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Consider we have an N x M data set X, where N and M represent number of data points
and features, respectively. We show data point x; as M-dimensional vector, where ¢ = 1, ..., N.
There are T clusters, and cluster centers (prototypes) are shown by c¢;, where j = 1,...,7. Then
pi; is the probability of data point x; belonging to cluster c;.

1 Kernel Probabilistic Distance Clustering Algorithms

In Kernel Probabilistic Distance Clustering there are two spaces, which are input space (or
feature space) and kernel space. Input space is the original space of the data points. On the
other hand, kernel space represents the space where data points are mapped into via ¢ function.
The dimension of the input space is the number of features data points have. However, kernel
space’s dimension is determined by the ¢ function to be used. Since we will not know the ¢
function, we will not be able to detect the dimension of the kernel space.

1.1 Kernel Pd-clustering in Kernel Space

Figure 1: Kernel Pd-clustering in Input and Kernel Space

In Kernel Pd-clustering in kernel space (KPd Algorithm) centers are defined in the kernel
space (or mapped space). In fact, center update rules are made in the kernel space. The data
points are in the input space, and they are mapped into the kernel space via ¢ function as shown
in Figure 1. Since the update rules in the algorithm are valid for all kernel functions, prior
knowledge of the kernel function to be used is not required. In addition, cluster prototypes do
not have an explicit representation in both kernel and input spaces.



As a distance metric Euclidean distance is considered. In general, Euclidean distance be-
tween x; and c;, d(x;,c;), is
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The optimization problem fo clustering in Section 7?7 becomes
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| (x;) — c;|| is simply denoted by d;;. The nonlinear objective function is convex in terms
of p;; and d;;. This is because when p;;’s are given and d;;’s become unknown, the objective
becomes convex. Similarly, given d;;’s, the objective function in (1) will be a function of d;;’s
which is a convex function. Considering the fact that constraints are all linear, i.e. they are
also convex, the problem becomes a convex optimization problem.

When c¢;’s are given, the Lagrangian becomes
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When we take the derivative with respect to p;; and make it equal to zero, we obtain
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When we substitute (5) into (4), we get
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If (6) is substituted into (5), we find out p;; as
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Fixing p;; and taking the derivative of (4) with respect to c; gives
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However, the cluster centers cannot be calculated using (8) since ¢(x;)’s are not known
explicitly. Therefore, there is no explicit representation of cluster centers. On the other side,
the centers can be described in terms of the data points that belong to the corresponding
clusters. That is, the centers will be the convex combination of ¢(x;)’s. Then (8) can be

rewritten as
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When (9) is substituted into c;’s in the objective function, then the problem becomes
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The Lagrangian of (10) becomes
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When we fix ;; and take the derivative with respect to p;; and make it equal to zero, we



obtain
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Note that p;;’s are in the distance term in (13). We can write the distance term as
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We replace ¢ (x;) ¢ (xx)’s with K (x;,xx)’s, and we get
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So (15) can be calculated using kernel trick if §;; values are known, so there is no need to

know ¢(x;). Now, we substitute (15) into (13) for the norm term, and take the derivative of
(13), we get
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Bi;’s are updated as in (17). Using (14) we update p;;’s. In that formula since c;’s are
substituted with f;;’s and ¢(x;)’s, there is still no need to know c;’s explicitly. The norm terms
n (14) are calculated as in (15) using kernel trick.

We can define j; as the column vector containing all §;;’s for a given cluster j, then (13) is
written as
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where K is the kernel matrix, K; represents the i** column of kernel matrix, and Kj; is the i
row and i® column element in that matrix. Taking the derivative of (18) with respect to B,
gives
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1.1.1 Kpd Algorithm

Kpd Algorithm can be developed by determining an update rule for 3;;’s and p;;’s. Since the
centers are not known explicitly, they are updated implicitly in the algorithm. §;; in (17) can
be calculated using previous values of f;;’s. Thus, (17) can be written as
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where r is the current iteration.
Using the updated f;;’s and substituting them in (14), p;;’s can be updated as
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The pseudocode of Kpd Algorithm is given in Algorithm 1 below.



Algorithm 1: KPd Algorithm
Input : data set X, coefficient matrix B, number of clusters T', kernel function K,
stopping criterion e
Output: probability matrix P
Initialize P to a random probability matrix and B to a random coefficient matrix.
Calculate K(x;,%;) fori,l €1,....,N. Set r =0
while pg-) — pg*l) > e do
r=r+1
Update ﬂg) as in (20)
Update pg) as in (21)
7 end
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1.2 Kernel Pd-clustering in Kernel Space with Inverse Mapping

The algorithm in the previous Section 1.1 defines the centers in the kernel space because the
center equation cannot be calculated due to the ¢ function. However, center updates are
made implicitly since the formula of the centers cannot be found using the center equation.
The centers are required only when the distance between the data points and the centers are
calculated. Therefore, we embedded the center equation in the distance function and using
kernel trick we obtained the corresponding distances. In fact, the center updates are made in
the kernel space because f3;;’s are the coefficients of the kernel centers. However, the centers
can be defined in kernel space but updated in the input space so that they can be obtained
explicitly.

The algorithm that will be developed in this section defines the centers in the kernel space.
Different than the algorithm in the previous Section 1.1, the new algorithm updates the centers
in the input space. Let c;’s be the centers in the kernel space and ¢; be the image of c; in
iput space. To update the centers in the input space, one should find the inverse mapping of
them, which is ¢ !(c;). If ¢ is known then the inverse of ¢; would be ¢; since ¢~ '(c;) = ¢;.
However, since ¢ function is not known, inverse of it cannot be calculated. Therefore, ¢; can
be chosen in such a way that its image, ¢(¢;), will be approximating c;. This algorithm will
be called Kernel Pd-clustering with Inverse Mapping (Kpd_Inv Algorithm) and the idea of
the algorithm is represented in Figure 2.
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Figure 2: Kernel Pd-clustering with Inverse Mapping in Input and Kernel Space

Here, the optimization problem is the same as in Section 1.1, where the objective function



is (1) and constraints are (2) and (3). When c,’s are given, p;;’s are found as in (7). Similarly,
c;’s are obtained as in (8) if p;;’s are given.

As mentioned above, center updates are made in the input space. Inverse mapping is not
applicable to get the corresponding centers in the input space. Therefore, we will approximate

c; with the image of ¢; on the kernel space, which is ¢(c;).

To obtain the approximate centers in the input space, the following objective function can
be considered

min VZZHﬁb(éj) —cjl|- (22)

The objective aims to minimize the sum of distances between the kernel space centers and

kernel images of the input space centers in the input space. ¢(¢;) refers to the mapping of ¢;
into the kernel space.

The function V' in (22) can be written as
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Then c;’s can be expressed as in (8), so we substitute them in (23). Thus, the multiplication
of two ¢ functions will be obtained, and they can be written as a function of K using the kernel
trick. That is, (23) becomes
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To find the optimum ¢;, one can take the derivative of (23) with respect to ¢; and make it
equal to 0. However, to take the derivative, prior information about the kernel function must

be known. Below, Gaussian and Polynomial kernel functions are considered to calculate the
centers.

e Gaussian Kernel

When the kernel function is chosen as Gaussian kernel, (24) becomes
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Since in Gaussian Kernel the distance between the object and itself is equal to 1, K(¢;, ¢;) =
1 in Equation (25). Then taking the derivative of (25) with respect to ¢; and equalizing
it to 0 gives
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for Gaussian kernel.

e Polynomial Kernel

If the Polynomial kernel is considered, now (24) becomes
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where a and b are the predefined parameters of the Polynomial kernel.
The derivative of (27) with respect to ¢; is
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for Polynomial kernel.

1.2.1 Center Update

¢; values can be calculated using (26) and (28) but these equations contain c¢;’s in the denom-
inator terms. Therefore, ¢;’s can be approximated with the image of ¢;’s from the previous

(& Py o Pij
\ = lo(xi) — | <z=21 [p(x:) — Cj”) (zzzl [¢(x:) — i

]



iteration, so we obtain
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for Gaussian kernel. When function K is replaced with Gaussian, (29) becomes
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For Polynomial kernel, c¢;’s are approximated and (28) is obtained as
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Writing Polynomial kernel function explicitly in (31) would give
r—1 ~(r—1 —
& (v VP o) xi + )

1 \/ O %+ a)" 2 (o) ) + (o) o) +a)

J r—1
(( ))2

=

(é(rfl))T égﬁ“*l) +a)b-! Dij

1

1 J O it a) =2 (&™) +a) + (6 )T o) )
(32)

The centers in any iteration will be updated as (30) for Gaussian kernel and (32) for Poly-
nomial kernel.

1.2.2 Probability Update

After ¢;’s are updated, their images in the kernel space, ¢(¢;), will be used to approximate p;;’s
and (7) becomes




The distances in the denominators of (33) can be written as a function of K, and probability
update becomes
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1.2.3 Kpd_ Inv Algorithm

When we implement the ideas above, ¢;’s are updated first. Contrary to KPd Algorithm,
¢;’s are explicitly known since they are defined in the input space. c;’s will be replaced with
¢(€;)’s, and the distance between the data points and the centers in the kernel space will be
calculated using ¢(c;).

Algorithm 2 provides the pseudocode of KPd_Inv Algorithm.

Algorithm 2: Kpd_Inv Algorithm

Input : data set X, number of clusters T, kernel function K, stopping criterion €
Output: probability matrix P

Initialize P as a random probability matrix.

=

2 Calculate K(x;,%;) for i, € 1,...,N.

3 Setr=0

4 while pg) — pgfl) > e do

5 r=r+1

6 Update éy) as in (30) if kernel function is Gaussian, and update as in (32) if kernel

is chosen as polynomial

7 | Caleulate K (x;,¢\”) forie 1,..,N,je1,..,T
8 Update pg) as in (34)

9 end

1.3 Kernel Pd-clustering in Feature (Input) Space

Kernel Pd-clustering in Feature Space Algorithm (KPd_F Algorithm) defines and updates
the centers in the input space. Therefore, c; represents the centers in the input space and ¢; is
that of kernel space. To calculate the distance between each data point and their corresponding
clusters in kernel space, both data points and the cluster centers are required to be mapped
into kernel space beforehand as shown in Figure 3.

10
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Figure 3: Kernel Pd-clustering in Feature Space in Input and Kernel Space

Then the optimization problem becomes

min ZZ o (xi) — & (c)) |

i=1 j=1

T

j=1

pij > 0. Vi, j

where c¢; represents cluster centers in feature space. Let @, be a T x 1 vector containing the
images of input space centers. That is, ®, = [gb(cl)...gb(cT)]T. Then the Lagrangian becomes
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Taking the derivative with respect to p;; we obtain
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Given p;;’s, if we take the derivative of (35) with respect to ¢(c;), we obtain
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In (37), ¢(c;) depends on ¢(x;)’s, which cannot be derived. Therefore, the derivative of
(35) with respect to ¢; can calculated only when the Kernel function is known, since c;’s are
given as a function of ¢. We consider two Kernel functions which are Gaussian and Polynomial
Kernels.

11



Gaussian Kernel

We observe ||¢(x;) — ¢(c;)|| can be written as

VE %) = 2K (i, ¢5) + K (¢, ¢5) = /2 = 2K (xi,¢;). (38)

for Gaussian Kernel. If we substitute the distance term in (35) with (38), then L becomes
the function of p;;’s and c;’s. To take the gradient of L, we need to know kernel function.
In the case of Gaussian kernel, Lagrangian becomes
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Polynomial Kernel

When the Kernel function is chosen as Polynomial, ||¢(x;) — ¢(c;)]| is calculated as
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Then for given p;;’s, the derivative of (41) with respect to c¢; becomes
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1.3.1 Center Update

Since the denominator terms in center equations for both Gaussian and Polynomial kernels have
c;’s, previous center values should be used when they are updated. Thus, (40) is rearranged as

(r=1))2/,2
N e lIxi—c; /o
> | ey X,
= V2 - 2K (xi. ¢l 7Y)
" = =" % . (43)
! Ny, el
Z(Pz';_ )2
i V22K (xi. e )
If K function is replaced with Gaussian kernel, then (43) becomes
—Ixi—ct" V)12 /62
& (o
: ij ‘
- V2 — 2 lxel e
) = (44)

N —[lxi—e{" V)2 /0

(r=1)\2 €
S5 NPy
2 — 2 I%TC v

In the case of Polynomial kernel, (42) can be rewritten as
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1.3.2 Probability Update

Upon completing the center updates in the input space, p;;’s are updated using cy)’s. Then
(36) becomes

(r) _
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Distance terms in the denominator terrms of the probability update is a function of K, and it
refers to

1
) — e (r) .(r)
- K(xi,x;) — 2K (x;,¢; ") + K(c; ", c;”)
1] i 1
=1 \/K(Xi, Xi) — QK(XZ', Cg-r)> + K(C;T)7 Cgr))

1.3.3 Kpd_ F Algorithm

This algorithm defines and updates the centers in the input space. Since they are introduced in
the input space, they are known explicitly. Afterwards, probabilities are updated accordingly.
Pseudocode of KPd_F Algorithm is given in Algorithm 3.

Algorithm 3: Kpd_F Algorithm

Input : data set X, number of clusters T, kernel function K, stopping criterion €
Output: probability matrix P

Initialize P as a random probability matrix.

fuy

2 Calculate K(x;,%x;) for i, € 1,...,N.

3 Setr=0

4 while pg) - pg_l) > ¢ do

5 r=r+1

6 Update cgr) as in (44) if kernel function is Gaussian, and update as in (45) if kernel

is chosen as Polynomial
7 Calculate K(xi,cgr)) foriel,....N,jel,..,T

8 Update pg) as in (47)
9 end

2 Kernel Mahalanobis Pd-clustering

We consider Euclidean norm in the algorithms explained in Section 1. In this section, we
study the statistical distance (i.e., Mahalanobis distance) in the kernel algorithms, where the
correlation between the data features is considered. First, we introduce Kernel Mahalanobis
distance. Later, Kernel probabilistic distance clustering with Mahalanobis distance will be
introduced.

2.1 Kernel Mahalanobis Distance

Consider we have an n x m data set X, where n shows the number of data points and m is
that of features in the input space. Therefore, each data point x; is an m-dimensional column
vector, ¢ = 1, ...,n. Function ¢ represents the mapping from original space to Hilbert Space .7
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(or kernel space), i.e. ¢ : X — . In this mapping, the dimension of the vectors is changed
to s. Therefore, x; becomes s x 1 vector.

Let ® contains the mapping of each data point x;. Then ® is an s X n matrix shown as
® = [Pp(x1)...0(Xn)],,,- The mean of ¢(x;)’s are calculated as

6= 4 2 0x) = L1, (43)
where 1,, is a column vector of 1’s. If data point ¢(x;) is centered with @, it is denoted by
¢~>(Xz) = ¢(x;) — ¢M- (49)
Using (48), we can write (49) as
o(xi) = d(x;) — %cmn . (50)

Let ® represent the matrix of centered data points x;, i = 1, ...,n. Then

= [6(x1)..00x,)| = @ — $,11. (51)
We can substitute (48) in (51) for ¢,and obtain
i 1 T L7
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n n
Then (52) can be written as
o = PH, (53)

where H is an n X n centering matrix shown as

1
H=1,,——-1,17.
n

H matrix has some properties. The transpose and square of H is equal to itself. That is,

H=H" = H

The covariance operator in the Hilbert Space, shown as C : J# — J¢, operates on ¢(x) €
I as

Co(x) = = Y (¢(x:) — @) (D(x:) — @, B(x2)). (54)

i=1

We know that (¢(x;) — @

) is equal to d(x;), so (54) can be written as
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Using (53), C becomes
1.2 1 rer 1 r 1 T
C=-¢ =-PHH ¢ = -PHHP =-PHD .
n n n n
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Remember that @ is the matrix of centered data points in kernel space. Then using (53),
centered Kernel matrix (i.e., the matrix containing the inner products of all centered kernels of
data points) is

K=& &—H®"®H - HKH ,
where
K=3"®. (56)

h lth

For instance, the entry in " row and column in K gives the inner product of centered

kernels of data points x; and x;.

Let k, be a column vector whose i*" element represents the inner product of x and x; in
the kernel space. That is,

ke = [k(x1, %), o k(%0 X)) = ®T9(x) . (57)
Then the inner product of ¢(x) with other centered kernel data points ¢(x;)’s is
ke =@ 4(x). (58)
When (53) is substituted into (58), we obtain
ke = (®H)" 6(x) = H'®6(x) = H (#76(x)) . (59)
Using ¢(x) in (49), (59) becomes
ke =H (@' (¢(x;) — ,)) =H(2"9(x;) — 2" 9,) . (60)

We know from (57) that ®7¢(x;) in (60) is equal to ky. Moreover, by substituting (48) for b,
into (60) we get

~ o
k,=H (kx - —<I>T<I>1n) : (61)
n
Using (56) for ®'®, (61) becomes

. _
k, = H (kx - —K1n> . (62)
n

The inner product of kernel of x with itself is shown as k(x,X) or kxx. That is,

kxx = ¢(X)T¢(X) : (63)
When k. is for the centered data points, we obtain
Fax = (%) 9(x) (64)
Using (50) for ¢(x) in (64) we get
T
o = (gb(x) - %qml) <¢<x) - %q)h) = 6T 00x) ~ 1187 6(x) + 5 (B1,)7 (1,)
(65)

Substituting (63) for ¢(x)"¢(x), (57) for @7 ¢(x), and (56) for &7 ® gives
Fxexe = by — g1512x + %151{1”. (66)
n n
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2.2 Kernel Mahalanobis Distance for Invertible Covariance

The kernelized Mahalanobis distance is

dic(x) = dic(6(x); {¢,,C}) = (6(x) — 8,)" C™H(é(x) — @,,) - (67)

Therefore, the covariance matrix must be invertible. It restricts the dimension of J# to a finite
dimension, which is s and s < n. ® has a singular value decomposition, which is

® =UxV” (68)

Note that U € R***, V € R™*" and ¥ € R**" where U and V contain the eigenvectors and
the eigenvalues are in the diagonals of 3 matrix. Then the covariance matrix can be written
as

C=-33". (69)
Using (68), the covariance in (69) can be rewritten as
1 1
Cc=-Usv’ (UsV’)' = —uzv’vsTuT,
n n

By using the orthogonality of U and V matrices, we know that U7U =T and V'V = I. Then
we obtain

1
C=-Uuxx"u”
n
and

le_uEsn)'ur, (70)

n

If both sides of (70) are multiplied with @, and (68) is substituted for ® on the right-hand side
of the equation, we obtain

1 ~ _
—Ccé=U(zx") =T, (71)
n
Note that K = & ®. Following the SVD, it is equal to
K = vy'uTuzv? = veinv’,
If ® is invertible, then 7" exists. If ® is not invertible, we can find the pseudoinverse of 3,
denoted by 3'. In this case, we assume that ® is not invertible, therefore X is singular and

pseudoinverse of it should be calculated. 3 is found by taking the reciprocal of the diagomal
elements, i.e., eigenvalues, and then taking the transpose of the matrix. Since X is singular,

>7S is also non-invertible. Therefore, we find the pseudo-inverse of R, shown as INCT, as
K =V (3's) V7.
By multiplying both sides with @ from the left, we get
K = &V (=7%) VT (72)
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When we substitute (68) into @ on the right-hand side of (72), we obtain
3K = Us (27%) V7 (73)
Note that (71) and (73) are equal to each other. Therefore, we obtain

1 3
PK = -C1d. (74)
n

1. .
We know that C = —~®& from (69). Therefore, using (50) C ¢(x) can be written as
n

1. - 1
Cox) = -dd" (¢(x) - —<I>1n> . (75)
n n
By substituting the transpose of (53) into 3" in (75), we get
~ 1 ad T 1 1 ad T 1 T
Co(x) = ~PH®” (p(x) — @1, | = —®H | ®T¢(x) — @7 ®1, ). (76)
n n n n

Note that ®7¢(x) is equal to k, and &’ ® is K. Then (76) will be

~ 12 - 1
Co(x) = ~BH (kx - —K1n> , (77)
n n
and using (62), it leads to
_ 1.~
C dlx) = — ks (78)
We know that C' is invertible. Using (78), we obtain
- 1 -
Olx) = ~C' Pk, (79)
Substitute (74) into (79) and get
d(x) = K k. (80)

Therefore, kernelized Mahalanobis distance for invertible covariance becomes

Bo(x) = Bo(6(x): {¢,. C}) = 6(x)TCd(x) = 6(x)'C' S K k. (81)

Note that when C~'@® is obtained from (74) and substituted into (81), the distance function
becomes

o (x) = o (6(x); {p,, C}) = n$(x) K Kk,

X

— 3(x)TC1h(x) = nk. (f(*)Q Ky . (82)
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2.2.1 Mahalanobis Distance between Two Data Points

Please note that (82) refers to the distance between ¢(X) and the mean of the data set. However,
we can find the distance between two data points which are centralized in kernel space, say
¢(x) and ¢(y). Mahalanobis distance function can be written as

dic(x,y) = dic(6(x). ¢(y): {¢,, C}) = [6(x) — &(y)]" C* [6(x) — 4(y)]. (83)
Following (80) the difference between ¢(x) and ¢(y) is

~ ~-|- ~ ~
¢(x) = o(y) = P K [ky — ky]. (84)
When (84) is substituted into (83), Mahalanobis distance becomes
~ - 1~ ~1— - -
dic(x,y) = [0(x) — o(y)]" CT @K [kx — ky]. (85)
For C™' @ in (85), (74) is substituted and we get
dic(x,y) = n[é(x) = 6(y)]" @ (K

Following (58), ¢(x)T @ and ¢(y)” ® are equal to l;z and l~<>T,, respectively. Therefore, we obtain
the Mahalanobis distance between the centralized data points x and y in the kernel space as

d%C’(Xa y) - d%C(Qb(i)v Qb(y), {d);u C}) =n [f{x - RY]T (R

2k, — k) (86)

2k, — k] (87)

2.3 Kernel Mahalanobis Distance for Regularized Covariance

When the dimension of 7 is higher than n or infinite, the covariance operatior is non-invertible.
Therefore, it is regularized so that it will not be singular. Regularized covariance, denoted by
C, g, becomes

1. .
Crog=C+02,, = —0d 401, (88)
n

where I is an identity matrix with Hilbert space dimension and o is a predefined parameter.
When (88) is multiplied with ® from the right, we obtain

I T .
Crog® = - 03 & + 01,3 (89)
n

Note that & ® is equal to K. Therefore, (89) can be written as

N
Croy® = —& (K +n0’L ), (90)
n
which can be defined as
. 1~ ~
Creg(I) = _(I)Kregy (91)
n

where KTeg = K + no?I,. When no? > 0, then C,, and ng become strictly positive definite
and nonsingular. Multiplying (91) with C,., from the left and K., from the right gives

N 1 N
K _ = -Cld. (92)

reg — ﬁ reg
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When C,., in (88) is multiplied with ¢(x), we obtain

3d" 3(x) + 0*Lyd(x). (93)

S|

Crag () = 88 4 070 ) ) =
From & gb( )= (93) will be

Creg H(x) = Bk + %0(x). (94)

Since C,, is invertible, multiply (94) with C,.} from the left. Then

reg
5x) = - Gk + 07 C () (95)

Afterwards, multiplying each side of (95) with ¢(x)” from the left gives

B)TI0x) = - (x)7 C Bk + 0?3 Cdx). (96)
Substitute (92) into (96), we get
BETG(x) = 30T BK ks + 0*(x)7CLL00%). (97)

Then the second term, QE(X)TC;EIQQE(X), in (97) will be

(x)"6(x) — o(x )T@Kregk

o2

o(x)"C, L d(x) = (98)

which is equal to kernel Mahalanobis distance for regularized covariance, shown by d%.(x).

From ¢(x)Th(x) = kxx and ¢(x)T® = RZ,

Ao (%) = A (3(x); { @, Creg}) = ( — kK K, ) (99)

2.3.1 Mahalanobis Distance between Two Data Points

As in (82), the expression (99) provides the distance between ¢(x) and the mean of the central-
ized data points in the kernel space. Following (99), we can also find the distance between two
centralized data points in the kernel space. Using the equation in (95), the difference between
two data points will be

P(x) — oly) = Creg‘ﬁ[ —ky] + 0*C g [d(x) — d(y)]- (100)

If we multiply both sides with [¢(x) — ¢(y)]”, it becomes

[p(x) — o(¥)]"[o(x) — é(y)] = %[cﬁ(X) — 0()]"Cry®kx — k] + *[0(x) — 9(¥)]" Cry [6(x) — o(y)].-
(101)

When (92) is substituted for Creg(I) in (101), we obtain
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Then the Mahalanobis distance between ¢(x) and ¢(y) is

dc(x,y) = dpc(6(%), 6(3); { . C}) = [6(x) — 6(y)]T C,gd(x) — d(y)]

-4

Again from ¢(x)” ® = k, and o(y)T ® = l%T,, (103) will be

X

[\

1 r1,~ ~ ~ - - ~_1 ~ ~
FBrol(%,¥) = —5 [ Uhroe = 2y + hyy) = (ke = ky) Ko (ke — Ky)| (104)

Note that l%xy is the inner product of kernel of x with that of y.
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