, these solution approaches attain

the desired solution accuracy with a little extra computation if nominal data is120

uniformly distributed. However, the problems become more challenging to solve

if the nominal data follows a skewed distribution.

2. Literature Review

2.1. Algorithms for Convex Fractional Program

Konno et al. (1994) considers a generalized convex multiplicative program-125

ming problem which minimizes r(x) +
∑K
k=1 fk(x)hk(x) over a compact and

convex set X where fk(x) > 0, hk(x) > 0, k ∈ [K] and r(x) are convex func-

tions. This optimization problem specializes to the convex-concave fractional

program when r(x) = 0 and hk(x) = 1/gk(x) for concave gk. This work presents

an outer approximation algorithm that solves a sequence of approximation prob-130

lems. The approximation problems are concave minimization problems and the

feasible region is successively refined through linear cuts. The algorithm attains

ϵ-optimal solution after a finite number of iterations.

Freund & Jarre (2001) and Benson (2001) present branch and bound al-

gorithms to solve the convex-concave fractional program. In Freund & Jarre135

(2001), a K-dimensional hyper-rectangle containing the Cartesian product of

the ranges of gk are branched. For each hyper-rectangle, they solve a convex

7

optimization problem using an interior point method, and use the resulting La-

grange multipliers to obtain a linear function, which results in lower bounds

for two sub-hyper-rectangles. On the other hand, Benson (2001) branches a140

2K-dimensional hyper-rectangle, which contains the Cartesian product of the

ranges of fk and gk. For each hyper-rectangle, it solves two different convex op-

timization problems to obtain a lower bound. The branch-and-bound algorithm

in Benson (2001) is shown to obtain an ϵ-optimal solution in a finite number of

iterations.145

2.2. Algorithms for Concave Fractional Program

Dur et al. (2001), Benson (2002a), and Benson (2002b) present branch and

bound algorithms to solve the concave-convex fractional program. Dur et al.

(2001) introduces K auxiliary variables for fractional terms, and successively

branches them and solves convex approximation problems in a branch-and-150

bound framework. In Benson (2002a), K auxiliary variables are introduced for

reciprocals of gk. By branching them and solving convex approximation prob-

lems, it finds an ϵ-optimal solution. The convergence result states that either

the algorithm terminates after a finite number of iterations or every accumula-

tion point of a sequence of incumbent solutions is an optimal solution. On the155

other hand, Benson (2002b) introduces 2K auxiliary variables for fk and gk.

K auxiliary variables for gk are branched and convex relaxation problems are

derived using the McCormick envelope (McCormick, 1976). The convergence

result in Benson (2002b) is similar to the one given for the algorithm in Benson

(2002a).160

In additional literature, Gruzdeva & Strekalovsky (2018) developed a solu-

tion approach for general functions in the fractional form. This approach can be

adapted to convex-concave fractional programs. However, it does not provide

a convergence and performance guarantee. The algorithm in Jiao & Liu (2017)

for the sum of ratios problem is limited to quadratic functions in the numerator165

and denominator. Hu et al. (2019) propose an incremental quasi-subgradient

method to solve the sum of convex-concave ratio problem. A variant of their

8

method randomly chooses an element from the summation terms. This algo-

rithm is shown to probabilistically converge. However, the analysis makes a

strong homogeneity assumption that all the fractional terms in the objective, if170

optimized individually, have at least one common optimal point.

We also observe that the Cobb-Douglas production efficiency problem can

be treated as a variant of a general geometric program. Algorithms for general

geometric programming that are developed in the recent literature such as Wang

& Liang (2005) can thus also be leveraged to solve this specific problem.175

3. Convex Approximations

In this section, we propose a general framework that covers convex and

concave fractional programs and their stochastic counterparts as special cases.

We introduce a reformulation that involves difference-of-convex constraints and

present the idea of piecewise-linear approximation.180

3.1. A General Framework

Let us consider a fractional program of the form

min
θ,x,c,d,γ,π

θ

s.t. fk(x) ≤ ck ≤ αk, σβk ≤ σdk ≤ gk(x),
ck
dk
≤ γk, k ∈ [K],

fTπ ≤ θ, HTπ ≥ γ, Pγ ≤ θ1J , x ∈ X , θ ∈ R, γ ∈ RK , π ∈ RL,
(9)

where x ∈ Rn, X ⊆ Rn, and fk and gk are numerator and denominator func-

tions, respectively. The functions fk and gk are bounded by variables ck and dk,

which have an upper bound through constants αk and βk. The fractional terms185

ck/dk, are the only non-convex terms in this model. The vector γ affects the

objective value θ through either fTπ ≤ θ, HTπ ≥ γ or Pγ ≤ θ1J where J is the

number of rows of probability matrix P . In stochastic programs (1), it is only

a row vector of p1, p2, . . . , pK . For distributionally robust counterpart, if the

9

cutting surface method is used, matrix P represents the set of probability dis-190

tributions generated in the algorithm from sequentially adding the probability

cuts as row vectors to the matrix (see Section 6.2 for details).

We make the following assumptions throughout the paper.

(A1) X ⊂ Rn is a non-empty compact and convex set.

(A2) fk are convex functions and gk are concave functions.195

(A3) P is a non-negative matrix in RJ×K .

(A4) P := {p |Hp = f, p ≥ 0} is a non-empty polytope in RK .

(A5) For σ = 1 we assume that 0 < fk(x) < ∞ and 0 < δg ≤ gk(x) < ∞ for

some positive constant δg for all x ∈ X , k ∈ [K]. maxx∈X fk(x) ≤ αk <∞

and 0 < βk ≤ minx∈X gk(x) for all k ∈ [K].200

(A6) For σ = −1 we assume that −∞ < fk(x) < 0 and −∞ < gk(x) ≤ −δg < 0

for some positive constant δg for all x ∈ X and k ∈ [K]; maxx∈X fk(x) ≤

αk ≤ 0 and maxx∈X −gk(x) ≤ βk <∞ for all k ∈ [K].

3.1.1. Convex Fractional Program

The convex fractional program has the form of maxx∈X
∑K
k=1 pkfk(x)/gk(x)205

where fk are convex and gk are concave for k ∈ [K], and fk(x) > 0 and gk(x) ≥

δg > 0 for all x ∈ X and k ∈ [K]. Let αk = maxx∈X fk(x), βk = minx∈X gk(x).

Since fk(x) > 0, gk(x) > 0 for all x ∈ X and k ∈ [K], we can write the convex

fractional program as

min θ

s.t. fk(x) ≤ ck ≤ αk, βk ≤ dk ≤ gk(x),
ck
dk
≤ γk, k ∈ [K],

pT γ ≤ θ, x ∈ X , θ ∈ R, γ ∈ RK .

(10)

This has the form of (9) with σ = 1. The constants αk are computed in a210

preprocessing step. It is problem specific, and discussed further in Section 7.

3.1.2. Concave Fractional Program

The concave fractional program has the form of maxx∈X
∑K
k=1 pkf

′
k(x)/g

′
k(x)

where f ′k are concave and g′k are convex for k ∈ [K], and f ′k(x) > 0 and g′k(x) > 0

10

for all x ∈ X and k ∈ [K]. Let αk = maxx∈X −f ′k(x), βk = maxx∈X g′k(x).215

Since f ′k(x) > 0 and g′k(x) > 0 for all x ∈ X and k ∈ [K], we can write it as

min θ

s.t. − f ′k(x) ≤ ck ≤ αk, g′k(x) ≤ dk ≤ βk,
ck
dk
≤ γk, k ∈ [K],

pT γ ≤ θ, x ∈ X , θ ∈ R, γ ∈ RK .

(11)

Note that the concave fractional program (11) is a special case of (9) with

σ := −1, fk := −f ′k, gk := −g′k.

3.1.3. Distributionally Robust Fractional Program

If the ambiguity set is polyhedral or convex, we can write a reformulation or220

a subproblem of a distributionally robust convex or concave fractional program

in the form of (9) (see Section 6).

3.2. Convergence of SAA of Stochastic Fractional Program

Let ϕ∗ := minx∈X h̄(x) and ϕ̂K be the objective value of a sample average

approximation (SAA) problem from K samples. We use the general theory225

from Shapiro (1991) to give a convergence result of SAA in our case. The SAA

convergence results in Shapiro (1991) rely on certain assumptions on a function

parameterized by random parameters. We state these results below.

Theorem 3.1. [Theorem 3.2, Shapiro (1991)] Let X be compact, {ψK} be a

sequence of random elements in Banach Space B(X), ψ̄ ∈ B(X) and X ∗(ψ̄)230

is the set of minimizer of ψ̄(x) over X . Suppose that
√
K(ψK − ψ̄) converges

in distribution to a random element Z of B(X). Let ϕ∗ := minx∈X ψ̄(x) and

ϕ̂K be the objective value of a sample average approximation problem from K

samples. Then
√
K (ϕ̂K − ϕ∗)

D−→ minx∈X∗(ψ̄) Z(x) too. In particular, if ψ̄(x)

attains its minimum over X at a unique point x∗ then
√
K (ϕ̂K −ϕ∗) converges235

in distribution to Z(x∗).

Theorem 3.2. [Theorem 3.3, Shapiro (1991)]. Suppose that ψ̄(x) has a unique

minimizer x∗ over X . Assume that the following three conditions are satisfied:

11

(a) the function ψ(x, ·) is measurable for every x ∈ X , (b) the expectation

E
[
ψ(x,w)2

]
is finite for some point x∗ ∈ X , (c) there exists a function L :240

Ω → R such that E
[
L(w)2

]
is finite and that |ψ(x, ω) − ψ(y, ω)| ≤ L(ω) ∥x −

y∥ ∀x, y ∈ X . Then
√
K (ϕ̂K − ϕ∗)

D−→ N (0, σ) with σ2 = E
[
ψ(x∗, w)2

]
−

(E [ψ(x∗, w)])
2.

We make the following additional assumptions for our SAA convergence

analysis of the stochastic convex fractional program (2) (σ = 1 case). Analogous245

assumptions can be made to develop a similar proof for the stochastic concave

fractional programs (σ = −1).

(A7) The sample space Ω is compact.

(A8) For all ω ∈ Ω, the functions f(x, ω), g(x, ω) are bounded, and 0 <

δg ≤ g(x, ω). They satisfy |f(x, ω) − f(y, ω)| ≤ Lf (ω) ∥x − y∥, |g(x, ω) −250

g(y, ω)| ≤ Lg(ω) ∥x− y∥ ∀x, y ∈ X , ∀ω ∈ Ω, for some Lf (·), Lg(·) : Ω→

R. Moreover, Mf := maxω∈Ω Lf (ω),Mg := maxω∈Ω Lg(ω) exist.

A consequence of Assumption A7 is that f(x, ω), and g(x, ω) are L2 Lebesgue

integrable1 for all x ∈ X . Moreover, Lf (ω), Lg(ω) are also L2-Lebesgue inte-

grable for all x ∈ X . The following lemma is needed to use Theorems 3.1255

and 3.2 in our context. It shows that under Assumptions A7 and A8 sufficient

conditions in Theorems 3.1 and 3.2 are satisfied.

Lemma 3.1. Let h(x, ω) = f(x, ω)/g(x, ω). Then under Assumptions (A7)-

(A8) the following holds:

a) h(x, ω) is L2 Lebesgue integrable for some x0 ∈ X , i.e., E[h(x0, ω)2] <∞.260

b) There exists a Lipschitz function Lh(·) : Ω → R such that |h(x, ω) −

h(y, ω)| ≤ Lh(ω)∥x − y∥, Lh(ω) is finite for all x, y ∈ X and ω ∈ Ω and

E[Lh(ω)2] is finite.

Proof. Part (a) follows because E[h(x0, ω)2] = E[f(x0, ω)2/g(x0, ω)2] ≤ E[f(x0, ω)2]/δ2g ,

δg > 0, E[f(x0, ω)2] is finite for all ω ∈ Ω (Assumption A8). We prove part (b)265

1 A measurable function f : Ω → R is called L2-Lebesgue integrable if
∫
Ω |f |2 dP < ∞.

12

by contradiction. The claim in part (b) can fail in two ways: (i) ∄ finite Lh(ω̂)

such that |h(x̂, ω̂)− h(ŷ, ω̂)| ≤ Lh(ω̂)∥x̂− ŷ∥ holds for some ω̂ ∈ Ω, x̂, ŷ ∈ X ; or

(ii) E[Lh(ω)2] is unbounded while (i) does not hold. Assume that (i) holds. It

implies that for a fixed x̂, ŷ (x̂ ̸= ŷ) ∈ X , and a fixed ω̂ ∈ Ω

1

∥x̂− ŷ∥

∣∣∣∣f(x̂, ω̂)g(x̂, ω̂)
− f(ŷ, ω̂)

g(ŷ, ω̂)

∣∣∣∣ is unbounded above

⇒ 1

∥x̂− ŷ∥
∣∣f(x̂, ω̂)g(ŷ, ω̂)− f(ŷ, ω̂)g(x̂, ω̂)

g(x̂, ω̂)g(ŷ, ω̂)

∣∣∣∣ is unbounded above

⇒ 1

∥x̂− ŷ∥
|f(x̂, ω̂)g(ŷ, ω̂)− f(ŷ, ω̂)g(x̂, ω̂)| is unbounded above since g(·, ω̂) ≥ δg > 0.

(12)

However,
1

∥x̂− ŷ∥
|f(x̂, ω̂)g(ŷ, ω̂)− f(ŷ, ω̂)g(x̂, ω̂)|

=
1

∥x̂− ŷ∥
|f(x̂, ω̂)g(ŷ, ω̂)− f(x̂, ω̂)g(x̂, ω̂) + f(x̂, ω̂)g(x̂, ω̂)− f(ŷ, ω̂)g(x̂, ω̂)|

≤ 1

∥x̂− ŷ∥
(
|f(x̂, ω̂)g(ŷ, ω̂)− f(x̂, ω̂)g(x̂, ω̂)|+ |f(x̂, ω̂)g(x̂, ω̂)− f(ŷ, ω̂)g(x̂, ω̂)|

)
≤ 1

∥x̂− ŷ∥
(
|f(x̂, ω̂)| |g(ŷ, ω̂)− g(x̂, ω̂)|+ g(x̂, ω̂) |f(x̂, ω̂)− f(ŷ, ω̂)|

)
≤ M̄(Lg(ω̂) + Lf (ω̂)), M̄ = max{|f(ŷ, ω̂)|, g(ŷ, ω̂)}

where M̄ is a constant due to the boundedness assumption (Assumption A8).270

By letting, Lh(ω̂) = M̄(Lf (ω̂)+Lg(ω̂)), we have a contradiction. Now since

Lf (ω) ≤Mf , Lg(ω) ≤Mg (Assumption A8), Lh(ω) ≤ M̄(Mf+Mg). Therefore,

E[Lh(ω)2] ≤ M̄2(Mf +Mg)
2.

Our next result (Theorem 3.3) states the convergence of ϕ̂K to ϕ∗ in dis-

tribution under some regularity conditions. It is a direct consequence of the275

Theorems 3.1 and 3.2 from Shapiro (1991) and Lemma 3.1.

Theorem 3.3. Let X ∗(h̄) be the set of minimizers of h̄(x) over X and Z(x) is a

random element in Banach space for x ∈ X ∗(h̄). Then under Assumptions (A7)-

(A8),
√
K (ϕ̂K−ϕ∗) converges in distribution to minx∈X∗(h̄) Z(x). In particular,

if X ∗(h̄) = {x∗}, i.e., the minimizer is unique, then
√
K (ϕ̂K − ϕ∗)

D−→ N (0, σ)280

with σ2 = E
[
h(x∗, w)2

]
− (E [h(x∗, w)])

2.

13

Proof. Recall that L2 space is an example of Banach space B(X). Under As-

sumptions A7 and A8, the sufficient conditions of Theorems 3.1 and 3.2 are

satisfied due to Lemma 3.1.

Next we provide a convergence result for the reformulated problem (10).285

Similar result can also be established for (11).

Theorem 3.4. Let Assumptions (A1)-(A8) hold and problem (10) has optimal

value ϕ̂rK for some finite K. Assume that x∗ is the unique minimizer to the

problem minx∈X E[f(x, ω)/g(x, ω)]. Then
√
K (ϕ̂rK − ϕ∗)

D−→ N (0, σ) with σ2 =

E
[
h(x∗, w)2

]
− (E [h(x∗, w)])

2.290

Proof. Let ζK =
√
K (ϕ̂K − ϕ∗) and ζrK =

√
K (ϕ̂rK − ϕ∗). Then from Theo-

rem 3.3, ζK
D−→ N (0, σ) with σ2 = E

[
h(x∗, w)2

]
− (E [h(x∗, w)])

2. Let Φσ(·) be

the CDF of N (0, σ). For any ϵ > 0,

Φσ(a− ϵ) ≤ lim
K→∞

Pr(ζK ≤ a) ≤ Φσ(a+ ϵ) (13)

For any finite K, optimal value ϕ̂rK = ϕ̂K (see Proposition (3.1)). Hence,

Φσ(a− ϵ) ≤ lim
K→∞

Pr(ζrK ≤ a) ≤ Φσ(a+ ϵ) (14)

Since Φσ(a) is continuous at every a, both Φσ(a−ϵ),Φσ(a+ϵ) converge to Φσ(a)295

as ϵ→ 0+.

3.3. Reformulation of General Convex-Concave Fractional Program Framework

In formulation (9), we have dk > 0 (see Proof of Proposition 3.1 in Ap-

pendix A for details). Multiplying dk to ck/dk ≤ γk, we obtain ck ≤ dkγk for

all k ∈ [K]. Let300

wk :=
γk + dk

2
, vk :=

γk − dk
2

. (15)

Using dkγk = w2
k− v2k, we represent the constraints as ck+ v2k ≤ w2

k for k ∈ [K].

This is a non-convex constraint due to the square term on the right-hand side

14

of the inequality. Using a convex set

S =


(x, c, d, θ, γ, π, w, v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fk(x) ≤ ck ≤ αk, σβk ≤ σdk ≤ gk(x), k ∈ [K],

γk + dk = 2wk, γk − dk = 2vk, k ∈ [K],

fTπ ≤ θ,HTπ ≥ γ, Pγ ≤ θ1J
x ∈ X , c ∈ RK , d ∈ RK , θ ∈ R,

γ ∈ RK , π ∈ RL, w ∈ RK , v ∈ RK .


,

(16)

we obtain an alternative optimization problem of the form

ϑ∗ := min θ

s.t. ck + v2k ≤ w2
k, k ∈ [K], (x, c, d, θ, γ, π, w, v) ∈ S.

(17)

Proposition 3.1. Two optimization problems (9) and (17) are equivalent:305

• If (x∗, c∗, d∗, θ∗, γ∗, π∗) is an optimal solution to (9), then the solution

(x∗, ĉ, d̂, θ∗, γ̂, π∗, ŵ, v̂) such that

ĉk = fk(x
∗), d̂k = σgk(x

∗), γ̂k =
ĉk

d̂k
, ŵk =

γ̂k + d̂k
2

, v̂k =
γ̂k − d̂k

2
,

for all k ∈ [K] is an optimal solution to (17).

• If (x∗, c∗, d∗, θ∗, γ∗, π∗, w∗, v∗) is an optimal solution to (17), the solution

(x∗, c∗, d∗, θ∗, γ∗, π∗) is an optimal solution to (9).310

Proof. See Appendix A

3.3.1. Piecewise-Linear Approximations

The reformulated problem (17) has K non-convex constraints of the form

ck + v2k ≤ w2
k for k ∈ [K]. To relax these non-convex constraints, we consider

piecewise-linear approximation of w2
k. Let Wk := (w1

k, · · · ,w
Nk

k) be a set of315

points such that w1
k ≤ · · · ≤ wNk and 1 ≤ j < Nk. The slope of a line

passing through two points
(
wjk, (w

j
k)

2
)

and
(
wj+1
k , (wj+1

k)2
)

on the (wk, w
2
k)

curve is
(
(wjk)

2 − (wj+1
k)2

)
/(wjk − w

j+1
k) = (wjk + wj+1

k). The intercept of the

line with the vertical axis is (wjk)
2− (wjk+w

j+1
k)wjk = −wjkw

j+1
k . Therefore, the

15

equation of the line passing through consecutive points of Wk is u(wk;Wk) =320

(wjk+wj+1
k)wk−wjkw

j+1
k , 1 ≤ j < Nk. Thus we define a piecewise-linear function

as

u(wk;Wk) := max
1≤j<Nk

(wjk + wj+1
k)wk − wjkw

j+1
k . (18)

Proposition 3.2. For wk ∈ [w1
k,w

Nk

k], let j be an index such that wjk ≤ wk ≤

wj+1
k . Then, we have w2

k ≤ (wjk + wj+1
k)wk − wjkw

j+1
k ≤ u(wk;Wk). Moreover,

we have325

(wjk + wj+1
k)wk − wjkw

j+1
k − w2

k ≤

(
wjk − wj+1

k

2

)2

. (19)

Proof. We obtain the desired result by observing that (wjk+wj+1
k)wk−wjkw

j+1
k −

w2
k = −(wk−wjk + wj+1

k /2)2+(wjk − wj+1
k /2)2 ≥ 0 for any wk ∈ [wj ,wj+1].

Using the piecewise-linear function (18) to approximate the square term w2
k

in (17), we obtain an approximation problem of the form

ϑ̄(W1, · · · ,Wk) := min θ

s.t. ck + v2k ≤ u(wk;Wk), w1
k ≤ wk ≤ wNk

k , k ∈ [K],

(x, c, d, θ, γ, π, w, v) ∈ S.
(20)

The following proposition states that ϑ̄(W1, · · · ,Wk) serves as a lower bound of330

ϑ∗(W1, · · · ,Wk) defined as

ϑ∗(W1, · · · ,Wk) := min θ

s.t. ck + v2k ≤ w2
k, w1

k ≤ wk ≤ wNk

k , k ∈ [K],

(x, c, d, θ, γ, π, w, v) ∈ S.

(21)

Proposition 3.3. Every feasible solution to (21) is also feasible to (20). There-

fore, ϑ̄(W1, · · · ,Wk) ≤ ϑ∗(W1, · · · ,Wk).

Proof. It follows using Proposition 3.2.

In order to model the piecewise linear function u(wk;Wk), we can use binary335

variables with SOS2 constraints. However, in our experience solving this mixed

binary convex approximation problem is computationally costly especially when

16

Nk is large. Instead of solving this mixed binary convex program, we develop

a spatial branch-and-bound algorithm which adaptively refines piecewise linear

approximations by dividing the space of (w1, w2, · · · , wK) into small hyper-340

rectangles and solves convex approximation problems for sub-hyper-rectangles.

4. An Adaptive Branch-and-Bound Algorithm

Using the idea of piecewise-linear approximations, we introduce a spatial

branch-and-bound algorithm to obtain an ϵ-optimal solution to (17). Starting

with an initial hyper-rectangle, the algorithm successively breaks it into smaller345

hyper-rectangles and solves a convex approximation problem for each sub-hyper-

rectangle to update the lower bound and the incumbent solution. The algorithm

repeats this until the optimality gap becomes smaller than a tolerance level ϵ.

4.1. Initial Hyper-Rectangle

To construct an initial hyper-rectangle, we consider lower and upper bounds350

of wk. Let γmk and γMk be lower and upper bounds of fk(x)/gk(x) subject to x ∈

X for each k ∈ [K]. Since gk(x) ̸= 0 for all x ∈ X and X is a compact set, such

bounds are well-defined for every k ∈ [K]. Using the definition of wk in (15),

we compute wmk and wMk using the bounds of γk and dk as wmk = γmk + dmk and

wMk = γMk +dMk where dmk and dMk are lower and upper bounds of |gk(x)| subject355

to x ∈ X for k ∈ [K]. Using the bounds on wk, we construct the initial hyper-

rectangle B0 := [wm1 ,wM1]× [wm2 ,wM2]× · · · × [wmK ,w
M
K]. If gk is linear, we can

compute tight bounds of dmk and dMk by solving linear programming problems.

For some applications such as equitable resource allocation and Cobb-Doglous

production efficiency problems, we are also able to compute tight bounds of γmk360

or γMk using the Charnes-Cooper transformation (Charnes & Cooper, 1962) as

illustrated in Section 7.

4.2. Approximation Problem

Let B := [wa1 ,wb1]× [wa2 ,wb2]× · · · × [waK ,w
b
K] be a hyper-rectangle such that

B ⊂ B0. For each k ∈ [K], we use the line passing through (wak, (w
a
k)

2) and365

17

(wbk, (w
b
k)

2) to approximate w2
k in the interval of [wak,w

b
k]. By Proposition 3.2,

for wk ∈ [wak,w
b
k], we have w2

k ≤ (wak + wbk)wk − wakw
b
k. Using this inequality,

we obtain a convex approximation problem of the form

ϑ̄(B) :=min θ

s.t. ck + v2k ≤ (wak + wbk)wk − wakw
b
k, wak ≤ wk ≤ wbk, k ∈ [K],

(x, c, d, θ, γ, π, w, v) ∈ S.

(22)

Let ϑ∗(B) be the optimal objective value of (21) with additional box constraints

wak ≤ wk ≤ wbk for k ∈ [K]. Then we have ϑ̄(B) ≤ ϑ∗(B) by Proposition 3.3.370

4.3. Evaluation Problem

Let (x̄(B), c̄(B), d̄(B), θ̄(B), γ̄(B), π̄(B), w̄(B), v̄(B)) be an optimal solution

to approximation problem (22). Since θ̄(B) serves as a lower bound of ϑ∗(B)

for all B ⊂ B0, taking the minimum of θ̄(B) for all sub-hyper-rectangles B that

partition B0, we are able to compute a lower bound of ϑ∗ in (17). In order to375

compute an upper bound of ϑ∗, we solve a linear programming problem, which

returns the best objective value attainable at x̄(B) as

ψ(x̄(B)) := min θ

s.t.
fk(x̄(B))

gk(x̄(B))
≤ γk, k ∈ [K],

fTπ ≤ θ,HTπ ≥ γ, Pγ ≤ θ1J , θ ∈ R, γ ∈ RK , π ∈ RL.

(23)

For any x ∈ X , ψ(x) serves as an upper bound of ϑ∗ since the solution of

ψ(x), (θ(x), γ(x), π(x)), forms a feasible solution to (9) with (x, c(x), d(x)) where

ck = fk(x), dk = fk(x) for all k ∈ [K]. Therefore, we compute ψ(x̄(B)) each380

time we obtain x̄(B) and update the incumbent solution if needed.

4.4. Main Algorithm

After constructing the initial hyper-rectangle B0, we solve the convex ap-

proximation problem (22) with B = B0 to obtain (x̄(B0), ϑ̄(B0)) and com-

pute ψ(x̄(B0)) by solving the evaluation problem (23). Then, we initialize the385

18

incumbent solution, the iteration counter, and the branch-and-bound tree as

(x0CB, θ
0
CB)← (x̄(B0), ψ(x̄(B0))), t← 0, and T0 ← {B0, ϑ̄(B0)}.

Algorithm 1 SOC-B
1: optimality tolerance: ϵ > 0

2: compute bounds on wk, dk and construct an initial hyper-rectangle B0

3: solve (22) with B = B0 and obtain (x̄(B0), ϑ̄(B0))

4: compute ψ(x̄(B0)) by (23) and let (x0CB, θ
0
CB)← (x̄(B0), ψ(x̄(B0)))

5: let ϑtCB ← θ0CB, t← 0, T0 ← {(B0, ϑ̄(B0))}

6: while true do

7: find Bt such that ϑ̄(Bt) = min(B,ϑ̄(B))∈Tt
ϑ(B) and let ϑ̄t ← ϑ̄(Bt)

8: if (ϑtCB − ϑ̄t)/|ϑtCB| < ϵ then

9: return xtCB and θtCB

10: else

11: let (xt+1
CB , θ

t+1
CB)← (xtCB, θ

t
CB)

12: find kt = arg maxk∈[K] (w
b,t
k − wa,tk)2/dmk and let B′t, B′′t as (24), (25)

13: for B ∈ {B′t, B′′t } do

14: solve (22) with B to obtain (x̄(B), ϑ̄(B)) and (23) for ψ(x̄(B))

15: if ψ(x̄(B)) < θt+1
CB then

16: update (xt+1
CB , θ

t+1
CB)← (x̄(B), ψ(x̄(B))); ϑt+1

CB ← θt+1
CB

17: end if

18: end for

19: Tt+1 ← Tt \ {(Bt, ϑ̄(Bt))} ∪ {(B′t, ϑ̄(B′t))} ∪ {(B′′t , ϑ̄(B′′t))}

20: end if

21: t← t+ 1

22: end while

At each iteration t, we let Bt := [wa,t1 ,wb,t1] × [wa,t2 ,wb,t2] × · · · × [wa,tK ,wb,tK]

such that ϑ̄(Bt) = min(B,ϑ̄(B))∈Tt

¯ϑ(B) and ϑ̄t ← ϑ̄(Bt). Note that ϑ̄t is the

best lower bound until time t since our optimization problem is a minimization390

problem. If the relative optimality gap, (ϑtCB − ϑ̄t)/|ϑtCB|, is smaller than a

tolerance level ϵ, we terminate with an ϵ-optimal solution (xtCB, θ
t
CB). Otherwise,

19

let kt = arg maxk (w
b,t
k − wa,tk)2/dmk and split Bt into B′t and B′′t as

B′t := [wa,t1 ,wb,t1]× · · · × [(wa,tkt + wb,tkt)/2,w
b,t
kt
]× · · · × [wa,tK ,wb,tK], (24)

B′′t := [wa,t1 ,wb,t1]× · · · × [wa,tkt , (w
a,t
kt

+ wb,tkt)/2]× · · · × [wa,tK ,wb,tK]. (25)

For B ∈ {B′t, B′′t }, we solve the convex approximation problem (22) with B to

obtain (x̄(B), ϑ̄(B)) and compute ψ(x̄(B)) by solving the evaluation problem395

(23). Comparing ψ(x̄(B)) with the current best upper bound ϑtCB, we update

the incumbent solution if needed.

Lastly, we update the branch-and-bound tree as

Tt+1 ← Tt \ {(Bt, ϑ̄(Bt))} ∪ {(B′t, ϑ̄(B′t))} ∪ {(B′′t , ϑ̄(B′′t))}.

The above procedure is repeated until the relative optimality gap becomes

smaller than ϵ. A complete summary of the proposed method is given in Algo-400

rithm 1.

5. Convergence Analysis

In this section, we provide a convergence analysis for Algorithm 1. Specif-

ically, we provide a bound on the optimality gap ϑtCB − ϑ∗ = θtCB − θ∗ < ϵ as

a function of approximation errors at (x̄t, c̄t, d̄t, θ̄t, γ̄t, π̄t, w̄t, v̄t), which is an405

optimal solution to (22) with B = Bt. Using this bound, we prove the finite

convergence of the algorithm. Furthermore, we derive a worst-case bound for

the number of iterations to obtain an ϵ-optimal solution.

Since X is a non-empty compact set, (17) has an finite optimum. Let

(x∗, c∗, d∗, θ∗, γ∗, π∗, w∗, v∗) be an optimal solution to (17) and M be the max410

of ∥P∥∞ := maxi
∑
j |Pij | and max {∥p∥1 | p ∈ P}. We present the bound on

the optimality gap in the first part of the following theorem and the worst-case

bound of iteration in its second part.

Theorem 5.1. (a) Let (x̄t, c̄t, d̄t, θ̄t, γ̄t, π̄t, w̄t, v̄t) and ϑ̄t be an optimal solu-

tion and the objective value to (22) with B = Bt. Then, we have415

ϑtCB − ϑ∗ ≤ ϑtCB − ϑ̄t ≤M max
k∈[K]

∆k

dmk
, (26)

20

where ∆k := (wa,tk + wb,tk)w̄tk − wa,tk wb,tk − (w̄tk)
2, k ∈ [K]. (27)

(b) For any ϵ > 0, let n =
∑K
k=1 nk where

nk =

⌈
log2

√
M(wMk − wmk)2

4ϵdmk

⌉
, k ∈ [K]. (28)

Algorithm 1 (SOC-B) terminates within 2n iterations.

Proof. Observe that in (9), ck, dk are linear terms. Hence, convex-concave/concave-

convex fractional program involves linear fractional constraints ck/dk ≤ γk and

convex constraints from numerator and denominator. All subsequent piecewise420

linear approximation reformulations are based on these linear fractional con-

straints only and do not affect convex constraints. Hence this theorem can

be proved following the steps in the proof of Theorem 5.1 in Kim & Mehrotra

(2021). Specifically when we construct a feasible solution (x̂t, ĉt, d̂t, θ̂t, γ̂t, π̂t, ŵt, v̂t)

to (17) from (x̄t, c̄t, d̄t, θ̄t, γ̄t, π̄t, w̄t, v̄t) as425

x̂t = x̄t, ĉtk = fk(x̄
t), d̂tk = gk(x̄

t), γ̂tk =
fk(x̄

t)

gk(x̄t)
,

ŵtk =
1

2

(
fk(x̄

t)

gk(x̄t)
+ gk(x̄

t)

)
, v̂tk =

1

2

(
fk(x̄

t)

gk(x̄t)
− gk(x̄t)

)
for k ∈ [K] (29)

θ̂t = θ̄t +M max
k∈[K]

∆k

d̄tk
, π̂t ∈ argmin fTπ subject to HTπ ≥ γ̂t,

those proof steps can be used since γ̂tk ≤ fk(x̄t)/gk(x̄t) ≤ c̄tk/d̄tk.

Proof of part (b) also follows from the steps in Kim & Mehrotra (2021)

(Theorem 5.2) that uses part (a) and the pigeonhole principle.

Note that 2nk is in the order of O(1/
√
ϵ). This demonstrates the efficiency

of SOC-B in achieving solution accuracy.430

6. Distributionally Robust Optimization

In this section, we introduce two solution approaches to solve a distribution-

ally robust convex or concave fractional program with finite support.

21

6.1. Dual Reformulation

We first consider the case where the ambiguity set is polyhedral. Let P be a435

polyhedral ambiguity set as defined in (A4). Then, the distributionally robust

convex or concave fractional program with finite support is formulated as

min θ

s.t. fk(x) ≤ ck ≤ αk, σβk ≤ σdk ≤ gk(x),
ck
dk
≤ γk, k ∈ [K], (30)

x ∈ X , pT γ ≤ θ,∀{p ∈ RK |Hp = f, p ≥ 0}, θ ∈ R, c ∈ RK , d ∈ RK , γ ∈ RK

Using the linear programming duality, we can reformulate (30) as follows.

Proposition 6.1. Optimization problem (30) is equivalent to

min θ

s.t. fk(x) ≤ ck ≤ αk, σβk ≤ σdk ≤ gk(x),
ck
dk
≤ γk, k ∈ [K], (31)

fTπ ≤ θ,HTπ ≥ γ, x ∈ X , θ ∈ R, c ∈ RK , d ∈ RK , γ ∈ RK , π ∈ RL

Proof. This follows from the linear programming duality.440

Since the above reformulated problem (31) is an instance of (9), we can

use SOC-B to solve it. Note that many finitely supported ambiguity sets are

polyhedral. For the dualized reformulations with polyhedral ambiguity sets, see

Kim & Mehrotra (2021) and Luo & Mehrotra (2020).

6.2. Cutting Surface Algorithm445

Next, we introduce an iterative approach to solve a distributionally robust

fractional program in the form

min θ

s.t. fk(x) ≤ ck ≤ αk, σβk ≤ σdk ≤ gk(x),
ck
dk
≤ γk, k ∈ [K],

pT γ ≤ θ, ∀ p ∈ C, x ∈ X , θ ∈ R, c ∈ RK , d ∈ RK , γ ∈ RK ,

(32)

22

where C is any convex ambiguity set. Problem (32) is a semi-infinite program

due to the presence of constraints pT γ ≤ θ, ∀ p ∈ C. In the special case when

C is an ellipsoid we can replace
{
maxp∈C p

T γ ≤ θ
}

with an explicit expression450

for the optimal value. For more general convex ambiguity sets, many works

(Wiesemann et al., 2014; Bertsimas et al., 2010; Delage & Ye, 2010) dualize

this problem under the assumptions allowing for strong duality. However, un-

like the case with polyhedral ambiguity sets, strong duality does not necessarily

hold for convex ambiguity sets if the regularity conditions are not satisfied and455

it may not be always possible to check the regularity conditions. Thus to de-

velop an algorithm applicable in a general setting, we discuss an alternative

approach based on the cutting surface algorithm (Mehrotra & Papp, 2014; Luo

& Mehrotra, 2019) below. The cutting surface algorithm assumes that an oracle

is available to generate a separating probability cut.460

To solve the semi-infinite problem (32), we consider a sequence of problems

of the form

min θ

s.t. fk(x) ≤ ck ≤ αk, σβk ≤ σdk ≤ gk(x),
ck
dk
≤ γk, k ∈ [K],

P tγ ≤ θ1t, x ∈ X , θ ∈ R, c ∈ RK , d ∈ RK , γ ∈ RK ,

(33)

where each row of P t is an element of a finite set Ct := {p0, p1, · · · , pt} ⊂ C and

p0 is an empirical distribution. Let (xt, θt, ct, dt, γt) be an optimal solution to

(33) at iteration t and pt+1 be an ϵ/2-optimal solution to the separation problem465

maxp∈C p
T γt. If (pt+1)T γt − θt ≤ ϵ/2 holds, the algorithm terminates with the

solution (xt, θt, ct, dt, γt). Otherwise, we add a probability cut pt+1 to Ct and

repeat the above process. Please see Algorithm 2 for a summary of the cutting

surface algorithm.

23

Algorithm 2 A cutting surface algorithm for (32)

1: Input: optimality tolerance ϵ > 0, empirical distribution p0.

2: Step 1: C0 ← {p0}, t← 0.

3: Step 2: Find an optimal solution (xt, θt, ct, dt, γt) of (33) with Ct.

4: Step 3: Find an ϵ/2-optimal solution pt+1 of the problem maxp∈C p
T γt.

5: Step 4: If (pt+1)T γt − θt ≤ ϵ/2, stop and return (xt, θt, ct, dt, γt);

otherwise Ct+1 ← Ct ∪ {pt+1}, t← t+ 1, and go to Step 2.

Let θM := maxk∈[K] γ
M
k and Γ := {(x, θ, c, d, γ) | fk(x) ≤ ck ≤ αk, σβk ≤470

σdk ≤ gk(x), ck/dk ≤ γk ≤ γMk , p
T γ ≤ θ ≤ θM , x ∈ X , θ ∈ R, c ∈ RK , d ∈

RK , γ ∈ RK}.

Theorem 6.1. Suppose that C is a compact set such that
∑K
k=1 pk = 1 and

p ≥ 0 for all p ∈ C. Then, Algorithm 2 returns an ϵ-optimal solution in a finite

number of iterations.475

Proof. By Proposition 3.1, without loss of generality, we can assume that γm ≤

γt ≤ γM . Since (32) minimizes θ, there exists some 0 ≤ j ≤ t such that

(pj)T γt = θ. From
∑K
k=1 p

j
k = 1 and pj ≥ 0, we have θ ≤ θM . Therefore,

(xt, θt, ct, dt, γt) ∈ Γ holds for all t ≥ 0.

Since Γ is closed and bounded, Γ is compact. Also, since C is compact, so is480

Γ × C. From that g(x, θ, c, d, γ) := γT p − θ is continuous on Γ × C, by (Luo &

Mehrotra, 2019, Theorem 3.2), we obtain the desired result.

7. Computational Performance

The algorithm presented so far is called SOC-B. In Section 7.1, we propose

a modified branching strategy for SOC-B that can make SOC-B more efficient.485

We next discuss implementation details for the algorithms implemented. Sub-

sequently, we discuss the computational results for the two models introduced

in Section 1.1.

24

7.1. Modification of SOC-B

In this section, we present a modification to SOC-B (Algorithm 3 in Ap-490

pendix B). It has a branching strategy based on an LP relaxation of the convex

constraints from the functions such as fk(x) ≤ ck, dk ≤ gk(x), k ∈ [K] arising

in the model.

In comparison to Algorithm 1, Algorithm 3 executes several new commands

throughout lines 10-17, 24, 26-30. Recall that the former solves the sub-problems495

for every hyper-rectangles {B′t, B′′t } partitioned from the current active hyper-

rectangle Bt. However, the latter does so in lines 31-37 only when both LP

relaxation-based conditions in Lines 27 and 29 fail. Under first condition at

Line 27, if any objective value from relaxed subproblem corresponding to B ∈

{B′t, B′′t } is greater than the current globally valid upper bound θt+1
CB , we can500

fathom that hyper-rectangle. Second condition (Line 29) only works for second

hyper-rectangle B′′t (partitioned from Bt) if (i) we already fathomed its compan-

ion hyper-rectangle B′t but failed to fathom it by line 27, and (ii) length of the

currently considered edge kt (chosen as per line 23) is smaller than a threshold.

When conditions at line 29 are satisfied, instead of immediately evaluating505

the corresponding subproblem, we keep them on hold and record those hyper-

rectangles via a set T̃ . By doing so we are just changing the priority rule for their

evaluation as there is less chance to get ϵ−optimal solution from such a hyper-

rectangle B′′t . We may already have achieved ϵ−optimality from some other

more competitive hyper-rectangle before revisiting them (via line 11-16). Even510

when we require to further branch the hyper-rectangles from T̃ , some of them

become fathomable because of the updated global upper bound (Line 12). We

do such priority based ordering only once as indicated by a switching variable

tree2. In particular, once we start evaluating those sorted subproblems, we do

not further sort them. Note that finite convergence criteria remains unaffected515

due to this modifications as termination happens only when relative optimality

gap is below a given tolerance.

25

7.2. Implementation Details

All the computations are performed using a 64-core server with Xeon 2.20

(2002 model) GHz CPUs and 128 GB RAM. For each problem size, we gen-520

erate multiple instances. For solving each of these instances, only one core is

used. The code is written using Python programming language, particularly,

python 3.7. We use the following python packages: numpy, copy, math, queue,

time, cyipopt. We also use dictionary and PriorityQueue data structure in our

implementation. We use GUROBI and IPOPT to solve optimization problems525

arising in our implementation.

Package ‘numpy’ is used for random data generation of the instances. Pack-

age ‘scikit-learn’ is used for parameter normalization in Cobb-Douglas problem.

Linear and mixed integer linear bound computation problems in equitable re-

source allocation problem are solved using GUROBI. On the other hand, the530

bound providing nonlinear convex problems in Cobb-Douglas problem are solved

using IPOPT solver of the cyipopt package. In branch-and-bound type al-

gorithm implementation, data structure ‘PriorityQueue’ from python package

‘queue’ is used so that the leaf node information having least objective value

can easily be accessed. Additionally, a package called ‘time’ is used to keep535

track of computation time. GUROBI is used for solving the linear optimization

problems arising in the branch-and-bound tree. IPOPT is used to solve convex

optimization problems. Since IPOPT uses a starting solution as an input, the

optimal solution to a current subproblem is utilized later as the starting point

for its two branch subproblems.540

7.3. Equitable Resource Allocation Problem

7.3.1. Data Generation

The instances of the equitable resource allocation problem (4) were created

as follows for each scenario k ∈ [K]. For each supplier i ∈ [m], we generated

the amount of available resource rki ∼ Uniform(0, n). For each customer j ∈545

[n], we generated the demand dkj ∼ Uniform(0,m). For each i ∈ [m] and

j ∈ [n], we let bkij ∼ Uniform(0, 1) which is the benefit each unit resource from

26

supplier i brings to customer j. For data dimensions, we consider n = 15,m ∈

{5, 10, 15} while number of scenarios k ∈ {5, 10}. Thus under each scenario

the largest instance has 225 decision variables. We generated five instances for550

each dimension combination. For the first part of the experiments, we use the

allocation threshold parameter δ = 0.8.

7.3.2. Bounds Computation

In (5), we have fk(x) =
∑n
j=1 |

∑m
i=1 b

k
ijxij−

∑m
i=1

∑n
j=1 b

k
ijxij |/n and gk(x) =

|
∑m
i=1

∑n
j=1 b

k
ijxij |. By data generation,

∑m
i=1

∑n
j=1 b

k
ijxij ≥ 0 holds for all fea-555

sible x for all k. Observe that optimal value to (3) satisfies θ∗ ≥ 0. If θ∗ = 0,

then the equity model is not of interest. Hence, without loss of generality we

assume that θ∗ > 0, and thus Assumption (A5) holds because X is a non-

empty compact set. Moreover,
∑m
i=1

∑n
j=1 bijxij ≥ δθ∗ is valid for all δ ∈ [0, 1].

Therefore, considering linearity of gk(x) we can compute dmk and dMk by solv-560

ing linear programming problems. Also, we let γmk = 0 since fk(x) ≥ 0 for

all feasible x. To compute an upper bound γMk , we use the Charnes-Cooper

transformation (Charnes & Cooper, 1962) as γMk = max
∑n
j=1 |

∑m
i=1 b

k
ijyij −∑m

i=1

∑n
j=1 b

k
ijyij |/n subject to

∑n
j=1 yij ≤ rki t, i ∈ [m],

∑m
i=1 b

k
ijyij ≤ dkj t, j ∈

[n],
∑m
i=1

∑n
j=1 bkijyij ≥ δθk∗t,

∑m
i=1

∑n
j=1 b

k
ijyij = 1, t ≥ 0 and yij ≥ 0, i ∈565

[m], j ∈ [n]. Since the problem is non-convex, we solve its mixed-binary refor-

mulation using the Big-M technique. This technique is also used for computing

αMk = maxx∈Xk fk(x).

7.3.3. Experimental Results

For each problem size (m,n, k), we run the algorithms with a 12-hour time570

limit. Multiple (five) instances for each problem size were generated to see the

variability in computation time. We report computation times on Table 1 when

desired five-digit optimality gap is achieved.

Table 1 shows that SOC-B attains the relative optimality tolerance of ϵ =

10−5 for most of the instances except few K = 10 instances. Benson’s algorithm575

does not attain desired five-digit optimality gap for any of K = 5 and K =

27

Table 1: Solution time (s) of SOC-B to attain ϵ = 10−5 optimality gap for the stochastic

equitable resource allocation problem. No value is reported if the solution time exceeded 12

hours.

Problems Size SOC-B

k m Inst. = 1 2 3 4 5

5

5 202 281 113 446 410

10 728 291 125 283 478

15 806 457 529 628 1249

10

5 6034 7147 13285 11434 6373

10 25485 31839 12378

15 30152 15840

10 instances within the time limit. In fact, using Benson Algorithm, most

K = 5 instances attain no digit accuracy was achieved, except in two instances

that achieved one digit accuracy. None of K = 10 instances achieved one-digit

accuracy. Overall, the optimality gap attained by Benson’s algorithm ranges580

between 5.96× 10−2 and 8.01× 10−1. On the other hand, this gap for SOC-B

ranges from 3.99×10−5 ∼ 3.62×10−3 for the instances where five-digit accuracy

was not attained. These results clearly demonstrate the efficiency of SOC-B for

solving convex fractional programs.

7.3.4. Equity-Efficiency Analysis585

Table 2 reports average objective values for the allocation threshold param-

eter δ ∈ {0.6, 0.7, 0.8, 0.9, 1.0}. The standard error ranges from 0.016 to 0.115.

The case with no equity consideration corresponds to δ = 1 while the case with

full equity consideration corresponds to δ = 0, completely ignoring the optimal

objective value obtained from the benefit maximization model. As expected,590

the objective value (unfairness) increases as equity considerations reduce (δ in-

crease). Compared to the worst case (δ = 1), about 66% to 84% improvement

in fairness is achieved when ensuring at least 80% of the maximum benefit

(δ = 0.8).

28

Table 2: Sensitivity analysis of the effect of δ on fairness. For each problem instance, we run

SOC-B algorithm on five instances and report the average objective values and

corresponding standard errors in parentheses.

Problem Size δ

m k 0.6 0.7 0.8 0.9 1.0

5

5 0.18997 (0.04836) 0.21683 (0.05032) 0.27018 (0.05269) 0.46846 (0.08327) 1.10960 (0.08278)

10 0.19424 (0.05036) 0.22166 (0.05803) 0.26535 (0.06032) 0.39030 (0.06313) 0.98559 (0.09089)

15 0.07286 (0.01755) 0.09170 (0.01952) 0.11760 (0.02238) 0.2103 (0.02937) 0.77537 (0.04703)

10

5 0.27877 (0.03275) 0.30971 (0.03635) 0.34698 (0.03777) 0.50834 (0.05389) 1.04873 (0.05270)

10 0.14869 (0.01627) 0.17821 (0.01997) 0.21434 (0.02246) 0.31869 (0.03438) 0.82300 (0.11581)

15 0.14162 (0.03094) 0.16534 (0.03077) 0.19617 (0.02981) 0.30798 (0.05059) 0.92582 (0.06196)

7.4. Stochastic Cobb-Douglas Production Efficiency Problem595

In this section we consider the stochastic and distributionally robust Cobb-

Douglas production efficiency problem (8) with finite support. The sample

average formulation of the problem is given as follows:

max
x∈X

K∑
k=1

1

K

[∏n
j=1 ak0 x

akj

j∑n
j=1 ckjxj + ck0

]
. (34)

Let X := {x |Ax ≤ b, x ≥ 0}. The distributionally robust variant using the

finitely supported Wasserstein ambiguity set is discussed in Section 7.5.600

7.4.1. Data Generation

Let Aij be the element in the ith row and the jth column of matrix A. For

each i ∈ [m] and j ∈ [n], we let Aij ∼ Uniform(0, 1) and bi = n for all i ∈ [m].

On the other hand, for each scenario k ∈ [K], we generate ck0 ∼ Uniform(1, 2)

and ckj ∼ Uniform(0, 1) for each j ∈ [n]. For the Cobb-Douglas functions, we let605

ak0 ∼ Uniform(1, 2) and akj ∼ Uniform(0, 1). Then, we divide akj by
∑n
j=1 akj

so that
∑n
j=1 akj = 1 holds for all k ∈ [K]. For data dimensions, we consider

n ∈ [5, 10, 20], K ∈ [5, 10], and m = ⌈n/2⌉. For each dimension, we generate

five instances to have an insight in the computational performance differences.

7.4.2. Bounds Computation610

Putting (34) in the form of (9), we have fk(x) = −
∏n
j=1 ak0 x

akj

j and gk(x) =

−
∑n
j=1 ckjxj+ck0 with σ = −1. We compute dmj and dMj by solving linear pro-

29

gramming problems. For γmk and γMk , we compute γmk using the Charnes-Cooper

transformation (Charnes & Cooper, 1962) as γmk := −max
∏n
j=1 ak0 y

akj

j sub-

ject to Ay ≤ bt, y ≥ 0, and
∑n
j=1 ckjyj + ck0 = 1. We let γMk = 0, and set615

αk = 0 and βk = dMk in (9).

7.4.3. Computational Experience with Stochastic Cobb-Douglas Model

For our computational comparison, we implemented SOC-B (Algorithm 1)

along with two benchmark algorithms (B-G (Benson, 2002b), B-J (Benson,

2002a)). For each problem size (n,K), we run the algorithms on five instances620

with a 12-hour time limit and an optimality tolerance of 10−5. We report com-

putation times for SOC-B and relative optimality gaps upon termination for the

other algorithms in Table 3.

Our experimental results show that B-G and B-J generally fail to achieve

five digits of accuracy in 12 hours. However, SOC-B attains this accuracy for625

all instances of any problem size. Moderate size models such that (n,K) ∈

{(5, 5), (5, 10), (10, 5), (10, 10), (15, 5)} are mostly solved within two hours. These

results clearly demonstrate that SOC-B achieves a significant reduction in com-

putational time in solving stochastic concave fractional programs. However, the

difficulty in finding a solution with the desired level of accuracy increases with630

increase in the problem dimension and the number of scenarios.

7.4.4. Efficient implementation of SOC-B for Stochastic Cobb-Douglas Model

Since numerators in stochastic Cobb-Douglas fractional problem are nonlin-

ear, we used the modified algorithm outlined in Section 7.1 for all the instances

stochastic of Cobb Douglas problem and reported them in Table 3 under SOC-B635

(efficient). Numerical findings show that, in comparison to the original algo-

rithm, the average reduction in computational time is about 47.8%. Maximum

improvement is 89.8% while 16 instances out of 30 instances exhibit more than

40% improvement.

30

Table 3: Experimental results for stochastic Cobb-Douglas production efficiency problem.

Problem
n 5 10 15

K 5 10 5 10 5 10

SOC-B (Algorithm 1) Time (s)

1 29 1073 135 4288 353 30000

2 30 1599 208 6948 278 24771

3 17 797 109 9790 199 34693

4 25 1012 102 4017 299 21181

5 23 785 125 7546 308 16489

SOC-B (Algorithm 3) Time (s)

1 23 231 65 2160 186 15732

2 20 320 151 4553 177 19579

3 3 195 39 5290 128 11062

4 11 103 89 1292 205 16684

5 6 266 90 4929 233 11916

B-G Opt. Gap (rel)

1 1.21E-04 2.09E-03 2.27E-04 2.60E-03 2.88E-04 5.32E-03

2 1.26E-04 3.62E-03 3.23E-04 8.37E-03 3.88E-04 6.01E-03

3 1.96E-05 1.23E-03 1.44E-04 6.17E-03 2.34E-04 2.96E-03

4 6.02E-05 2.51E-03 1.22E-04 2.24E-03 3.16E-04 8.66E-03

5 4.15E-05 1.78E-03 2.62E-04 4.62E-03 4.71E-04 6.30E-03

B-J Opt. Gap (rel)

1 4.10E-04 9.59E-03 7.18E-04 1.45E-02 7.84E-04 1.91E-02

2 4.83E-04 1.14E-02 9.24E-04 2.09E-02 9.56E-04 2.42E-02

3 7.53E-05 4.18E-03 4.59E-04 2.24E-02 6.91E-04 1.64E-02

4 1.69E-04 7.64E-03 3.67E-04 1.46E-02 1.12E-03 2.23E-02

5 1.40E-04 1.02E-02 7.40E-04 1.94E-02 1.38E-03 2.33E-02

7.5. Distributionally Robust Cobb-Douglas Production Efficiency Problem640

We next present experimental results for the proposed solution approach for

solving distributionally robust Cobb-Douglas production efficiency problems.

In these experiments we use the dual formulation (DUAL) based approach and

the cutting-surface algorithm (CUT). Here our interest is also to study the

performance of the algorithms with increasing ambiguity.645

7.5.1. Data Generation

For each (n,K) ∈ {(5, 5), (5, 10), (10, 5), (10, 10), (15, 5), (15, 10)}, we con-

sider three types of underlying distributions to investigate the performance of

DUAL and CUT algorithms. For k, j ∈ [K], we sample ak0, akj , ck0, ckj ac-

cording to the following probability distributions:650

• Uniform: ak0, ck0 ∼ Uniform(1, 2), akj , ckj ∼ Uniform(0, 1).

• Left-Skewed: ak0, ck0 ∼ 1 + Beta(5, 2), akj , ckj ∼ Beta(5, 2).

• Right-Skewed: ak0, ck0 ∼ 1 + Beta(2, 5), akj , ckj ∼ Beta(2, 5).

31

After generating ak1, · · · , akn, we divide akj by
∑n
j=1 akj so that

∑n
j=1 akj = 1

holds for all k ∈ [K]. On the other hand, we sample A and b according to the655

procedure in Section 7.4.1 and use the same one for all three instances.

7.5.2. Dual Formulation with Wasserstein Ambiguity Set

Let ∆max be the maximum Wasserstein distance from the nominal (empiri-

cal) probability distribution p0 computed as the max of
∑K
i=1

∑K
j=1 qijd(ξi, ξj)

subject to
∑K
j=1 qij = pi, i ∈ [K],

∑K
i=1 qij = p0j , j ∈ [K],

∑K
k=1 pk = 1, pk ≥660

0, k ∈ [K], qij ≥ 0, i, j ∈ [K]. Also, let d(ξi, ξj) be the Euclidean distance

between two vectors ξi and ξj . Note that p0j = 1/K for all j ∈ [K] in (34). We

use the Wasserstein radius of ∆ := ρ∆max where ρ ∈ {0.01, 0.05, 0.1}. Thus the

ambiguity set {p ∈ RK |Hp = f, p ≥ 0} in (30) is given as:

DW =


p ∈ RK+

∣∣∣∣∣∣∣∣∣∣∣∣

∃ q ∈ RK×K+ :∑K
j=1 qij − pi = 0∀i ∈ [K],

∑K
i=1 qij = p0j ∀j ∈ [K]∑K

k=1 pk = 1, pk ≥ 0 ∀k ∈ [K], qij ≥ 0,∀i, j ∈ [k]∑K
i=1

∑K
j=1 qijd(ξi, ξj) ≤ ρ∆max


(35)

The corresponding dual formulation is stated as:665

min −
K∑
k=1

p0tk −∆ν + ς

s.t. −
n∏
j=1

ak0 x
akj

j ≤ ck ≤ 0,

n∑
j=1

ckjxj + ck0 ≤ dk ≤ dMk , k ∈ [K],

− sk − rk + ς ≥ γk,
ck
dk
≤ γk, k ∈ [K],

− si + tj + d(ξi, ξj)ν + λij ≤ 0, i, j ∈ [K],

x ∈ X , s ∈ RK , t ∈ RK , r ∈ RK+ , ς ∈ R, ν ≤ 0, λ ∈ RK×K+ .

(36)

7.5.3. Computational Experience with Distributionally Robust Cobb-Douglas Model

Table 4 summarizes the experimental results for distributionally robust Cobb-

Douglas production efficiency problem. For each problem size and probability

distribution, we generate a problem instance and run the algorithms for three

32

Table 4: Experimental results of distributionally robust Cobb-Douglas production model.

Distribution Uniform Left-Skewed Right-Skewed

Problem DUAL CUT DUAL CUT DUAL CUT

n K ρ Obj. Val Time(s) Time(s) Cuts Obj. Val Time(s) Time(s) Cuts Obj. Val Time(s) Time(s) Cuts

5

5

0.01 0.1902 48 47 1 0.06340 17 79 1 0.02575 6 73 1

0.05 0.1846 59 50 1 0.06198 84 49 1 0.02487 6 78 1

0.1 0.1776 51 50 1 0.06023 18 84 1 0.02382 6 77 1

10

0.01 0.2210 706 971 1 0.08587 271 190 1 0.04292 1976 1849 1

0.05 0.2109 702 1933 2 0.08307 71 536 1 0.03973 1815 3729 2

0.1 0.1997 835 4589 2 0.07981 4482 2264 1 0.03576 1966 4316 2

10

5

0.01 0.1148 94 127 1 0.03321 103 317 1 0.01362 2124 2969 1

0.05 0.1108 119 152 1 0.03241 194 336 1 0.01270 3197 3100 1

0.1 0.1061 122 153 1 0.03142 168 338 1 0.01166 2217 3193 1

10

0.01 0.1133 3744 5831 2 0.03419 27383 30377 1 0.02105 199514 160505 1

0.05 0.1098 3379 6242 2 0.03290 40001 39928 1 0.01970 240094 157936 1

0.1 0.1054 3442 17239 3 0.03149 79311 88858 1 0.01818 249672 170508 1

15

5

0.01 0.07796 202 321 1 0.03642 337 588 1 0.006737 12092 23769 1

0.05 0.07653 176 314 1 0.03607 384 606 1 0.006133 19007 28340 1

0.1 0.07491 157 524 2 0.03565 339 646 1 0.005417 26816 35249 1

10

0.01 0.07506 26969 30066 1 0.02620 122126 159051 1 0.01569 439119 507505 1

0.05 0.07269 26388 38480 1 0.02525 147633 136761 1 0.01475 413556 507311 1

0.1 0.07055 52908 301819 3 0.02439 170839 144876 1 0.01363 550554 561600 1

different values of ρ. We run the dual (DUAL) formulation and cutting sur-670

face (CUT) solution approaches until they attain the relative optimality gap of

10−5. For both approaches, we incorporated the efficient strategy proposed in

Algorithm 3. We report objective values, computation times and the number

of probability cuts needed in the cutting surface algorithm. In these experi-

ments we did not impose a time limit, allowing us to make a more complete675

comparison.

Computational results suggest that when compared to the performance re-

ported in Table 3 the DUAL algorithm takes two to three times more compu-

tation time than the time required to solve the underlying stochastic programs.

While the CUT algorithm mostly required only one or two probability cut for680

our test instances, the DUAL algorithm still tends to be more efficient than the

CUT algorithm. We also observe that the computation times of DUAL algo-

rithm remains similar for different values of ∆. However, the time required by

the CUT algorithm increases with ∆, as more probability cuts are required in

this case. This is because a new non-convex optimization problem is solved after685

the addition of a probability cut. Even though the new problem is solved with

33

the initial point obtained using the strategy mentioned in Section 7.2, the time

required to solve multiple problems with sufficient accuracy is not offset despite

it being in a lower dimension. Lastly, computation times vary widely across

parameter distributions. It takes less time to solve problem instances from690

the uniform distribution than those from the skewed distributions. Among the

skewed distributions, larger size instances generated from the right-skewed dis-

tribution take substantially more computation time than those generated from

the left-skewed distribution. The reasons for this phenomenon are unclear.

8. Concluding Remarks695

We studied convex and concave fractional programs as well as their stochastic

counterparts in a common framework. The proposed branch-and-bound algo-

rithm efficiently finds a highly accuracy solution to moderate size stochastic eq-

uitable resource allocation and Cobb-Douglas problem instances. Although the

problem difficulty does grow rapidly with number of scenarios and variables in700

the problem, the algorithm developed in this paper is a significant advancement

over previously known algorithms that can be used for solving such problems.

The distributionally robust problems were studied under the finite support

assumption. This can be extended to the compact continuous support counter-

part. To see this, let us consider a compact continuous support Ξ for random705

parameter ξ and l1−Wasserstein distance-based ambiguity set for the unknown

distribution P ∈ M(Ξ). Additionally assume Q is the nominal distribution

available on finite support ΞS = {ξ1, ξ2, · · · , ξS}, i.e., Q ∈ M(ΞS) and for

each of the support it takes equal probability 1/S. Then, corresponding con-

tinuously supported distributionally-robust convex-concave fractional problem710

(CS-DR-CCFP) is given as:

min
x∈X

max
P∈D

∫
ξ∈Ξ

f(x, ξ)

g(x, ξ)
dP(ξ), (CS-DR-CCFP)

where

34

D =


P ∈M(Ξ)

∣∣∣∣∣∣∣∣∣∣∣∣

∃ Π ∈ J (Ξ× ΞS) :∑S
s=1

∫
Ξ
||ξ − ξs||1Π(ξ, ξs)dξ ≤ τ∫

Ξ
Π(ξ, ξs)dξ = 1

S , s ∈ [S]∑
s∈[S] Π(ξ, ξs) = dP(ξ) ∀ξ ∈ Ξ


, (Wass)

Now if h(x, ξ) = f(x,ξ)
g(x,ξ) and h(·, ·) is bounded on compact space X × Ξ,

by Theorem 3.1 of Luo & Mehrotra (2019) strong duality holds for the inner

maximization problem. Thus, (CS-DR-CCFP) can equivalently be written as715

min
x∈X ,µ≥0

τµ+
1

S

∑
s∈[S]

νs

s.t. max
ξ∈Ξ

h(x, ξ)− µ||ξ − ξs||
1
≤ νs ∀s ∈ [S]

(37)

where for each s ∈ [S], left hand side of the constraint can be treated as a

subproblem.

8.1. Cutting-Surface Algorithm for CS-DR-CCFP

Algorithm 2 can be leveraged to optimally solve (37) using a cutting surface

algorithm such as the one developed in Luo & Mehrotra (2019). This algorithm720

solves a master problem with a fnite number of cuts, and uses a cut generation

oracle. Let t be the master iteration number, Ξt ⊆ Ξ be a discrete set containing

t previously generated elements and ξk ∈ Ξt for k ∈ [t]. The master problem is:

min
x,ν,µ

τµ+
1

S

∑
s∈[S]

νs

||ξk − ξs||1µ+ νs ≥ h(x, ξk), ∀k ∈ [t], s ∈ [S]

x ∈ X , µ ≥ 0

(38)

Master problems (38) can be solved using Algorithm 1. Let (xk, µk, νks) be

the solution of the master problem at the kth iteration. The cut generation725

subproblem for the finite resource allocation and Cobb-Douglas subproblems

are as follows.

35

Equitable Resource Allocation Oracle:

max
(b̃,d̃)∈Ξ

n∑
j=1

∣∣∣∣∣
∑m
i=1 b̃ijx

k
ij∑m

i=1

∑n
j=1 b̃ijx

k
ij

− 1

n

∣∣∣∣∣− µk||(b̃, d̃)− (bs, ds)||
1 (39)

Cobb-Douglas Oracle:

min
ã,c̃∈Ξ

ã0
∏n
i=1 x

k
i
ãi∑n

i=1 c̃ix
k
i + c̃0

+ µk||(ã, c̃)− (as, cs)||1 . (40)

We note that S such oracle generation subproblems are solved at each mas-730

ter iteration. Using the solution of these problems we add at most S cuts

h(x, ξt+1) − µ||ξt+1 − ξs||
1
− νs ≤ 0, s ∈ [S]. Such a cutting surface algorithm

can be used to generate an ϵ-optimal solution. This result follows from Theo-

rem 6.1 of Luo & Mehrotra (2019) assuming that the oracle problems are solved

to ϵ/2-optimality. Note that h(x, ξ) is continuous and thus the assumptions of735

Theorem 6.1 of Luo & Mehrotra (2019) are satisfied. We, however, point out

that the oracle generation subproblems in the resource allocation and Cobb-

Douglas cases have a mixed fractional-convex structure, and the development

of efficient algorithms for solving such problems requires additional research.

Acknowledgments740

We would like to acknowledge NSF grant CMMI-1763035, which provided

partial support for this work. The data that support the findings of this study

are available from the corresponding author, SM, upon reasonable request. The

problem generation is described within the article. The authors would like

to thank anonymous referees and the journal’s area editor for many helpful745

suggestions. Particularly, the proofs of sample average approximation results

for the stochastic fractional programs were added and improved following referee

suggestions.

References

Aggarwal, S., & Sharma, I. (1970). Maximization of the transmission rate of a750

discrete, constant channel. Unternehmensforschung , 14 , 152–155.

36

Benson, H. (2002a). Global optimization algorithm for the nonlinear sum of

ratios problem. Journal of Optimization Theory and Applications, 112 , 1–29.

Benson, H. P. (2001). Global optimization of nonlinear sums of ratios. Journal

of Mathematical Analysis and Applications, 263 , 301–315.755

Benson, H. P. (2002b). Using concave envelopes to globally solve the nonlinear

sum of ratios problem. Journal of Global Optimization, 22 , 343–364.

Bertsimas, D., Doan, X. V., Natarajan, K., & Teo, C.-P. (2010). Models for min-

imax stochastic linear optimization problems with risk aversion. Mathematics

of Operations Research, 35 , 580–602.760

Bradley, S. P., & Frey Jr, S. C. (1974). Fractional programming with homoge-

neous functions. Operations Research, 22 , 350–357.

Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional

functionals. Naval Research Logistics Quarterly , 9 , 181–186.

Cobb, C. W., & Douglas, P. H. (1928). A theory of production. The American765

Economic Review , 18 , 139–165.

Delage, E., & Ye, Y. (2010). Distributionally robust optimization under moment

uncertainty with application to data-driven problems. Operations Research,

58 , 595–612.

Dur, M., Horst, R., & Van Thoai, N. (2001). Solving sum-of-ratios fractional770

programs using efficient points. Optimization, 49 , 447–466.

Filipe, J., & Adams, F. G. (2005). The estimation of the Cobb-Douglas function:

a retrospective view. Eastern Economic Journal , 31 , 427–445.

Freund, R. W., & Jarre, F. (2001). Solving the sum-of-ratios problem by an

interior-point method. Journal of Global Optimization, 19 , 83–102.775

Gruzdeva, T. V., & Strekalovsky, A. S. (2018). On solving the sum-of-ratios

problem. Applied Mathematics and Computation, 318 , 260–269.

37

Hodgson, T. J., & Lowe, T. J. (1982). Production lot sizing with material-

handling cost considerations. IIE Transactions, 14 , 44–51.

Hu, Y., Yu, C. K. W., & Yang, X. (2019). Incremental quasi-subgradient meth-780

ods for minimizing the sum of quasi-convex functions. Journal of Global

Optimization, 75 , 1003–1028.

Jiao, H., & Liu, S. (2017). An efficient algorithm for quadratic sum-of-ratios

fractional programs problem. Numerical Functional Analysis and Optimiza-

tion, 38 , 1426–1445.785

Kim, C., & Mehrotra, S. (2021). Solution approaches to linear fractional pro-

gramming and its stochastic generalizations using second order cone approx-

imations. SIAM Journal on Optimization, 31 , 945–971.

Konno, H., Kuno, T., & Yajima, Y. (1994). Global minimization of a generalized

convex multiplicative function. Journal of Global Optimization, 4 , 47–62.790

Luo, F., & Mehrotra, S. (2019). Decomposition algorithm for distributionally

robust optimization using Wasserstein metric with an application to a class

of regression models. European Journal of Operational Research, 278 , 20–35.

Luo, F., & Mehrotra, S. (2020). Distributionally robust optimization with de-

cision dependent ambiguity sets. Optimization Letters, 14 , 2565–2594.795

McCormick, G. P. (1976). Computability of global solutions to factorable non-

convex programs: Part I — Convex underestimating problems. Mathematical

Programming , 10 , 147–175.

Mehrotra, S., & Papp, D. (2014). A cutting surface algorithm for semi-infinite

convex programming with an application to moment robust optimization.800

SIAM Journal on Optimization, 24 , 1670–1697.

Meister, B., & Oettli, W. (1967). On the capacity of a discrete, constant channel.

Information and Control , 11 , 341–351.

38

Rao, M. (1971). Cluster analysis and mathematical programming. Journal of

the American Statistical Association, 66 , 622–626.805

Shapiro, A. (1991). Asymptotic analysis of stochastic rograms. Annals of Op-

erations Research, 30 , 169–186.

Stancu-Minasian, I. M. (1997). Fractional Programming: Theory, Methods and

Applications volume 409. Springer Netherlands.

Wang, Y., & Liang, Z. (2005). A deterministic global optimization algorithm for810

generalized geometric programming. Applied Mathematics and Computation,

168 , 722–737.

Wiesemann, W., Kuhn, D., & Sim, M. (2014). Distributionally robust convex

optimization. Operations Research, 62 , 1358–1376.

Ziemba, W. T., Parkan, C., & Brooks-Hill, R. (2013). Calculation of invest-815

ment portfolios with risk free borrowing and lending. In Handbook of the

Fundamentals of Financial Decision Making: Part I (pp. 375–388). World

Scientific.

Appendix A. Proofs

Proof. of the Proposition 3.1 : Let us consider the first case. If σ = 1, we have 0 < d̂k820

by (A5). For σ = −1, from gk(x
∗) < 0, we have 0 < d̂k. Therefore, regardless of the

value of σ, 0 < d̂k holds. Based on the construction, since γ̂k+d̂k = 2ŵk, γ̂k−d̂k = 2v̂k,

and ĉk + v̂2k ≤ ŵ2
k which indicate ĉk ≤ d̂kγ̂k, we have ĉk/d̂k ≤ γ̂k due to d̂k > 0.

Also, if σ = 1, we have γ̂k = fk(x
∗)/gk(x

∗) ≤ c∗k/d
∗
k = γ∗

k due to fk(x
∗) > 0 and

gk(x
∗) > 0. On the other hand, for σ = −1, we obtain γ̂k = fk(x

∗)/ − gk(x
∗) ≤825

fk(x
∗)/d∗k ≤ c∗k/d

∗
k = γ∗

k since fk(x
∗) < 0 and 0 < −gk(x

∗) ≤ d∗k. Since γ̂k ≤ γ∗
k , we

have HTπ∗ ≥ γ̂k and P γ̂ ≤ θ∗1J due to P ≥ 0. Therefore, (x∗, ĉ, d̂, θ∗, γ̂, π∗, ŵ, v̂) is

feasible to (17).

Suppose that (x∗, ĉ, d̂, θ∗, γ̂, π∗, ŵ, v̂) is not an optimal solution to (17). Let an

optimal solution to (17) instead be (x̄, c̄, d̄, θ̄, γ̄, π̄, w̄, v̄) such that θ̄ < θ∗. From that830

γ̄k + d̄k = 2w̄k, γ̄k − d̄k = 2v̄k, and c̄k + v̄2k ≤ w̄2
k, we have c̄k ≤ d̄kγ̄k. Since

39

0 < βk ≤ d̄k if σ = 1 and d̄k > 0 due to 0 < −gk(x̄) ≤ d̄k if σ = −1, we obtain

c̄k/d̄k ≤ γ̄k. Therefore, (x̄, c̄, d̄, θ̄, γ̄, π̄) is feasible to (9) with the objective value of

θ̄ < θ∗, which contradicts the fact that (x∗, c∗, d∗, θ∗, γ∗, π∗) is an optimal solution to

(9). Thus, (x∗, ĉ, d̂, θ∗, γ̂, π∗, ŵ, v̂) is optimal to (17).835

To prove the second statement, suppose that (x∗, c∗, d∗, θ∗, γ∗, π∗) is not an op-

timal solution to (9). Let (x̄, c̄, d̄, θ̄, γ̄, π̄) be an optimal solution to (9) such that

θ̄ < θ∗. Then, by the first part of the above argument, we can construct a feasible

solution to (17), which has the objective value of θ̄. This contradicts the fact that

(x∗, c∗, d∗, θ∗, γ∗, π∗) is an optimal solution to (9). Therefore, (x∗, c∗, d∗, θ∗, γ∗, π∗)840

should be optimal to (9)

40

Appendix B. Modified Adaptive Branch-and-Bound Algorithm

Algorithm 3 SOC-B-Efficient
1: optimality tolerance: ϵ > 0

2: compute bounds on wk, dk and construct an initial hyper-rectangle B0

3: solve (22) with B = B0 and obtain (x̄(B0), ϑ̄(B0))

4: compute ψ(x̄(B0)) by (23) and let (x0
CB, θ

0
CB)← (x̄(B0), ψ(x̄(B0)))

5: let ϑt
CB ← θ0CB, t← 0, T0 ← {(B0, ϑ̄(B0))}, tree2← 0; ζ ← 0.3

6: while true do

7: if Tt ̸= ∅ then

8: find Bt such that ϑ̄(Bt) = min(B,ϑ̄(B))∈Tt
ϑ(B) and let ϑ̄t ← ϑ̄(Bt)

9: Tt+1 ← Tt \ {(Bt, ϑ̄(Bt))}

10: else if T̃ ̸= ∅ then

11: for (B, ϑ̄(B)) ∈ T̃ do

12: if ϑ̄(B) ≤ θtCB then

13: Tt+1 ← (B, ϑ̄(B))

14: end if

15: end for

16: tree2← 1; t← t+ 1

17: Go to next iteration if Line 19 is False

18: end if

19: if ϑt
CB − ϑ̄

t/|ϑt
CB| < ϵ then

20: return xt
CB and θtCB

21: else

22: let (xt+1
CB , θ

t+1
CB)← (xt

CB, θ
t
CB)

23: find kt = arg maxk∈[K] (w
b,t
k − wa,t

k)2/dmk and let B′
t, B

′′
t as (24), (25)

24: flag = 0

25: for B ∈ {B′
t, B

′′
t } do

26: Solve LP relaxation of (22) with B to obtain (x̄LP(B), ϑ̄LP(B))

27: if θt+1
CB < ϑ̄LP(B) then

28: fathom B; flag ← flag + 1

29: else if θt+1
CB ≥ ϑ̄LP(B) & flag is 1 & wb,t

kt
− (wa,t

kt
+ wb,t

kt
)/2 ≤ ζ{wM

kt
− (wm

kt
+

wb,t
kt

)/2} & tree2 is 0 then

30: T̃ ← {(B′′
t , ϑ̄(B

′′
t))}

31: else

32: Solve (22) with B to obtain (x̄(B), ϑ̄(B)) and (23) for ψ(x̄(B))

33: if ψ(x̄(B)) < θt+1
CB then

34: update (xt+1
CB , θ

t+1
CB)← (x̄(B), ψ(x̄(B))); ϑt+1

CB ← θt+1
CB

35: end if

36: Tt+1 ← Tt+1 ∪ {(B, ϑ̄(B))}

37: end if

38: end for

39: end if

40: t← t+ 1

41: end while

41

	Introduction
	Motivating Examples
	Stochastic Equitable Resource Allocation Problem
	Stochastic Cobb-Douglas Production Efficiency Problem
	Other Applications

	Contributions

	Literature Review
	Algorithms for Convex Fractional Program
	Algorithms for Concave Fractional Program

	Convex Approximations
	A General Framework
	Convex Fractional Program
	Concave Fractional Program
	Distributionally Robust Fractional Program

	Convergence of SAA of Stochastic Fractional Program
	Reformulation of General Convex-Concave Fractional Program Framework
	Piecewise-Linear Approximations

	An Adaptive Branch-and-Bound Algorithm
	Initial Hyper-Rectangle
	Approximation Problem
	Evaluation Problem
	Main Algorithm

	Convergence Analysis
	Distributionally Robust Optimization
	Dual Reformulation
	Cutting Surface Algorithm

	Computational Performance
	Modification of SOC-B
	Implementation Details
	Equitable Resource Allocation Problem
	Data Generation
	Bounds Computation
	Experimental Results
	Equity-Efficiency Analysis

	Stochastic Cobb-Douglas Production Efficiency Problem
	Data Generation
	Bounds Computation
	Computational Experience with Stochastic Cobb-Douglas Model
	Efficient implementation of SOC-B for Stochastic Cobb-Douglas Model

	Distributionally Robust Cobb-Douglas Production Efficiency Problem
	Data Generation
	Dual Formulation with Wasserstein Ambiguity Set
	Computational Experience with Distributionally Robust Cobb-Douglas Model

	Concluding Remarks
	Cutting-Surface Algorithm for CS-DR-CCFP

	Proofs
	Modified Adaptive Branch-and-Bound Algorithm

