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Abstract

The maximum-cut problem is one of the fundamental problems in com-
binatorial optimization. With the advent of quantum computers, both
the maximum-cut and the equivalent quadratic unconstrained binary op-
timization problem have experienced much interest in recent years.

This article aims to advance the state of the art in the exact solu-
tion of both problems—by using mathematical programming techniques
on digital computers. The main focus lies on sparse problem instances,
although also dense ones can be solved. We enhance several algorithmic
components such as reduction techniques and cutting-plane separation
algorithms, and combine them in an exact branch-and-cut solver. Fur-
thermore, we provide a parallel implementation. The new solver is shown
to significantly outperform existing state-of-the-art software for sparse
MaxCut and QUBO instances. Furthermore, we improve the best known
bounds for several instances from the 7th DIMACS Challenge and the
QPLIB, and solve some of them (for the first time) to optimality.

1 Introduction

Given an undirected graph G = (V,E), and edge weights w : E → Q, the
maximum-cut (MaxCut) problem is to find a partition (V1, V2) of V such that
the summed weight of the edges between V1 and V2 is maximized. MaxCut is one
of the fundamental NP-hard optimization problems [28] and has applications
for example in VLSI design [3] and the theory of spin glasses in physics [33]1.
The latter application is particularly interesting, because it requires an exact
solution of the MaxCut problem.

A problem that is equivalent to MaxCut is the quadratic unconstrained bi-
nary optimization (QUBO) problem. Given a matrix Q ∈ Qn×n, the corre-
sponding QUBO problem can be formulated as

min xTQx

x ∈ {0, 1}n.
1 0000-0002-2877-074X
2 0000-0002-1967-0077
3 0000-0002-2902-882X
1As a side note, the 2021 Nobel prize in Physics was awarded for work on spin glasses.

1

https://orcid.org/0000-0002-2877-074X
https://orcid.org/0000-0002-1967-0077
https://orcid.org/0000-0002-2902-882X


Any QUBO instance can be formulated as a MaxCut instance in a graph with
n + 1 vertices, and any MaxCut instance on a graph (V,E) can be formulated
as a QUBO instance with n = |V | − 1, see e.g. [4]. The focus of this article is
mostly on MaxCut algorithms, but due to the just mentioned equivalence, all
results can be (and indeed are) applied to QUBO as well.

The huge recent interest in quantum computing has also put MaxCut and
QUBO in the spotlight: Both of them can be heuristically solved by current
quantum annealers. However, Jünger et al. [25] demonstrate on a wide range of
test-sets that digital computing methods prevail against state-of-the-art quan-
tum annealers.

For digital computers, many heuristics have been proposed both for MaxCut
and QUBO. See Dunning et. al. [13] for a recent overview. There have also been
various articles on exact solution. See Barahona et al. [4] for an early, Rendl et
al. [37] for a more recent, and Jünger et al. [25] for an up-to-date overview. In
the last years, more focus has been put on the development of methods that are
best suited for dense instances, see for example [22, 23, 31] for state-of-the-art
methods. However, the maximum number of nodes for MaxCut (or number
of variables for QUBO) instances that can be handled by these methods is
roughly 300. In contrast, this article aims to advance the state of the art in the
practical exact solution of sparse MaxCut and QUBO instances. The largest
(sparse) instance solved in this article has more than 10 000 nodes.

1.1 Contribution and structure

This article describes the design and implementation of a branch-and-cut based
MaxCut and QUBO solver. In particular, we suggest several algorithmic im-
provements of key components of a branch-and-cut framework.

Section 2 shows how to efficiently solve a well-known linear programming
(LP) relaxation for the MaxCut problem by using cutting planes. Among other
things, we demonstrate how the separation of maximally violated constraints,
which was described by many authors as being too slow for practical use, can
be realized with quite moderate run times.

Section 3 is concerned with another vital component within branch-and-cut:
reduction techniques. We review methods from the literature and propose new
ones. The reduction methods can be applied for preprocessing and domain
propagation.

Section 4 shows how to integrate the techniques from the previous to sections
as well as several additional methods in a branch-and-cut algorithm. Paralleliza-
tion is also discussed.

Section 5 provides computational results of the newly implemented MaxCut
and QUBO solver on a large collection of test-sets from the literature. It is shown
that the new solver outperforms the previous state of the art. Furthermore, the
best known solutions of several benchmark instances can be improved and one
is even solved (for the first time) to optimality.

1.2 Preliminaries and notation

In the remainder of this article, we assume that a MaxCut instance IMC =
(G,w) with graph G = (V,E) and edge weights w is given. Graphs are always
assumed to be undirected and simple, i.e., without parallel edges or self-loops.
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Given a graph G = (V,E), we refer to the vertices and edges of any subgraph
G′ ⊆ G as V (G′) and E(G′) respectively, An edge between vertices u, v ∈ V is
denoted by {u, v}. An edge set C = {{v1, v2}, {v2, v3}, ..., {vk−1, vk}} is called
a cycle. A cycle C is called simple if all its vertices have degree 2 in C. An
edge {u,w} ∈ E \C is called a chord of C if both u and w are contained in (an
edge of) C. If no such {u,w} exists, we say that C is chordless. Given a graph
G = (V,E) and a U ⊆ V , we define the induced edge cut as δ(U) := {{u, v} ∈
E | u ∈ U, v ∈ V \ U}.

Finally, for any function x : M 7→ R with M finite, and any M ′ ⊆ M , we
define x(M ′) :=

∑
i∈M ′ x(i).

2 Solving the relaxation: efficient separation of
odd-cycle cuts

This section is concerned with an integer programming (IP) formulation for
MaxCut due to Barahona and Mahjoub [5], given below.

Formulation 1. Odd-cycle cuts

max wTx (1)

s.t.
∑
e∈F

x(e)−
∑

e∈C\F

x(e) ≤ |F | − 1 for all cycles C,F ⊆ C, |F | odd (2)

x(e) ∈ {0, 1} for all e ∈ E. (3)

The formulation is based on the observation that for any edge cut δ(U) and
any cycle C the number of their common edges, namely |C∩δ(U)|, is even. This
property is enforced by the constraints (2). These constraints are called cycle
inequalities.

2.1 Cutting plane separation

Barahona and Mahjoub [5] show that the LP-relaxation of Formulation 1 can
be solved in polynomial time. More precisely, they describe how to separate
the constraints (3) in polynomial time, as demonstrated in the following. First,
rewrite the constraints (3) as∑

e∈F
(1− x(e)) +

∑
e∈C\F

x(e) ≥ 1 for all cycles C,F ⊆ C, |F | odd. (4)

Next, construct a new graph H from the MaxCut graph G = (V,E). This
graph H consists of two copies G′ = (V ′, E′) and G′′ = (V ′′, E′′) of G, con-
nected by the following additional edges. For each v ∈ V let v′ and v′′ be the
corresponding vertices in G′ and G′′, respectively. For each edge {v, w} ∈ E
let {v′, w′′} and {v′′, w′} be in H. Finally, for any (LP-relaxation vector)
x ∈ [0, 1]E define the following edge weights p on H: For each e = {v, w} ∈ E,
set p({v′, w′}) := p({v′′, w′′}) := x(e) and p({v′, w′′}) := p({v′′, w′}) := 1−x(e).
The construction is exemplified in Figure 1. Consider, for example, the edge
{v, w} in Figure 1a. The weight p of the corresponding (dashed) edges {v′, w′′}
and {v′′, w′} in Figure 1b is 1 − x({v, w}). The weight p of the corresponding
(bold) edges {v′, w′} and {v′′, w′′} is x({v, w}).
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(b) Auxiliary graph, consisting of two copies of
the original graph (bold edges), and additional
connecting edges (dashed).

Figure 1: MaxCut graph and corresponding auxiliary graph for cycle cut sepa-
ration.

Given an LP-relaxation vector x ∈ [0, 1]E , we can find violated inequali-
ties (3) as follows. For each v ∈ V compute a shortest path between v′ and v′′

in the weighted graph (H, p). By construction of H, such a path contains an odd
number of edges which are neither in E′ nor E′′. Let F be the corresponding
set of edges in E; i.e. for each edge {v′, w′′} or {v′′, w′} that is in the shortest
path, let {v, w} be in F . Furthermore, the edges of the shortest path correspond
to a closed walk C in G. The length of the shortest path in (H, p) is equal to∑
e∈F (1− x(e)) +

∑
e∈C\F x(e). Thus, if for each v ∈ V the corresponding

shortest path between v′ and v′′ in (H, p) has length at least 1, the vector x is
an optimal solution to the LP-relaxation of Formulation 1. Otherwise, we have
found at least one violated constraint.

Although shortest paths can be computed in polynomial time, the literature
has so far considered the above separation procedure as too time-consuming
to be directly used in practical exact MaxCut or QUBO solution. Instead,
heuristics are employed and exact cycle separation is only used if no more cuts
can be found otherwise, see, e.g., [3, 4, 9, 25, 33]. However, as we will show
in the following, the exact separation can actually be realized in a practically
quite efficient way.

2.2 Fast computation of maximally-violated constraints

Initially, we observe that it is usually possible to considerably reduce the size
of the auxiliary graph H described above. First, all edges e of H with p(e) = 1
(or practically, with p(e) being sufficiently close to 1) can be removed. Because
all edge weights are non-negative, no such edges can be contained in a path of
weight smaller than 1. Second, one can contract edges e with p(e) = 0. Both of

4



these operations can be done implicitly while creating the auxiliary graph (e.g.,
edges with weight 1 are never added). In this way, one can use cache-efficient,
static data structures, such as the compressed-sparse-row format, see e.g. [29],
for representing the auxiliary graph.

For computing a shortest path, we use a modified version of Dijkstra’s al-
gorithm. For any vertex v in the auxiliary graph let d(v) denote the distance
of v to the start vertex, as computed by the algorithm. We use the following
modifications. First, we stop the execution of the algorithm as soon as we scan
a vertex v with d(v) ≥ 1. Second, as already observed in Jünger and Mal-
lach [26], one does need to not proceed the shortest path computation from any
vertex, say v′, in the auxiliary graph where the twin vertex, v′′, has already
been scanned and the following condition holds: d(v′) + d(v′′) ≥ 1.

Finally, we use an optimized implementation of Dijkstra’s algorithm together
with a specialized binary heap. For the latter, we exploit the fact that the values
(i.e. vertex indices) of the key, value pairs inserted into the heap are natural
numbers bounded by the number of vertices of the auxiliary graph.

2.3 Post-processing

As already mentioned above, the edges of the shortest path computed in the
auxiliary graph correspond to a closed walk G—but not necessarily to a simple
cycle. Thus, Jünger and Mallach [26] suggest to extract all simple cycles from
such a closed walk and separate the corresponding inequalities. We follow this
suggestion (although we note that this modification is performance neutral in
our implementation).

Barahona and Mahjoub [5] observe that a cycle inequality is only facet-
defining if the corresponding cycle is chordless. If a cycle C has a chord e,
one readily obtains two smaller cycles C1 and C2 with C1 ∪ C2 = C ∪ {e} and
C1 ∩ C2 = {e}. One verifies that any cycle inequality defined on C can be
written as the sum of two cycle inequalities defined on C1 and C2, where e is
in the odd edges set F of exactly one of the two cycle inequalities. Jünger and
Mallach [27] suggest a procedure to extract from any simple cycle C with corre-
sponding violated cycle-inequality a chordless cycle C ′ whose cycle-inequality is
also violated. This procedure runs in O(|E|). However, a disadvantage of this
approach is that it finds only one such chordless cycle, which might not be the
smallest or most violated one. Additionally, there can be several such chordless
cycles. In the following, we suggest a procedure to find several non-overlapping
chordless cycles with corresponding violated cycle inequality from a given cycle
C with violated cycle inequality.

Consider a simple cycle C = {{v1, v2}, {v2, v3}, ..., {vk−1, vk}} and let F ⊆ C
with |F | odd. Assume there is a vector x ∈ [0, 1]E such that the cycle inequality
corresponding to C and F is violated, that is:∑

e∈F
(1− x(e)) +

∑
e∈C\F

x(e) < 1.

For each i = 2, ..., k define Pi := {{v1, v2}, {v2, v3}, ..., {vi−1, vi}} and store the
following information.

• f(i) := |F ∩ Pi|,
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• q(i) :=
∑
e∈F∩Pi

(1− x(e)) +
∑
e∈(C∩Pi)\F x(e).

This information can be computed in total time O(|C|): Traverse the nodes vi,
i = 2, 3, .., k of C in this order and compute the above two values for i from
i− 1.

With the above information at hand, traverse for each i = 2, ..., k the incident
edges of vi. Whenever a chord {vi, vj} with j < i is found, check whether the
cycle inequality of one or both of the corresponding cycles is violated. This check
can be performed in constant time by using the precomputed information for
the indices i and j. For example, if f(i)−f(j) is even, one of the corresponding
two cycle inequalities is

q(i)− q(j) + 1− x({vi, vj}) ≥ 1.

If a violated cycle inequality is found, add the corresponding chord together
with a flag that indicates which of the two possible cycles is to be used to
some (initially empty) queue R. Once the incident edges of all nodes vi for
i = 2, ..., k have been traversed, sort the elements of R according to the size
of the corresponding cycles in non-decreasing order. Consider all indices of the
original cycle as unmarked. Check the (implicit) cycles in R in non-decreasing
order. Let {vi, vj} with i < j be the corresponding chord. If both i and j are
unmarked, mark the indices i+1, i+2, ..., j−1. Otherwise, discard the (implicit)
cycle. Finally, add all cycle inequalities corresponding to non-discarded cycles
to the cut pool. The overall procedure runs in O(|E| log(|E|)). In practice, its
run time is completely neglectable.

Finally, we suggest a procedure to obtain additional cycle cuts from the
auxiliary graph. This approach is particularly useful for MaxCut instances with
few vertices, because the number of generated cycle inequalities separated in
each round is limited by the number of vertices of the MaxCut instance (if we
ignore additional cycle-inequalities that are possibly found by the above post-
processing). The procedure makes use of the symmetry of the auxiliary graph.
Assume that we have computed a shortest path between a pair of vertices, say v′

and v′′, as described above. Recall that d(w) denotes the distance of any vertex
w to the start vertex v′. If there is a twin pair of vertices u′, u′′ such that none
of them are part of the shortest path between v′ and v′′, and d(u′) + d(u′′) < 1,
we can get another violated cycle inequality as follow: First, we take the v′-
u′ path computed by the algorithm. Second, we consider the v′-u′′ path, and
transform it to an u′′-v′′ path (of same length) by exploiting the symmetry of
the auxiliary graph. By combining the two paths, we obtain an v′-v′′ path of
length d(u′) + d(u′′).

3 Simplifying the problem: reduction techniques

Reduction techniques are a key ingredient for the exact solution of many NP-
hard optimization problems, such as Steiner tree [36] or vertex coloring [34].
For QUBO, several reductions methods have been suggested in the literature.
Basic techniques can already be found in Hammer et al. [21]. The perhaps most
extensive reduction framework is given in Tavares et. al. [10]. Recently, Glover
et al. [18] provided efficient realizations and extensions of the classic first and
second order derivative and co-derivative techniques [20]. We have implemented
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the methods from Glover et al. [18] for this article. However, we do not provide
details, but rather concentrate on MaxCut reduction techniques in the following.

For MaxCut, there are several articles that discuss reduction techniques for
unweighted MaxCut. Ferizovic et al. [14] provide the practically most powerful
collection of such techniques. Lange et al. [32] provide techniques for general
(weighted) MaxCut instances. In the following, we will describe some of their
methods. Furthermore, we suggest new MaxCut reduction methods. Their
practical strength will be demonstrated in Section 5.

Initially, we note that any edge with weight 0 can be removed from IMC .
Any solution to this reduced version of IMC can be extended to a solution of
same weight to the original instance (in linear time). Thus, in the following
we assume no edges have weight 0. We also note that for the incidence vector
x ∈ {0, 1}E of any graph cut one obtains a corresponding (but not unique)
vertex assignment y ∈ {0, 1}V that satisfies for all {u, v} ∈ E the relation
y(u) 6= y(v) ⇐⇒ x({u, v}) = 1. This correspondence will be used repeatedly
in the following.

3.1 Cut-based reduction techniques

The first reduction technique from Lange et al. [32] is based on the following
proposition.

Proposition 1 ([32]). Let e ∈ E and U ⊂ V such that e ∈ δ(U). If

|w(e)| ≥
∑

a∈δ(U)\{e}

|w(a)|,

then there is an optimal solution x ∈ {0, 1}E to IMC with x(e) = β, where β = 1
if w(e) > 0, and β = 0 if w(e) < 0.

Note that in the case of x(e) = 0, one can simply contract e. In the case of
x(e) = 1, one needs to multiply the weights of the incident edges of one of the
endpoints of e by −1 before the contraction.

One way to check for all e ∈ E whether an U ⊂ V exists such that the
conditions of Proposition 1 are satisfied is by using Gomory-Hu trees. We have
only implemented a simpler check that considers for an edge e = {v, u} ∈ E the
sets {v} and {u} as U , as already suggested in Lange et al. [32]. A combined
check for all edges can be made in O(|E|). We note that this test corresponds
to the first order derivative reduction method (mentioned above) for QUBO.
This relation can be readily verified by means of the standard transformations
between MaxCut and QUBO.

The next reduction technique from Lange et al. [32] is based on triangles,
and is given below.

Proposition 2 ([32]). Assume there is a triangle in G with edges {v1, v2},
{v1, v3}, {v2, v3}. Let V1 ⊂ V such that {v1, v2}, {v1, v3} ⊂ δ(V1), and V2 ⊂ V
such that {v1, v2}, {v2, v3} ⊂ δ(V2). If

w({v1, v3}) + w({v1, v2}) ≥
∑

e∈δ(V1)\{{v1,v3},{v1,v2}}

|w(e)|
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and
w({v1, v2}) + w({v2, v3}) ≥

∑
e∈δ(V2)\{{v1,v2},{v2,v3}}

|w(e)|,

then there is an optimal solution x ∈ {0, 1}E to IMC with x({v1, v2}) = 0.

Similarly to the previous proposition, we only implemented tests for the
simple cases of {v1}, {v2}, {v1, v3}, and {v2, v3} for V1 and V2, respectively.

In the following, we propose a new reduction test based on triangles, which
complements the above one from Lange et al. [32].

Proposition 3. Assume there is a triangle in G with edges {v1, v2}, {v1, v3},
{v2, v3} ∈ E such that w({v1, v2}) > 0, w({v1, v3}) > 0, and w({v2, v3}) <
0. Let V1 ⊂ V such that {v1, v2}, {v1, v3} ∈ δ(V1) and let V2 ⊂ V such that
{v1, v2}, {v2, v3} ∈ δ(V2). If

w({v1, v2}) + w({v1, v3}) ≥
∑

e∈δ(V1)\{{v1,v2},{v1,v3}}

|w(e)|, (5)

and
w({v1, v2})− w({v2, v3}) ≥

∑
e∈δ(V2)\{{v1,v2},{v1,v3}}

|w(e)|, (6)

then there is an optimal solution x ∈ {0, 1}E to IMC such that x({v1, v2}) = 1.

Proof. Let x ∈ {0, 1}E be a feasible solution to IMC with x({v1, v2}) = 0. We
will construct a feasible solution x′ ∈ {0, 1}E with x({v1, v2}) = 1 such that
wTx′ ≥ wTx. Thus, there exists at least one optimal solution x ∈ {0, 1}E with
x({v1, v2}) = 1.

Because x({v1, v2}) = 0, it needs to holds that either

x({v1, v3}) = x({v2, v3}) = 0 (7)

or
x({v1, v3}) = x({v2, v3}) = 1. (8)

We just consider the case (7); the second one can be handled in an analogeous
way. Let y ∈ {0, 1}V be a vertex assignment corresponding to x; i.e., for all
{u, v} ∈ E it holds that y(u) 6= y(v) ⇐⇒ x({u, v}) = 1. Define a new vertex
assignment y′ ∈ {0, 1}V as follows

y′(v) :=

{
1− y(v) if v ∈ V1

y(v) otherwise.

Let x′ ∈ {0, 1}E be the cut corresponding to y′; i.e., for all {u, v} ∈ E it holds
x′({u, v}) = 1 if y(u) 6= y(v), and x′({u, v}) = 0 otherwise. Note that for
all e ∈ E \ δ(V1) it holds that x′(e) = x(e). For all e ∈ δ(V1) it holds that
x′(e) = 1− x(e). In particular,

x′({v1, v2}) = x′({v1, v3}) = 1, (9)
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because of x({v1, v2}) = x({v1, v3}) = 0. Thus, we obtain∑
e∈E

w(e)x′(e) =
∑

e∈E\δ(V1)

w(e)x′(e) +
∑

e∈δ(V1)

w(e)x′(e)

=
∑

e∈E\δ(V1)

w(e)x(e) +
∑

e∈δ(V1)

w(e)x′(e)

(9)
=

∑
e∈E\δ(V1)

w(e)x(e)

+
∑

e∈δ(V1)\{{v1,v2},{v1,v3}}

w(e)x′(e) + w({v1, v2}) + w({v1, v3})

(5)

≥
∑

e∈E\δ(V1)

w(e)x(e)

+
∑

e∈δ(V1)\{{v1,v2},{v1,v3}}

(w(e)x′(e) + |w(e)|)

≥
∑

e∈E\δ(V1)

w(e)x(e)

+
∑

e∈δ(V1)\{{v1,v2},{v1,v3}}

w(e)(1− x′(e))

=
∑

e∈E\δ(V1)

w(e)x(e)

+
∑

e∈δ(V1)\{{v1,v2},{v1,v3}}

w(e)x(e)

=
∑

e∈E\δ(V1)

w(e)x(e)
∑

e∈δ(V1)

w(e)x(e)

=
∑
e∈E

w(e)x(e),

which concludes the proof.

As for the previous triangle test, we only consider the simple cases of {v1},
{v2}, {v1, v3}, and {v2, v3} for V1 and V2 in our implementation.

Note that Lange et al. [32] furthermore propose a generalization of Propo-
sition 2 to more general connected subgraphs. Also Proposition 3 could be
generalized in a similar way. However, since we only implemented reductions
tests for the triangle conditions, we do not provide details on this generalization
here. We also note that exploiting this more general condition for effective prac-
tical reductions is not straight-forward and seems computationally considerably
more expensive than the triangle tests.

3.2 Further reduction techniques

In the following, we propose two additional reduction methods, based on dif-
ferent techniques. One uses the reduced-costs of the LP-relaxation of Formula-
tion 1, and one exploits simple symmetries in MaxCut instances.
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We start with the latter. If successful, the test based on the following propo-
sition allows one to contract two (possibly non-adjacent) vertices.

Proposition 4. Assume there are two distinct vertices u, v ∈ V such that
N(u) \ {v} = N(v) \ {u}. If there exists a non-zero α such that w(e) = αw(e′)
for all pairs e, e′ with e ∈ δ(u)\{u, v}, e′ ∈ δ(v)\{u, v}, e∩e′ 6= ∅, and moreover

• {u, v} /∈ E ∨ w({u, v}) < 0 in case of α > 0

• {u, v} /∈ E ∨ w({u, v}) > 0 in case of α < 0,

then there is an optimal vertex solution y ∈ {0, 1}V to IMC such that y(u) = y(v)
if α > 0, and y(u) = (1− y(v)) if α < 0.

Proof. We consider only the case α > 0; the case α < 0 can be shown in a
similar way. Let y ∈ {0, 1}V with y(v) 6= y(u). We will construct a y′ ∈ {0, 1}V
with y′(v) = y′(u) such that the weight of the induced cut of y′ is not lower than
the weight of the induced cut of y. In this way, the proof is complete, because
we can apply this construction also for any optimal vertex assignment

Let x ∈ {0, 1}E be the induced cut of y. Assume that∑
e∈δ(u)\{u,v}

w(e)x(e) ≥ α
∑

e∈δ(v)\{u,v}

w(e)x(e). (10)

Otherwise, switch the roles of u and v in the following.
Let f : δ(v) \ {{u, v}} → δ(u) \ {{u, v}} such that e ∩ f(e) 6= ∅ for all

e ∈ δ(v) \ {u, v}. Note that f is well-defined. Define a new cut x′ ∈ {0, 1}E as
follows

x′(e) :=

 x(e) if e ∈ E \ δ(v)
x(f(e) if e ∈ δ(v) \ {{u, v}}
0 if e = {u, v}

Because of (10) and {u, v} /∈ E ∨ w({u, v}) < 0 it holds that wTx′ ≥ wTx.

The condition of Proposition 4 can be checked efficiently in practice by using
hashing techniques, similar to the ones used for the parallel rows test for mixed-
integer programs [2].

A well-known reduction method for binary integer programs, which was
already used for MaxCut [4], is as follows. Consider a feasible solution x̃ to
the LP-relaxation of Formulation 1, with reduced-costs w̃, and with objective
value Ũ . Further, let L be the weight of a graph cut. If for an e ∈ E it holds
that x̃(e) = 0 and Ũ − w̃(e) < L, one can fix x(e) := 0. If for a e ∈ E it
holds that x̃(e) = 1 and Ũ + w̃(e) < L, one can fix x(e) := 1. This method
can also be used for LP-solutions (obtained during separation) that satisfy only
a subset of the cycle inequalities (2). In the following, we will only consider
optimal LP-solutions x̃ (possibly for a subset of the cycle inequalities). Since
we furthermore consider only LP-solutions obtained by the Simplex algorithm,
all non-zero variables have reduced-cost 0.

From incident fixed edges one obtains a (non-unique) partial vertex assign-
ment y′ : V ′ → {0, 1}. This assignment can be used to obtain additional fixings,
as detailed in the following proposition.
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Proposition 5. Let x̃ be an optimal solution to the LP-relaxation of Formula-
tion 1, with reduced-costs w̃, and objective value Ũ . Let L be an upper bound
on the weight of a maximum-cut. Let V ′ ⊂ V and y′ : V ′ → {0, 1} such that
for any optimal vertex assignment y ∈ {0, 1}V it holds that y(v) = y′(v) for all
v ∈ V ′. Further, let u ∈ V \ V ′ and define

∆̃0 :=
∑

{u,v}∈δ(u)|v∈V ′,y(v)=0

w̃({u, v})

and
∆̃1 :=

∑
{u,v}∈δ(u)|v∈V ′,y(v)=1

w̃({u, v}).

For any optimal vertex assignment y ∈ {0, 1}V the following conditions hold. If
L+ ∆̃0 > Ũ , then y(u) = 0. If L+ ∆̃1 > Ũ , then y(u) = 1.

The proposition follows from standard linear programming results. If one
of the conditions of the proposition is satisfied, one can fix all edges between u
and V ′.

4 Solving to optimality: branch-and-cut

This section describes how to incorporate the methods introduced so far together
with additional components in an exact branch-and-cut algorithm. This branch-
and-cut algorithm has been implemented based on the academic MIP solver
SCIP [7]. Besides being a stand-alone MIP solver, SCIP provides a general
branch-and-cut framework. Most importantly, we rely on SCIP for organizing
the branch-and-bound search, and the cutting plane management. Most native,
general-purpose algorithms of SCIP such as primal heuristics, conflict analysis,
or generic cutting planes are deactivated by our solver for performance reasons.

4.1 Key components

In the following, we list the main components of the branch-and-cut framework
that was implemented for this article.

Presolving For presolving, the reduction methods described in this article
are executed iteratively within a loop. This loop is reiterated as long as at least
one edge has been contracted during the previous round, and the predefined
maximum number of loop passes has not been reached yet.

Domain propagation For domain propagation we use the reduced-cost cri-
teria described in Section 3.2. The simple single-edge fixing is done by the
generic reduced-costs propagator plug-in of SCIP. For the new implication
based method we have implemented an additional propagator.

A classic propagation method, e.g. [4], is as follows: Consider the connected
components induced by edges that have been fixed to 0 or 1. All additional edges
in these connected components can be readily fixed. However, this technique
brought no benefits in our experiments, since the variable values of such edges
are implied by the cycle inequalities (2).
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Decomposition It is well-known that connected components of the graph
underlying a MaxCut instance can be solved separately, see e.g. [25]. More
generally, one can solve biconnected components separately (this simple obser-
vation does not seem to have been mentioned in the MaxCut literature so far).
Since several benchmark instances used in this article contain many very small
biconnected components, we solve components with a limited number of vertices
by enumeration. In this way, we avoid the overhead associated with creating
and solving a new MaxCut instance for each subproblem.

Primal heuristics Primal heuristics are an important component of practical
branch-and-bound algorithms: First, to find an optimal solution (verified by the
dual-bound), and second to find strong primal bounds that allow the algorithm
to cut off many branch-and-bound nodes. For computing an initial primal so-
lution, we have implemented the MaxCut heuristic by Burer et. al. [11]. We
further use the Kernighan-Lin algorithm [30] to improve any (intermediary)
solution found by the algorithm of Burer et. al. Additionally, we use this com-
bined algorithm as a local search heuristic whenever a new best primal solution
has been found during the branch-and-bound search. In this case, we initiate
the heuristic with this new best solution (which can be done by translating the
solution into the two-dimensional angle vectors required by the heuristic).

We also implemented the spanning-tree heuristic from Barahona et al. [4],
which uses a given (not necessarily optimal) LP-solution to find graph cuts. We
execute this heuristic after each separation round.

Separation In each separation round, we initially try to find violated cycle
inequalities on triangles of the underlying graph (by enumerating some trian-
gles). Next, we use shortest-path computations to find additional violated cuts,
as described in Section 2.2 and Section 2.3. Among the speed-up techniques,
we have not (yet) implemented the contraction of edges, since the separation
routine is already quite fast and other implementations seemed more promising.

Branching We simply branch on the edge variables and use the pseudo-costs
branching strategy of SCIP, see Gamrath [16] for more details. Initial experi-
ments showed that the default branching strategy of SCIP, reliable pseudo-costs
branching, spends too much time on strong-branching to be competitive.

4.2 Parallelization

For parallelizing our solver, we use the Ubiquity Generator Framework (UG) [38],
a software package to parallelize branch-and-bound based solvers—for both
shared- and distributed-memory environments. UG implements a Supervisor-
Worker load coordination scheme [35]. Importantly, Supervisor functions make
decisions about the load balancing without actually storing the data associated
with the branch-and-bound (B&B) search tree.

A major problem of parallelizing the B&B search lies in the simple fact that
parallel resources can only be used efficiently once the number of open B&B
nodes is sufficiently large. Thus, we employ so-called racing ramp-up [35]: Ini-
tially, each thread (or process) starts the solving process of the given problem
instance, but each with different (customized) parameters and random seeds.
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Additionally, we reserve some threads to exclusively run primal heuristics. Dur-
ing the racing, information such as improved primal solutions or global variable
fixings is being exchanged among the threads. We terminate the racing once
a predefined number of open B&B nodes has been created by one thread, or
the problem has been solved. Once the racing has been terminated and the
problem is still unsolved, the open nodes are distributed among the threads and
the actual parallel solving phase starts.

5 Computational results

This section provides computational results on a large collection of MaxCut
and QUBO instances from the literature. We look at the impact of individual
components, and furthermore compare the new solver with the state of the art
for the exact solution of MaxCut and QUBO instances. An overview of the
test-sets used in the following is given in Table 1. The second column gives
the number of instances per test-sets. The third and fourth columns give the
range of nodes and edges in the case of MaxCut, or the range of variables and
non-zero coefficients in the case of QUBO.

Only a few exact MaxCut or QUBO solvers are publicly available, and some,
such as BiqMac [37] and BiqBin [22], only as web services. Still, the state-
of-the-art solvers BiqCrunch [31] and MADAM [23] are freely available, even
with source code. However, we have observed that both of these solvers are
outperformed on most instances listed in Table 1 by the recent release 9.5 of the
state-of-the-art commercial solver Gurobi [19]. Gurobi solves mixed-integer
quadratic programs, which are a superclass of QUBO. In fact, the standard
benchmark library for quadratic programs, QPLIB [15], contains various QUBO
instances. Compared to the previous release 9.1, Gurobi 9.5 has hugely im-
proved on QUBO (and thereby also MaxCut) instances. For example, while
Gurobi 9.1 could not solve any of the IsingChain instances from Table 1 in
one hour (with one thread), Gurobi 9.5 solves all of them in less than one
minute. Thus, in the following, we will use Gurobi 9.5 as a reference for our
new solver. We will also provide results from the literature, but the compar-
ison with Gurobi 9.5 allows us to obtain results in the same computational
environment.

Very recently, an article describing a new solver, called McSparse, special-
ized to sparse MaxCut and QUBO instances was published [12]. The compu-
tational experiments in [12] demonstrate that McSparse outperforms previ-
ous MaxCut and QUBO solvers on sparse instances. Like BiqMac [37] and
BiqBin [22], this solver is only available via a web interface. However, we
will still provide some comparison with our solver in the following by using the
results published in [12].

The computational experiments were performed on a cluster of Intel Xeon
Gold 5122 CPUs with 3.60 GHz, and 96 GB RAM per compute node. We
ran only one job per compute node at a time, to avoid a distortion of the run
time measures—originating for example from shared (L3) cache. For our solver,
we use the commerical CPLEX 12.10 [24] as LP-solver, although our solver
also allows for the use of the non-commercial (but slower) SoPlex [7] instead.
For Gurobi we set the parameter MipGap to 0. Otherwise, we would obtain
suboptimal solutions even for many instances with integer weights.
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Name # |V| |E| Description

DIMACS 4 512 - 3375 1536-10125 Instances introduced at the
7th DIMACS Challenge.

Mannino 4 48 - 487 1128-8511 Instances from a radio frequency assignment problem,
introduced in [9].

PM1s100 10 100 495 Instances generated with the rudy framework,
from the BiqMac Lib [40].

W01100 10 100 495 Instances generated with the rudy framework,
from the BiqMac Lib [40].

K64-chimera 80 2049 8064 Instances on D-Wave Chimera graphs
introduced in [25].

Kernel 14 33 - 2888 91-2981 Instances from various sources
collected by [14].

IsingChain 30 100 - 300 4950-44850 Instances from an application in statistical physics,
introduced in [33]

Torus 18 100 - 343 200-1029 2D and 3D torus instances from an application in
statistical physics, introduced in [33]

Name # n nnz Description

QPLIB 22 120 - 1225 602-34876 QUBO instances from the standard benchmark software
for quadratic programs, see [15].

BQP100 10 100 471-528 Randomly generated instances
introduced in [6].

BQP250 10 250 3039-3208 Randomly generated instances
introduced in [6].

BE120.3 10 120 2176-2253 Randomly generated instances
introduced in [8].

BE250 10 250 3268-3388 Randomly generated instances
introduced in [8].

GKAa-d 35 20 - 125 204-7788 Randomly generated instances with different densities,
introduced in [17]

Table 1: Details of MaxCut (upper part) and QUBO (lower part) test-sets used
in this article.

5.1 Individual components

This section takes a look at individual algorithmic components introduced in
Section 2 and Section 3.

First, we show the run time required for our improved separation of cycle
inequalities. Table 2 reports per test-set the average (arithmetic mean) per-
centual time required for the separation procedure (column four), as well as
for solving the LP-relaxations (column five). Recall that the latter is done by
CPLEX 12.10, one of the leading commercial LP-solvers. For more than half of
the test-sets the average time required for the separation is less than 10 %. Also
for the remaining test-sets it is always less than 20 %. Notably, this time also
includes adding the cuts (including the triangle inequalities) to the cut pool,
which requires additional computations. The time could be further reduced by
contracting 0-weight edges in the auxiliary graph, as described in Section 2.
Notably, both the separation time and LP-solution time are very small for the
IsingChain and Kernel instances. This behavior is due to the fact that many of
these instances are already solved during presolving, as detailed in the following,

Next, we demonstrate the strength of the reduction methods implemented
for this article. Only results for the MaxCut test-sets are reported. We show
the impact of the MaxCut reduction techniques from [32] described in Section 3
as well as the QUBO reduction techniques from [18]—by using the standard
problem transformations between QUBO and MaxCut. We refer to the combi-
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Name # Sepa-time [%] LP-time [%]

BE120.3 10 2.5 79.3
BE250 10 2.8 84.3
BQP100 10 3.0 32.0
BQP250 10 2.6 86.2
GKAa-d 35 6.7 49.1
IsingChain 30 0.0 0.0
K64-chimera 80 10.1 58.3
Kernel 14 1.3 4.8
PM1s100 10 13.1 78.3
QPLIB 22 18.1 65.5
Torus 18 16.7 15.5
W01100 10 12.0 59.3

Table 2: Average times spent in separation and (re-) optimization of the LP for
MaxCut and QUBO test-sets.

nation of these two as base preprocessing. Additionally, the methods described
in Proposition 3 and Proposition 4 are referred to as new techniques. Note that
Proposition 5 cannot be applied, because no reduced-costs are available.

Table 3 shows in the first column the name of the test-set, followed by its
number of instances. The next columns show the percentual average number
of nodes and edges of the instances after the preprocessing without (column
three and four), and with (columns five and six) the new methods. The last
two columns report the percentual relative change between the previous results.
The run time is not reported, because it is on all instances below 0.05 seconds.

The new reduction techniques have an impact on five of the eight test-sets.
The strongest reductions occur on Kernel and IsingChain. We remark that the
symmetry-based reductions from Proposition 4 have a very small impact, and
only allow for contracting a few dozen additional edges on Kernel. We also
note that while the IsingChain instances are already drastically reduced by the
base preprocessing, the new methods still have an important impact, as they
reduce the number of edges of several instances from more than a thousand
to less than 300. The IsingChain instances were already completely solved by
reduction techniques in Tavares [39], by using maximum-flow based methods.
However the run time was up to three orders of magnitudes larger than in our
case. The machine used by Tavares had a Pentium 4 CPU at 3.60 GHz, thus
being significantly slower than the machines used for this article. Still, also
when taking the different computing environments into account, the run time
difference is huge.

5.2 Exact solution

This section compares Gurobi 9.5 and our new solver with respect to the mean
time, the maximum time, and the number of solved instances. For the mean time
we use the shifted geometric mean [1] with a shift of 1 second. In this section,
we use only single-thread mode. Table 4 provides the results for a time-limit
of one hour. The second column shows the number of instances in the test-set.
Columns three gives the number of instances solved by Gurobi, column four
the number of instances solved by our solver. Column five and six show the
mean time taken by Gurobi and our solver. The next column gives the relative
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base preprocessing +new techniques relative change

Test-set # |V| [%] |E| [%] |V| [%] |E| [%] |V| [%] |E| [%]

IsingChain 30 6.1 0.8 1.1 <0.05 -82.0 <-93.8
K64-chimera 80 3.1 4.6 3.1 4.6 0.0 0.0
Kernel 14 24.1 30.1 16.4 20.6 -32.0 -31.6
Mannino 4 64.1 69.3 63.2 68.7 -1.4 -0.9
Torus 18 80.6 87.5 78.5 85.2 -2.6 -2.6
W01100 10 99.1 94.8 99.1 94.8 0.0 0.0
DIMACS 4 97.0 98.9 96.9 98.9 -0.1 0.0
PM1s100 10 99.7 99.9 99.7 99.9 0.0 0.0

Table 3: Average remaining size of MaxCut instances after preprocessing.

speedup of our solver. The last three columns provide the same information for
the maximum run time, Speedups that signify an improved performance of the
new solver are marked in bold.

It can be seen that our solver consistently outperforms Gurobi 9.5—both
with respect to mean and maximum time. Also, it solves on each test-set at
least as many instances as Gurobi. The only test-set where Gurobi performs
better is BQP100, which, however, can be solved by both solvers in far less than
a second.

On the other test-sets, the mean time of the new solver is better, often by
large factors (up to 60.07). On the instance sets that can both be fully solved,
the maximum time taken by the new solver is in most cases also much smaller.
On five of the test-sets, the new solver can solve more instances to optimality
than Gurobi 9.5.

# solved mean time (sh. geo. mean) maximum time

Test-set # Grb new Grb [s] new [s] speedup Grb [s] new [s] speedup

PM1s100 10 10 10 192.3 21.0 9.16 303.3 48.6 6.24
W01100 10 10 10 44.1 3.1 14.23 97.1 21.4 4.54
Kernel 14 14 14 0.7 0.1 7.00 14.3 1.1 13.00
IsingChain 30 30 30 1.3 <0.05 >26.00 41.0 <0.05 >820.00
Torus 18 18 18 3.8 0.4 9.50 628.0 7.6 82.63
K64-chimera 80 80 80 90.1 1.5 60.07 195.4 8.6 22.72
QPLIB 22 8 13 687.4 173.3 3.97 3600 3600 1.00
BQP100 10 10 10 0.1 0.1 1.00 0.2 0.4 0.50
BQP250 10 0 7 3600 654.1 5.50 3600 3600 1.00
BE120.3 10 9 10 265.6 60.2 4.41 3600 820.0 >4.40
BE250 10 0 8 3600 609.3 5.91 3600 3600 1.00
GKAa-d 35 29 31 6.5 6.0 1.08 3600 3600 1.00

Table 4: Comparison of Gurobi 9.5 (Grb) and new solver (new).

Finally, we compare our solver with the very recent QUBO and MaxCut
solver McSparse, specialized on sparse instances. In Table 5 we provide an
instance-wise comparison of our solver and McSparse. We provide the number
of branch-and-bound nodes (columns three and four) and the run times (columns
five and six) of McSparse and our solver per problem instance. We use the
14 instances that were selected in the article by Charfreitag et al. [12] as being
representative of their test-bed. The first seven instances are MaxCut and
the last seven QUBO problems. Charfreitag et al. [12] only use one thread
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per run. Their results were obtained on a system with AMD EPYC 7543P
CPUs at 2.8 GHz, and with 256 GB RAM. CPU benchmarks2 consider this
system to be faster than the one used in this article, already in single-thread
mode. Furthermore, McSparse is embedded into Gurobi (version 9.1), which
is widely regarded as the fastest commercial MIP-solver, whereas our solver is
based on the non-commercial SCIP, although we also use a commercial LP-
solver.

# B&B nodes run time

Name |V| |E| MS new MS [s] new [s]

pm1s 100.3 100 495 341 737 48.2 48.0
pw01 100.0 100 495 171 179 20.0 8.5
mannino k487b 487 5391 1 15 167.3 2.9
bio-diseasome 516 1188 1 1 9.5 0.6
ca-netscience 379 914 1 1 0.1 0.0
g000981 110 188 1 1 0.0 0.0
imgseg 138032 12736 23664 1 1 30.5 4.4

Name n nnz MS new MS [s] new [s]

bqp250-3 250 3092 25 15 414.1 85.8
gka2c 50 813 1 1 0.5 0.3
gka4d 100 2010 129 71 219.6 61.9
gka5c 80 721 1 1 0.1 0.1
gka7a 30 241 1 1 0.0 0.0
be120.3.5 120 2248 111 63 257.7 62.4
be250.3 250 3277 107 81 841.0 212.0

Table 5: Comparison of McSparse (MS ) and our solver (new) on seven Max-
Cut and seven QUBO instances (considered to be representative [12]).

As to the number of branch-and-bound nodes, the pictures is somewhat
mixed—with McSparse requiring fewer nodes on three, and more nodes on
four instances. Notably, McSparse also includes clique-cuts separation, which
is not implemented in our solver, and a specialized branching strategy, while we
use a simple generic one. These two features might explain the smaller number
of nodes on some instances. As to the run time, five instances can be solved in
less than a second by both solvers (with the new solver being slightly faster).
On the remaining nine instances, the new solver is always faster—for all but
one instances by a factor of more than 3. On one instance (mannino k487b), it
is even by a factor of more than 50 faster.

5.3 Parallelization

Although parallelization is not the main topic of this article, we still provide
some corresponding results in the following. To give insights into the strengths
and weaknesses of our racing-based parallelization, we provide instance-wise
results. We use the test-sets Mannino and DIMACS, which both contain in-
stances that cannot be solved within one hour by Gurobi and our new solver
in single-thread mode. The sizes of the instances are given in Table 6.

2https://www.cpubenchmark.net/singleThread.html#server-thread

17

https://www.cpubenchmark.net/singleThread.html#server-thread


Name |V| |E| Name |V| |E|

torusg3-8 512 1536 mannino k487a.mc 487 1435
toruspm3-8-50 512 1536 mannino k487b.mc 487 5391
torusg3-15 3375 10125 mannino k487c.mc 487 8511
toruspm3-15-50 3375 10125 mannino k48.mc 48 1128

Table 6: Details on DIMACS (left) and Mannino (right) instances.

Table 7 provides results of Gurobi and the new solver on the DIMACS and
Mannino instances. Both solvers are run once with one thread and once with
eight threads. As before, a time-limit of one hour is used. The table provides
the percentual primal-dual gap, as well as the run time. The results reveal for
both solvers a performance degradation on easy instances with increased number
of threads. Most notably on mannino k487b, where Gurobi takes almost 10
times longer with eight threads. On the other hand, the new solver shows a
strong speedup on two hard instances that cannot be solved in one hour singke-
threaded, namely toruspm3-8-50 and mannino k487c. On the latter, one even
observes a super-linear speedup. This speedup can be at least partly attributed
to the exclusive use of primal heuristics on one thread during racing, which finds
an optimal solution quickly in both cases. On the other hand, in single-thread
mode the best primal solution is sub-optimal even at the time-limit.

primal-dual gap [%] run time [s]

Name Grb-T1 Grb-T8 new-T1 new-T8 Grb-T1 Grb-T8 new-T1 new-T8

torusg3-8 0.0 0.0 0.0 0.0 1494.2 1178.5 8.5 9.3
toruspm3-8-50 1.8 1.8 0.5 0.0 >3600 >3600 >3600 1415.8
torusg3-15 6.8 3.4 1.3 0.4 >3600 >3600 >3600 >3600
toruspm3-15-50 9.5 12.2 2.3 2.3 >3600 >3600 >3600 >3600
mannino k487a 0.0 0.0 0.0 0.0 3.5 10.7 1.1 1.3
mannino k487b 0.0 0.0 0.0 0.0 9.2 80.5 2.9 2.8
mannino k487c 0.1 0.0 0.1 0.0 >3600 3176.7 >3600 398.2
mannino k48 0.0 0.0 0.0 0.0 0.1 0.4 2.7 3.8

Table 7: Results of Gurobi 9.5 (Grb) and the new solver (new), with one (-T1 )
and eight (-T8 ) threads each.

Finally, Table 8 provides results for several previously unsolved MaxCut and
QUBO benchmark instances from the QPLIB and the 7th DIMACS Challenge.
We also report the previous best known solution values (previous primal) from
the literature, which were taken from the QPLIB and the MQLib [13]. For the
QPLIB instances we report the results from the one hour single-thread run in
Section 5.2. However, for the DIMACS instances, torusg3-15 and toruspm3-
15-50, we performed additional runs. Note that the DIMACS instances were
originally intended to be solved with negated weights. However, it seems that
most publications, e.g., [13], do not perform this transformation. Thus, we
also use the unmodified instances, to allow for better comparison. However,
we additionally report the solution values of the transformed instances, these
transformed instances are marked by a ?. We used a machine with 88 cores
of Intel Xeon E7-8880 v4 CPUs @ 2.20GHz. We ran the two instances (non-
exclusively) for at most 3 days while using 80 threads. Both torusg3-15 and
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torusg3-15? could be solved to optimality in this way, but toruspm3-15-50 and
toruspm3-15-50? still remained with a primal-dual gap of 1.8 percent each.

Name gap [%] new primal previous primal
torusg3-15 opt 286626481 282534518
torusg3-15? opt 292031950 -
toruspm3-15-50 1.8 3010 2968
toruspm3-15-50? 1.8 3008 -

QPLIB 3693 1.3 -1152 -1148
QPLIB 3850 1.7 -1194 -1192

Table 8: Improved solutions for MaxCut (first four) and QUBO (last two)
benchmark instances.

6 Conclusion and outlook

This article has demonstrated how to design a state-of-the-art solver for sparse
QUBO and MaxCut instances, by enhancing and combining key algorithmic
ingredients such as presolving and cutting-plane generation. The newly imple-
mented solver outperforms both the leading commercial and non-commercial
competitors on a wide range of test-sets from the literature. Moreover, the best
known solutions to several instances could be improved.

Still, there are various promising routes for further improvement. Examples
would be a new branching strategy, or the implementation of additional separa-
tion methods such as clique-cuts [9]. In this way, a considerable further speedup
of the new solver might be achieved.
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Tim Donkiewicz, Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Ger-
ald Gamrath, Ambros Gleixner, Leona Gottwald, Christoph Graczyk, Ka-
trin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst,
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