
Kernel Probabilistic Distance Clustering

Ozkan, Dilay1 and Iyigun, Cem1

1Department of Industrial Engineering, Middle East Technical University, Ankara, Turkey

Consider we have an N ×M data set X, where N and M represent number of data points
and features, respectively. We show data point xi as M -dimensional vector, where i = 1, ..., N .
There are T clusters, and cluster centers (prototypes) are shown by cj, where j = 1, ..., T . Then
pij is the probability of data point xi belonging to cluster cj.

1 Kernel Probabilistic Distance Clustering Algorithms

In Kernel Probabilistic Distance Clustering there are two spaces, which are input space (or
feature space) and kernel space. Input space is the original space of the data points. On the
other hand, kernel space represents the space where data points are mapped into via φ function.
The dimension of the input space is the number of features data points have. However, kernel
space’s dimension is determined by the φ function to be used. Since we will not know the φ
function, we will not be able to detect the dimension of the kernel space.

1.1 Kernel Pd-clustering in Kernel Space

Figure 1: Kernel Pd-clustering in Input and Kernel Space

In Kernel Pd-clustering in kernel space (KPd Algorithm) centers are defined in the kernel
space (or mapped space). In fact, center update rules are made in the kernel space. The data
points are in the input space, and they are mapped into the kernel space via φ function as shown
in Figure 1. Since the update rules in the algorithm are valid for all kernel functions, prior
knowledge of the kernel function to be used is not required. In addition, cluster prototypes do
not have an explicit representation in both kernel and input spaces.

1



As a distance metric Euclidean distance is considered. In general, Euclidean distance be-
tween xi and cj, d(xi, cj), is

d(xi, cj) =

√√√√ M∑
m=1

(xim − cjm)2 = ‖xi − cj‖.

If mapping of xi into kernel space is considered, then d(φ (xi) , cj) = ‖φ (xi)− cj‖.

The optimization problem fo clustering in Section ?? becomes

min
N∑
i=1

T∑
j=1

p2ij ‖φ (xi)− cj‖ (1)

s.t.
T∑
j=1

pij = 1 ∀i (2)

pij ≥ 0. ∀i, j (3)

‖φ (xi)− cj‖ is simply denoted by dij. The nonlinear objective function is convex in terms
of pij and dij. This is because when pij’s are given and dij’s become unknown, the objective
becomes convex. Similarly, given dij’s, the objective function in (1) will be a function of dij’s
which is a convex function. Considering the fact that constraints are all linear, i.e. they are
also convex, the problem becomes a convex optimization problem.

When cj’s are given, the Lagrangian becomes

L(P,C,Λ) =
N∑
i=1

T∑
j=1

p2ij ‖φ (xi)− cj‖ −
N∑
i=1

λi

(
T∑
j=1

pij − 1

)
. (4)

When we take the derivative with respect to pij and make it equal to zero, we obtain

2 pij ‖φ (xi)− cj‖ − λi = 0

=⇒ pij =
λi

2 ‖φ (xi)− cj‖
. (5)

When we substitute (5) into (4), we get

T∑
j=1

pij = 1 =⇒
T∑
j=1

λi
2‖φ (xi)− cj‖

= 1

=⇒ λi =
1

T∑
j=1

1

2 ‖φ (xi)− cj‖

. (6)

2



If (6) is substituted into (5), we find out pij as

pij =

1

‖φ (xi)− cj‖
T∑
t=1

1

‖φ (xi)− ct‖

. (7)

Fixing pij and taking the derivative of (4) with respect to cj gives

cj =

N∑
i=1

p2ij φ(xi)

‖φ(xi)− cj‖
N∑
i=1

p2ij
‖φ(xi)− cj‖

. (8)

However, the cluster centers cannot be calculated using (8) since φ(xi)’s are not known
explicitly. Therefore, there is no explicit representation of cluster centers. On the other side,
the centers can be described in terms of the data points that belong to the corresponding
clusters. That is, the centers will be the convex combination of φ(xi)’s. Then (8) can be
rewritten as

cj =
N∑
i=1

βij φ(xi), (9)

where

βij =

p2ij
‖φ(xi)− cj‖

N∑
i=1

p2ij
‖φ(xi)− cj‖

.

When (9) is substituted into cj’s in the objective function, then the problem becomes

min
N∑
i=1

T∑
j=1

p2ij ‖φ (xi)−
N∑
i=1

βij φ(xi)‖ (10)

s.t.
T∑
j=1

pij = 1 ∀i (11)

pij ≥ 0. ∀i, j (12)

The Lagrangian of (10) becomes

L(P,β,Λ) =
N∑
i=1

T∑
j=1

p2ij ‖φ (xi)−
N∑
i=1

βij φ(xi)‖ −
N∑
i=1

λi

(
T∑
j=1

pij − 1

)
. (13)

When we fix βij and take the derivative with respect to pij and make it equal to zero, we

3



obtain

pij =

1

‖φ (xi)−
N∑
k=1

βkj φ(xk)‖

T∑
t=1

1

‖φ (xi)−
N∑
k=1

βkt φ(xk)‖

. (14)

Note that pij’s are in the distance term in (13). We can write the distance term as

‖φ (xi)−
N∑
i=1

βij φ(xi)‖ =

√√√√‖φ (xi)−
N∑
i=1

βij φ(xi)‖2 ,

where

‖φ (xi)−
N∑
i=1

βijφ(xi)‖ =

√√√√φ (xi)φ (xi)− 2
N∑
k=1

βkj φ (xi)φ (xk) +
N∑
k=1

N∑
l=1

βkj βlj φ (xk)φ (xl).

We replace φ (xi)φ (xk)’s with K(xi,xk)’s, and we get

‖φ (xi)−
N∑
i=1

βij φ(xi)‖ =

√√√√K(xi,xi)− 2
N∑
k=1

βkjK(xi,xk) +
N∑
k=1

N∑
l=1

βkj βljK(xk,xl). (15)

So (15) can be calculated using kernel trick if βij values are known, so there is no need to
know φ(xi). Now, we substitute (15) into (13) for the norm term, and take the derivative of
(13), we get

∂L

∂βij
=

N∑
h=1

1

2
p2hj

(
−2K(xh,xi) + 2

N∑
k=1

βkjK(xi,xk)

)
‖φ (xh)−

N∑
l=1

βlj φ(xl)‖
. (16)

When (16) is equal to 0, we obtain

N∑
h=1

p2hj
K(xh,xi)

‖φ (xh)−
N∑
l=1

βlj φ(xl)‖
=

N∑
h=1

N∑
k=1

p2hj
βkjK(xk,xi)

‖φ (xh)−
N∑
l=1

βlj φ(xl)‖

=
N∑
h=1

N∑
k=1,k 6=i

p2hj
βkjK(xk,xi)

‖φ (xh)−
N∑
l=1

βlj φ(xl)‖
+ βij

N∑
h=1

p2hj
K(xi,xi)

‖φ (xh)−
N∑
l=1

βlj φ(xl)‖

=⇒ βij =

N∑
h=1

p2hj

‖φ (xh)−
N∑
l=1

βlj φ(xl)‖

[
K(xh,xi)−

N∑
k=1,k 6=i

βkjK(xk,xi)

]

N∑
h=1

p2hj
K(xi,xi)

‖φ (xh)−
N∑
l=1

βlj φ(xl)‖

(17)

4



βij’s are updated as in (17). Using (14) we update pij’s. In that formula since cj’s are
substituted with βij’s and φ(xi)’s, there is still no need to know cj’s explicitly. The norm terms
in (14) are calculated as in (15) using kernel trick.

We can define βj as the column vector containing all βij’s for a given cluster j, then (13) is
written as

L(P,β,Λ) =
N∑
i=1

T∑
j=1

p2ij ‖Kii − 2βTj Ki + βTj Kβj‖ −
N∑
i=1

λi

(
T∑
j=1

pij − 1

)
, (18)

where K is the kernel matrix, Ki represents the ith column of kernel matrix, and Kii is the ith

row and ith column element in that matrix. Taking the derivative of (18) with respect to βj
gives

∂L

∂βj
=

N∑
i=1

p2ij ‖Khh − 2βTj Kh + βTj Kβj‖ −
N∑
i=1

λi

(
T∑
j=1

pij − 1

)
, (19)

Making (19) equal to 0 yields

βj =

N∑
i=1

p2ij
K−1Ki

‖Kii − 2βTj Ki + βTj Kβj‖
N∑
i=1

p2ij

‖Kii − 2βTj Ki + βTj Kβj‖

.

1.1.1 Kpd Algorithm

Kpd Algorithm can be developed by determining an update rule for βij’s and pij’s. Since the
centers are not known explicitly, they are updated implicitly in the algorithm. βij in (17) can
be calculated using previous values of βij’s. Thus, (17) can be written as

β
(r)
ij =

K(xi,xi)−
N∑

k=1,k 6=i
β
(r−1)
kj K(xi,xk)

K(xi,xi)
, (20)

where r is the current iteration.

Using the updated βij’s and substituting them in (14), pij’s can be updated as

p
(r)
ij =

1

‖φ (xi)−
N∑
k=1

β
(r)
kj φ(xk)‖

T∑
t=1

1

‖φ (xi)−
N∑
k=1

β
(r)
kt φ(xk)‖

. (21)

The pseudocode of Kpd Algorithm is given in Algorithm 1 below.

5



Algorithm 1: KPd Algorithm

Input : data set X, coefficient matrix B, number of clusters T , kernel function K,
stopping criterion ε

Output: probability matrix P
1 Initialize P to a random probability matrix and B to a random coefficient matrix.
2 Calculate K(xi,xl) for i, l ∈ 1, ..., N . Set r = 0

3 while p
(r)
ij − p

(r−1)
ij > ε do

4 r = r + 1

5 Update β
(r)
ij as in (20)

6 Update p
(r)
ij as in (21)

7 end

1.2 Kernel Pd-clustering in Kernel Space with Inverse Mapping

The algorithm in the previous Section 1.1 defines the centers in the kernel space because the
center equation cannot be calculated due to the φ function. However, center updates are
made implicitly since the formula of the centers cannot be found using the center equation.
The centers are required only when the distance between the data points and the centers are
calculated. Therefore, we embedded the center equation in the distance function and using
kernel trick we obtained the corresponding distances. In fact, the center updates are made in
the kernel space because βij’s are the coefficients of the kernel centers. However, the centers
can be defined in kernel space but updated in the input space so that they can be obtained
explicitly.

The algorithm that will be developed in this section defines the centers in the kernel space.
Different than the algorithm in the previous Section 1.1, the new algorithm updates the centers
in the input space. Let cj’s be the centers in the kernel space and c̃j be the image of cj in
input space. To update the centers in the input space, one should find the inverse mapping of
them, which is φ−1(cj). If φ is known then the inverse of cj would be c̃j since φ−1(cj) = c̃j.
However, since φ function is not known, inverse of it cannot be calculated. Therefore, c̃j can
be chosen in such a way that its image, φ(c̃j), will be approximating cj. This algorithm will
be called Kernel Pd-clustering with Inverse Mapping (Kpd Inv Algorithm) and the idea of
the algorithm is represented in Figure 2.

Figure 2: Kernel Pd-clustering with Inverse Mapping in Input and Kernel Space

Here, the optimization problem is the same as in Section 1.1, where the objective function

6



is (1) and constraints are (2) and (3). When cj’s are given, pij’s are found as in (7). Similarly,
cj’s are obtained as in (8) if pij’s are given.

As mentioned above, center updates are made in the input space. Inverse mapping is not
applicable to get the corresponding centers in the input space. Therefore, we will approximate
cj with the image of c̃j on the kernel space, which is φ(c̃j).

To obtain the approximate centers in the input space, the following objective function can
be considered

min
c̃j

V =
T∑
j=1

‖φ (c̃j)− cj‖. (22)

The objective aims to minimize the sum of distances between the kernel space centers and
kernel images of the input space centers in the input space. φ(c̃j) refers to the mapping of c̃j
into the kernel space.

The function V in (22) can be written as

T∑
j=1

‖φ (c̃j)− cj‖ =
T∑
j=1

√
K(c̃j, c̃j)− 2φ(c̃j) cj + cTj cj). (23)

Then cj’s can be expressed as in (8), so we substitute them in (23). Thus, the multiplication
of two φ functions will be obtained, and they can be written as a function of K using the kernel
trick. That is, (23) becomes

=
T∑
j=1

√√√√√√√√√K(c̃j, c̃j)− 2

N∑
i=1

p2ijK(xi, c̃j)

‖φ(xi)− cj‖
N∑
i=1

p2ij
‖φ(xi)− cj‖

+
N∑
l=1

N∑
k=1

p2lj p
2
kjK(xl,xk)

‖φ(xl)− cj‖‖φ(xk)− cj‖(
N∑
i=1

p2ij
‖φ(xi)− cj‖

)(
N∑
i=1

p2ij
‖φ(xi)− cj‖

).
(24)

To find the optimum c̃j, one can take the derivative of (23) with respect to c̃j and make it
equal to 0. However, to take the derivative, prior information about the kernel function must
be known. Below, Gaussian and Polynomial kernel functions are considered to calculate the
centers.

• Gaussian Kernel

When the kernel function is chosen as Gaussian kernel, (24) becomes

=
T∑
j=1

√√√√√√√√√K(c̃j, c̃j)− 2

N∑
i=1

p2ij e
−‖xi−c̃j‖2/σ2

‖φ(xi)− cj‖
N∑
i=1

p2ij
‖φ(xi)− cj‖

+
N∑
l=1

N∑
k=1

p2lj p
2
kj e
−‖xl−xk‖2/σ2

‖φ(xl)− cj‖‖φ(xk)− cj‖(
N∑
i=1

p2ij
‖φ(xi)− cj‖

)2 . (25)

7



Since in Gaussian Kernel the distance between the object and itself is equal to 1, K(c̃j, c̃j) =
1 in Equation (25). Then taking the derivative of (25) with respect to c̃j and equalizing
it to 0 gives

∂V

∂c̃j
=

1

2

−2
N∑
i=1

p2ij
‖φ(xi)− cj‖

N∑
i=1

(
p2ij e

−‖xi−c̃j‖2/σ2

‖φ(xi)− cj‖
2 (xi − c̃j)

σ2

)
1

‖φ(c̃j)− cj‖
= 0.

Then

c̃j =

N∑
i=1

p2ij xi

‖φ(xi)− cj‖
e−‖xi−c̃j‖2/σ2

N∑
i=1

p2ij
‖φ(xi)− cj‖

e−‖xi−c̃j‖2/σ2

(26)

for Gaussian kernel.

• Polynomial Kernel

If the Polynomial kernel is considered, now (24) becomes

=
T∑
j=1

√√√√√√√√√(c̃Tj c̃j + a)b − 2

N∑
i=1

p2ij (c̃Tj xi + a)b

‖φ(xi)− cj‖
N∑
i=1

p2ij
‖φ(xi)− cj‖

+
N∑
l=1

N∑
k=1

p2lj p
2
kj (xTl xk + a)b

‖φ(xl)− cj‖‖φ(xk)− cj‖(
N∑
i=1

p2ij
‖φ(xi)− cj‖

)(
N∑
i=1

p2ij
‖φ(xi)− cj‖

),
(27)

where a and b are the predefined parameters of the Polynomial kernel.

The derivative of (27) with respect to c̃j is

∂V

∂c̃j
=

1

2

2 b c̃j(c̃
T
j c̃j + a)b−1 − 2

N∑
i=1

p2ij b (c̃Tj xi + a)b−1 xi

‖φ(xi)− cj‖
N∑
i=1

p2ij
‖φ(xi)− cj‖

 1

‖φ(c̃j)− cj‖
= 0.

Then

c̃j =

N∑
i=1

(
p2ij (c̃Tj xi + a)b−1

‖φ(xi)− cj‖

)
xi

(c̃Tj c̃j + a)b−1
N∑
i=1

p2ij
‖φ(xi)− cj‖

(28)

for Polynomial kernel.

1.2.1 Center Update

c̃j values can be calculated using (26) and (28) but these equations contain cj’s in the denom-
inator terms. Therefore, cj’s can be approximated with the image of c̃j’s from the previous

8



iteration, so we obtain

c̃
(r)
j =

N∑
i=1

(p
(r−1)
ij )2 xi√

2− 2K
(
xi, c̃

(r−1)
j

) e−‖xi−c̃
(r−1)
j ‖2/σ2

N∑
i=1

(p
(r−1)
ij )2√

2− 2K
(
xi, c̃

(r−1)
j

) e−‖xi−c̃
(r−1)
j ‖2/σ2

(29)

for Gaussian kernel. When function K is replaced with Gaussian, (29) becomes

c̃
(r)
j =

N∑
i=1

(p
(r−1)
ij )2 xi√

2− 2 e−‖xi−c̃
(r−1)
j ‖2/σ2

e−‖xi−c̃
(r−1)
j ‖2/σ2

N∑
i=1

(p
(r−1)
ij )2√

2− 2 e−‖xi−c̃
(r−1)
j ‖2/σ2

e−‖xi−c̃
(r−1)
j ‖2/σ2

. (30)

For Polynomial kernel, cj’s are approximated and (28) is obtained as

c̃
(r)
j =

N∑
i=1

(p
(r−1)
ij )2 ((c̃

(r−1)
j )T xi + a)b−1√

K(xi,xi)− 2K(xi, c̃
(r−1)
j ) +K(c̃

(r−1)
j , c̃

(r−1)
j )

xi

(c̃
(r−1)
j )T c̃

(r−1)
j + a)b−1

N∑
i=1

(p
(r−1)
ij )2√

K(xi,xi)− 2K(xi, c̃
(r−1)
j ) +K(c̃

(r−1)
j , c̃

(r−1)
j )

. (31)

Writing Polynomial kernel function explicitly in (31) would give

c̃
(r)
j =

N∑
i=1

(p
(r−1)
ij )2 b ((c̃

(r−1)
j )T xi + a)b−1√

(xTi xi + a)
b − 2

(
xTi φ(c̃

(r−1)
j ) + a

)b
+
(
φ(c̃

(r−1)
j )T φ(c̃

(r−1)
j ) + a

)b xi

(c̃
(r−1)
j )T c̃

(r−1)
j + a)b−1

N∑
i=1

(p
(r−1)
ij )2√

(xTi xi + a)
b − 2

(
xTi φ(c̃

(r−1)
j ) + a

)b
+
(
φ(c̃

(r−1)
j )T φ(c̃

(r−1)
j ) + a

)b
.

(32)

The centers in any iteration will be updated as (30) for Gaussian kernel and (32) for Poly-
nomial kernel.

1.2.2 Probability Update

After c̃j’s are updated, their images in the kernel space, φ(c̃j), will be used to approximate pij’s
and (7) becomes

p
(r)
ij =

1

‖φ (xi)− φ(c̃
(r)
j )‖

T∑
t=1

1

‖φ (xi)− φ(c̃
(r)
t )‖

. (33)

9



The distances in the denominators of (33) can be written as a function of K, and probability
update becomes

p
(r)
ij =

1√
K(xi,xi)− 2K(xi, c̃

(r)
j ) +K(c̃

(r)
j , c̃

(r)
j )

T∑
t=1

1√
K(xi,xi)− 2K(xi, c̃

(r)
j ) +K(c̃

(r)
j , c̃

(r)
j )

. (34)

1.2.3 Kpd Inv Algorithm

When we implement the ideas above, c̃j’s are updated first. Contrary to KPd Algorithm,
c̃j’s are explicitly known since they are defined in the input space. cj’s will be replaced with
φ(c̃j)’s, and the distance between the data points and the centers in the kernel space will be
calculated using φ(c̃j).

Algorithm 2 provides the pseudocode of KPd Inv Algorithm.

Algorithm 2: Kpd Inv Algorithm

Input : data set X, number of clusters T , kernel function K, stopping criterion ε
Output: probability matrix P

1 Initialize P as a random probability matrix.
2 Calculate K(xi,xl) for i, l ∈ 1, ..., N .
3 Set r = 0

4 while p
(r)
ij − p

(r−1)
ij > ε do

5 r = r + 1

6 Update c̃
(r)
j as in (30) if kernel function is Gaussian, and update as in (32) if kernel

is chosen as polynomial
7 Calculate K(xi, c̃

(r)
j ) for i ∈ 1, ..., N, j ∈ 1, ..., T

8 Update p
(r)
ij as in (34)

9 end

1.3 Kernel Pd-clustering in Feature (Input) Space

Kernel Pd-clustering in Feature Space Algorithm (KPd F Algorithm) defines and updates
the centers in the input space. Therefore, cj represents the centers in the input space and c̃j is
that of kernel space. To calculate the distance between each data point and their corresponding
clusters in kernel space, both data points and the cluster centers are required to be mapped
into kernel space beforehand as shown in Figure 3.

10



Figure 3: Kernel Pd-clustering in Feature Space in Input and Kernel Space

Then the optimization problem becomes

min
N∑
i=1

T∑
j=1

p2ij ‖φ (xi)− φ (cj) ‖

s.t.
T∑
j=1

pij = 1 ∀i

pij ≥ 0 . ∀i, j

where cj represents cluster centers in feature space. Let Φc be a T × 1 vector containing the

images of input space centers. That is, Φc = [φ(c1)...φ(cT )]T . Then the Lagrangian becomes

L(P,Φc,Λ) =
N∑
i=1

T∑
j=1

p2ij ‖φ (xi)− φ (cj) ‖ −
N∑
i=1

λi

(
T∑
j=1

pij − 1

)
. (35)

Taking the derivative with respect to pij we obtain

pij =

1

‖φ (xi)− φ (ct)‖
T∑
t=1

1

‖φ(xi)− φ (ct)‖

. (36)

Given pij’s, if we take the derivative of (35) with respect to φ(cj), we obtain

φ(cj) =

N∑
i=1

p2ij φ(xi)

‖φ(xi)− cj‖
N∑
i=1

p2ij
‖φ(xi)− cj‖

. (37)

In (37), φ(cj) depends on φ(xi)’s, which cannot be derived. Therefore, the derivative of
(35) with respect to cj can calculated only when the Kernel function is known, since cj’s are
given as a function of φ. We consider two Kernel functions which are Gaussian and Polynomial
Kernels.

11



• Gaussian Kernel

We observe ‖φ(xi)− φ(cj)‖ can be written as√
K(xi,xi)− 2K(xi, cj) +K(cj, cj) =

√
2− 2K(xi, cj). (38)

for Gaussian Kernel. If we substitute the distance term in (35) with (38), then L becomes
the function of pij’s and cj’s. To take the gradient of L, we need to know kernel function.
In the case of Gaussian kernel, Lagrangian becomes

L(P,C,Λ) =
N∑
i=1

T∑
j=1

p2ij

√
2− 2K(xi, cj)−

N∑
i=1

λi

(
T∑
j=1

pij − 1

)
. (39)

Then for the given pij’s the derivative of (39) with respect to cj is

∂L

∂cj
=

1

2

N∑
i=1

p2ij
1√

2− 2K(xi, cj)
(−2) e−‖xi−cj‖2/σ2 2(xi − cj)

σ2
= 0

=⇒
N∑
i=1

p2ij
e−‖xi−cj‖2/σ2√
2− 2K(xi, cj)

(xi − cj) = 0.

Therefore, we obtain cj as

cj =

N∑
i=1

(
p2ij

e−‖xi−cj‖2/σ2√
2− 2K(xi, cj)

)
xi

N∑
i=1

p2ij
e−‖xi−cj‖2/σ2√
2− 2K(xi, cj)

. (40)

• Polynomial Kernel

When the Kernel function is chosen as Polynomial, ‖φ(xi)− φ(cj)‖ is calculated as

‖φ(xi)− φ(cj)‖ =
√

(xTi xi + a)b − 2(cTj xi + a)b + (cTj cj + a)b.

Lagrangian becomes

L(P,C,Λ) =
N∑
i=1

T∑
j=1

p2ij

√
(xTi xi + a)b − 2(cTj xi + a)b + (cTj cj + a)b −

N∑
i=1

λi

(
T∑
j=1

pij − 1

)
.

(41)

Then for given pij’s, the derivative of (41) with respect to cj becomes

∂L

∂cj
=

1

2

N∑
i=1

p2ij
1

‖φ(xi)− φ(cj)‖
(
−2 bxi (c

T
j xi + a)b−1 + 2 b cj (cTj cj + a)b−1

)
= 0

=⇒
N∑
i=1

p2ij
‖φ(xi)− φ(cj)‖

(
cj (cTj cj + a)b−1 − xi (c

T
j xi + a)b−1

)
= 0 ,

which gives

cj =

N∑
i=1

p2ij
‖φ(xi)− φ(cj)‖

(cTj xi + a)b−1 xi

(cTj cj + a)b−1
N∑
i=1

p2ij
‖φ(xi)− φ(cj)‖

. (42)

12



1.3.1 Center Update

Since the denominator terms in center equations for both Gaussian and Polynomial kernels have
cj’s, previous center values should be used when they are updated. Thus, (40) is rearranged as

c
(r)
j =

N∑
i=1

(p
(r−1)
ij )2

e−‖xi−c
(r−1)
j ‖2/σ2√

2− 2K(xi, c
(r−1)
j )

xi

N∑
i=1

(p
(r−1)
ij )2

e−‖xi−c
(r−1)
j ‖2/σ2√

2− 2K(xi, c
(r−1)
j )

· (43)

If K function is replaced with Gaussian kernel, then (43) becomes

c
(r)
j =

N∑
i=1

(p
(r−1)
ij )2

e−‖xi−c
(r−1)
j ‖2/σ2√

2− 2 e−‖xi−c
(r−1)
j ‖2/σ2

xi

N∑
i=1

(p
(r−1)
ij )2

e−‖xi−c
(r−1)
j ‖2/σ2√

2− 2 e−‖xi−c
(r−1)
j ‖2/σ2

. (44)

In the case of Polynomial kernel, (42) can be rewritten as

c
(r)
j =

N∑
i=1

(p
(r−1)
ij )2 ((c̃

(r−1)
j )T xi + a)b−1√

K(xi,xi)− 2K(xi, c̃
(r−1)
j ) +K(c̃

(r−1)
j , c̃

(r−1)
j )

xi

(c̃
(r−1)
j )T c̃

(r−1)
j + a)b−1

N∑
i=1

(p
(r−1)
ij )2√

K(xi,xi)− 2K(xi, c̃
(r−1)
j ) +K(c̃

(r−1)
j , c̃

(r−1)
j )

,

which gives

c
(r)
j =

N∑
i=1

(p
(r−1)
ij )2 b ((c̃

(r−1)
j )T xi + a)b−1√

(xTi xi + a)
b − 2

(
xTi φ(c̃

(r−1)
j ) + a

)b
+
(
φ(c̃

(r−1)
j )T φ(c̃

(r−1)
j ) + a

)b xi

(c̃
(r−1)
j )T c̃

(r−1)
j + a)b−1

N∑
i=1

(p
(r−1)
ij )2√

(xTi xi + a)
b − 2

(
xTi φ(c̃

(r−1)
j ) + a

)b
+
(
φ(c̃

(r−1)
j )T φ(c̃

(r−1)
j ) + a

)b
.

(45)

1.3.2 Probability Update

Upon completing the center updates in the input space, pij’s are updated using c
(r)
j ’s. Then

(36) becomes

p
(r)
ij =

1∥∥∥φ (xi)− φ
(
c
(r)
t

)∥∥∥
T∑
t=1

1∥∥∥φ(xi)− φ
(
c
(r)
t

)∥∥∥
. (46)

13



Distance terms in the denominator terrms of the probability update is a function of K, and it
refers to

p
(r)
ij =

1√
K(xi,xi)− 2K(xi, c

(r)
j ) +K(c

(r)
j , c

(r)
j )

T∑
t=1

1√
K(xi,xi)− 2K(xi, c

(r)
j ) +K(c

(r)
j , c

(r)
j )

· (47)

1.3.3 Kpd F Algorithm

This algorithm defines and updates the centers in the input space. Since they are introduced in
the input space, they are known explicitly. Afterwards, probabilities are updated accordingly.
Pseudocode of KPd F Algorithm is given in Algorithm 3.

Algorithm 3: Kpd F Algorithm

Input : data set X, number of clusters T , kernel function K, stopping criterion ε
Output: probability matrix P

1 Initialize P as a random probability matrix.
2 Calculate K(xi,xl) for i, l ∈ 1, ..., N .
3 Set r = 0

4 while p
(r)
ij − p

(r−1)
ij > ε do

5 r = r + 1

6 Update c
(r)
j as in (44) if kernel function is Gaussian, and update as in (45) if kernel

is chosen as Polynomial
7 Calculate K(xi, c

(r)
j ) for i ∈ 1, ..., N, j ∈ 1, ..., T

8 Update p
(r)
ij as in (47)

9 end

2 Kernel Mahalanobis Pd-clustering

We consider Euclidean norm in the algorithms explained in Section 1. In this section, we
study the statistical distance (i.e., Mahalanobis distance) in the kernel algorithms, where the
correlation between the data features is considered. First, we introduce Kernel Mahalanobis
distance. Later, Kernel probabilistic distance clustering with Mahalanobis distance will be
introduced.

2.1 Kernel Mahalanobis Distance

Consider we have an n × m data set X, where n shows the number of data points and m is
that of features in the input space. Therefore, each data point xi is an m-dimensional column
vector, i = 1, ..., n. Function φ represents the mapping from original space to Hilbert Space H

14



(or kernel space), i.e. φ : X → H . In this mapping, the dimension of the vectors is changed
to s. Therefore, xi becomes s× 1 vector.

Let Φ contains the mapping of each data point xi. Then Φ is an s × n matrix shown as
Φ = [φ(x1)...φ(xn)]s×n. The mean of φ(xi)’s are calculated as

φµ =
1

n

n∑
i=1

φ(xi) =
1

n
Φ1n , (48)

where 1n is a column vector of 1’s. If data point φ(xi) is centered with φµ, it is denoted by

φ̃(xi) = φ(xi)− φµ . (49)

Using (48), we can write (49) as

φ̃(xi) = φ(xi)−
1

n
Φ1n . (50)

Let Φ̃ represent the matrix of centered data points xi, i = 1, ..., n. Then

Φ̃ =
[
φ̃(x1)...φ̃(xn)

]
= Φ− φµ1

T
n . (51)

We can substitute (48) in (51) for φµand obtain

Φ̃ = Φ− 1

n
Φ1n1

T
n = Φ

[
In×n −

1

n
1n1

T
n

]
. (52)

Then (52) can be written as

Φ̃ = ΦH , (53)

where H is an n× n centering matrix shown as

H = In×n −
1

n
1n1

T
n .

H matrix has some properties. The transpose and square of H is equal to itself. That is,
H = HT = H2.

The covariance operator in the Hilbert Space, shown as C : H → H , operates on φ(x) ∈
H as

Cφ(x) =
1

n

n∑
i=1

(
φ(xi)− φµ

)
〈φ(xi)− φµ, φ(xi)〉. (54)

We know that
(
φ(xi)− φµ

)
is equal to φ̃(xi), so (54) can be written as

Cφ(x) =
1

n

n∑
i=1

φ̃(xi)φ̃(xi)
Tφ(x) =

1

n
Φ̃Φ̃

T
φ(x) . (55)

Using (53), C becomes

C =
1

n
Φ̃Φ̃

T
=

1

n
ΦHHTΦT =

1

n
ΦHHΦT =

1

n
ΦHΦT .

15



Remember that Φ̃ is the matrix of centered data points in kernel space. Then using (53),
centered Kernel matrix (i.e., the matrix containing the inner products of all centered kernels of
data points) is

K̃ = Φ̃
T
Φ̃ = HΦTΦH = HKH ,

where

K = ΦTΦ . (56)

For instance, the entry in ith row and lth column in K̃ gives the inner product of centered
kernels of data points xi and xl.

Let k̄x be a column vector whose ith element represents the inner product of x and xi in
the kernel space. That is,

k̄x = [k(x1,x), ..., k(xn,x)]T = ΦTφ(x) . (57)

Then the inner product of φ̃(x) with other centered kernel data points φ̃(xi)’s is

k̃x = Φ̃
T
φ̃(x) . (58)

When (53) is substituted into (58), we obtain

k̃x = (ΦH)T φ̃(x) = HTΦT φ̃(x) = H
(
ΦT φ̃(x)

)
. (59)

Using φ(x) in (49), (59) becomes

k̃x = H
(
ΦT
(
φ(xi)− φµ

))
= H

(
ΦTφ(xi)−ΦTφµ

)
. (60)

We know from (57) that ΦTφ(xi) in (60) is equal to k̄x. Moreover, by substituting (48) for φµ

into (60) we get

k̃x = H

(
k̄x −

1

n
ΦTΦ1n

)
. (61)

Using (56) for ΦTΦ, (61) becomes

k̃x = H

(
k̄x −

1

n
K1n

)
. (62)

The inner product of kernel of x with itself is shown as k(x,x) or kxx. That is,

kxx = φ(x)Tφ(x) . (63)

When kxx is for the centered data points, we obtain

k̃xx = φ̃(x)T φ̃(x) . (64)

Using (50) for φ̃(x) in (64) we get

k̃xx =

(
φ(x)− 1

n
Φ1n

)T (
φ(x)− 1

n
Φ1n

)
= φ(x)Tφ(x)− 2

n
1TnΦTφ(x) +

1

n2
(Φ1n)T (Φ1n) .

(65)

Substituting (63) for φ(x)Tφ(x), (57) for ΦTφ(x), and (56) for ΦTΦ gives

k̃xx = kxx −
2

n
1Tn k̄x +

1

n2
1TnK1n . (66)

16



2.2 Kernel Mahalanobis Distance for Invertible Covariance

The kernelized Mahalanobis distance is

d2IC(x) = d2IC(φ(x);
{
φµ,C

}
) = (φ(x)− φµ)T C−1(φ(x)− φµ) . (67)

Therefore, the covariance matrix must be invertible. It restricts the dimension of H to a finite
dimension, which is s and s < n. Φ̃ has a singular value decomposition, which is

Φ̃ = UΣVT . (68)

Note that U ∈ Rs×s, V ∈ Rn×n, and Σ ∈ Rs×n, where U and V contain the eigenvectors and
the eigenvalues are in the diagonals of Σ matrix. Then the covariance matrix can be written
as

C =
1

n
Φ̃Φ̃

T
. (69)

Using (68), the covariance in (69) can be rewritten as

C =
1

n
UΣVT

(
UΣVT

)T
=

1

n
UΣVTVΣTUT .

By using the orthogonality of U and V matrices, we know that UTU = I and VTV = I. Then
we obtain

C =
1

n
UΣΣTUT

and

1

n
C−1 = U

(
ΣΣT

)−1
UT . (70)

If both sides of (70) are multiplied with Φ̃, and (68) is substituted for Φ̃ on the right-hand side
of the equation, we obtain

1

n
C−1Φ̃ = U

(
ΣΣT

)−1
ΣVT . (71)

Note that K̃ = Φ̃
T
Φ̃. Following the SVD, it is equal to

K̃ = VΣTUTUΣVT = VΣTΣVT .

If Φ̃ is invertible, then Σ−1 exists. If Φ̃ is not invertible, we can find the pseudoinverse of Σ,
denoted by Σ†. In this case, we assume that Φ̃ is not invertible, therefore Σ is singular and
pseudoinverse of it should be calculated. Σ† is found by taking the reciprocal of the diagomal
elements, i.e., eigenvalues, and then taking the transpose of the matrix. Since Σ is singular,

ΣTΣ is also non-invertible. Therefore, we find the pseudo-inverse of K̃, shown as K̃
†
, as

K̃
†

= V
(
ΣTΣ

)†
VT .

By multiplying both sides with Φ̃ from the left, we get

Φ̃K̃
†

= Φ̃V
(
ΣTΣ

)†
VT . (72)

17



When we substitute (68) into Φ̃ on the right-hand side of (72), we obtain

Φ̃K̃
†

= UΣ
(
ΣTΣ

)†
VT . (73)

Note that (71) and (73) are equal to each other. Therefore, we obtain

Φ̃K̃
†

=
1

n
C−1Φ̃ . (74)

We know that C =
1

n
Φ̃Φ̃

T
from (69). Therefore, using (50) C φ̃(x) can be written as

C φ̃(x) =
1

n
Φ̃Φ̃

T
(
φ(x)− 1

n
Φ1n

)
. (75)

By substituting the transpose of (53) into Φ̃
T

in (75), we get

C φ̃(x) =
1

n
Φ̃HΦT

(
φ(x)− 1

n
Φ1n

)
=

1

n
Φ̃H

(
ΦTφ(x)− 1

n
ΦTΦ1n

)
. (76)

Note that ΦTφ(x) is equal to k̄x and ΦTΦ is K. Then (76) will be

C φ̃(x) =
1

n
Φ̃H

(
k̄x −

1

n
K1n

)
, (77)

and using (62), it leads to

C φ̃(x) =
1

n
Φ̃k̃x . (78)

We know that C is invertible. Using (78), we obtain

φ̃(x) =
1

n
C−1Φ̃k̃x. (79)

Substitute (74) into (79) and get

φ̃(x) = Φ̃ K̃
†
k̃x . (80)

Therefore, kernelized Mahalanobis distance for invertible covariance becomes

d2IC(x) = d2IC(φ(x);
{
φµ,C

}
) = φ̃(x)TC−1φ̃(x) = φ̃(x)TC−1Φ̃ K̃

†
k̃x. (81)

Note that when C−1Φ̃ is obtained from (74) and substituted into (81), the distance function
becomes

d2IC(x) = d2IC(φ(x);
{
φµ,C

}
) = n φ̃(x)T Φ̃K̃

†
K̃
†
k̃x

= φ̃(x)TC−1φ̃(x) = n k̃
T

x

(
K̃
†)2

k̃x . (82)

18



2.2.1 Mahalanobis Distance between Two Data Points

Please note that (82) refers to the distance between φ(x̃) and the mean of the data set. However,
we can find the distance between two data points which are centralized in kernel space, say
φ̃(x) and φ̃(y). Mahalanobis distance function can be written as

d2IC(x,y) = d2IC(φ(x), φ(y);
{
φµ,C

}
) = [φ̃(x)− φ̃(y)]T C−1 [φ̃(x)− φ̃(y)] . (83)

Following (80) the difference between φ̃(x) and φ̃(y) is

φ̃(x)− φ̃(y) = Φ̃ K̃
†
[k̃x − k̃y] . (84)

When (84) is substituted into (83), Mahalanobis distance becomes

d2IC(x,y) = [φ̃(x)− φ̃(y)]T C−1 Φ̃ K̃
†
[k̃x − k̃y] . (85)

For C−1 Φ̃ in (85), (74) is substituted and we get

d2IC(x,y) = n [φ̃(x)− φ̃(y)]T Φ̃ (K̃
†
)2[k̃x − k̃y] (86)

Following (58), φ̃(x)T Φ̃ and φ̃(y)T Φ̃ are equal to k̃
T

x and k̃
T

y , respectively. Therefore, we obtain
the Mahalanobis distance between the centralized data points x and y in the kernel space as

d2IC(x,y) = d2IC(φ(x̃), φ(ỹ);
{
φµ,C

}
) = n [k̃x − k̃y]T (K̃

†
)2[k̃x − k̃y] (87)

2.3 Kernel Mahalanobis Distance for Regularized Covariance

When the dimension of H is higher than n or infinite, the covariance operatior is non-invertible.
Therefore, it is regularized so that it will not be singular. Regularized covariance, denoted by
Creg, becomes

Creg = C + σ2IH =
1

n
Φ̃Φ̃

T
+ σ2IH , (88)

where IH is an identity matrix with Hilbert space dimension and σ is a predefined parameter.
When (88) is multiplied with Φ̃ from the right, we obtain

CregΦ̃ =
1

n
Φ̃Φ̃

T
Φ̃ + σ2IH Φ̃ . (89)

Note that Φ̃
T
Φ̃ is equal to K̃. Therefore, (89) can be written as

CregΦ̃ =
1

n
Φ̃
(
K̃ + nσ2In

)
, (90)

which can be defined as

CregΦ̃ =
1

n
Φ̃K̃reg , (91)

where K̃reg = K̃ + nσ2In. When nσ2 > 0, then Creg and K̃reg become strictly positive definite

and nonsingular. Multiplying (91) with Creg from the left and K̃reg from the right gives

Φ̃K̃
−1
reg =

1

n
C−1regΦ̃ . (92)

19



When Creg in (88) is multiplied with φ̃(x), we obtain

Creg φ̃(x) =

(
1

n
Φ̃Φ̃

T
+ σ2IH

)
φ̃(x) =

1

n
Φ̃Φ̃

T
φ̃(x) + σ2IH φ̃(x) . (93)

From Φ̃
T
φ̃(x) = ˜̄k, (93) will be

Creg φ̃(x) =
1

n
Φ̃k̃x + σ2φ̃(x) . (94)

Since Creg is invertible, multiply (94) with C−1reg from the left. Then

φ̃(x) =
1

n
C−1regΦ̃k̃x + σ2C−1regφ̃(x) . (95)

Afterwards, multiplying each side of (95) with φ̃(x)T from the left gives

φ̃(x)T φ̃(x) =
1

n
φ̃(x)TC−1regΦ̃k̃x + σ2φ̃(x)TC−1regφ̃(x) . (96)

Substitute (92) into (96), we get

φ̃(x)T φ̃(x) = φ̃(x)T Φ̃K̃
−1
regk̃x + σ2φ̃(x)TC−1regφ̃(x) . (97)

Then the second term, φ̃(x)TC−1regφ̃(x), in (97) will be

φ̃(x)TC−1regφ̃(x) =
φ̃(x)T φ̃(x)− φ̃(x)T Φ̃K̃

−1
regk̃x

σ2
. (98)

which is equal to kernel Mahalanobis distance for regularized covariance, shown by d2RC(x).

From φ̃(x)T φ̃(x) = k̃xx and φ̃(x)T Φ̃ = k̃
T

x ,

d2RC(x) = d2(φ(x);
{
φµ,Creg

}
) =

1

σ2

(
k̃xx − k̃

T

xK−1regk̃x

)
. (99)

2.3.1 Mahalanobis Distance between Two Data Points

As in (82), the expression (99) provides the distance between φ(x) and the mean of the central-
ized data points in the kernel space. Following (99), we can also find the distance between two
centralized data points in the kernel space. Using the equation in (95), the difference between
two data points will be

φ̃(x)− φ̃(y) =
1

n
C−1regΦ̃[k̃x − k̃y] + σ2C−1reg[φ̃(x)− φ̃(y)] . (100)

If we multiply both sides with [φ̃(x)− φ̃(y)]T , it becomes

[φ̃(x)− φ̃(y)]T [φ̃(x)− φ̃(y)] =
1

n
[φ̃(x)− φ̃(y)]TC−1regΦ̃[k̃x − k̃y] + σ2[φ̃(x)− φ̃(y)]TC−1reg[φ̃(x)− φ̃(y)] .

(101)

When (92) is substituted for C−1regΦ̃ in (101), we obtain

[φ̃(x)− φ̃(y)]T [φ̃(x)− φ̃(y)] = [φ̃(x)− φ̃(y)]T Φ̃K̃
−1
reg[k̃x − k̃y] + σ2[φ̃(x)− φ̃(y)]TC−1reg[φ̃(x)− φ̃(y)] .

(102)

20



Then the Mahalanobis distance between φ(x̃) and φ(ỹ) is

d2RC(x,y) = d2RC(φ(x̃), φ(ỹ);
{
φµ,C

}
) = [φ̃(x)− φ̃(y)]TC−1reg[φ̃(x)− φ̃(y)]

=
1

σ2

(
[φ̃(x)− φ̃(y)]T [φ̃(x)− φ̃(y)]− [φ̃(x)− φ̃(y)]T Φ̃K̃

−1
reg[k̃x − k̃y]

)
. (103)

Again from φ̃(x)T Φ̃ = k̃
T

x and φ̃(y)T Φ̃ = k̃
T

y , (103) will be

d2RC(x,y) =
1

σ2

[
(k̃xx − 2k̃xy + k̃yy)− (k̃x − k̃y)T K̃

−1
reg(k̃x − k̃y)

]
. (104)

Note that k̃xy is the inner product of kernel of x with that of y.

21


	Kernel Probabilistic Distance Clustering Algorithms
	Kernel Pd-clustering in Kernel Space
	Kpd Algorithm

	Kernel Pd-clustering in Kernel Space with Inverse Mapping
	Center Update
	Probability Update
	Kpd_Inv Algorithm

	Kernel Pd-clustering in Feature (Input) Space
	Center Update
	Probability Update
	Kpd_F Algorithm


	Kernel Mahalanobis Pd-clustering
	Kernel Mahalanobis Distance
	Kernel Mahalanobis Distance for Invertible Covariance
	Mahalanobis Distance between Two Data Points

	Kernel Mahalanobis Distance for Regularized Covariance
	Mahalanobis Distance between Two Data Points



