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Abstract

A frequently studied problem in the context of digital marketing for online social networks is
the influence maximization problem that seeks for an initial seed set of influencers to trigger an
information propagation cascade (in terms of active message forwarders) of expected maximum
impact. Previously studied problems typically neglect that the probability that individuals
passively view content without forwarding it is much higher than the probability that they
forward content. Considering passive viewing enables to maximize more natural (social media)
marketing metrics including: (a) the expected organic reach, (b) the expected number of total
impressions, or (c) the expected patronage; all of which are investigated in this paper for the first
time in the context of influence maximization. We propose mathematical models to maximize
these objectives whereby the model for variant (c) includes individual’s resistances and uses a
multinomial logit model to model customer behavior. We also show that these models can be
easily adapted to a competitive setting in which the seed set of a competitor is known. In a
computational study based on network graphs from Twitter, now X, (and from the literature)
we show that one can increase the expected patronage, organic reach, and number of total
impressions by 36% on average (and up to 13 times in particular cases) compared to seed sets
obtained from the classical maximization of message forwarding users.

Keywords: Influence maximization, social networks, generalized Benders decomposition

1 Introduction
Online social networks have evolved to crucial communication channels used by stakeholders such as
individuals, companies, or political parties. They are commonly used in online marketing campaigns
that propagate information related to products or political candidates and can be more effective
than traditional campaigns [62]. Nowadays, the influencer marketing industry is an important pillar
of the marketing mixes of companies and its worth is estimated up to $16.4 billion in 2022 [16].
A reason of this trend is that such campaigns ease to exploit social influence effects, which may
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cause individuals to adjust their opinions based on the opinions of their peers, to stimulate certain
consumer decisions [37], or to sway political election outcomes [5]. Influencer marketing campaigns
can also reach individuals who use ad blockers. The relative number of such users is 42.7 % of the
global (16-64 years old) internet-using population [9].

The decentralized spread of information in social networks such as (fake) news, opinions, or ad-
vertisements is often referred to as influence propagation. Influence cascades are typically triggered
by so-called seed nodes such as influencers that are commonly incentivized by external means such
as remunerations or product discounts. In order to increase expected sales or simply awareness, a
common objective is to maximize the (expected) number of reached network participants (nodes).
The classical variant of the underlying influence maximization problem (IMP) was introduced by
Kempe et al. [29]. Since then, (variants of) the IMP have been intensively studied by researchers
from the computer science and operations research communities. IMPs seek for a seed set of net-
work nodes that trigger an influence cascade of maximum impact and which is typically constrained
by cardinality or available budget, see, e.g., Nguyen and Zheng [46]. Several models of the influence
propagation process have been studied; see Singh et al. [57] for a recent comprehensive survey. The
majority of the works related to IMPs use either the linear threshold model based on Granovetter
[19] or the probabilistic independent cascade model as used by Kempe et al. [29]. The latter au-
thors showed that the IMP is NP-hard under these two propagation models and that the objective
function is submodular. Thereby, they triggered the development of several 1− 1/e approximation
algorithms (see, e.g., Banerjee et al. [2] and the references therein) based on the seminal work of
Nemhauser et al. [44]. Here, e denotes the base of the natural logarithm. IMPs were further tack-
led with heuristic methods that employ topological network metrics such as betweenness centrality,
however, without providing approximation guarantees (e.g., Liu et al. 40, Wasserman et al. 65).
Several recent articles tackle IMP variants with exact solution methods based on integer linear
programming (ILP). The majority of them use (variants of) the linear threshold model, see, e.g.,
Fischetti et al. [13], Günneç et al. [21, 22], Raghavan and Zhang [50, 51, 53, 52]. In contrast, only
very few exact solution methods have been proposed for variants of the IMP using the probabilistic
independent cascade model. These include Güney et al. [20] and Wu and Küçükyavuz [66] for the
classic IMP variant, and Farnad et al. [12] who address aspects related to algorithmic bias, fairness
and equity in their work on fairness-aware influence maximization. Recently, there is also a growing
interest in different variants of the competitive influence maximization problem (CIMP) in which
more than one influence-spreading entity is considered, see, e.g., Bharathi et al. [4], Carnes et al.
[6], Kahr et al. [25], Keskin and Güler [31], Lin and Lui [39], Song et al. [58], Tanınmış et al. [61].

1.1 Motivation for and novelties of our model

The next paragraphs discuss shortcomings of existing (C)IMPs addressed in this article.

Active nodes versus organic reach, and total impressions. Existing methods focus on
maximizing the number of so-called active nodes. These are nodes which exert influence on their
peers by forwarding content to them after being successfully influenced by (one of) their active
neighbors. It was shown, however, that the probabilities that users only view content in their
newsfeed are notably larger than the probabilities that they also forward the content [11, 64],
and that the vast majority of influence cascades terminates after one hop [17]. We thus extend
the existing influence events by passive viewing events meaning that nodes view content without
forwarding it. Note that we explicitly use the term passive here to distinguish from viewing events
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at node activation (i.e., people typically also view content before they share it). This enables to
consider three new objective functions corresponding to (social media) marketing metrics which are
of great interest in that field, and which have been neglected in (C)IMPs so far. The first one is
the organic reach which refers to nodes that viewed the content of a specific marketing campaign
in their newsfeed at least once. In contrast, the term total impressions refers to the total number
of views including multiple views of one and the same content at one and the same node, e.g.,
an advertisement appearing more than once in a node’s newsfeed. Another important marketing
metric is the so-called patronage which we introduce in the context of IMPs in the next paragraphs.

Node resistance. We assume that the strength of influence on a node (e.g., its responsiveness
to an advertisement) is directly correlated with the number of impressions triggered by its peers
and inversely correlated with its resistance. That is, individuals may be resistant to some content
meaning that, despite viewing it many times, they will probably never be convinced of it. The
extent of a node’s resistance (or, conversely, responsiveness) can be estimated using, for instance,
observable parts of demographic, psychographic or sociographic factors or by analyzing the con-
tent users produce such as hashtags or more detailed text analysis [34, 33]. The impact of such
resistances could be partly considered in traditional (C)IMP variants by, e.g., infinite thresholds
in propagation models based on thresholds or zero activation probability in cascade models. This
would, however, rule out the consideration of resistant nodes that forward information they con-
sider to be of interest to their peers in an altruistic manner. Our model overcomes this limitation
through the consideration of explicit resistance values associated to nodes.

Customer choice behavior. An implicit assumption in the aforementioned (C)IMP variants
is that active nodes patronize the influence spreading entity, e.g., adopt an advertised product or
opinion. When it comes to customer choice behavior, however, it is widely accepted that customers
prefer options that maximize their individual utilities. Customer choice behavior is frequently
modeled with random-utility multinomial logit (MNL) models (see, e.g., McFadden 43, Swait and
Louviere 60). One advantage of such models is that they allow a mapping between (un)observed
customer characteristics and individual preferences over a set of alternatives (e.g., products). The
term preference here means the probability that a certain alternative is chosen and it is also called
patronizing-probability or simply patronage. The uncertain unobserved parts of the customer charac-
teristics are typically modeled as random variables that are independent and identically distributed
following a Gumbel distribution; see Baltas and Doyle [1] for an introductory survey.

The (discrete choice) models proposed in this article enable to focus on the organic reach or
total impressions while maximizing one of the following metrics. The first three of these metrics
are studied for the first time in this article to the best of our knowledge:

(a) the expected organic reach (from now on referred to as the variant O),

(b) the expected number of total impressions (the variant T),

(c) the expected patronage of the organic reach (the variant R),

(d) the expected number of message forwarders, i.e., active nodes (the variant F).
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1.2 Scientific contribution and outline

As discussed above, only very few articles have proposed ILP-based exact solution algorithms for
(C)IMPs and we are not aware of approaches considering MNL models or passive viewing events
in (C)IMPs. The contributions of this article are summarized as follows:

• We define three new IMP variants based on an adapted independent cascade (IC) model in the
spirit of Kempe et al. [29]. Variant R maximizing the expected patronage is the most general
one and it includes all novelties mentioned above (i.e., an MNL-based objective function
incorporating node views, node resistance, and customer choice behavior). We show that
minor manipulations to this variant allow to optimize different metrics, i.e., the expected
organic reach (O), expected number of total impressions (T) or expected number of active
nodes (F) (the latter being the classical IMP in the spirit of 29). We further show that
all three new problem variants are NP-hard, that the precise evaluation of these objective
functions is #P-hard, and that all three new objective functions are submodular, but non-
monotone.

• We propose a mixed-integer (non)linear program (MI(N)LP) for the three new IMP variants,
prove the existence of an exact linearization based on generalized Benders decomposition [15],
and show how to separate the generalized Benders cuts in polynomial time. As an alternative,
we also consider a linearization based on outer approximation [10].

• We derive worst-case bounds for the greedy marginal gain heuristic for solving the proposed
IMP variants in the spirit of Nemhauser et al. [44].

• Our benchmark instances based on real data are extracted via the development interface of
Twitter by querying information of users, tweets, and their relation to each other. Specific
hashtags are chosen as examples which can be used to promote products or events.

• The results of our computational study show that: (i) our models outperform state-of-the-
art heuristics in terms of the quality of objective values; (ii) one can increase the expected
organic reach, the expected number of total impressions, and the expected patronage by 36%
on average (and up to 13 times in particular cases) by considering our models instead of the
classical IMP [29]; (iii) message forwarding cascades are short on average which emphasizes
the importance of considering passive viewing events.

• Finally, we show that all our models and algorithms can be easily adapted to a CIMP with
static competition.

The article is organized as follows: The problem is defined and structural properties are studied
in Section 2; Mathematical models are given in Section 3; Worst-case bounds are derived, and
heuristics are discussed in Section 4; The generation of real-world instance graphs from Twitter is
discussed in Section 5; Our algorithmic framework is presented in Section 6, and computational
results are provided in Section 7; Conclusions are given in Section 8; Proofs of all theoretical results
and additional results are given in the appendices.
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2 Problem definition
The considered IMP variants are defined on a simple directed graph G = (V, A) modeling a social
network. Node set V represents the network participants and arc set A ⊆ V × V their relations.
Forwarding and viewing probabilities pf

ij ∈ [0, 1] and pv
ij ∈ [0, 1], respectively, are associated with

each arc (i, j) ∈ A. The former represent the probabilities that an inactive node j will be activated
by an active neighbor i, i.e., node j views and forwards content received from i. The latter repre-
sent the probabilities that node j only views content received from an active neighbor i (without
forwarding it). Note that we assume that active nodes always view content before forwarding it
and that 0 ≤ pf

ij ≤ pv
ij ≤ 1 holds for each (i, j) ∈ A; cf., Section 2.1 for details on the influence

propagation process. The objective is to identify a seed set S∗ ∈ V of at most k ∈ N nodes that
maximizes an objective function σM(S), i.e.,

S∗ ∈ argmax
S⊆V,|S|≤k

σM(S) , (1)

where σM(S) measures the impact of a marketing campaign with respect to metric M ∈ {O, T, R, F}.
The considered metrics include the expected organic reach (O), the expected number of total im-
pressions (T), expected patronage (R), and the expected number of message forwarders (F); see
Section 2.3. In the variant R, additional resistance values ri ∈ R>0 are associated to nodes i ∈ V .
They are used to account for the fact that influenced nodes do not necessarily need to adopt a (pro-
moted) content, cf. Section 1. Note that we define the resistance vector r ∈ R|V |

>0 on the positive
orthant for technical reasons. The vector coordinates may, however, be arbitrary small.

2.1 Adapted independent cascade (IC) model

In order to evaluate functions σM(·), an influence propagation process needs to be modeled. To
this end, we propose an IC model which augments the classical one [29] by viewing probabilities.
As the classical IC model, it assumes that only the seed nodes from set S are initially active (and
trigger a propagation process), all other nodes are initially inactive, and that each node can get
activated only once. In contrast, nodes can view content multiple times (at most once from each
active in-neighbor). During the propagation process, each active node i tries to influence each of
its neighbors j, (i, j) ∈ A, exactly once, and these attempts are independent from each other. An
attempt of node i to influence neighbor j results in one of the following three outcomes: (i) If j is
inactive, it may become active (which happens with probability pf

ij) and starts trying to influence
its neighbors by sharing the content. Note that changing j’s state from inactive to active implies
that j also views the content (since pf

ij ≤ pv
ij) and, therefore increases its number of impressions

by one. (ii) Node j (either inactive or already active) only views the content (which happens with
probability pv

ij) in which case its number of impressions is increased by one. (iii) Node j does not
view the content (which happens with probability 1 − pv

ij). The propagation process stops when
there are no more active nodes that did not yet share the content with their neighbors.

Discrete influence scenarios. In the following we consider a discrete set of (all) influence
propagation scenarios Ω instead of explicitly considering forwarding and viewing probabilities, pf

ij

and pv
ij , respectively. The idea originates from Kempe et al. [29] who observed that the event that

node i successfully activates node j, (i, j) ∈ A, can be interpreted as the outcome of a random
coin-flipping event biased by pf

ij . In this case, the authors declare arc (i, j) ∈ A as live. Repeating

5



Figure 1: Illustration example of an instance graph, a scenario graph, and an influence propagation
cascade.
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(a) Instance graph G

1
2 3

4

56
7

(b) Scenario graph G1
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(c) Propagation in G1

Note. Solid arcs in (b) and (c) correspond to activation arcs A1 and dashed arcs to viewing arcs A1 \ A1.

the coin-flipping procedure for each arc (i, j) ∈ A independently, yields an influence scenario ω ∈ Ω
which can be represented as a scenario graph Gω = (V, Aω) containing only arcs that are live in
scenario ω. One benefit of this approach is that the time aspect of the propagation process becomes
irrelevant (although the activation process evolves dynamically over time) because it only matters
if a node j can be activated in a certain influence scenario ω ∈ Ω. This is the case if there exists
a path from some seed node i ∈ S to node j in scenario graph Gω. We augment the idea of
Kempe et al. [29] with viewing probabilities pv

ij , and discriminate live arcs Aω ⊆ A in activation
arcs (i, j) ∈ Aω ⊆ Aω (along which node i can activate node j), and viewing arcs (i, j) ∈ Aω \ Aω

(along which node i can increase the number of j’s impressions by one without activating it). Thus,
in each scenario ω ∈ Ω an arc (i, j) ∈ A is represented either by (i) a forwarding arc in Aω, (ii) a
viewing arc in Aω \Aω, or (iii) is not included in Aω. Consequently there exist |Ω| = 3|A| possible
realizations of scenario graphs Gω. Further details about our adapted coin-flipping procedure are
given in Section 6.2.

Figure 1 illustrates an instance graph (Figure 1a) for which we omit introducing precise influence
probabilities pf

ij and pv
ij , a scenario graph G1 = (V, A1) (Figure 1b), and an influence propagation

cascade in G1 (Figure 1c). Solid arcs in Figures 1b and 1c correspond to activation arcs Aω and
dashed arcs to viewing arcs Aω \ Aω. The exemplary influence spread (along blue, bold arcs) is
given in Figure 1c and starts at seed set S = {3}. Active nodes are filled (blue), and viewing-only
nodes are marked as bold. That is, nodes 2, 4 and 5 actively forward content triggered by (active)
seed node 3 whereas node 6 only views the content. The number of impressions corresponds to
the number of active in-neighbors in G1. For instance, node 4 views the content twice via active
in-neighbors 2 and 3, whereas node 5 views the content only once (via its active in-neighbor 4).
Note that although node 4 has two in-going activation arcs (from nodes 2 and 3) it is activated
only once (by definition) and that it does not matter whether its activated by node 2 or node
3. The second attempt to activate node 4 will simply increase its number of impressions to two.
Node 6 also views the content twice, but is, however, not activated (as it has no in-going activation
arc). Consequently, it does not forward the content to node 7. This example also illustrates that
given a seed set S, the influence spread in a fixed scenario ω ∈ Ω can be efficiently computed using
breadth-first-search (BFS).
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2.2 Set representation of the influence spread

To simplify notation, we define the following set-valued functions denoted by calligraphic capital
letters, e.g., F(·), for which we use notation F(i) if the argument is a singleton {i} and assume
that F(S) is equivalent to ∪i∈SF(i) for node set S ⊆ V :

• The sets of in- and out-neighbors of node i in Gω and G are denoted by N−
ω (i) = {j : (j, i) ∈

Aω}, Nω(i) = {j : (i, j) ∈ Aω}, N−(i) = {j : (j, i) ∈ A}, and N (i) = {j : (i, j) ∈ A},
respectively.

• The activation set Aω(i) consists of all nodes reachable by activation arcs Aω from node i
in scenario ω. For instance, A1(3) = {2, 3, 4, 5} in the example in Figure 1b. Note that set
Aω(i) also contains node i by definition.

• The reverse activation set A−
ω (j) consists of all nodes that can activate a node j in scenario

ω along forwarding arcs Aω. For instance, A−
1 (5) = {2, 3, 4, 5} in the example in Figure 1b.

• The reachable set Rω(i) consists of all nodes that view information propagated by i in scenario
ω (at least once). For instance, R1(3) = {2, 3, 4, 5, 6} in the example in Figure 1b. Note that
set Rω(i) also contains node i, and that Aω(i) ⊆ Rω(i).

• For each node j ∈ V , the number of impressions triggered by S ⊆ V in scenario ω is given by
the number of its active in-neighbors, i.e., νω

j (S) = |Aω(S) ∩N−
ω (j)|.

2.3 Objective functions

This section defines the metrics used to measure the impact of a marketing campaign, discusses
their submodularity properties, and the hardness of the resulting problem variants. First observe
that we can express the objective function of (1) as

σM(S) =
∑
ω∈Ω

pωσω
M (S) , (2)

where 0 < pω < 1 refers to the probability of (coin-flipping) scenario ω, and σω
M (S) denotes the

objective function value for one specific scenario ω ∈ Ω with respect to metric M. For brevity we
will only define functions σω

M (S) in this section. We also restrict seed nodes i ∈ S from contributing
to the objective function, which is of particular interest for metrics T and R; see Remark 1 for the
underlying reason and a clarifying example. For the sake of consistency, we keep that restriction
also for variant O although it implies that the objective function is non-monotone; see Theorem 1
(and Remark 1).

Organic reach (O). For a given scenario ω ∈ Ω and seed set S ⊆ V , the number of nodes not in
S that are reached in scenario ω, i.e., the organic reach in scenario ω, is defined by

σω
O (S) = |Rω(S) \ S|. (3)

Theorem 1. For any given ω ∈ Ω, function σω
O (S) is submodular, non-negative and non-monotone.
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Total impressions (T). For a given scenario ω ∈ Ω and seed set S ⊆ V , the number of total
impressions in scenario ω is given by

σω
T (S) =

∑
j∈V \S

|Aω(S) ∩N−
ω (j)|. (4)

For each node j ∈ V \ S, this function sums the number of active in-neighbors which corresponds
to the content views of node j.

Theorem 2. For any given ω ∈ Ω, function σω
T (S) is submodular, non-negative and non-monotone.

Expected patronage (R). A common assumption in decision theory is that individuals seek to
maximize their own utility, based on their personal preferences and the attributes of the available
alternatives. In the context of influence maximization, each individual can either patronize the
distributed content or not, i.e., stay resistant. Each individual node i ∈ V is assumed to maximize
its own utility. Each single view of the propagated content increases the utility function by b̄i + ϵ̄′

i.
Alternatively, the utility of “staying resistant” is r̄i + ϵ̄′′

i . Here, b̄i, and r̄i denote the deterministic
parts of the utilities related to observable (demographic, sociological, psychometric) factors [34],
whereas the ϵ-terms denote unobservable parts of the utilities, which are assumed to be independent
and identically distributed following a Gumbel distribution. Then, for a given scenario ω, as shown
in [42], the probability that node j ∈ V patronizes the content triggered by seed set S is given by
the MNL

νω
j (S)eb̄j

νω
j (S)eb̄j + er̄j

,

where νω
j (S) denotes the total number of impressions of node j. The term above can be simplified

to
bjνω

j (S)
bjνω

j (S) + rj
, (5)

where bj = eb̄j and rj = er̄j . Finally, the sum of these individual probabilities over all nodes
j ∈ V \ S is what we call the patronage, for given seed S under scenario ω, that is,

σω
R (S) =

∑
j∈V \S

bjνω
j (S)

bjνω
j (S) + rj

. (6)

Theorem 3. For any given ω ∈ Ω, the objective function σω
R (S) is submodular, non-negative and

non-monotone.

Remark 1. Restricting seed nodes i ∈ S from contributing to the objective functions avoids counting
their impressions (triggered by themselves or other seed nodes), which could lead to unnatural seed
set choices. Consider, for instance, the disconnected graph with two connected components in
Figure 2, and assume that pf

ij = pv
ij = 1 for all (i, j) ∈ A, and k = 1. Observe that |N (i)| =

|N−(i)| = 10, and |N (j)| = 15 whereas N−(j) = ∅. A natural seed set choice for variant T would
be {j} with σT({j}) = 15 reaching 15 non-seed nodes (with one impression each). This solution
is only optimal if seed nodes do not contribute to the objective function. Otherwise, seed set {i}
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with σT({i}) = 20 would be optimal which reaches only ten non-seed nodes (with one impression
each) due to ten “self-impressions” of seed node i. Another consequence of restricting seed nodes
from contributing to the objective function is that the latter is non-monotone. For instance, the
optimal solution for k = 2 is S = {i, j} with σT(S) = 10 + 15 = 25. Adding another arbitrary node
as seed node, say l, implies that σT(S ∪ {l}) = 24.

Figure 2: Example justifying non-counting of self-triggered impressions.

i j

We conclude this section with Theorem 4 whose proof is given in the Appendix A for variants
O,T,R and which is known for variant F, see Chen et al. [7], Kempe et al. [29].

Theorem 4. The following results hold for each problem variant M ∈ {O, T, R, F}:

• Problem variant M is NP-hard.

• The evaluation of the function σω
M (S) can be done in O(|A|) time.

• The precise evaluation of the objective function (2) is #P-hard.

2.4 Extension to static competition

The proposed problem variants can be easily extended to a setting with static competition which
is of particular interest if the content to be propagated relates to opinions. That is, we assume
the existence of a competing entity called leader who already propagated a rivaling campaign from
a known seed set L ⊂ V . A decision maker (called follower) then seeks a seed set S ⊆ V \ L to
trigger a propagation cascade as best response. We assume that the follower starts the influence
propagation process after the one of the leader is over which particularly makes sense in “fast”
social networks such as Twitter. Fast in this context means that the peak of impressions per second
is 72 seconds after a Tweet was sent, and after 24 hours, no relevant number of impressions can be
observed for 95% of all Tweets [48]. We further assume that leader seed nodes L do not forward
rivaling content of the follower, thus, we can remove nodes L (and all incident arcs) from G after
the leaders propagation process.

Even though the influence propagation of the leader has no substantial impact for problem
variants F, O, and T including static competition, it has substantial implications for problem variant
R. That is, impressions triggered by the leader have impact on a node’s utility function and therefore
its patronage. In such a setting a node might (i) patronize the leader, (ii) patronize the follower,
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or (iii) decide to stay resistant patronizing none of the latter entities. We assume that each single
view of the content propagated by the leader increases a node’s utility function by āj + ϵ̄j (similar
as before). Moreover, let ℓω

j (L) denote the number of total impressions of the leader’s content at
node j in scenario ω ∈ Ω. Then, the probability that node j ∈ V \L patronizes the content triggered
by the follower seed set S is given by the MNL

νω
j (S)eb̄j

ℓω
j (L)eāj + νω

j (S)eb̄j + er̄j
.

Since ℓω
j (L) can be precomputed in this static setting, we can define rω

j (L) := ℓω
j (L)eāj + er̄j , and

obtain the objective function of the CIMP version of variant R as

σω
R (L, S) =

∑
j∈V \{L∪S}

bjνω
j (S)

bjνω
j (S) + rω

j (L) . (7)

We refer to Appendix D for results on the latter CIMP variant. In particular we discuss the impact
of considering different utilities āj and b̄j perceived from viewing the content of the leader and the
follower, respectively.

3 MINLP formulation and two linearizations
In the following we propose an MINLP formulation for problem variant R and discuss adaptations
of this model that allow to consider alternative objectives. Since such an MINLP model cannot be
tackled by state-of-the-art solvers for mixed-integer linear and quadratic optimization, we propose
two linearizations of this model to be able to deal with large-scale instances. The first linearization
is based on outer approximation [10] and the second one on the generalized Benders decomposition
[15].

3.1 MINLP formulation

The MINLP formulation (8) for problem variant R is based on the following sets of variables.
Forwarding variables fω

i ∈ {0, 1}, for all i ∈ V and ω ∈ Ω, indicate whether or not node i is
activated in scenario ω. Viewing variables vω

i ∈ Z+, for all i ∈ V and ω ∈ Ω, represent the number
of node i’s impressions in scenario ω ∈ Ω. Finally, variables yi ∈ {0, 1}, for all i ∈ V , indicate
whether or not node i is a seed node.

max
∑
ω∈Ω

pω
∑
i∈V

biv
ω
i

bivω
i + ri

(8a)

s.t.
∑
i∈V

yi ≤ k (8b)
∑

j∈N −
ω (i)

fω
j ≥ vω

i ∀i ∈ V,∀ω ∈ Ω (8c)

∑
j∈A−

ω (i)

yj ≥ fω
i ∀i ∈ V,∀ω ∈ Ω (8d)

vω
i ≤ |N−

ω (i)|(1− yi) ∀i ∈ V,∀ω ∈ Ω (8e)

10



fω ∈ {0, 1}|V | ∀ω ∈ Ω (8f)

vω ∈ Z|V |
+ ∀ω ∈ Ω (8g)

y ∈ {0, 1}|V | (8h)

The objective function (8a) maximizes the expected patronage triggered by the seed set which is
constrained by cardinality in inequality (8b). Constraints (8c) ensure that the total impressions
of node i cannot exceed the number of in-neighbors activated in scenario ω. Constraints (8d)
ensure that node i can only be activated in scenario ω if at least one seed node is contained in
its reverse activation set A−

ω (i). Inequalities (8e) restrict the seed set from contributing to the
objective function by forcing the viewing variables for all seed nodes to zero.

3.2 Choosing a different metric as objective function

The following paragraphs detail how to modify formulation (8) for alternative objectives.

Maximizing the number of total impressions (T). The only change required in (8) to max-
imize the expected number of total impressions is to replace objective function (8a) by

max
∑
ω∈Ω

pω
∑
i∈V

vω
i . (9)

Maximizing the organic reach (O). To maximize the expected organic reach, in addition to
the objective function defined in (9), the term |N−

ω (i)| in (8e) is replaced by one. Then, variables
vω

i , for all i ∈ V and ω ∈ Ω, are bounded from above by one and indicate whether or not node i
views a content at least once in scenario ω.

Maximizing the number of active nodes (F). The classical objective of IMPs (in the spirit
of Kempe et al. 29) is to maximize the expected number of active nodes. As passive viewing events
do not exist in such variants, viewing arcs Aω \ Aω are removed from scenario graphs Gω, for all
ω ∈ Ω. Thus, we can also remove viewing variables v ∈ R|V |×|Ω|

+ and all constraints where they
appear, i.e., (8c) and (8e). Finally, the objective function (8a) is replaced by

max
∑
ω∈Ω

pω
∑
i∈V

fω
i , (10)

so that we obtain exactly the same formulation as used in Güney et al. [20].

3.3 Linearization based on outer approximation

Outer approximation (OA) introduced by Duran and Grossmann [10] and later improved by Fletcher
and Leyffer [14] is one option for linearizing formulation (8). We focus on the multi-cut variant of
the OA (see, e.g., Mai and Lodi 41), by exploiting the separability of the objective function. We
only discuss the model for problem variant R, given that the OA approach is redundant for the
remaining ones, as their objective functions are already linear.
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Let uω ∈ R+, for all ω ∈ Ω, denote the objective function contribution of scenario ω ∈ Ω and
let gω(v) = ∑

i∈V
biv

ω
i

bivω
i +ri

. Let further Pv := {v ∈ Z|V |
+ : (8b) − (8h)} denote the set of all feasible

integer viewing variables. Then, after applying OA to (8) we obtain reformulation (11).

(OA) max
∑
ω∈Ω

pωuω (11a)

s.t. uω ≤
∑
i∈V

biv̄
ω
i

biv̄ω
i + ri

+
∑
i∈V

m̄ω
i (vω

i − v̄ω
i ) ∀v̄ ∈ Pv, ∀ω ∈ Ω (11b)

Here m̄ω
i denotes the the first-order partial derivative of the concave function gω(v) with respect

to viewing variables vω, i.e.,

m̄ω
i = ∂gω(v̄)

∂vω
i

= biri

(biv̄ω
i + ri)2 . (12)

Formulation (11) contains a finite but exponential number of constraints (11b), due to the
fact that variables v take on integer values, and since there is only a finite number of points
(namely, |Pv|) in which the function gω(v) has to be approximated with its tangential hyperplane.
Such models are typically solved using branch-and-cut. Unfortunately, the number of variables
O(|V ||Ω|) makes this model prohibitive for solving instances of realistic size. We therefore proceed
by investigating a computationally more tractable approach (generalized Benders decomposition),
in which the number of variables is reduced to O(|V |+ |Ω|).

3.4 Linearization based on generalized Benders decomposition

In contrast to OA in which the problem is modeled in the full variable space, the generalized Benders
decomposition [15] projects out forwarding and viewing variables and exploits dual information to
generate linear approximations of the objective function. To be able to proceed with this approach,
Lemma 5 provides a crucial result which states that integrality constraints for the forwarding and
viewing variables ((8f)-(8g)) can be relaxed.

Lemma 5. Given an optimal solution y∗ ∈ Py := {y ∈ {0, 1}|V | : ∑
i∈V yi ≤ k}, there exist optimal

integral values for relaxed forwarding and viewing variables f∗ ∈ [0, 1]|V |×|Ω| and v∗ ∈ R|V |×|Ω|
+ in

(8) implied by y∗.

The reformulation is now obtained from projecting out continuous variables f and v (cf.,
Lemma 5) from the master problem into |Ω| linearly constrained subproblems. The latter sub-
problems can be solved in polynomial time (cf., Theorem 7). Reformulation (13) for variant R is
stated in Theorem 6 whose proof is given in Appendix A. For the remaining problem variants,
namely T, O, F, the (generalized) Benders decomposition approach can also be applied, yielding
different families of cuts, which are summarized in Corollaries 1-3.

Let Py := {y ∈ {0, 1}|V | : ∑
i∈V yi ≤ k} and assume that a bar ·̄ over sets and variables indicates

their values implied by a candidate solution ȳ ∈ Py. For instance, S̄ = {i ∈ V : ȳi = 1} at point
ȳ ∈ Py, while f̄ and v̄ denote the values of the forwarding and viewing variables associated with ȳ,
respectively. Set V̄ ω := {i ∈ V : νω

i (S̄) = |N−
ω (i)|} ∪ {S̄} further denotes the set of saturated nodes

who either attained their maximum number of total impressions in scenario ω or are seed nodes
(who are saturated with zero impressions by definition).

12



Theorem 6. Formulation (13) is a reformulation of (8) in the (u, y)-space for problem variant R.

(GB) max
∑
ω∈Ω

pωuω (13a)

s.t. uω ≤ σω
R (S̄)−

∑
i∈S̄

ρ̄ω
i (1− yi) +

∑
i/∈S̄

ρ̄ω
i yi ∀S̄ ⊆ V,∀ω ∈ Ω (13b)

y ∈ Py (13c)

where

ρ̄ω
i =


−|N−

ω (i)|m̄ω
i if i ∈ S̄∑

j∈Aω(i)\Aω(S̄)
∑

k∈Nω(j) m̄ω
k if i ∈ V \ V̄ ω∑

j∈Aω(i)\Aω(S̄)
∑

k∈Nω(j) m̄ω
k − |N−

ω (i)|m̄ω
i if i ∈ V̄ ω \ S̄

∀ω ∈ Ω, ∀i ∈ V. (14)

Here ρ̄ω denotes the supergradient of the objective function of the Benders subproblem in
scenario ω ∈ Ω at point ȳ ∈ Py and m̄ω

i is defined as in (12). Constraints (13b) are (exponentially
many) generalized Benders optimality cuts. Note that no feasibility cuts are needed since every
y ∈ Py is feasible.

The result of Theorem 6 can be easily adapted to the other problem variants outlined in Sec-
tion 3.2.

Corollary 1. For problem variant T, formulation (13) is a reformulation of (8) in the (u, y)-space
after replacing σω

R (S̄) with σω
T (S̄) in (13b) and setting m̄ω

i = 1, for all i ∈ V , ω ∈ Ω, in (14).

Corollary 2. For problem variant O, formulation (13) is a reformulation of (8) in the (u, y)-
space after replacing σω

R (S̄) with σω
O (S̄) in (13b) and setting m̄ω

i = 1, for all i ∈ V , ω ∈ Ω, and
|N−

ω (i)| = 1, for all i ∈ V , ω ∈ Ω, in (14).

Corollary 3. For problem variant F, formulation (13) is a reformulation of (8) in the (u, y)-space
after replacing σω

R (S̄) with σω
F (S̄) in (13b) and replacing (14) with

ρ̄ω
i =

{
0 if i ∈ S̄

|Aω(i) \ Aω(S̄)| otherwise,
∀ω ∈ Ω, ∀i ∈ V .

We refer to Appendix A for details and point out that the result stated in Corollary 3 corresponds
to the Benders reformulation for problem variant F studied by Güney et al. [20]. It is known that
OA cuts dominate the ones from generalized Benders decomposition [10] and that the latter cuts
correspond to aggregated OA cuts [49]. While OA algorithms need fewer iterations than generalized
Benders decomposition algorithms to converge to an optimal solution, this comes at the cost of
having (significantly) more variables in the master problem. Duran and Grossmann [10] state that
OA may therefore have benefits if the non-linear subproblems are computationally costly. As shown
in Theorem 7 this is, however, not the case.

Theorem 7. For a given ω ∈ Ω, the separation of generalized Benders cuts (13b) can be done in
O(|V |2) time for all problem variants F, O, T, and R.
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4 Heuristics
In this section, we exploit the submodularity properties (cf., Theorems 1-3) to show the existence
of worst-case guarantees when solving our IMP variants with marginal gain heuristics. Moreover,
we discuss frequently used (topology-based) heuristics to which we compare our approach in Sec-
tion 7.4.

4.1 Marginal gain heuristics for problem variants O, T, R

The greedy heuristic of Nemhauser et al. [44] with a worst-case approximation ratio of 1 − 1/e
provides a simple and effective way to obtain high-quality solutions for maximizing non-decreasing
submodular functions subject to a cardinality constraint. While this result is valid for problem
variant F introduced by Kempe et al. [29] and Bharathi et al. [4], it does not extend to the other
variants studied in this paper (since the monotonicity property is violated). The greedy heuristic
of Nemhauser et al. [44], referred to as the marginal gain (MG) heuristic starts with an empty seed
set S̃ and iteratively inserts a node i with maximum positive marginal gain σM(S̃ ∪ {i}) − σM(S̃).
In our case, the calculation of this marginal gain is based on a propagation applied to scenario
graphs for each scenario ω ∈ Ω. The algorithm stops after at most k iterations (given that σ is
not monotone, the algorithm may stop earlier if there are no more nodes with positive marginal
gain). In the following, we provide the quantitative assessment of the solutions obtained through
this greedy procedure.

Theorem 8. For problem variants M ∈ {O, T, R}, the MG heuristic finds a seed set S̃ ⊆ V such that

σM(S̃) ≥ (1− 1/e)σM(S∗)− kαkθ

where S∗ ⊆ V is an optimal solution, α = (k − 1)/k and θ = 1 for the variants R,O, and θ =
maxi∈V |N−(i)| for the variant T.

Remark 2. Without restricting seed nodes to contribute to the objective function in variant O, we
would obtain the well-known 1− 1/e approximation ratio instead of the result stated in Theorem 8.

The fact that the precise evaluation of function σM(S) is #P-hard (cf., Theorem 4) due to the
exponential number of scenarios Ω impedes the efficient solution of all problem variants. A common
remedy is to approximate σM(S) by considering only a subset of scenarios Ω′ ⊂ Ω (of polynomial
size). Kempe et al. [30] showed that such an approximation can be used to obtain an (1− 1/e− ϵ)-
approximation for variant F and arbitrary ϵ > 0. Their result allows to adapt the approximation
factor in Theorem 8 and therefore implies ?? 4?? 5.

Corollary 4. There exist polynomial-time algorithms for problem variants M ∈ {O, R} that find a
seed set S̃ ⊆ V such that

σM(S̃) ≥ (1− 1/e− ε)σM(S∗)− k/e

where S∗ ⊆ V is an optimal solution.

Corollary 5. There exists a polynomial-time algorithm for problem variant T that finds a seed set
S̃ ⊆ V such that

σT(S̃) ≥ (1− 1/e− ε)σT(S∗)−M · k
where S∗ ⊆ V is an optimal solution and M = 1

e maxi∈V |N−(i)|.
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To summarize, in this section we showed that for solving problem variants O,T,R, high-quality
solutions with worst-case bounds can be obtained by applying the greedy heuristic MG. While we
were not able to derive a constant approximation ratio, the solutions found by the heuristic can
still be relevant for practical applications, in particular when the size of the seed set k is bounded
by a constant and when the right-most terms of the inequalities given in ?? 4?? 5 are negligible
compared to the optimal solution value. Although the quality of solutions found by MG is typically
much better than suggested by the worst-case bounds, one can easily derive instances for which the
worst-case bounds are tight (see, e.g., Coniglio et al. [8] or Hochbaum and Pathria [23] for similar
examples). The latter downside can be overcome by using the exact algorithms based on the
branch-and-cut procedures introduced in Section 3. The worst-case complexity of these algorithms
is exponential, however, the major advantage compared to (greedy) heuristics is in the possibility
to stop the computations after a given (time-)limit and obtain provable dual bounds that allow to
better estimate the quality of the obtained solution. Another important advantage of MINLP-based
models is the fact that their cardinality constraint (choose at most k nodes as the seed set) can be
easily generalized into, e.g., a knapsack constraint, matroid-based constraints, or even conflict or
connectivity constraints. These changes are trivial to integrate into MINLP models, but require a
complete restructuring of underlying approximation heuristics and the theoretical approximation
guarantees (or worst-case bounds) may be lost.

4.2 Topology-based heuristics

We now outline six topology-based heuristics whose performance will be empirically compared to
the MG heuristic (cf., Section 4.1) and the exact methods (cf., Section 3.4).

All considered topology-based heuristics use a given criterion to first compute influence values
di ≥ 0, for all i ∈ V ; see Table 1 for a summary. After sorting all nodes in non-increasing order with
respect to this criterion, the first (best) k nodes are chosen as seed set S. The following concepts
and notations are used in Table 1:

• The outdegree centrality heuristic (DC) uses the fact that nodes with a large outdegree in
instance graph G are likely to activate more users than nodes with a low outdegree.

• The expected outdegree heuristic (EC) works similar, however, uses the expected node outde-
gree in scenario graph Gω, ω ∈ Ω, as ranking criterion.

• The betweenness centrality heuristic (BC) uses the total numbers of shortest paths cst from s
to t and the number cst(i) of these shortest paths containing node i, i /∈ {s, t}.

• For the reverse PageRank heuristic (PR), λ ∈ [0, 1] is a damping factor which we set to
λ = 0.85 in our computations like it was first used by Google [45]. This recursive algorithm
converges fast and stops if the error between two iterations t and t + 1 measured in the
L1-norm ∥dt − dt+1∥1 is below some threshold (we set 10−6). PageRank proposed by Page
et al. [47] estimates the importance of websites. Here, websites are considered as important
if other important websites link to them. For identifying influential nodes in social networks
the procedure is reversed [24]. Nodes are considered to be influential if they are followed by
other influential ones.

• The TunkRank heuristic (TR) is a PageRank analogue to Twitter [63] in which M denotes the
number of followers of node i. We set M = |N−

ω (i)| in our experiments and use the same
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Table 1: Ranking criteria di for nodes i ∈ V \ L of the topology-based heuristics.

Ranking criterion (heuristic) di

Outdegree centrality (DC) |N (i)|
Expected outdegree centrality (EC) E[|Nω(i)|] =

∑
ω∈Ω′ pω

∑
j∈Nω(i) pf

ij

Betweenness centrality (BC)
∑

s̸=t∈V,i∈V \{s,t}
cst(i)

cst

Reverse PageRank (PR) 1−λ
|V | + λ

∑
j∈N (i)

dj

|N −(i)|

TunkRank (TR)
∑

j∈N (i)
1+pf

ijdj

|M |
Retweet, answers, mentions (RM) oi+wi+zi∑

i∈V
oi+wi+zi

stopping threshold as for PR.

• Leavitt et al. [36] proposed the heuristic based on retweets, answers and mentions (RM). Here,
oi denotes how often node i is retweeted, and wi and zi denote how often node i is replied to
and how often node i is mentioned by other nodes, respectively (see Section 5 for a description
how we obtained these values).

5 Benchmark instances
Real-world benchmark instances were created by querying information of users, tweets and their
relation to each other using Twitter’s developer interface in its freely available standard ver-
sion 1.1 [54]. Instance graphs were built by first choosing a hashtag (e.g., #giftideas) and then
searching for tweets (of the last seven days) that include this hashtag. The authors of these tweets
defined the initial node set of an instance. Next, all tweets of this initial node set from the year 2020
were analyzed in detail. Only the latest 3 200 tweets were considered for users whose number of
tweets from 2020 exceeded 3 200 (which is a limitation of the free developer interface of Twitter in the
used version 1.1). Whenever one of these tweets included the chosen hashtag and retweets, quotes,
replies to, or mentions users not yet included in the instance, these users were added and their
tweets were analyzed in the same way. The procedure was stopped when no more new users were
added. We generated eight instances using the hashtags #austria, #giftideas, #greenenergy, #na-
turelovers, #organicfood, #orms (operations research and management science), #skateboarding,
and #travelling. These hashtags were chosen as examples for content used to promote products,
events, cultural activities, or accommodation offers. The forwarding probability pf

ij of each arc
(i, j) ∈ A was computed as

pf
ij = retweetsji + answersji

|Tj |+ |Rj |+ |Aj |
where retweetsji and answersji correspond to how often user j retweeted something from and
answered to user i, respectively. Moreover, Tj , Rj , and Aj are the sets of original tweets, retweets
and answers of user j, respectively. Thus, fractions (or probabilities) of actions from user j that
refer to user i were computed. For instance, if user j had an output of 100 tweets whereby one of
them was a retweet of user i, the probability that the output from j contains a message forwarded
from i is 1/100. Note that summing up the terms in the numerator of the expression above, yields
the corresponding values used in heuristic RM, e.g., oi = ∑

j∈N (i) retweetsji.
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Table 2: Real-world social network instances.

Instance graph name |V | |A| δ(i) E[δ(i)] Description (retrieval date)
tw-austria 4 753 57 353 12.1 0.15 #austria (2020/08/14)
tw-giftideas 4 541 336 855 148.3 0.46 #giftideas (2020/08/10)
tw-greenenergy 3 040 26 199 17.2 0.13 #greenenergy (2020/08/11)
tw-naturelovers 14 108 664 713 47,1 0.24 #naturelovers (2020/08/09)
tw-organicfood 390 923 4.7 0.11 #organicfood (2020/08/13)
tw-orms 546 3 659 13.4 0.29 #orms (2020/08/07)
tw-skateboarding 2 700 17 302 12.8 0.13 #skateboarding (2020/08/10)
tw-travelling 1 661 6 877 8.3 0.10 #travelling (2020/08/08)
msg-college 1 899 20 296 21.4 0.04 Leskovec and Krevl [38]
msg-email-eu 986 24 929 50.6 0.11 Leskovec and Krevl [38]
soc-advogato 5 167 47 322 18.3 0.04 Rossi and Ahmed [55]
soc-anybeat 12 645 67 053 10.6 0.02 Rossi and Ahmed [55]

Note. We report numbers of nodes |V |, numbers of directed arcs |A|, average node degrees δ(i), and expected node
degrees E[δ(i)] = 1

|Ω′|
∑

ω∈Ω′

(∑
j∈N −

ω (i) pf
ji +

∑
j∈Nω(i) pf

ij

)
where Ω′ ⊂ Ω (cf., Section 6.1).

The approximately 106 observations (combined over all instances) result in an empirical dis-
tribution of the forwarding probability with the following characteristics: average = 0.04%,
minimum = 0.03%, Q1 = 0.03%, Q2 = 0.09%, Q3 = 0.3%, maximum = 100%, where Qx de-
notes the xth quartile of the distribution. The latter distribution was used to extend benchmark
instances from the literature (Leskovec and Krevl 38, Rossi and Ahmed 55). Missing probabilities
pf

ij , (i, j) ∈ A, were estimated by drawing random samples from the aforementioned empirical dis-
tribution. Some of these graphs also contained parallel arcs that reflect messages sent at different
points in time. Notice that we collapsed such parallel arcs to only one arc, because we are mainly
interested in node relationships.

An overview over all used instances is given in Table 2. Visualizations of the distribution of
(expected) in- and outdegrees of these instances are provided in the Appendix E.

6 Algorithmic framework
This section details our algorithmic framework and parameters used in our computational study.

6.1 Sample average approximation

Considering all scenarios |Ω| = 3|A| is computationally intractable even for small instances. We
therefore embed our branch-and-cut framework in a sample average approximation (SAA) scheme
[32]. In each SAA iteration, a much smaller set of independently drawn and identically distributed
scenarios Ω′ ⊂ Ω is considered. The solution of each SAA iteration is subsequently evaluated on a
much larger set of scenarios |Ω′′| ≫ |Ω′| and the solution which performs best on set Ω′′ is chosen
as the best approximation of the optimal solution. Consequently, we adapt the objective function
(8a) to

σ̂R,Ω′(Ŝ) = 1
|Ω′|

∑
i∈V

biv
ω
i

bivω
i + ri
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where a hat ·̂ indicates an estimator. Notice that a seed set Ŝ is an estimator too (due to the SAA
approach). The objective functions for all other problem variants are adapted analogously. For the
sake of brevity we will neglect the subscript Ω′′ for indicating objective function values evaluated
on set Ω′′ and instead denote such estimated values by σ̂M(Ŝ).

As we cannot guarantee to solve each SAA iteration to optimality, we use the inexact SAA [3]
to estimate the approximation gap ∆ as

∆ = UBΩ′(Ŝ)− LBΩ′′(Ŝ)
UBΩ′(Ŝ)

.

Here, UBΩ′(Ŝ) and LBΩ′′(Ŝ) are the approximated 1 − α confidence upper and lower bounds,
respectively; see Bardossy and Raghavan [3] for further details.

6.2 Scenario graphs and (reverse) activation sets

Generation of scenario graphs. We use a sampling procedure in which a number ξω
ij ∈ [0, 1]

is drawn independently and uniformly at random for each scenario ω ∈ Ω′ and every arc (i, j) ∈ A.
If ξω

ij ≤ pf
ij node j can be activated by i in scenario ω and, thus, (i, j) ∈ Aω. Node j, however, only

views content received from node i in scenario ω if pf
ij < ξω

ij ≤ pv
ij , i.e., (i, j) ∈ Aω \ Aω. Influence

attempts fail in scenario ω if pv
ij < ξω

ij in which case (i, j) /∈ Aω.

Computation of (reverse) activation sets. Reverse activation sets are computed by a reverse
BFS on subgraph (V, Aω) from each node i ∈ V and for each scenario ω ∈ Ω′. The propagation
stops when a node j for which A−

ω (j) is already known is encountered. In the latter case, all nodes
from A−

ω (j) are added to A−
ω (i), because then A−

ω (j) ⊂ A−
ω (i). A forward BFS is used to compute

sets Aω(i), for all i ∈ V , ω ∈ Ω′.

6.3 Preprocessing singletons

A singleton node i ∈ V in scenario ω has an objective function contribution of zero in that scenario.
Thus, corresponding viewing variables vω

i can be forced to zero and the corresponding constraints
(8c)-(8e) can be removed. Respective supergradient coordinates ρ̄ω

i = 0, ȳ ∈ Py are enforced in
reformulation (13). Thus, the number of nodes considered in the separation of the generalized
Benders cuts can be reduced by this preprocessing procedure.

6.4 Separation of generalized Benders cuts

To avoid that the initial LP relaxation is unbounded, we initially include Benders cuts

uω ≤
∑
i∈V

ρ̄ω
i yi ∀ω ∈ Ω′,

that correspond to (13b) for ȳ = 0 in (13). Further Benders cuts are generated on-the-fly in an
LP-based branch-and-cut fashion for integer as well as fractional solutions ȳ ∈ P ′

y := {[0, 1]|V | :∑
i∈V yi ≤ k}. Theorem 7 shows that these cuts can be separated in O(|V |2). The separation

algorithm (that we use for fractional solutions) follows the relations obtained in the proofs of
Theorem 6 and Corollaries 1-3 given in Appendix A. A simpler method is used for integer solutions
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ȳ ∈ Py; see Algorithm 1 in Appendix B. Here, we propagate directly from S̄ = {i ∈ V : ȳi = 1}
along Aω(S̄) while considering all out-neighbors Rω(S̄) to obtain the current value of σω

M (S̄) for
each scenario ω ∈ Ω′.

7 Computational results
In this section, we report the results of our computational study and discuss their managerial im-
plications. We first detail used parameter settings in Section 7.1 before identifying an appropriate
number of scenarios |Ω′| considered in the computations in Section 7.2. In Section 7.3 we compare
the performance of the generalized Benders decomposition and the outer approximation approach.
Section 7.4 evaluates the solution quality obtained by the heuristics discussed in Section 4.2 com-
pared to those obtained by the generalized Benders decomposition algorithm based on model (13).
In Section 7.5, we focus on the impact of different solutions obtained from problem variants F,
O, T, and R, by cross-validating them on all (other) metrics. Finally, we analyze the lengths of
propagation cascades in Section 7.6.

All algorithms were implemented in julia 1.1.0 and each experiment was performed on a single
core of an Intel Xeon E5-2670v2 machine with 2.5 GHz and 32 GB RAM. IBM CPLEX 12.9 (with
default settings) was used as ILP solver, and a time limit of two hours per SAA iteration was
set. The program code, the instance graphs, and results are provided in the accompanying online
repository [26].

7.1 Parameter setting

One limitation of the free version of the Twitter developer interface (version 1.1) is that the collection
of data that allow the estimation of resistance values and viewing probabilities is prohibited, so
that we set viewing probabilities to pv

ij = 5%, for all (i, j) ∈ A. The latter value is a compromise
between Stone [59] who states that the organic reach on Facebook is 6.4% and Virgillito [64] who
states that the organic reach on Twitter is around 3.6%. To facilitate an analysis of the impact of
resistant nodes, we assume that a node is resistant if its patronizing probability (5) does not exceed
a given resistance hurdle h ∈ (0, 1] which we set to h = 0.1. That is, a node i ∈ V is resistant
in our setting if maxω∈Ω

bi|N −
ω (i)|

bi|N −
ω (i)|+ri

≤ bi|N −(i)|
bi|N −(i)|+ri

≤ h. Note that the latter inequality is tight
if ri = max{1, 1−bih

h |N−(i)|} and |N−(i)| > 0, thus, we use the latter equation to compute the
values ri for resistant nodes i ∈ V . The resistance values of all other nodes are randomly chosen
integers from the interval [1, 1−bih

h |N−(i)|] if |N−(i)| > 0 whereas ri = 1 is used if N−(i) = ∅. Note
that this approach avoids too large resistance values which may cause numerical instabilities. For
the computational experiments whose results are reported in Sections 7.2-7.4 we choose resistant
nodes randomly. More fine-grained selection criteria are used and reported in Sections 7.5 and 7.6.
The utilities bi perceived from viewing content are set to one for all i ∈ V . Generalized Benders
cuts at fractional points are only added if they are violated by at least 0.1%. In total, ten SAA
iterations are performed for each computational experiment, and the solution which performs best
on |Ω′′| = 100 000 independently generated scenarios is chosen.
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7.2 Appropriate number of scenarios

To identify an appropriate number of scenarios |Ω′| we analyze solutions obtained with our gener-
alized Benders decomposition algorithm for |S| ∈ {5, 10, 15}, and |Ω′| ∈ {100, 250, 500, 750}. The
choice of |Ω′| is then based on the achieved relative approximation gaps (cf., Section 6.1) and the
average in-sample and out-of-sample stabilities [28] shown in Figure 3. The latter correspond to
the average relative differences between the solutions of each SAA iteration evaluated on sets Ω′

and Ω′′, respectively.
The results shown in Figure 3 confirm that approximation gaps ∆, in-sample and out-of-sample

stabilities decrease with increasing number of scenarios |Ω′|. Comparing the solutions per instance
and parameter configuration surprisingly reveals, however, that the seed sets identified for different
numbers of scenarios are always identical when fixing all other parameter values. Taking into
account the CPU-times required per SAA iteration (see Figure 8 in Appendix C), we conclude that
|Ω′| = 100 seems the best choice for our remaining experiments even though obtained approximation
gaps are slightly larger.

Figure 3: Approximation gaps ∆, in-sample stabilities, and out-of-sample stabilities in percent.
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7.3 Empirical comparison with outer approximation

For problem variant R, we compare the performance of generalized Benders decomposition (GB) and
outer approximation (OA). Both methods are implemented as branch-and-cut algorithms in which
cutting planes are separated at each node of the branching tree.

The performance profiles in Figure 4 summarize the results obtained over all used instances and
the aforementioned parameter settings. We observe that GB significantly outperforms OA. For more
than 30% of the instances, OA reaches the time limit whereas most of them can be solved by GB.
This can be explained by the significantly larger number of variables required for the reformulation
based on outer approximation. Even for 100 scenarios, this number grows rapidly, and prohibits an
efficient exploration of the search space. Therefore, based on these results, we desist from reporting
further results obtained from the OA algorithm.

7.4 Empirical quality of heuristic solutions

This section sheds light into the question whether or not GB has significant benefits over heuristic
methods in terms of solution quality (in addition to providing either a proof of optimality or a dual
bound).

20



Figure 4: Performance profiles of generalized Benders decomposition (GB) and outer approximation
(OA).
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Note. Optimality gaps are computed by (UB − OV)/UB where UB denotes the best known upper bound and OV
denotes the objective value of the corresponding SAA iteration. Note that |Ω′| = 100.

Figure 5: Heuristic solution qualities in percent.
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Figure 5 shows objective values obtained from all heuristics described in Section 4.2 relative to
those of the GB. Let σ̂R(Ŝ∗) denote the objective value of the GB, and σ̂R(Ŝ∗

H) denotes the one derived
from evaluating seed set Ŝ∗

H obtained from heuristic H ∈ {BC, DC, EC, MG, PR, RM, TR} on metric R.
Then, the relative heuristic solution qualities are computed as

σ̂R(Ŝ∗
H)

σ̂R(Ŝ∗)
.

We observe that using one of the considered heuristics instead of an exact method such as GB
can lead to substantial losses in terms of objective values (up to 80% for BC and PR, and up to
50% for DC and EC). This observation holds for all heuristics but MG, where the losses are at most
10%. MG delivers good results but requires a substantial amount of time. We refer to Appendix C
for detailed results including runtimes. We remark, however, at this point that there is no clear
trend whether MG or GB (which, contrary to MG, also delivers a proof of optimality) is faster. It is
surprising to see that the runtimes of an exact method with an exponential worst-case runtime,
when evaluated on realistic instances, are often similar and frequently even substantially smaller
than those of a heuristic whose runtime is polynomial.
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7.5 Impact of passive viewing (and resistant nodes) in influence maximization

We now analyze the impact of considering passive social viewing events (and resistant nodes) in
IMPs. The focus is on showing how much improvement in terms of organic reach (O), total impres-
sions (T), and patronage (R) one can expect from seed sets obtained from solving the respective
problem variants compared to seed sets obtained from the classical IMP variant (F). In particular
we are interested in the relative gaps between σ̂M(Ŝ∗

M) and σ̂M(Ŝ∗
F). Here, Ŝ∗

M denotes the seed set
obtained by solving problem variant M ∈ {O, T, R}, Ŝ∗

F denotes the seed set obtained from solving
variant F, and σ̂M(Ŝ∗

F) denotes the objective value obtained from evaluating Ŝ∗
F on metric M. Note

that σ̂M(Ŝ∗
M) ≥ σ̂M(Ŝ∗

F). For more fine-grained insights on variant R, we consider three variants in
which 25%, 50%, and 75% of the nodes are resistant, denoted as R25, R50, and R75, respectively.
Resistant nodes are chosen randomly while ensuring that resistant nodes in R25 are also resistant
in R50 whereas resistant nodes therein are also resistant in R75.

We further provide insights from cross-evaluating seed sets obtained from all problem variants
on all other metrics. To compare these results, we compute the relative gaps Q(M, M′) between σ̂M(Ŝ∗

M)
and σ̂M(Ŝ∗

M′) for all M, M′ ∈ {F, O, T, R25, R50, R75} which can be interpreted as the improvement
of solving variant M instead of variant M′ measured in the metric used in variant M. For instance,
to compare the improvement in the organic reach when solving variant O instead of solving the
classical IMP (variant F) we compute

Q(O, F) = σ̂O(Ŝ∗
O)− σ̂O(Ŝ∗

F)
σ̂O(Ŝ∗

F)
.

Figure 6 illustrates ratios Q(M, M′) in percent. We, however, removed five solutions in which the
best seed set found was not optimal in the corresponding SAA iteration (three tw-naturelovers
(O), and two tw-organicfood (R25)). We further remark that each column in each subfigure shows
the results over all instances and k ∈ {5, 10, 15} since we did not find important insights from
further unraveling them. Note that in each subplot of Figure 6 there exists a column in which all
values are 0%. That is, when we evaluate a seed set obtained from a certain problem variant on its
own metric. Although this information is redundant, we kept such columns in the figures to ease
comparison. Further note that we cut off all values above 250%, however, we report the number of
cut-off outliers in the brackets over each boxplot. Finally we remark, whenever we evaluate a seed
set on metric F, we deduct the respective seed set cardinality to obtain a fair comparison.

We observe from Figure 6a that using our proposed IMP variants can lead to significant im-
provements in objective values compared to the classical IMP. In other words, the seed sets obtained
from the classical IMP maximizing the expected number of active nodes do not perform well with
respect to the considered alternative metrics accounting for passive viewing events. In instance
tw-traveling extreme cases appear in which these improvements are up to 1 300%. We observe
improvements of 36% on average (with a median of 19%) when excluding all results for this instance.

Figures 6b-6f show that one should use the classic IMP only when maximizing the expected
number of active nodes is crucial while reaching a substantial smaller number of viewing nodes
is acceptable. Indeed, these figures show that the expected numbers of active nodes obtained
from problem variant F are much higher than those from re-evaluating seed sets obtained by other
metrics. These results do, however, also reveal another advantage of considering passive viewing
events. We observe that the seed sets obtained from considering one of the IMP variants different
from F provide high-quality solutions not only on the respective metric, but also when re-evaluating
them on another metric from {O, T, R}. For example, the average improvements of using metric T
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or R instead of re-evaluating the optimal seed sets obtained for variant O are relatively small. That
is, seed sets optimizing the expected organic reach also perform well w.r.t. the expected number of
impressions and the expected patronage.

Figure 6: Improvements from cross-evaluating seed sets obtained from different models.
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Note: The number of cut-off outliers is indicated in the brackets (·) above each boxplot.

7.6 Length of propagation cascades

Goel et al. [17] and Goel et al. [18] observe that propagation cascades are typically short which
we confirm in Figure 7. The average expected depths of propagation trees E[d(T )] are measured
in number of activation arcs (i, j) ∈ Aω starting from one seed node i ∈ Ŝ with respect to set
Ω′′ are depicted. Observe that the longest average propagation cascades can be expected from
solving problem variant F. However, the potentially large improvements in terms of expected organic
reach, expected number of total impressions, and expected patronage, (cf., Figure 6a) indicate that
considering both active and passive nodes seems more important for marketing campaigns than
aiming for long propagation cascades.

8 Conclusions
We have introduced and studied three new variants of the influence maximization problem (IMP),
namely maximization of the expected organic reach (O), expected number of total impressions (T),
and expected patronage (R). Main novelties include the consideration of passive viewing events,
node resistance, and customer choice behavior. We showed that the considered IMP variants are
NP-hard and that the precise evaluation of their (non)linear objective functions is #P-hard. We

23



Figure 7: Average expected propagation tree depth.
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also proposed mixed-integer (non)linear programming models for the proposed IMP variants. Two
linearizations of the latter models have been developed that are based on outer approximation and
generalized Benders decomposition. Further theoretical results obtained show that the considered
objective functions are non-monotone and submodular. Based on the latter properties we have also
proven worst-case bounds for polynomial time algorithms of the proposed problem variants.

An extensive computational study has been performed on instances obtained from the social
network Twitter as well as on instances from the literature. Our results show that one can obtain
large improvements in terms of important marketing metrics if the problem variants proposed
in this work are used instead of the classical approach. We have also shown that our approach
outperforms state-of-the-art heuristics in terms of objective values but also in terms of runtimes on
some instances.

Our results can serve as a base for the development of new tools for decision-making in the
context of influencer marketing. The fact that influential nodes are typically interested in remuner-
ation in practice does not restrict the application of the proposed MI(N)LP models and methods.
One could, for instance, associate certain costs ci to nodes i ∈ V representing the incentives that
influencers want to receive to act as seed nodes. In addition, the cardinality constraint (8b) can
be replaced by a more general budget-constraint. Notice that this adaptation does not notewor-
thy influence our algorithmic developments based on MI(N)LP reformulations. In particular, the
derivation of the generalized Benders cuts remain the same.
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This appendix is structured as follows: A contains the proofs of all statements of the main article.
B details the separation of Benders cuts for integer candidate solutions. C provides additional and
detailed computational results. D discusses results obtained from solving our proposed CIMP
variant. Finally, E includes further information about the instances used.

A Proofs
The following results discuss submodularity properties of different problem variants. To this end,
recall that a real-valued function f(·) defined on a finite ground-set D is submodular if f(∅) = 0
and if f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) holds for any A ⊆ D and B ⊆ D. The marginal gain
of adding an element i to set A is denoted by ϱf

i (A) and is defined as f(A∪ {i})− f(A). Function
f is said to be monotone if f(A′) ≤ f(A), for any A′ ⊂ A.

Proof. Function Rω(S) is the set-union operator, and hence its cardinality is a submodular function
[56, Section 44]. The marginal gain of adding an extra node i into S can be negative if i ∈ Rω(S),
because then |Rω(S) \ S| > |Rω(S) \ {S ∪ {i}}|. Hence, the latter function is non-monotone.

Proof. We first observe that the function σω
T (S) can be restated as

σω
T (S) =

∑
j∈V \S

νω
j (S)

where function νω
j (S) counts the number of views of node j induced by the set S ⊆ V . It is sufficient

to show that function νω
j (S) is submodular with respect to S for an arbitrary node j ∈ V \S, for a

given scenario ω ∈ Ω. This follows from the fact that Aω(S) is a set-union operator applied to nodes
N−

ω (j) because νω
j (S) = |Aω(S) ∩ N−

ω (j)|. To show non-monotonicity consider an arbitrary node
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j /∈ S that has only one incident viewing arc (i, j) ∈ Aω \Aω and i ∈ Aω(S). Then, adding node j
to S reduces the objective function value w.r.t. set S by one, i.e., σω

T (S ∪ {j}) = σω
T (S)− 1.

Proof. We exploit the fact that the function νω
j (S), counting the number of views for a node j is

submodular (see the proof of Theorem 2), together with the fact that the function g(x) = x
x+r ,

is strictly increasing and concave for r > 0 and x ≥ 0. A composition of an increasing concave
function and a submodular function preserves submodularity, and so is the resulting function,
denoted by hω

j (S) = g(νω
j (S)) submodular. Moreover, any non-negative linear combination of

submodular functions preserves submodularity. Thus, σω
R (S) = ∑

j∈V \S hω
j (S) is submodular. Non-

monotonicity is implied by repeating the argument given in the proof of Theorem 2.

Proof. We show the statements for variants R and O by observing that problem variant R contains
the IMP as a special case. Consider an arbitrary instance of the IMP defined on graph G = (V, A)
with (forwarding) activation probabilities pij ∈ [0, 1], for all (i, j) ∈ A, in which the seed set can
contain at most k ∈ N nodes. Next, create an instance of the variant R defined on the same graph
G = (V, A) such that forwarding and viewing probabilities correspond to activation probabilities
of the IMP (i.e., pf

ij = pv
ij = pij , for all (i, j) ∈ A), no node is resistant (i.e., ri = ε, for all i ∈ V ,

for an arbitrary small ε > 0), and the budget is equal to k (i.e., |S| ≤ k). It is easy to see that
for arbitrary small resistance values, the fraction in the objective function (8a) corresponding to a
particular node i ∈ V and scenario ω ∈ Ω is either approximately one or equal to zero depending
whether or not node i is views content at least once in scenario ω. Thus, the objective function
maximizes the expected organic reach O. The chosen forwarding and viewing probabilities induce
that the latter number is identical to the expected number of activated nodes and thus, the optimal
solution to the instance for variants R, O, defined above solve the original IMP instance, i.e., variant
F. For variant T, we adapt the instance of the of variant R defined above as follows. Each node i ∈ V
gets attached dummy outneighbors j ∈ D(i) such that |D(i)| = M ∈ N, and pf

ij = pv
ij = 1 for all

i ∈ V and j ∈ D(i). Let V ′ = ∪i∈VD(i), A′ = {(i, j) : i ∈ V, j ∈ D(i)}, and G′ = (V ∪ V ′, A ∪ A′).
For sufficiently large values of M , e.g., |V |2, counting views along arcs from set A is negligible
compared to those along arcs from set A′. Thus, solving variant T on G′ solves the original IMP on
G. The result follows since the IMP is known to be NP-hard [29]. Chen et al. 7 showed that the
evaluation of the objective function of an IMP is #P-hard under the independent cascade model
(cf., Kempe et al. 29). Thus, it suffices to observe that the latter model is a special case of the CIC
model by the previous manipulations. To show that the evaluation of the functions σω

X(S) can be
done in O(|A|) time, observe that for each variant the following node sets need to be inspected: (i)
activation set Aω(S) which runs in O(|A|), and (ii) either the set of in-neighbors N−

ω (i) or the set
of out-neighbors Nω(i) (because Rω(S) = Nω(Aω(S))) for all i ∈ V , respectively, which runs in
O(|A|).

Proof. First note that the objective function (8a) is monotone increasing in variables v. Thus,
constraints (8c) and (8d) are tight which is ensured by the latter monotonicity. The coordinates of
y∗ ∈ Py are integral by definition, thus, this also holds for f∗ and v∗.
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Proof. We first rewrite formulation (13) explicitly into one master problem (15) and |Ω| subproblems
(16):

(GB) max
∑
ω∈Ω

pωuω (15a)

s.t. uω ≤ Φω(y) ∀ω ∈ Ω (15b)
y ∈ Py

where

Φω(y) = max
v,f

∑
i∈V

biv
ω
i

bivω
i + ri

(16a)

s.t.
∑

j∈N −
ω (i)

fω
j ≥ vω

i (αω
i ) ∀i ∈ V (16b)

∑
j∈A−

ω (i)

yj ≥ fω
i (βω

i ) ∀i ∈ V (16c)

vω
i ≤ |N−

ω (i)|(1− yi) (φω
i ) ∀i ∈ V (16d)

fω
i ≤ 1 (γω

i ) ∀i ∈ V (16e)

The function Φω(y) is concave for each scenario ω ∈ Ω. Therefore, it can be overestimated by
first-order approximations based on tangential hyperplanes derived from its supergradients. Hence,
the following sequence of inequalities holds

uω ≤ Φω(y) ≤ Φω(ȳ) + ρ̄ωT(y− ȳ) ∀ȳ ∈ Py,∀ω ∈ Ω .

whereby the right-most term corresponds to a supporting hyperplane at ȳ ∈ Py in each scenario
ω ∈ Ω. We now derive the coordinates of supergradients ρ̄ω via the partial derivatives of the
Lagrangian relaxation of (16) with respect to y which we detail now for a specific scenario ω ∈ Ω.
Let Lω(ȳ, fω, vω, αω, βω, φω, γω) denote the aforementioned Lagrangian abbreviated by Lω(·) so
that

Lω(·) =
∑
i∈V

biv
ω
i

bivω
i + ri

+ αω
i

( ∑
j∈N −

ω (i)

fω
j − vω

i

)
+ βω

i

( ∑
j∈A−

ω (i)

ȳj − fω
i

)
+ φω

i

(|N−
ω (i)|(1− ȳi)− vω

i

)
+ γω

i

(
1− fω

i

)
, (17)

where [αωT βωT φωT γωT]T ≥ 0, are the dual variables associated to constraints (16b), (16c), (16d),
and (16e), respectively. We can use the Karush-Kuhn-Tucker (KKT) conditions [27, 35] because the
objective function in (16) is concave and all constraints are linear therein, thus, strong duality holds
which is the key argument in this proof. Then, the coordinates of the corresponding supergradient
are derived by

∂Lω(·)
∂yi

= ρ̄ω
i =

∑
j∈Aω(i)

β̄ω
j − |N−

ω (i)|φ̄ω
i ∀i ∈ V, (18)

where β̄ω and φ̄ω represent the optimal dual multipliers in (17). Thus, to identify these optimal
values we impose the corresponding KKT conditions:

∂Lω(·)
∂fω

i

= 0 =⇒
∑

j∈Nω(i)
αω

j = βω
i + γω

i ∀i ∈ V (19a)
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∂Lω(·)
∂vω

i

= 0 =⇒ biri

(bivω
i + ri)2 = αω

i + φω
i ∀i ∈ V (19b)

αω
i

( ∑
j∈N −

ω (i)

fω
j − vω

i

)
= 0 ∀i ∈ V (19c)

βω
i

( ∑
j∈A−

ω (i)

ȳj − fω
i

)
= 0 ∀i ∈ V (19d)

φω
i

(|N−
ω (i)|(1− ȳi)− vω

i

)
= 0 ∀i ∈ V (19e)

γω
i (1− fω

i ) = 0 ∀i ∈ V (19f)

We again exploit the monotonicity of objective function (16a) and the structure of constraints
(16b), (16c) and (16d) for the computation of all variable values at any point ȳ ∈ Py. That is,
f̄ω

i = min{1,
∑

j∈A−
ω (i) ȳj} and v̄ω

i = min{|N−
ω (i)|(1− ȳi),

∑
j∈N −

ω (i) f̄ω
j }, for all i ∈ V , thus, we can

compute Φω(ȳ) by inspection given any point ȳ ∈ Py. We proceed with the determination of dual
variables βω and φω. It is convenient to define first order partial derivative of function Φω(ȳ) (cf.,
19b) as

m̄ω
i := biri

(biv̄ω
i + ri)2 ∀i ∈ V ,

i.e., the marginal gain with respect to viewing variables v̄ω. Let S̄ =
{i ∈ V : ȳi = 1} denote the current seed set and V̄ ω := {i ∈ V :
v̄ω

i = |N−
ω (i)|} ∪ {S̄} be the set of saturated nodes. Then, we gather that

ᾱω
i =

{
0 if i ∈ V̄ ω,

m̄ω
i otherwise,

∀i ∈ V , φ̄ω
i =

{
m̄ω

i if i ∈ V̄ ω,

0 otherwise,
∀i ∈ V ,

holds due to (19b), (19c) and (19e). Notice that for seed nodes S̄ we can always set ᾱω
i = 0 by (19c)

because we excluded seed set variables from contributing to the objective function, i.e., v̄ω
i = 0,

for all i ∈ S̄ and ω ∈ Ω. Let Īi = ∑
j∈A−

ω (i) ȳj and observe that Īi < 1 implies f̄ω
i < 1. Then,

β̄ω
i =

{∑
j∈Nω(i) ᾱω

j if Īi < 1,

0 otherwise,
∀i ∈ V , γ̄ω

i =
{

0 if Īi < 1,∑
j∈Nω(i) ᾱω

j otherwise,
∀i ∈ V ,

holds due to (19a) and the complimentary slackness conditions (19d) and (19f). Notice that the
latter statement also implies that β̄ω

j = 0 for all forwarding nodes because Īj ≥ 1, for all j ∈ Aω(S̄).
Since seed nodes forward content it holds that

ρ̄ω
i = −|N−

ω (i)|m̄ω
i ∀i ∈ S̄ ,

by (18). For nodes i /∈ S̄ we have to distinguish whether or not they are saturated, i.e., if i ∈ V̄ ω

or i ∈ V \ V̄ ω. Notice that the former case implies that N−
ω (i) ⊆ Aω(S̄) whereas the latter case

implies the existence of a node j ∈ N−
ω (i) ∩ {Aω(i) \ Aω(S̄)}. Thus, we have

ρ̄ω
i =

∑
j∈Aω(i)

β̄ω
j − |N−

ω (i)|φ̄ω
i =

∑
j∈Aω(i)\Aω(S̄)

∑
k∈Nω(j)

ᾱω
k − |N−

ω (i)|φ̄ω
i

=
∑

j∈Aω(i)\Aω(S̄)

∑
k∈Nω(j)

m̄ω
k − |N−

ω (i)|m̄ω
i ∀i ∈ V̄ ω \ S̄ ,
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and

ρ̄ω
i =

∑
j∈Aω(i)

β̄ω
j =

∑
j∈Aω(i)\Aω(S̄)

∑
k∈Nω(j)

ᾱω
k =

∑
j∈Aω(i)\Aω(S̄)

∑
k∈Nω(j)

m̄ω
k ∀i ∈ V \ V̄ ω .

The coordinates of the supergradients are then derived by

ρ̄ω
i =


−|N−

ω (i)|m̄ω
i if i ∈ S̄∑

j∈Aω(i)\Aω(S̄)
∑

k∈Nω(j) m̄ω
k if i ∈ V \ V̄ ω∑

j∈Aω(i)\Aω(S̄)
∑

k∈Nω(j) m̄ω
k − |N−

ω (i)|m̄ω
i if i ∈ V̄ ω \ S̄

(20)

which is exactly the same as (14) which completes the proof for problem variant R.

Proof. For problem variant T, we change the terms of the sum in (16a) and the corresponding terms
in the Lagrangian (17) to vω

i . Consequently, the KKT conditions (19b) simplify to αω
i + φω

i = 1,
i.e, the marginal gains m̄ω

i = 1, for all i ∈ V and ω ∈ Ω.

Proof. For problem variant O, we augment the proof of Corollary 1 by substituting each term
|N−

ω (i)| the proof of Theorem 6 with one (cf., Section 3.2).

Proof. For problem variant F, we change objective function (16a) to (10) and remove viewing
variables v and constraints (16b) and (16d) in the proof of Theorem 6. Thus, dual variables αω

and φω do not exist so that we can further remove the KKT conditions (19b), (19c) and (19e)
and the corresponding terms in the Lagrangian (17). Another consequence is that the first term
in Lagrangian (17) changes to fω

i and therefore (19a) changes to βω
i + γω

i = 1. Notice that the
right-hand side of the latter expression corresponds now to the marginal gains, i.e., the first order
partial derivative of the new objective function with respect to fω so that m̄ω

i = 1, for all i ∈ V
and ω ∈ Ω. Further notice that the set of saturated nodes V̄ ω reduces to set S̄.

Again we observe that setting β̄ω
i = 0 and γ̄ω

i = m̄ω
i for all forwarding nodes i ∈ Aω(S̄) is valid

by conditions (19d) and (19f). Conversely, β̄ω
i = m̄ω

i and γ̄ω
i = 0 is valid for all non-forwarding nodes

i ∈ Aω(V \ S̄) \ Aω(S̄) by the same set of KKT conditions. Thus, the supergradient coordinates
can be derived by

ρ̄ω
i =

{
0 if i ∈ S̄

|Aω(i) \ Aω(S̄)| otherwise,
∀i ∈ V .

Proof. This proof is based on the proof of Theorem 6 and first considers problem variant R. To
obtain the current objective value of a specific scenario Φω(ȳ) for (possibly fractional) ȳ ∈ P ′

y :=
{y ∈ [0, 1]|V | : ∑

i∈V yi ≤ k} we first compute the forwarding and viewing variables by f̄ω
i =

min{1,
∑

j∈A−
ω (i) ȳj} and v̄ω

i = min{|N−
ω (i)|(1 − ȳi),

∑
j∈N −

ω (i) f̄ω
j } for all i ∈ V , respectively, and

the Φω(ȳ), which runs in O(|V |2). Obtaining the dual variables ᾱω and φ̄ω, i.e., the marginal gains
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m̄ω, runs in O(|V |) whereas the computation of the dual variables β̄ω and γ̄ω needs O(|V |2). Thus,
the separation routine for one specific scenario runs in O(|V |2). To see that the latter runtime also
holds for problem variants F, O, and T, it suffices to observe that computing the supergradients β̄ω,
ω ∈ Ω, does not increase complexity compared to variant R (cf., ?? 1–3).

Proof. Let us consider a submodular maximization problem over a ground set D, maxS⊆D{f(S) :
|S| ≤ k}, such that the marginal gains for the function f are bounded from below by −θ (i.e.,
ϱf

j (S) ≥ −θ, for all S ⊆ D, j ∈ D \S). Then, Theorem 4.2 of Nemhauser et al. [44] states that the
MG heuristic provides a solution S̃ to this problem such that

f(S∗)− f(S̃)
f(S∗)− f(∅) + kθ

≤ αk,

where S∗ is an optimal solution. Given that σM(∅) = 0 and that the bounds for marginal gains are
defined as θ = 1 for the variants O,R and θ = maxi∈V |N−(i)| for the variant T, the result follows
directly after rearranging the terms from the inequality above.

Proof. Given that 0 ≤ αk < e−1 and θ = 1, we can underestimate the second term of the right-
hand-side of the result in Theorem 8 by −k/e.

Proof. Given that 0 ≤ αk < e−1 and θ = maxi∈V |N−(i)|, we can underestimate the second term
of the right-hand-side of the result in Theorem 8 by −k/e ·maxi∈V |N−(i)| = −M · k.

B Separation of integral Benders cuts
Algorithm 1 details the method used to separate generalized Benders cuts for integral candidate
solutions.

C Detailed results
This section contains additional and more detailed results of our computational study. Figure 8
shows (relative) cumulative numbers of SAA iterations solved within a given time and corresponding
optimality gaps after two hours for different numbers of considered scenarios Ω′. Here, optimality
gaps are computed by (UB − OV)/UB where UB denotes the best known upper bound and OV
denotes the objective value of the corresponding SAA iteration.

Tables 3 to 7 detail runtimes (in seconds) and objective function values for different models and
methods discussed in this article. This data is reported for each considered instance, cardinality
of the seed set (|S| ∈ {5, 10, 15}), and the following evaluation metrics: forwarding maximization
(F), organic reach maximization (O), total impression maximization (T), and expected patronage
maximization (R25, R50, R75, RX). Notice that RX corresponds to the case in which we choose
the resistance values of each node completely at random; cf., Section 7.1. Further note that all
reported objective values do not consider the respective contribution of the seed nodes. For each
considered combination we report the results obtained from different solution methods: generalized
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// Input: scenario graphs Gω = (V, Aω) for all ω ∈ Ω, solution (ȳ, ū)
// Output: set C containing a violated generalized Benders cut (13b) for each

scenario ω ∈ Ω (if exists)
S̄ ← {i ∈ V : ȳi = 1} // current seed set
C ← ∅ // set of violated Benders cuts
for ω ∈ Ω do

vω ← 0
for i ∈ Aω(S̄) do

for j ∈ Nω(i) do
v̄ω

j ← v̄ω
j + 1

v̄ω
i ← 0, ∀i ∈ S̄

σω
R (S̄)←∑

i∈V
biv̄ω

i

biv̄ω
i

+ri

if ūω > σω
R (S̄) // violated Benders cut

then
compute ρ̄ω according to (14) // supergradient
C ← C ∪ {uω ≤ σω

R (S̄) +
∑

i∈S̄ ρ̄ω
i (yi − 1) +

∑
i/∈S̄ ρ̄ω

i yi} // add cut

Algorithm 1: Separation of generalized Benders cuts for integral candidate solutions ȳ ∈ P (y).

Benders decomposition (GB), and the heuristics betweenness centrality (BC), distance centrality
(DC), expected outdegree (EG), marginal gain (MG), reverse PageRank (PR), replies and mentions
(RM), and TunkRank (TR). As RM and TR are geared to Twitter instances, we do not report such
results for the instances from the literature, i.e., in Tables 6 and 7. All results are based on the
settings |Ω′| = 100.
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Figure 8: Performance profiles and optimality gaps of each SAA iteration (cf., Section 7.2).
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(g) |Ω′| = 750
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(h) |Ω′| = 750
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Table 3: Runtimes and objective values for instances tw-austria and tw-giftideas.

runtimes objective values
Instance |S| Metric GB BC DC ED MG PR RM TR GB BC DC ED MG PR RM TR

tw
-a

us
tr

ia

5

F 2 14 0 0 60 0 0 0 53 4 10 10 53 10 30 0
O 176 14 0 0 80 0 0 0 1 765 654 1 489 1 489 1 489 1 489 1 524 46
T 1 14 0 0 62 0 0 0 2 777 728 2 777 2 777 2 777 2 777 1 918 106

R25 103 14 0 0 90 0 0 0 164 44 129 129 164 129 145 5
R50 66 14 0 0 90 0 0 0 120 31 92 92 120 92 106 4
R75 36 14 0 0 91 0 0 0 80 20 62 62 80 62 69 3
RX 84 13 0 0 89 0 0 0 131 36 104 104 131 104 115 4

10

F 5 15 0 0 124 0 0 0 70 7 27 27 70 27 42 27
O 2 228 14 0 0 152 0 0 0 2 386 1 175 1 965 1 965 2 069 1 965 2 124 1 052
T 1 15 0 0 124 0 0 0 4 653 1 511 4 574 4 574 4 653 4 574 2 950 1 321

R25 250 13 0 0 187 0 0 0 245 87 223 223 245 223 194 109
R50 208 14 0 0 190 0 0 0 178 60 165 165 176 165 139 81
R75 125 14 0 0 192 0 0 0 119 37 111 111 119 111 92 53
RX 138 13 0 0 189 0 0 0 196 67 180 180 196 180 153 87

15

F 12 15 0 0 186 0 0 0 82 9 32 32 82 33 49 47
O 5 133 15 0 0 238 0 0 0 2 694 1 544 2 208 2 208 2 275 2 275 2 190 1 095
T 12 15 0 0 198 0 0 0 6 082 2 231 6 061 6 061 6 082 6 080 3 271 1 377

R25 1 530 14 0 0 284 0 0 0 299 110 272 272 292 276 207 117
R50 412 13 0 0 286 0 0 0 219 77 200 200 215 203 148 87
R75 304 13 0 0 294 0 0 0 146 48 134 134 143 135 98 58
RX 484 13 0 0 290 0 0 0 240 84 220 220 234 222 162 94

tw
-g

ift
id

ea
s

5

F 5 59 0 0 58 0 0 0 83 32 52 52 83 52 75 19
O 3 694 47 0 0 71 0 0 0 2 189 1 875 2 023 2 023 2 108 2 023 2 020 1 543
T 20 62 0 0 68 0 0 0 17 513 7 165 13 578 13 578 17 513 13 578 15 479 5 140

R25 268 48 0 0 87 0 0 0 104 67 76 76 98 76 88 37
R50 314 58 0 0 92 0 0 0 79 52 59 59 75 59 69 29
R75 210 47 0 0 87 0 0 0 47 31 34 34 47 34 39 16
RX 164 43 0 0 85 0 0 0 77 51 58 58 75 58 66 27

10

F 16 60 0 0 121 0 0 0 128 49 88 88 128 95 128 31
O 432 60 0 0 154 0 0 0 2 511 2 219 2 224 2 224 2 292 2 266 2 304 1 761
T 112 61 0 0 130 0 0 0 29 047 11 260 23 737 23 737 29 047 25 258 28 644 8 599

R25 278 45 0 0 178 0 0 0 168 102 121 121 168 134 156 57
R50 153 47 0 0 181 0 0 0 128 78 93 93 128 102 119 44
R75 96 46 0 0 180 0 0 0 78 47 55 55 78 61 72 26
RX 170 42 0 0 177 0 0 0 126 78 92 92 125 99 115 42

15

F 34 58 0 0 182 0 0 0 163 87 127 127 163 131 159 74
O 139 58 0 0 231 0 0 0 2 646 2 445 2 354 2 354 2 409 2 359 2 432 2 177
T 352 48 0 0 180 0 0 0 37 961 21 708 34 308 34 308 37 961 34 697 36 612 19 099

R25 278 49 0 0 271 0 0 0 212 147 168 168 210 173 193 115
R50 232 47 0 0 276 0 0 0 162 112 129 129 161 131 147 88
R75 169 46 0 0 273 0 0 0 100 69 78 78 99 80 89 51
RX 419 42 0 0 274 0 0 0 161 114 126 126 159 129 144 85
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Table 4: Runtimes and objective values for instances tw-greenenergy, tw-naturelovers, and tw-
organicfood.

runtimes objective values
Instance |S| Metric GB BC DC ED MG PR RM TR GB BC DC ED MG PR RM TR

tw
-g

re
en

en
er

gy

5

F 1 4 0 0 23 0 0 0 19 3 9 9 19 10 15 5
O 383 4 0 0 32 0 0 0 1 046 426 930 930 930 880 735 373
T 1 4 0 0 23 0 0 0 1 886 493 1 886 1 886 1 886 1 886 990 644

R25 165 4 0 0 34 0 0 0 94 30 83 83 94 80 60 37
R50 78 4 0 0 36 0 0 0 76 24 66 66 76 65 45 31
R75 44 4 0 0 35 0 0 0 53 17 43 43 53 43 31 20
RX 50 4 0 0 34 0 0 0 77 24 67 67 77 65 47 32

10

F 1 4 0 0 46 0 0 0 31 6 19 19 31 18 22 5
O 746 4 0 0 59 0 0 0 1 342 548 1 188 1 188 1 188 1 141 911 384
T 2 4 0 0 47 0 0 0 3 229 800 3 229 3 229 3 229 3 199 1 668 980

R25 203 4 0 0 73 0 0 0 151 42 135 135 150 132 78 42
R50 144 4 0 0 75 0 0 0 120 35 104 104 120 104 60 35
R75 117 4 0 0 73 0 0 0 83 25 71 71 83 70 41 23
RX 90 4 0 0 73 0 0 0 123 35 108 108 120 106 63 37

15

F 2 4 0 0 69 0 0 0 40 9 22 22 40 22 27 8
O 926 4 0 0 87 0 0 0 1 504 813 1 276 1 276 1 276 1 276 1 007 495
T 10 5 0 0 76 0 0 0 4 307 1 307 4 307 4 307 4 307 4 307 2 123 1 307

R25 147 4 0 0 112 0 0 0 192 66 165 165 192 165 95 58
R50 249 4 0 0 113 0 0 0 151 56 129 129 149 129 74 48
R75 225 4 0 0 118 0 0 0 106 36 87 87 104 87 50 34
RX 207 4 0 0 110 0 0 0 155 54 134 134 154 134 78 51

tw
-n

at
ur

el
ov

er
s

5

F 7 355 0 0 572 2 0 0 62 34 53 53 62 31 60 51
O 6 961 330 0 0 684 1 0 0 7 105 6 330 6 875 6 875 6 875 3 568 5 701 5 741
T 17 372 0 0 599 2 0 0 18 699 12 441 16 757 16 757 18 699 14 075 14 487 11 757

R25 543 348 0 0 840 1 0 0 362 268 314 314 362 98 183 264
R50 270 359 0 0 850 2 0 0 278 201 232 232 278 78 138 198
R75 372 436 0 0 868 2 0 0 170 122 142 142 170 46 81 124
RX 321 301 0 0 830 1 0 0 295 213 251 251 295 77 144 210

10

F 24 360 0 0 1 190 2 0 0 114 56 92 92 114 53 111 74
O 7 189 336 0 0 1 392 2 0 0 8 342 7 173 7 847 7 847 7 828 4 254 7 016 7 241
T 110 335 0 0 1 132 1 0 0 33 147 19 763 29 227 29 227 33 147 24 658 27 733 21 470

R25 645 356 0 0 1 754 2 0 0 551 338 472 472 551 162 314 377
R50 559 365 0 0 1 760 2 0 0 421 252 359 359 421 121 236 282
R75 314 353 0 0 1 765 2 0 0 265 155 220 220 265 75 145 177
RX 419 300 0 0 1 730 2 0 0 447 266 378 378 443 123 240 297

15

F 98 391 0 0 2 010 2 0 0 155 69 137 137 155 70 144 96
O 7 190 337 0 0 2 099 2 0 0 9 063 7 599 8 593 8 593 8 321 4 475 7 336 8 183
T 297 330 0 0 1 704 1 0 0 46 125 24 480 42 152 42 152 46 125 33 377 38 169 30 214

R25 789 388 0 0 2 699 2 0 0 694 398 606 606 691 200 385 508
R50 645 357 0 0 2 686 2 0 0 530 297 459 459 529 151 286 378
R75 696 359 0 0 2 689 2 0 0 334 184 285 285 331 94 178 239
RX 432 297 0 0 2 634 1 0 0 560 314 482 482 558 153 295 403

tw
-o

rg
an

ic
fo

od

5

F 1 0 0 0 1 0 0 0 8 1 5 5 8 5 6 0
O 3 0 0 0 1 0 0 0 82 42 62 62 76 62 62 17
T 1 0 0 0 1 0 0 0 150 61 140 140 150 140 129 24

R25 46 0 0 0 1 0 0 0 11 5 9 9 11 9 8 3
R50 56 0 0 0 1 0 0 0 9 4 7 7 8 7 6 1
R75 33 0 0 0 1 0 0 0 6 3 4 4 6 4 4 2
RX 13 0 0 0 1 0 0 0 11 6 8 8 10 8 8 2

10

F 1 0 0 0 1 0 0 0 11 1 4 4 11 4 5 1
O 7 0 0 0 1 0 0 0 115 59 63 63 89 63 58 19
T 6 0 0 0 1 0 0 0 217 101 176 176 217 176 146 33

R25 7 201 0 0 0 2 0 0 0 17 10 10 10 17 10 8 4
R50 73 0 0 0 2 0 0 0 14 7 8 8 14 8 6 2
R75 44 0 0 0 2 0 0 0 10 5 5 5 10 5 5 2
RX 95 0 0 0 1 0 0 0 16 10 9 9 15 9 8 3

15

F 9 0 0 0 2 0 0 0 13 2 4 4 13 4 5 1
O 11 0 0 0 2 0 0 0 134 67 78 78 99 78 80 20
T 8 0 0 0 2 0 0 0 265 125 217 217 265 217 178 44

R25 7 202 0 0 0 3 0 0 0 22 13 14 14 21 14 12 4
R50 210 0 0 0 3 0 0 0 18 9 11 11 17 11 11 2
R75 117 0 0 0 2 0 0 0 13 7 7 7 13 7 7 2
RX 1 156 0 0 0 3 0 0 0 20 12 13 13 19 13 12 3

38



Table 5: Runtimes and objective values for instances tw-orms, tw-skateboarding, and tw-travelling.

runtimes objective values
Instance |S| Metric GB BC DC ED MG PR RM TR GB BC DC ED MG PR RM TR

tw
-o

rm
s

5

F 0 0 0 0 1 0 0 0 19 13 18 11 19 18 14 6
O 3 1 0 0 1 0 0 0 217 166 196 184 213 196 170 94
T 2 0 0 0 1 0 0 0 358 266 334 344 358 334 247 115

R25 15 0 0 0 2 0 0 0 22 16 20 18 22 20 17 9
R50 25 1 0 0 1 0 0 0 17 12 15 15 17 15 13 6
R75 9 0 0 0 2 0 0 0 12 8 10 10 12 10 9 5
RX 7 0 0 0 1 0 0 0 17 12 15 14 17 15 14 7

10

F 1 0 0 0 2 0 0 0 29 21 24 21 29 24 23 9
O 8 0 0 0 3 0 0 0 272 211 254 244 253 254 242 140
T 13 0 0 0 2 0 0 0 556 386 528 556 552 528 441 212

R25 60 0 0 0 3 0 0 0 34 24 31 31 34 31 28 14
R50 56 0 0 0 3 0 0 0 26 17 24 24 26 24 21 11
R75 164 0 0 0 3 0 0 0 18 12 17 17 18 17 15 8
RX 201 0 0 0 3 0 0 0 25 17 23 24 25 23 22 12

15

F 2 0 0 0 3 0 0 0 34 24 29 25 34 29 25 11
O 9 0 0 0 3 0 0 0 302 239 272 269 285 272 250 162
T 43 0 0 0 2 0 0 0 698 488 673 690 694 673 480 260

R25 265 0 0 0 5 0 0 0 43 30 39 39 42 39 31 16
R50 280 0 0 0 5 0 0 0 32 22 29 29 32 29 23 12
R75 1 478 0 0 0 5 0 0 0 23 16 21 21 22 21 16 9
RX 748 0 0 0 4 0 0 0 31 21 29 29 31 29 23 14

tw
-s

ka
te

bo
ar

di
ng

5

F 3 3 0 0 20 0 0 0 41 13 37 37 41 37 37 39
O 13 2 0 0 24 0 0 0 1 292 670 1 247 1 247 1 247 1 247 1 169 973
T 1 2 0 0 19 0 0 0 2 705 1 021 2 705 2 705 2 705 2 705 2 596 2 468

R25 17 2 0 0 29 0 0 0 160 59 156 156 160 156 144 126
R50 14 2 0 0 29 0 0 0 120 43 118 118 120 118 108 93
R75 10 2 0 0 29 0 0 0 82 30 80 80 82 80 75 65
RX 14 2 0 0 27 0 0 0 131 44 127 127 131 127 117 100

10

F 10 2 0 0 39 0 0 0 54 23 52 53 54 52 49 51
O 44 2 0 0 51 0 0 0 1 495 953 1 410 1 414 1 414 1 419 1 290 1 353
T 2 3 0 0 44 0 0 0 4 304 2 066 4 192 4 304 4 304 4 204 3 634 3 931

R25 79 3 0 0 64 0 0 0 223 106 215 218 223 218 184 202
R50 60 2 0 0 63 0 0 0 170 75 163 164 170 163 139 152
R75 43 2 0 0 63 0 0 0 117 53 113 114 117 113 97 104
RX 53 2 0 0 57 0 0 0 185 80 178 180 184 178 150 162

15

F 14 2 0 0 59 0 0 0 64 24 60 57 64 60 54 59
O 64 2 0 0 75 0 0 0 1 606 995 1 472 1 470 1 494 1 458 1 389 1 438
T 12 3 0 0 64 0 0 0 5 466 2 200 5 413 5 402 5 466 5 358 4 127 4 951

R25 126 2 0 0 95 0 0 0 265 114 250 248 265 245 209 235
R50 116 2 0 0 95 0 0 0 203 81 190 188 202 185 158 177
R75 71 2 0 0 95 0 0 0 141 57 133 132 141 129 109 123
RX 68 2 0 0 90 0 0 0 220 87 207 206 220 201 172 191

tw
-t

ra
ve

lli
ng

5

F 0 1 0 0 7 0 0 0 13 5 3 3 13 5 5 1
O 10 1 0 0 9 0 0 0 389 202 304 314 345 304 218 193
T 1 1 0 0 7 0 0 0 584 257 507 576 584 507 343 209

R25 42 1 0 0 10 0 0 0 49 15 37 39 49 37 21 20
R50 23 1 0 0 11 0 0 0 37 12 27 28 35 27 14 15
R75 7 1 0 0 11 0 0 0 28 6 18 19 28 18 9 11
RX 22 1 0 0 10 0 0 0 39 10 25 27 39 25 15 17

10

F 0 1 0 0 14 0 0 0 19 5 7 7 19 7 12 3
O 142 1 0 0 19 0 0 0 489 253 414 409 423 414 307 216
T 12 1 0 0 14 0 0 0 1 017 427 964 1 011 1 017 964 585 241

R25 239 1 0 0 22 0 0 0 76 22 63 63 73 63 36 24
R50 173 1 0 0 23 0 0 0 56 16 46 46 54 46 25 19
R75 96 1 0 0 22 0 0 0 40 9 32 32 40 32 16 13
RX 36 1 0 0 21 0 0 0 60 16 46 46 58 46 24 19

15

F 1 1 0 0 22 0 0 0 25 7 9 8 25 9 13 3
O 256 1 0 0 28 0 0 0 550 296 487 485 501 487 339 218
T 29 1 0 0 22 0 0 0 1 360 563 1 325 1 352 1 360 1 325 702 261

R25 245 1 0 0 34 0 0 0 94 30 86 84 93 86 42 25
R50 227 1 0 0 34 0 0 0 70 22 63 63 69 63 29 19
R75 153 1 0 0 34 0 0 0 50 13 45 45 49 45 20 13
RX 83 1 0 0 31 0 0 0 73 22 65 65 72 65 30 20
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Table 6: Runtimes and objective values for instances msg-college and msg-email-eu.

runtimes objective values
Instance |S| Metric GB BC DC ED MG PR RM TR GB BC DC ED MG PR RM TR

m
sg

-c
ol

le
ge

5

F 2 5 0 0 9 0 - - 7 4 4 5 7 4 - -
O 1 4 0 0 12 0 - - 63 54 57 58 63 55 - -
T 1 4 0 0 9 0 - - 65 55 59 60 65 57 - -

R25 18 4 0 0 12 0 - - 4 3 4 4 4 3 - -
R50 16 4 0 0 12 0 - - 3 3 3 3 3 2 - -
R75 15 4 0 0 12 0 - - 2 2 2 2 2 2 - -
RX 17 4 0 0 12 0 - - 3 3 3 3 3 3 - -

10

F 2 4 0 0 18 0 - - 12 8 8 8 12 8 - -
O 5 4 0 0 23 0 - - 103 98 98 98 103 96 - -
T 9 5 0 0 21 0 - - 109 103 103 103 109 101 - -

R25 48 4 0 0 25 0 - - 6 6 6 6 6 6 - -
R50 53 4 0 0 25 0 - - 5 5 5 5 5 4 - -
R75 28 4 0 0 25 0 - - 3 3 3 3 3 3 - -
RX 54 4 0 0 25 0 - - 5 5 5 5 5 5 - -

15

F 5 4 0 0 28 0 - - 15 10 10 10 15 11 - -
O 11 4 0 0 35 0 - - 134 128 129 129 134 128 - -
T 27 4 0 0 28 0 - - 145 137 138 138 145 137 - -

R25 215 4 0 0 38 0 - - 8 8 8 8 8 7 - -
R50 83 4 0 0 38 0 - - 6 6 6 6 6 6 - -
R75 33 5 0 0 42 0 - - 4 4 4 4 4 4 - -
RX 54 4 0 0 38 0 - - 7 6 6 6 7 6 - -

m
sg

-e
m

ai
l-e

u

5

F 1 2 0 0 3 0 - - 8 5 5 5 8 5 - -
O 2 2 0 0 4 0 - - 72 61 66 66 72 66 - -
T 2 2 0 0 3 0 - - 78 65 71 71 78 71 - -

R25 13 2 0 0 4 0 - - 2 2 2 2 2 2 - -
R50 10 2 0 0 4 0 - - 1 1 1 1 1 1 - -
R75 36 2 0 0 4 0 - - 1 1 1 1 1 1 - -
RX 8 2 0 0 3 0 - - 1 1 1 1 1 1 - -

10

F 2 2 0 0 6 0 - - 14 8 10 10 14 9 - -
O 5 2 0 0 7 0 - - 112 99 108 108 112 105 - -
T 12 2 0 0 6 0 - - 129 110 123 123 129 118 - -

R25 66 2 0 0 9 0 - - 3 3 3 3 3 3 - -
R50 29 2 0 0 8 0 - - 2 2 2 2 2 2 - -
R75 914 2 0 0 8 0 - - 1 1 1 1 1 1 - -
RX 22 2 0 0 7 0 - - 2 2 2 2 2 2 - -

15

F 5 2 0 0 8 0 - - 18 12 13 14 18 12 - -
O 10 2 0 0 10 0 - - 141 130 136 135 140 133 - -
T 48 2 0 0 9 0 - - 167 152 159 160 167 156 - -

R25 679 2 0 0 13 0 - - 4 4 4 4 4 4 - -
R50 93 2 0 0 12 0 - - 3 3 3 3 3 3 - -
R75 1 648 2 0 0 12 0 - - 2 2 2 2 2 2 - -
RX 117 2 0 0 11 0 - - 3 3 3 3 3 3 - -
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Table 7: Runtimes and objective values for instances soc-advogato and soc-anybeat.

runtimes objective values
Instance |S| Metric GB BC DC ED MG PR RM TR GB BC DC ED MG PR RM TR

so
c-

ad
vo

ga
to

5

F 2 29 0 0 72 0 - - 11 8 10 10 11 10 - -
O 2 34 0 0 96 0 - - 114 89 114 114 114 113 - -
T 2 28 0 0 72 0 - - 118 90 117 117 118 116 - -

R25 28 34 0 0 100 0 - - 8 5 7 7 8 7 - -
R50 22 35 0 0 101 0 - - 6 4 5 5 6 5 - -
R75 20 27 0 0 93 0 - - 4 2 3 3 4 3 - -
RX 28 27 0 0 92 0 - - 6 4 6 6 6 6 - -

10

F 4 26 0 0 145 0 - - 16 12 13 13 16 13 - -
O 11 27 0 0 176 0 - - 152 137 152 152 152 150 - -
T 15 28 0 0 146 0 - - 159 142 159 159 159 157 - -

R25 123 35 0 0 208 0 - - 11 8 10 9 11 9 - -
R50 93 34 0 0 206 0 - - 8 6 7 7 8 7 - -
R75 31 28 0 0 194 0 - - 6 4 5 4 6 5 - -
RX 72 27 0 0 192 0 - - 9 7 8 7 9 7 - -

15

F 7 27 0 0 216 0 - - 21 14 16 16 21 15 - -
O 31 28 0 0 269 0 - - 186 163 184 184 186 176 - -
T 50 28 0 0 222 0 - - 197 170 195 195 197 187 - -

R25 1 229 36 0 0 321 0 - - 13 10 11 11 13 11 - -
R50 708 28 0 0 257 0 - - 10 8 9 9 10 9 - -
R75 155 29 0 0 298 0 - - 7 5 6 6 7 6 - -
RX 247 27 0 0 291 0 - - 11 8 9 9 10 9 - -

so
c-

an
yb

ea
t

5

F 14 177 0 0 474 0 - - 44 40 41 41 44 41 - -
O 11 224 0 0 585 0 - - 488 461 483 483 488 483 - -
T 12 226 0 0 499 0 - - 506 472 499 499 506 499 - -

R25 62 220 0 0 596 0 - - 72 70 68 68 72 68 - -
R50 50 219 0 0 595 0 - - 56 54 53 53 56 53 - -
R75 36 224 0 0 598 0 - - 40 39 38 38 40 38 - -
RX 29 159 0 0 564 0 - - 58 56 55 55 58 55 - -

10

F 32 163 0 0 909 0 - - 58 51 54 56 58 52 - -
O 26 213 0 0 1 073 0 - - 624 594 617 620 624 600 - -
T 47 236 0 0 912 0 - - 659 622 649 652 659 630 - -

R25 243 215 0 0 1 230 0 - - 85 83 84 85 85 83 - -
R50 201 226 0 0 1 227 0 - - 66 64 65 65 65 64 - -
R75 80 227 0 0 1 230 0 - - 47 46 47 47 47 46 - -
RX 66 160 0 0 1 164 0 - - 68 66 67 68 68 66 - -

15

F 71 229 0 0 1 502 0 - - 67 56 65 65 67 59 - -
O 45 168 0 0 1 584 0 - - 709 639 706 706 709 669 - -
T 111 242 0 0 1 432 0 - - 764 676 756 756 764 714 - -

R25 305 234 0 0 1 864 0 - - 93 88 92 92 93 89 - -
R50 196 234 0 0 1 876 0 - - 72 68 71 71 72 68 - -
R75 161 224 0 0 1 869 0 - - 52 49 51 51 52 49 - -
RX 102 158 0 0 1 767 0 - - 74 70 73 73 74 71 - -
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D The impact of different utilities in competitive influence maxi-
mization

We now discuss results of the CIMP variant of R discussed in Section 2.4. In particular we discuss
the impact of different utilities perceived from content views triggered by the leader and the follower.
The results discussed in this section were obtained using our variant R for 50% resistant nodes (R50)
and using optimal leader seed sets LR50 for |LR50| ∈ {5, 10, 15} that were pre-computed by assuming
no competition. The base values for our comparison correspond to the objective values denoted
by σ̂−∞

R50 (LR50, Ŝ∗
R50) that were obtained by considering ai := eāj = e−∞, for all i ∈ V \ L so that

rω
i = ri, for all i ∈ V \ L, ω ∈ Ω. In other words, content views triggered by the leader have no

impact on a node’s patronage. We then increase the utilities perceived from viewing the leader’s
content to ai = e0, for all i ∈ V \ L, i.e., nodes gain equal utility from impressions triggered by
the leader and the follower. We further use ai ∈ {e1, e2, e3, e4}, for all i ∈ V \ L, in which case the
utility perceived from viewing the leader’s content is larger than viewing content from the follower.

Figure 9 compares the objective values of the aforementioned settings relative to the base values
in which impressions triggered by the leader had no impact, i.e., values

σ̂a
R50(LR50, Ŝ∗

R50)
σ̂−∞

R50 (LR50, Ŝ∗
R50)

are reported for a ∈ {e0, e1, . . . , e4}. We observe a large impact of the utility values under inves-
tigation. More precisely, the results show the difficulty of convincing individuals having strong
preference for a substitute product. The effects are also notable if the perceived utilities from
products of services are equal from both the leader and the follower. For more detailed results we
refer to Table 8.

Figure 9: Impact of different utilities perceived from impressions triggered by the leader and the
follower.

e0 e1 e2 e3 e4

0

20

40

60

80

100

a

σ̂
a R5

0(
L

R5
0,

Ŝ
∗ R5

0)
σ̂

−
∞

R5
0

(L
R5

0,
Ŝ
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Note. The shown values are relative to values σ̂−∞
R50 (LR50, Ŝ∗

R50) obtained from solving the instances with ai = e−∞,
for all i ∈ V \ L, i.e., the case in which leader impressions have no impact at all.
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Table 8: Runtimes and objective values for different utility values.

runtimes objective values
Instance |L| = |S| e−∞ e0 e1 e2 e3 e4 e−∞ e0 e1 e2 e3 e4

tw-austria
5 273 178 126 154 225 343 65 62 52 47 42 38

10 2 714 6 175 4 247 2 543 2 045 2 366 96 84 63 54 47 44
15 6 721 3 195 888 5 004 7 201 7 201 119 104 76 64 55 51

tw-giftideas
5 145 132 82 75 102 185 65 58 45 40 34 30

10 1 085 542 783 974 3 159 6 817 89 78 54 43 34 29
15 7 198 6 879 4 260 6 197 7 195 7 200 106 89 59 47 38 33

tw-greenenergy
5 97 67 109 121 156 139 54 49 39 34 30 28

10 511 302 191 294 391 400 71 62 48 41 36 33
15 3 250 1 369 4 300 4 836 7 062 7 201 83 71 50 42 36 33

tw-naturelovers
5 836 463 404 386 584 767 176 159 125 110 95 85

10 1 606 1 114 1 211 3 054 5 035 3 270 252 220 159 130 105 90
15 5 511 4 841 5 830 5 968 7 188 7 190 293 250 174 142 113 96

tw-organicfood
5 45 32 87 95 78 64 7 6 5 5 5 5

10 91 193 673 290 858 973 9 8 6 6 6 6
15 2 175 1 200 4 589 7 201 7 201 7 201 10 9 7 7 7 6

tw-orms
5 36 22 53 72 109 120 11 10 8 8 7 7

10 7 201 3 978 406 391 856 853 15 13 11 10 9 8
15 4 641 2 463 376 169 482 314 17 15 11 10 9 9

tw-skateboarding
5 49 32 47 67 203 289 64 57 42 34 27 24

10 262 171 153 357 2 777 5 973 81 69 47 39 32 30
15 707 278 919 786 1 045 682 90 75 49 39 33 30

tw-travelling
5 104 100 102 79 67 80 22 21 16 15 14 13

10 177 117 213 2 383 6 597 7 202 32 29 22 19 18 17
15 7 202 7 201 7 201 7 203 7 203 6 778 33 28 21 19 18 17

msg-college
5 29 35 36 34 33 31 2 2 2 2 2 2

10 105 116 76 82 93 111 3 3 3 3 3 3
15 333 366 379 392 429 769 4 4 3 3 3 3

msg-email-eu
5 16 16 14 14 15 16 1 1 1 1 1 1

10 1 005 571 400 442 466 612 1 1 1 1 1 1
15 5 418 5 357 5 866 5 467 5 948 5 489 2 2 2 2 1 1

soc-advogato
5 69 69 70 73 74 79 2 2 2 2 2 2

10 3 614 4 213 4 095 4 274 4 264 4 195 3 3 3 3 3 3
15 7 199 7 199 7 199 7 199 7 199 7 200 4 4 4 4 4 4

soc-anybeat
5 87 87 89 117 150 156 17 15 12 10 10 10

10 95 86 85 96 98 108 19 17 14 12 11 11
15 2 699 2 644 1 853 1 868 1 607 2 430 50 42 24 17 13 10
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E Instance plots
Figures 10 and 11 show (expected) in- and outdegrees of all instances used in this article. Notice
that we removed two outlier nodes from instance soc-anybeat with outdegree |N (i)| > 1300 and
one node from instance tw-naturelovers with |N (i)| = 2910 to enhance comparability.

Figure 10: Distribution of indegrees |N−(i)| and outdegrees |N (i)| of used instances.
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Figure 11: Distribution of expected indegrees E (|N−(i)|) and outdegrees E (|N (i)|) of used in-
stances.
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