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Abstract

We study the design of same-day delivery (SDD) systems under the assumption that service regions
are allowed to vary over the course of the day; equivalently, that customers in different locations may
have access to SDD for different lengths of time over the service day or may have no access at all. This
contrasts with the bulk of the literature, in which a service region is defined in advance and all customers
in the service region can place SDD orders during the same time window. Leveraging continuous ap-
proximation techniques to capture average-case system behavior, we derive optimal service region areas
and corresponding SDD order cutoff times to maximize the expected number of orders served per day.
We quantify the benefit of allowing the service regions to vary, both theoretically and empirically, and
discuss related equity issues in SDD systems. We illustrate and validate our results with a case study set
in the Phoenix, Arizona metropolitan area.

1 Introduction
Driven by increased internet access, the e-commerce retail sector has been expanding steadily in recent

years. Changes in consumer behavior due to the COVID-19 pandemic [8, 18] have accelerated this trend:

total e-retail volume in the U.S. between April 2020 and March 2021 surpassed $817 billion, representing

an increase of over 30% from the prior year [54, 55]. In an effort to capture a larger share of this market, e-

retailers have improved their delivery time guarantees. Same-day delivery (SDD), which was once leveraged

as a service offering differentiator, has now become expected by consumers at large. Amazon, which has

offered SDD to select premium subscribers for over a decade [1], continues to expand its same-day supply

chain network in order to serve customers faster and provide SDD options in more cities [9]. Large American

retailers such as Walmart, Target and Costco have recently partnered with third party managers of their SDD

systems [10]. Some smaller niche retailers, including Sephora (beauty products) and Michael’s (arts and

crafts), have done the same in order to provide SDD to their customers [23, 58].
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SDD allows e-commerce firms to compete more effectively with brick-and-mortar retail by providing the

customer with near-instant demand fulfillment; however, delivering cost-effectively given a same-day dead-

line requires careful planning. The last-mile component of traditional parcel delivery often generates more

than 50% of the total cost of delivery [19], and SDD systems face even greater potential cost inefficiencies

since they may suffer from reduced opportunities for consolidation due to a high degree of dynamism.

An important design problem for modern e-commerce systems is the question of where and when (how

late in the service day) to offer the SDD promise. A service region that is too small or an early order deadline

will result in fewer SDD customers and market share, while a large region or a late SDD order cutoff time

may result in costly operations or failed deliveries and loss of customer goodwill. Considerations of equity

and access are also important. For example, Amazon faced criticism in recent years for perceived racial bias

in SDD service region design [22] which the company later addressed [44, 45]. If designed well, however, e-

commerce systems including those offering same-day delivery have the potential to help customers unable to

travel to traditional brick-and-mortal retail stores, and thus may improve access to food and other important

household goods. With this motivation in mind, our goal in this study is the selection of SDD service

regions and order cutoff deadlines from the perspective of an e-retailer operating a single fulfillment center

(i.e., depot) with a fixed delivery fleet. Such a time-varying approach to service region sizing is fairly novel,

with little formal analysis outside of the related context of restaurant meal delivery [49].

Our objective is to choose a service region and deadline that maximize the expected order volume the

retailer can feasibly serve each day. In particular, we seek an understanding of the potential system gains

that result by allowing the service region to vary over the course of the service day by offering different order

cutoff times to different parts of the overall region. Our results indicate that the system may indeed benefit

by allowing such variation; we observe an approximate increase in total SDD orders served of approximately

2.5 to 4% even when the service area changes only once per day. The intuition behind this result is clear:

customers that are far away from the fulfillment center (e.g. in suburban areas) cannot be served as efficiently

as nearby (e.g. in-town) customers, and thus the system may operate more efficiently if we only accept

faraway SDD orders early in the day but allow nearby customers to continue placing orders until later.

Interestingly, this tiered approach may also allow the SDD system to increase its overall footprint, by

offering SDD farther away from the fulfillment center than a system with a single common order cutoff. Our

results thus contribute to the growing discussion in the literature regarding fairness, equity, and access in

SDD and e-commerce more broadly. Some recent work in SDD [11, 13] assumes all customers in the service
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region should be treated roughly the same according to some metric of customer service, such as expected

waiting time or order acceptance rate. Our models suggest that imposing such requirements implicitly

constrains the system to a reduced service area, thus potentially denying SDD to customers who live outside

the smaller region. There is no single agreed-upon metric for what constitutes a more fair or equitable

outcome [see e.g. 29], and thus different companies, managers and customers may perceive different system

choices as more or less desirable; nevertheless, our results allow decision makers to quantify the impact

of important SDD system variables, such as service region size and order cutoff times, in order to make

informed decisions.

While there has been significant research attention devoted to SDD in the past decade, work has focused

primarily on the operational management of SDD systems (decisions made over the course of a service day)

rather than on system design at longer time scales (every few weeks or months). This research stream seeks

to optimize day-to-day operations of SDD systems, including vehicle routing plans and order acceptance

mechanisms [e.g., 12, 25, 26, 31, 56, 57]. While these studies are crucial to efficiently manage a defined

system, they generally do not focus on designing elements of the system itself. In particular, operationally-

focused SDD literature often assumes a fixed service region from which SDD demand realizes.

More recent work [5, 11, 46] has focused on studying broader design aspects of SDD systems, including

the partitioning of a service region into vehicle zones and related fleet sizing questions. Our work shares

some methodological features with this literature stream, particularly in the use of continuous approximation

techniques to capture the average-case behavior of SDD systems. Nonetheless, as with the operational SDD

literature, the models that have been developed to date all assume a given, fixed service region and ignore

the question of choosing the SDD system’s overall footprint.

1.1 Contributions

We consider our main contributions to be the following:

(1) Using continuous approximations of order arrivals and vehicle routing times, we propose a mathemat-

ical optimization model for maximizing order quantities served in a single-depot SDD system when

the service region is allowed to vary between vehicle dispatches. The decision space for the model

includes choosing the order accumulation time between successive dispatches as well as determining

the size of time-varying service regions from which orders accrue.

(2) We perform an in-depth theoretical analysis of this system design question for a few important SDD
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system variations. Specifically, we study a setting in which multiple vehicles each dispatch once per

day to analyze the marginal benefits of increasing the fleet size. We also study a setting in which

one vehicle dispatches multiple times per day to analyze the marginal benefits of re-using a particular

vehicle. We leverage our theoretical results to design efficient solution procedures.

(3) We study the quantifiable effects of allowing time-varying service regions compared to traditional

designs with a fixed service region. We describe the effects of such dynamics on both the service

provider as well as the customers.

(4) We conduct an extensive computational study using the Phoenix, Arizona metro area road network,

and use these results to motivate a discussion on issues of profitability, equity, and access in SDD

systems.

Section 1 concludes with a review of the relevant literature. A formal definition of our general model is

given in Section 2. In Section 2.2, we analyze a one-vehicle, one-dispatch variant of the model to motivate

more complex settings. In Section 3, we study the setting in which multiple vehicles each dispatch once per

day. In Section 4, we study the setting in which one vehicle dispatches multiple times per day. In Section

5, we perform computational validation and discuss managerial insights. Section 6 contains concluding

remarks. Appendices contain proofs and other omitted material.

1.2 Literature Review

The majority of the SDD literature has focused on operational problems, in which system features are fixed

and a system manager must determine an optimal policy to guide decision-making over a short horizon

(typically a single service day). Such works typically focus on vehicle dispatching and routing as customer

information is dynamically revealed. Proposed solutions are compared to offline heuristics or current best

practices. Specific problems considered in the literature include the same-day delivery problem for online

purchases [14, 57] and the dynamic dispatch waves problem [25, 26, 27]. Other works integrate autonomous

vehicles [50], drones [12, 17, 51], and additional extensions [53, 59]. Operational SDD problems are closely

related to the broad problem classes of stochastic VRPs [34, 35] and dynamic VRPs [37, 38]. In the remain-

der of this work, we specifically use the term ‘SDD’ to refer to settings in which all orders placed on the

same day share the same end-of-day delivery time guarantee. We contrast this with similar contexts in which

each order has its own delivery deadline, such as meal delivery [40, 52] and on-demand delivery [4, 42].
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Operational SDD problems are often modeled as mixed-integer linear programs (MILPs), Markov de-

cision processes (MDPs), or a combination of such models. Because of their underlying stochasticity and

extremely large decision spaces, these problems are generally solved without optimality guarantees; solu-

tion techniques include approximate dynamic programming [e.g., 25, 53], neighborhood search [14], and

tailored heuristics [17]. Such models may be sufficient for day-to-day operational usage. However, it is

difficult to perform high-level SDD system design with detailed operational models since they often require

significant computational effort to approximately solve even moderately-sized instances, without optimality

guarantees, over a single set of design parameters. While simulation is an option for gaining managerial

insights [43, 48], the lack of transparency and interpretability in simulation-based methods motivates a need

for simpler analytical approaches to SDD system design problems.

While we are not aware of any literature directly studying service region sizing and design for SDD

systems, a few papers examining operational problems have considered how service regions influence their

modeling and results. Notably, [13] formulates an operational SDD model where the dispatcher of the

system can choose whether or not to accept SDD orders, but is constrained to accept orders across different

customer zones at the same rate. The authors note that the benefits of enforcing such fairness constraints

come at the cost of lowering the total quantity of served orders. Another work [12] that also allows a

dispatcher to accept or reject orders for SDD observes that as the service day progresses, the operator is less

likely to accept orders from customers living farther away from the depot if the dispatcher is to maximize

the number of orders served. Finally, [49] present empirical evidence that allowing service regions to vary

allows meal delivery systems to substantially reduce lateness for customers.

Seminal works in the area of continuous approximations for vehicle routing show that the expected

length of vehicle tours can be functionally approximated by the number of stops in the tour, the region from

which demand points originate, and the probability distribution governing the points’ locations. The foun-

dational Beardwood-Halton-Hammersley (BHH) Theorem [6] states that the expected length of an optimal

traveling salesperson problem (TSP) tour over n points in a region of area A approaches β
√

An as n grows,

where β is a region-, distribution- and metric-dependent routing constant. Many studies analyze BHH-type

approximations of vehicle tour lengths in various settings [15, 16, 32, 33]. Various works have focused on

empirical estimation of BHH routing constants on stylized regions [3, 24] and real-world road networks

[30]. Comprehensive surveys of the continuous approximation literature, from fundamental works to recent

results and applications, are given by [2, 20].
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Recent papers [5, 11, 46] use continuous approximation methods to design last-mile e-commerce sys-

tems with very short delivery deadlines. In [46], the authors assume that SDD orders arrive from a prede-

fined, fixed service region until some predefined cutoff time. In contrast, this work treats the service region

itself as a decision variable and allows the service region to vary over the course of the day. This additional

flexibility doubles the number of decision variables in the underlying mathematical optimization problems.

The authors in [46] seek to minimize the total routing time to serve all of the accrued SDD orders, whereas

the objective in this paper is to maximize the quantity of SDD orders that can be served daily. Therefore,

although both papers use continuous approximation techniques, the decision space, technical results, and

managerial insights in this paper are significantly different from those in [46].

In a similar setting, again with a predefined fixed service region and cutoff time, [5] minimize the total

number of vehicles needed to serve SDD orders assuming the region is to be partitioned into single-vehicle

zones. Similarly, [11] also use continuous approximations to partition a fixed e-commerce service region

into single-vehicle delivery zones, enforcing the additional requirement that the expected order-to-delivery

time is equitable across all customers. This is in contrast to our SDD setting, in which customers simply

share the same end-of-day delivery deadline.

2 Model Formulation and Preliminary Results
We consider an SDD system with a single fulfillment center (or depot) from which a fleet of uncapacitated,

homogeneous vehicles is dispatched. Customer orders arrive via a two-dimensional (random) point process

beginning at the start of the service day. All orders are to be served (i.e., delivered) and all vehicles must

return to the depot by the end of the service day. Our goal is to design this system by selecting the service

region: the geographical area, potentially varying over time, from which customers are permitted to place

SDD orders. The objective is to maximize the expected number of SDD orders served each day. We solve

this design problem via a continuous approximation model of the system characterized as follows.

Service Day: The beginning of the service day is denoted as time t = 0. The end of the service day, which

represents both the order delivery and vehicle return deadlines, is denoted as time t = T . We assume without

loss of generality that T = 1 and all other parameters are appropriately scaled.

Service Region: At the start of the service day, and after each dispatch, we must determine the service

region from which SDD orders accrue until the next vehicle dispatch. Hence, if vehicles dispatch a total of k
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times, the service region changes at most k−1 times over the course of the day; no service region exists after

the final vehicle dispatch since no orders can be placed after that time. We assume, unless stated otherwise,

that service regions grow concentrically from the depot, either in all directions or in a fixed direction (i.e.,

as a wedge). Specifically, regions are constructed so that the driving time from the depot to any point along

the outer edge of a region is equal. In practice, the shape of a region depends on the road network topology

and the depot’s location. In our computational case studies, we consider travel in a real-world road network.

In this initial discussion, we illustrate our model with the simpler ℓ1 or ℓ2 metrics.

depot

A1

A2

(a) Circular service regions.

depot

A1

A2

(b) Quadrant service regions.

Figure 1: Concentric service
regions.

As a result, we can characterize a service region by its area A; a

region can be equivalently characterized by its maximum driving time

radius. To illustrate, consider the service regions in Figure 1a. We as-

sume the travel time is given by the ℓ2 metric, so regions are circular.

The initial region has area A1, and after the first vehicle dispatch, the

service region shrinks to an area A2 = A1/2; equivalently, the drive time

radius decreases by a factor of
√

2 from the first service region to the

second. Note that the first service region includes the full area within

the outer circle, including the inner circle. Figure 1b illustrates the same

service region structure restricted to the depot’s northeast quadrant.

Customer Orders: SDD order requests accumulate continuously at a

rate of λ orders per unit time per unit area starting at t = 0. At any given

time, SDD orders accumulate only within the current service region. All

accumulated orders must be served (i.e., delivered) by T . We assume the

order rate per time and area remains constant for any region we choose

to serve. In practice, this may only apply to regions within a certain size;

in Section 3.3, we discuss bounding the maximum service area.

Vehicle Dispatches: The fleet is comprised of m homogeneous vehicles.

Vehicles are not explicitly constrained by capacity nor are they restricted

to carry an integer number of orders. However, each vehicle in the fleet is allowed at most D dispatches in

total over the service day, where D is an integer. At each dispatch time, a vehicle leaves the depot with all

of the accumulated orders since the previous dispatch, implying a first in, first out (FIFO) order processing
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approach. Equivalently, dispatches do not batch or differentiate orders based on geography, and therefore

those orders are distributed uniformly across the service region associated with the dispatch.

Routing Time Function: The time it takes for a vehicle to dispatch from the depot, serve n ∈ R≥0 orders

uniformly distributed over a region of area A, and return to the depot is given by a deterministic, contin-

uous routing time function f (A,n) = c0
√

An, where c0 is a known positive constant. For our analysis, we

equivalently define the routing time function as f (A,τ) = cA
√

τ , where τ is the accumulation time since the

previous dispatch and c = c0
√

λ . The structure of the routing function is derived from the BHH theorem

[6] discussed earlier, which has been empirically shown to work well for relatively small and large n [Table

16.7 of 3]; recent work has leveraged this functional form for as few as n = 20 customers [28].

As a basic illustrative example, consider the system in Figure 2 with one vehicle (m = 1) that dispatches

twice (D = 2) over the course of the day. At the beginning of the day, the service region is A1, as depicted in

Figure 1a. Over a duration of τ1, a total of λA1τ1 SDD orders accumulate in this service region. At time τ1,

the vehicle dispatches from the depot to serve these accumulated orders. Simultaneously, the service region

shrinks to A2, as depicted in Figure 1. Over a duration of τ2, a total of λA2τ2 orders accumulate over this

smaller service region. At time τ1 + τ2, the vehicle dispatches from the depot to serve these orders. Note

that this example is feasible: all accumulated orders are served, the vehicle never dispatches before it returns

to the depot from a prior trip, and the vehicle returns to the depot for the final time before T = 1.

τ1 τ2

f (A1,τ1) = cA1
√

τ1 f (A2,τ2) = cA2
√

τ2

0 T = 1

Figure 2: Basic model illustration.

2.1 General Mathematical Formulation

The goal of this decision problem is to choose a set of feasible accumulation times and service regions in

order to maximize the number of SDD orders served. We formally define the d-th time-ordered dispatch as

a tuple (τd ,Ad , id), where τd defines the order accumulation time (since the previous dispatch, or since t = 0

for the first dispatch) for vehicle id serving all of the accumulated orders in a region of area Ad . A set of

dispatches {(τd ,Ad , id)}mD
d=1 defines a policy. A policy is feasible for our model if the following conditions

are satisfied:
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d

∑
δ=1

τδ + f (Ad ,τd)≤ 1 ∀d ∈ [mD], (1a)

d

∑
δ=1

τδ + f (Ad ,τd)≤
d′

∑
δ=1

τδ ∀d ∈ [mD], d′ s.t. id = id′ , d < d′, (1b)

id ∈ [m] ∀d ∈ [mD], (1c)

Ad ,τd ≥ 0 ∀d ∈ [mD]. (1d)

The objective is to maximize the total number of SDD orders served, ∑
mD
d=1 λAdτd , subject to the con-

straints (1a)-(1d). Constraint (1a) ensures that all vehicles will return to the depot by the end of the service

day. Constraint (1b) ensures that each vehicle returns to the depot prior to any of its subsequent dispatches.

Constraint (1c) assigns each dispatch to a vehicle in the fleet. Lastly, (1d) enforces non-negativity for the

service area and accumulation time variables.

This is the most general statement of the problem; we next study specific variants motivated by practical

considerations. Concurrently, we use results derived for these specific variants to analyze features of the

general model. Henceforth, we denote a setting with m vehicles and D dispatches per vehicle as ⟨m,D⟩ for

clarity and notational convenience. We let zm,D denote the optimal objective value of an ⟨m,D⟩ problem

with the constraints and objective described above.

2.2 One Vehicle, One Dispatch

We begin our analysis by studying the simplest case, with one vehicle that is permitted to dispatch once per

day. Such a system may be of interest to a small retailer with limited resources and limited scope for online

optimization during the service day. More importantly, studying such ⟨1,1⟩ systems can provide insights on

how to approach the optimization of more complicated families of problem instances.

In this ⟨1,1⟩ setting, the system designer is responsible for two choices: determining the service area

A1 and the duration of time τ1 during which customers can place orders. Since m = D = 1, Problem (1)

simplifies to the following:

max
A1,τ1≥0

λA1τ1 (2a)

s.t. τ1 + cA1
√

τ1 ≤ 1. (2b)

Intuitively, we face a tradeoff between the two decision variables. If the service area is too large, we can

only accumulate SDD orders for a shorter duration to ensure that the vehicle has sufficient time to service
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all customers. Similarly, if we allow customers to place SDD orders for an excessive duration, we must

concurrently shrink the service region to shorten the vehicle’s tour duration. Our goal is to balance these

factors in such a way that the total number of SDD orders is maximized.

We first observe that it is inefficient for the vehicle to idle at the depot after completing its dispatch. If

the vehicle returns to the depot prior to T , the continuity of f implies that we can increase the service area,

accumulation time, or both; this improves the objective while maintaining feasibility. As a result, constraint

(2b) is tight at optimality. This observation, which will prove useful in analyses of more complicated sys-

tems, allows us to reduce the decision space to only the accumulation time variable. Specifically, given a

fixed accumulation time τ1 ∈ (0,1], the service area that maximizes the number of orders fulfilled in the

⟨1,1⟩ setting is given by A1 =
1−τ1
c
√

τ1
via rearranging the constraint.

We can now reformulate the problem solely over the variable τ1:

max
τ1∈[0,1]

λ

c
(1− τ1)

√
τ1.

This problem can be solved analytically via the first-order condition. The optimal solution is τ∗1 = 1
3 , invari-

ant to the values of c and λ , with optimal objective value z1,1 =
λ

c
2

3
√

3
, and it follows that A∗1 =

2
c
√

3
.

Consider the following example of a ⟨1,1⟩ system. For simplicity, suppose that the travel time between

points is given by the ℓ1 metric to approximate a grid-like road network. Orders accumulate at a rate of

0.5 per hour per square mile within the chosen service region. The service day ranges from 9 AM to 6

PM, and the vehicle travels at 20 mph. Using the empirically estimated BHH constant of 1.0533 (with

units of orders−1/2) from [5], we arrive at parameter values of λ = 4.5 and c = 1.0533
√

4.5
20×9 ≈ 0.0124. Via

the results above, the optimal service area is approximately 93.02 sq. mi.; the vehicle dispatches at noon

with approximately 93.02×3×λ = 139.53 orders and returns to the depot at 6 PM. The service region is a

diamond centered at the depot with a driving radius of approximately 6.82 mi.

In practice, it may be necessary to impose a restriction on the size of the service area. For example, the

modeling of customer order arrivals and the routing time function may rely on a specific customer density

which is bounded geographically, or the SDD retailer may only have regulatory authorization to operate

within a certain area. To account for such a restriction, we can introduce the constraint A1 ≤ B into the

model. Proposition 1 extends the optimization results of the base ⟨1,1⟩ model under this constraint.

Proposition 1. The optimal dispatching policy for the ⟨1,1⟩ model where the service area is bounded by
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A1 ≤ B is to serve an area of A∗1 = min
{

2
c
√

3
,B
}

after accumulating orders for a duration τ∗1 , where τ∗1

uniquely solves τ∗1 + cA∗1
√

τ∗1 = 1.

Proof. See Appendix A.1.

3 Multiple Vehicles, One Dispatch Each
Suppose the SDD system has a finite fleet of m > 1 vehicles, each dispatching once per day. The analysis

of this ⟨m,1⟩ setting is more complex, but it admits more sophisticated managerial insights. Specifically,

studying this setting allows us to answer the following fundamental question: can allowing service regions

to vary over time improve the total order service rate of an SDD system?

We must now determine the service region Ad and accumulation time τd for each dispatch d ∈ [m]

(or, equivalently, for each vehicle). Figure 3 depicts an example dispatching policy (not necessarily optimal)

when m= 2; observe the difference in the service area associated with each vehicle. The formal optimization

problem associated with the ⟨m,1⟩ model is as follows:

max
A,τττ≥0

m

∑
d=1

λAdτd (3a)

s.t.
d

∑
δ=1

τδ + cAd
√

τd ≤ 1 ∀d ∈ [m]. (3b)

Constraints (3b) in particular define a 2m-dimensional non-convex feasible region, implying that the problem

may be difficult to solve by conventional methods.

τ1 τ2

A2

A1

0 T = 1

Figure 3: ⟨m,1⟩ dispatching policy example.

However, as in the single-vehicle case, it is inefficient for a vehicle to leave idle time after its return to

the depot. If a vehicle d ∈ [m] returns to the depot prior to T , the continuity of f implies that we can slightly

increase the service area associated with the vehicle’s dispatch. This increases λAdτd (and thus the overall

objective) while satisfying vehicle d’s feasibility condition. Additionally, increasing Ad does not affect the
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operation or service area of any other vehicle, so overall feasibility is maintained as well. Therefore, the

constraints (3b) are all tight at optimality. By simple inspection, the dispatching policy illustrated in Figure

3 is thus suboptimal. Analogous to the ⟨1,1⟩ setting, we can again reduce the decision space to only the

accumulation time variables. Proposition 2 formalizes this result.

Proposition 2. Given a set of positive accumulation times, {τ1,τ2, . . . ,τm} for the ⟨m,1⟩ model, the service

areas that maximize the total number of orders served are given by Ad =
1−∑

d
δ=1 τδ

c
√

τd
, for all d ∈ [m].

Proof. See Appendix A.2.

Here is another interpretation of the argument above: given a set of accumulation times, each vehicle is

indifferent to the service regions associated with the other m−1 vehicles. Hence, given a set of accumulation

times, each vehicle operates within its own region with a truncated service day. Nevertheless, this does

not imply that vehicles can be dispatched in a greedy fashion throughout the service day. The dispatcher

must still determine the set of optimal accumulation times, which are linked since each accumulation time

influences the departure times of later dispatches.

Applying Proposition 2, we arrive at the following optimization problem:

max
τττ≥0

λ

c

m

∑
d=1

(1−
d

∑
δ=1

τδ )
√

τd (4a)

s.t.
m

∑
d=1

τd ≤ 1. (4b)

Solving this problem to optimality may still be computationally inefficient due to the non-linear, non-convex

objective. We therefore seek an efficient solution method.

3.1 Model Analysis and Structural Properties

Consider the perspective of the system manager immediately after the first vehicle dispatches, i.e., at t =

τ1. Once this occurs, the first vehicle has no further bearing on the service areas or accumulation times

associated with the remaining m−1 vehicles. Intuitively, the subsequent decisions are “memoryless” with

respect to the first vehicle, equivalent to starting with m−1 vehicles but with a reduced service day.

Algorithmically, we can use this property to derive a recursive solution procedure for the ⟨m,1⟩ family of

instances. Consider the specific case of m = 2. At the time of the first vehicle’s dispatch, we know exactly

how to optimize the second vehicle’s dispatch over the service day’s remaining duration, 1− τ1. This is
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true no matter the actual value of τ1: by our analysis in Section 2.2, the second vehicle should dispatch

after accumulating orders for one third of the remaining day in order to optimize its total orders served.

Given that τ2 = (1− τ1)/3 in an optimal solution, we can efficiently optimize solely over τ1 to optimize

the overall problem. In general, given knowledge of the structure of an (m− 1)-vehicle optimal solution,

we can efficiently solve for τ1 in the m-vehicle problem. Theorem 3 formalizes this idea into a solution

approach. For clarity in exposition, we introduce the notation τm,d and Amd to denote the accumulation time

and service area, respectively, of the d-th dispatch in the ⟨m,1⟩ model. Similarly, τ∗m,d and A∗m,d denote the

optimal values of these variables.

Theorem 3. Given the optimal dispatch policy {(τ∗m,d ,A
∗
m,d)}m

d=1 for the ⟨m,1⟩ model with an objective

value of zm,1 =
λ

c ∑
m
d=1 (1−∑

d
δ=1 τ∗m,δ )

√
τ∗m,d , we can formulate the ⟨m+1,1⟩ optimization problem as

max
0≤τm+1,1≤1

λ

c
(1− τm+1,1)

√
τm+1,1 +(1− τm+1,1)

1.5zm,1. (5)

Furthermore, we can perform the following updates to the ⟨m,1⟩ optimal policy to obtain the ⟨m+ 1,1⟩

optimal policy:

τ
∗
m+1,d ← (1− τ

∗
m+1,1)τ

∗
m,d−1 ∀d ∈ {2, . . . ,m+1},

A∗m+1,d ← A∗m,d−1

√
1− τ∗m+1,1 ∀d ∈ {2, . . . ,m+1},

A∗m+1,1←
1− τ∗m+1,1

c
√

τ∗m+1,1

.

Proof. See Appendix A.3.

Beginning with the solution for m = 1, which we computed in Section 2.2, we can iteratively compute the

optimal dispatching solution and objective for any m using the method above. We next seek to guarantee

that the optimization problem in (5) is efficiently solvable.

Another property of optimal dispatching solutions proves useful to this end. Intuitively, we expect that

the optimal total quantity of orders served increases as the number of vehicles m increases. Concurrently,

the optimal first accumulation time shrinks towards zero as the number of vehicles increases. Theorem 4

formalizes this result.

Theorem 4. As the number of vehicles m in the ⟨m,1⟩ model increases, the optimal accumulation time of
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the first vehicle τ∗m,1 strictly decreases, and the total number of SDD orders zm,1 served strictly increases.

Furthermore, as m→ ∞, τ∗m,1→ 0 and zm,1→ ∞; specifically, zm,1 = Θ(
√

m).

Proof. See Appendix A.4.

It follows that the optimal solution to problem (5) lies within the interval
[
0,τ∗m,1

]
. Hence, we can instead

solve the following problem within our solution procedure:

max
0≤τm+1,1≤τ∗m,1

λ

c
(1− τm+1,1)

√
τm+1,1 +(1− τm+1,1)

1.5zm,1. (6)

Additionally, the objective function in Problem 6 is concave over [0,τm,1] (see Lemma 19, Appendix A.8).

As a result, optimizing Problem 6 is guaranteed to be efficient, as is our overall solution method. Observe

that we began with a formulation over 2m decision variables in Problem 3, reduced the decision space in

half via Proposition 2, and finally arrived at a recursive, one-variable concave maximization problem.

Recall our example from Section 2.2 with ℓ1 travel distances and times, λ = 9, and c ≈ 0.0124. Using

the approach described above, implemented in MATLAB 2019b using fminbnd to solve (6) to optimality,

we calculated the optimal solutions for these parameters up to m = 4. The results are displayed in Table 1,

and the solutions for m = 1,2,3 are illustrated to scale in Figure 4. Note that the relative scale of areas and

quantities across different values of m is invariant to λ and c. Additionally, the accumulation and dispatch

departure times are invariant to λ and c; e.g., the second dispatch’s optimal departure time in the ⟨3,1⟩

model is always 11:34 AM when the service day is 9 AM to 6 PM regardless of the values of λ and c.

These computed values suggest clear trends concerning the structure of optimal ⟨m,1⟩ dispatching poli-

cies, which may provide important insights to system managers. First, we observe diminishing marginal

returns in the total order quantity as more vehicles are added to the system. This potential trend suggests

that, at some point, operating an additional vehicle may provide no practical benefit in the ⟨m,1⟩ setting.

Indeed, it can be shown that this is always the case; Proposition 5 formalizes this property.

Proposition 5. There is a strictly decreasing marginal gain in additional orders served in the ⟨m,1⟩ model

when adding an additional vehicle. That is, (zm+2,1− zm+1,1)< (zm+1,1− zm,1) for all m≥ 1.

Proof. See Appendix A.5.

We also observe that, over the course of the day, dispatch accumulation times seem to increase while

service areas seem to decrease. The proof of Proposition 6 shows that these observations indeed hold for any
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Dispatch #
Accum.
Time (hrs.)

Area
(sq. mi.)

Radius (mi.) Depart. Time Orders

m = 1 1 3.00 93.02 6.82 12:00 PM 139.53
Total 139.53

m = 2 1 1.66 153.16 8.75 10:39 AM 126.92
2 2.45 84.02 6.48 1:06 PM 102.82
Total 229.74

m = 3 1 1.12 200.12 10.00 10:07 AM 111.91
2 1.45 143.33 8.47 11:34 AM 104.01
3 2.14 78.63 6.27 1:42 PM 84.27
Total 300.19

m = 4 1 0.84 239.71 10.95 9:50 AM 100.24
2 1.01 190.60 9.76 10:51 AM 96.68
3 1.31 136.51 8.26 12:10 PM 89.85
4 1.94 74.89 6.12 2:06 PM 78.80
Total 359.57

Table 1: Example computed optimal dispatching policies for the ⟨m,1⟩ model, up to m = 4.

9 AM 12 PM 3 PM 6 PM

9 AM 12 PM 3 PM 6 PM

9 AM 12 PM 3 PM 6 PM

Figure 4: Service regions and dispatching policies to scale for m = 1,2,3 vehicles, ⟨m,1⟩ setting.

⟨m,1⟩ system. The fact that optimal dispatch areas are strictly decreasing is an important design implication

since, from a customer’s perspective, it implies that SDD offerings will not “fluctuate” during the course of

a service day.

Proposition 6. In the optimal dispatch policy for the ⟨m,1⟩ model, accumulation times are strictly increas-
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ing while service areas are strictly decreasing; that is, τ∗m,1 < τ∗m,2 < · · ·< τ∗m,m and A∗m,1 >A∗m,2 > · · ·>A∗m,m.

Proof. See Appendix A.6.

Furthermore, the result verifies the intuition that the system can operate more efficiently by limiting

faraway customers to an earlier cutoff, and simultaneously offering nearby customers SDD until later in the

day. As the fleet size increases, the system’s overall footprint (the largest area served) increases, but some

customers are worse off. For instance, by increasing the fleet from one to two vehicles, we can significantly

increase the area where we offer SDD and the total number of orders served; however, some customers will

experience a reduced SDD order cutoff. In the example, customers outside of a 6.48-mile radius but within

a 6.82-mile radius would only be able to place SDD orders until 10:39 AM instead of noon.

We note here that our ⟨m,1⟩ algorithms and results remain applicable to a similar setting in which the

routing function is of the form f (A,τ) = b+ cA
√

τ; the b term may be included to account for dispatch

setup times or linehaul travel between a distant depot and the region. Because every vehicle’s working time

is essentially reduced by b, we can simply subtract b from the service day’s duration T and proceed as usual.

3.2 Bounding the Multiple-Dispatch Case

The ⟨m,1⟩ model is appealing from an operational perspective, as it is simple to implement; each vehicle is

only dispatched once, with a planned return at the end of the day. A manager may therefore wonder how

much the system gains by adding dispatches, which may complicate the depot’s operations.

Consider the general ⟨m,D⟩model (1) with arbitrary m and D, and recall that zm,1 =Θ(
√

m) by Theorem

4. A simple corollary of this result characterizes the objective’s growth for arbitrary m and D.

Corollary 7. zm,D = O(
√

mD), and, for any fixed D, zm,D = Θ(
√

m).

Proof. See Appendix A.7.

Corollary 7 generalizes the growth rate of the ⟨m,1⟩ model to the case of an arbitrary number of dis-

patches. In particular, it implies zm,D/zm,1 = O(
√

D), which means that the system’s potential gains from

allowing D dispatches per vehicle instead of one are limited. However, Corollary 7 does not rule out the

unlimited growth of zm,D as D→ ∞ for a fixed fleet size m. In Section 4, we strengthen this upper bound by

leveraging results from the ⟨1,D⟩ case.
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3.3 Impact of Constrained Service Regions

The preceding ⟨m,1⟩ results assume the SDD service area is unbounded and can be chosen as large as

necessary. In particular, as the fleet size m grows, the largest service area A∗m,1 tends to infinity. Nonetheless,

in practical situations it is natural to expect that the service area must be limited, either explicitly, such as by

regulations that determine the maximum area where a company can offer SDD, or implicitly because SDD

demand decreases or disappears once we are too far from the depot. Motivated by these considerations, we

now consider the ⟨m,1⟩ model where service areas are bounded by a maximum area B > 0.

As before, the resulting optimization problem is non-linear and non-convex; therefore, we are interested

in an efficient solution method. A natural idea is to compare A∗1 in the unconstrained solution to B. By

Proposition 6, as long as the first service region has an area smaller than than B, the unconstrained solution

is feasible, and therefore optimal for the constrained problem. If A∗1 > B, we fix A1 = B and choose τ1 so the

first vehicle returns at T . We then re-optimize with respect to the remaining m−1 vehicles and the remaining

service day, repeating the process as required. Theorem 8 states that this intuitive procedure, formalized in

Algorithm 1, indeed produces an optimal dispatching policy.

Theorem 8. For the ⟨m,1⟩ model with an upper bound B > 0 on the service areas, Algorithm 1 returns an

optimal policy. Additionally, the optimal areas satisfy A∗m,1 ≥ A∗m,2 ≥ ·· · ≥ A∗m,m.

Proof. See Appendix A.8.

3.4 Value of Varying Service Regions

We now return our focus to the original question regarding the benefit of allowing service regions to vary

over time. To this end, we study the same ⟨m,1⟩ model with the additional requirement that the service

area must stay constant over the course of the day until the final vehicle’s dispatch. Formally, we add the

constraint A = A1 = A2 = · · ·= Am. The optimization problem for the fixed-area ⟨m,1⟩model is as follows:

max
A,τττ≥0

m

∑
d=1

λAτd (7a)

s.t.
d

∑
δ=1

τδ + cA
√

τd ≤ 1 ∀d ∈ [D]. (7b)

In the variable-area ⟨m,1⟩ optimization model (3), we simplified the optimization problem by noting

that, for a given set of accumulation times, the service areas should be as large as possible in order to serve
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Algorithm 1 Iterative solution procedure for the constrained ⟨m,1⟩ model

1: given vehicles m, area upper bound B, parameters c,λ
2: initialize remaining service day time Tvar← 1, remaining vehicles w← m
3: while w > 0 do
4: calculate the optimal policy {(τ∗w,d ,A∗w,d)}w

d=1 to the unconstrained ⟨w,1⟩ model as given by (3)
5: Let τ∗w,d ← τ∗w,dTvar ∀d ∈ [w]
6: Let A∗w,d ← A∗w,d

√
Tvar ∀d ∈ [w]

7: if A∗w,1 ≤ B then
8: A∗m,m−w+d ← A∗w,d ∀d ∈ [w]
9: τ∗m,m−w+d ← τ∗w,d ∀d ∈ [w]

10: w← 0
11: else
12: A∗m,m−w+1← B

13: τ∗m,m−w+1← Tvar +
cB
2

(
cB−

√
(cB)2 +4Tvar

)
14: w← w−1
15: Tvar← Tvar− τ∗m,m−w+1
16: end if
17: end while
18: return optimal dispatching policy {(τ∗m,d ,A

∗
m,d)}m

d=1

a maximal number of orders. In the fixed-area setting, this is generally not possible since all areas must be

equal. However, we can show that it is still a dominant dispatching policy to have all of the vehicles return

to the depot exactly at the end of the service day. This implies that, for any given fixed service area, all of

the constraints (7b) are tight at optimality. Proposition 9 formalizes this result.

Proposition 9. Consider a variant of the ⟨m,1⟩ model where each service region serves a fixed area of

size A > 0. The set of accumulation times that maximize the total number of orders served are such that

∑
d
δ=1 τδ + cA

√
τd = 1 for all dispatches d ∈ [D].

Proof. See Appendix A.9.

Unfortunately, while the resulting problem is more tractable than (7), we don’t have a method analogous

to that described in Theorem 3 to optimize for the order-maximizing area. Therefore, we rely on general-

purpose numerical optimization software to solve for the optimal dispatching policy. To facilitate global

optimality certification, such software may require bounds on all decision variables. Proposition 10 provides

an efficiently computable upper bound on A to the optimization routine.

Proposition 10. Let {(τ∗d ,A∗d)}m
d=1 denote the optimal solution to the variable-area ⟨m,1⟩ problem. The

optimal area A∗= associated with the fixed-area ⟨m,1⟩ problem satisfies A∗= ≤ 1−τ−

c
√

τ−
, where τ− ∈

[
0, 1

3

]
18



uniquely solves
1
c
√

τ(1− τ) =
1
m

A∗m
m

∑
d=1

τ
∗
d . (8)

Proof. See Appendix A.10.

We solve this optimization problem via BARON 21.1.13 [41, 47] within a numerical tolerance not exceeding

10−7. For comparison with the time-varying ⟨m,1⟩ model, Table 2 presents the computed solutions to the

fixed-area ⟨m,1⟩ model with parameters identical to the problem studied in Table 1. Figure 5 compares the

variable-area and fixed-area solutions to scale for m = 2.

Dispatch #
Accum.
Time (hrs.)

Area
(sq. mi.)

Radius (mi.) Depart. Time Orders

m = 1 1 3 93.02 6.82 12:00 PM 139.53
Total 139.53

m = 2 1 2.21 122.71 7.83 11:12 AM 135.51
2 1.39 122.71 7.83 12:36 PM 85.57
Total 221.08

m = 3 1 1.76 146.66 8.56 10:45 AM 128.92
2 1.22 146.66 8.56 11:58 AM 89.24
3 0.89 146.66 8.56 12:51 PM 64.94
Total 283.10

m = 4 1 1.46 167.28 9.15 10:27 AM 122.23
2 1.08 167.28 9.15 11:32 AM 89.96
3 0.82 167.28 9.15 12:21 PM 68.65
4 0.64 167.28 9.15 1:00 PM 53.94
Total 334.79

Table 2: Example computed optimal dispatching policies for the fixed-area ⟨m,1⟩ model, up to m = 4.

As before, the relative scale of areas and quantities across different values of m is invariant to λ and

c. Additionally, the accumulation and dispatch departure times are invariant to λ and c. Therefore, the

relative objective value gaps between the fixed-area and variable-area models are invariant to λ and c. We

can use Tables 1 and 2 to compare the objective values between the two models. When m = 2, 3.9% more

SDD orders can be served by allowing the service regions to vary. This gap is 6.0% and 7.4% for m = 3

and m = 4, respectively. Empirical evidence for up to m = 10 suggests that both the relative and absolute

gap in the optimal order fill rate between the fixed-area and variable-area models increase with m, albeit at a

decreasing rate. Therefore, we can conclude that allowing service areas to vary over time leads to significant

gains in the SDD order quantity served in the ⟨m,1⟩ setting for realistic values of m.
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9 AM 12 PM 3 PM 6 PM

9 AM 12 PM 3 PM 6 PM

Figure 5: Variable-area solution vs. fixed-area solution to scale, ⟨2,1⟩ setting

These results also highlight the equity trade-offs involved in SDD service region design. In the example

results described in Tables 1 and 2, when m = 2, varying service regions between dispatches yields a system

footprint (largest service region) equivalent to an 8.75-mile driving radius. By restricting the system to

a single, unchanging service region, we reduce the footprint to a 7.83-mile radius, a decrease of over 30

square miles. In other words, by requiring all customers in the chosen service region to be treated equally,

we implicitly deny SDD to other customers that could be served in a more flexible system.

4 One Vehicle, Multiple Dispatches
The results in the previous section illustrate the effects of a changing fleet size on the SDD system using

the ⟨m,1⟩ model, which assumes each vehicle makes a single dispatch per day. In this section we study the

potential benefit of allowing a vehicle to make additional dispatches over varying service areas, using the

⟨1,D⟩ model. One potential use of the ⟨1,D⟩ model, which we illustrate in Section 5 on a real-world road

network, is for partitioning schemes, where each vehicle is responsible for a wedge-shaped region emanating

from the depot. Our analysis of the ⟨1,D⟩ model is also useful to compare the ⟨m,1⟩ and ⟨m,D⟩ models.

Formally, we wish to find an optimal dispatch policy {(τ∗d ,A∗d)}D
d=1 for the following problem:

max
A,τττ≥0

D

∑
d=1

λAdτd (9a)

s.t.
D

∑
δ=1

τδ + cAD
√

τD ≤ 1, (9b)

cAd
√

τd ≤ τd+1 ∀d ∈ [D−1]. (9c)

20



Constraint (9b) requires the vehicle to return to the depot by the end of the service day after its final dispatch,

while constraints (9c) require the vehicle to return to the depot prior to departing on its next dispatch. Note

that constraints (1b) reduce to (9c) when m = 1. Figure 2 is an example of a feasible policy for D = 2.

4.1 Model Analysis and Structural Properties

Analogously to the previous models, it is inefficient to leave the vehicle idle between dispatches. If a vehicle

waits at the depot after completing its d-th dispatch, the total number of orders served can be increased by

slightly increasing Ad . Proposition 11 formalizes this observation.

Proposition 11. Given a set of positive accumulation times {τ1,τ2, . . . ,τD} for the ⟨1,D⟩ model, the set of

service areas which maximize the total number of served orders are given by Ad = τd+1
c
√

τd
for all d < D, and

AD =
1−∑

D
δ=1 τδ

c
√

τD
.

Proof. See Appendix A.11.

This result implies that the dispatching policy in Figure 2 is suboptimal. Having no idle vehicle time

during the course of the day after the first dispatch is a property found in other SDD planning models [e.g.

5, 26, 46] with deterministic order arrivals. More generally, this result also suggests that minimizing vehicle

idle time between dispatches may be beneficial at the operational level.

Knowing that we can choose service areas to maximize orders served given a set of accumulation times,

we focus on choosing the best set of accumulation times for the system. This reduces (9) to

max
τττ≥0

λ

c

(
D−1

∑
d=1

τd+1
√

τd +

(
1−

D

∑
d=1

τd

)
√

τD

)
(10a)

s.t.
D

∑
d=1

τd ≤ 1. (10b)

We solve this simplified d-dimensional problem (with a non-concave objective) over a convex set via

BARON within a tolerance not exceeding 10−7. We compute optimal solutions for up to D = 4 for the

same setting considered in Tables 1 and 2. Summary results are presented in Table 3, and optimal policies

for up to D = 3 are illustrated in Figure 6. As in the previous settings, the relative scale of areas and quan-

tities across different values of D is invariant to λ and c, and the accumulation and dispatch departure times

are invariant to λ and c.
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Dispatch #
Accum.
Time (hrs.)

Area
(sq. mi.)

Radius (mi.) Depart. Time Orders

D = 1 1 3 93.02 6.82 12:00 PM 139.53
Total 139.53

D = 2 1 1 107.41 7.33 10:00 AM 53.71
2 4 53.71 5.18 2:00 PM 107.41
Total 161.12

D = 3 1 0.15 109.06 7.38 9:09 AM 8.20
2 1.58 88.23 6.64 10:43 AM 69.49
3 4.12 41.66 4.56 2:50 PM 85.90
Total 163.60

D = 4 1 0.0016 109.09 7.39 9:00 AM 0.09
2 0.16 106.94 7.31 9:09 AM 8.69
3 1.61 87.44 6.61 10:46 AM 70.20
4 4.13 41.04 4.53 2:53 PM 84.66
Total 163.64

Table 3: Optimal dispatching policies for the ⟨1,D⟩ model for up to D = 4 dispatches.

9 AM 12 PM 3 PM 6 PM

9 AM 12 PM 3 PM 6 PM

9 AM 12 PM 3 PM 6 PM

Figure 6: Service regions and dispatching policies to scale for D = 1,2,3 dispatches, ⟨1,D⟩ setting.

We observe an increase in total orders served of 15.5% when using two dispatches instead of one.

However, the marginal improvement when adding dispatches shrinks rapidly: only 1.5% more orders are

served when using three dispatches instead of two, and only 0.002% more orders are served when using four

dispatches instead of three. A similar trend is evident when observing the first dispatch times and quantities
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as the number of total dispatches increases. When D = 3, the first dispatch accumulates only a handful

of orders for less than the first ten minutes of the day before dispatching. When D = 4, the first dispatch

is entirely insignificant: the vehicle dispatches less than a minute into the day to serve less than one-tenth

of an order. As a practical design implication, this suggests a vehicle should not be dispatched more than

twice in a service day in SDD settings similar to the one we describe, as the marginal gains from additional

dispatches are negligible.

As in the multiple-vehicle case, these results also highlight equity trade-offs in terms of SDD access.

Compared to a single dispatch, by allowing two dispatches that serve different regions, we increase the

system’s overall footprint from 93 to 107 square miles. However, customers outside a 5.18-mile driving

radius but within a 6.82-mile radius see their SDD order cutoff reduced from noon to 10 AM.

Recall the behavior of the variable-area ⟨m,1⟩model as m increases: despite decreasing marginal returns,

the total number of orders served grows with
√

m, and the first (largest) service area grows to infinity.

Naturally, we ask whether the same is true in the ⟨1,D⟩ systems; Lemma 12 and Theorem 13 state that

this is not the case. Specifically, we show that the maximum number of orders that can be served with any

number of dispatches D is no more than twice the number of orders served by the optimal ⟨1,1⟩ solution.

Our empirical calculations suggest that this factor is in fact tighter, approximately 1.18 times the optimal

⟨1,1⟩ order quantity.

Lemma 12. In the optimal dispatch policy for a ⟨1,D⟩ model, optimal service areas are bounded with

respect to a function of the D-th optimal accumulation time. Specifically, A∗d ≤
2
c

√
τ∗D for all d < D.

Proof. See Appendix A.12.

Theorem 13. For any D, z1,D ≤ 2z1,1 = 4λ/c3
√

3.

Proof. See Appendix A.13.

4.2 Improved Bounds for the Multiple-Dispatch Case

Theorem 13 allows us to more precisely analyze the ⟨m,D⟩ model and compare it to ⟨m,1⟩, where we only

allow one dispatch per vehicle.

In Section 3 we showed that, zm,D = O(
√

D) when m is fixed. A direct application of Theorem 13

provides a stronger result: for a fixed m, the total quantity of orders served is bounded above, regardless of

the number of dispatches per vehicle D.
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Theorem 14. For a fixed m and for any D, zm,D ≤ 2mz1,1 and zm,D ≤ 16zm,1
√

m/27≈ 3.1zm,1
√

m.

Proof. See Appendix A.14.

As a consequence of this result, zm,D/zm,1 is bounded above by a constant for any fixed m. In other

words, there is limited benefit to considering additional dispatches per vehicle regardless of the fleet size.

4.3 Value of Varying Service Regions

We return to our primary question of quantifying the benefit associated with allowing areas to vary between

dispatches in the ⟨1,D⟩ setting. As in the ⟨m,1⟩ setting, we now consider the fixed-area variant of the ⟨1,D⟩

model with the added constraint A = A1 = A2 = · · ·= Am. The resulting optimization problem is as follows:

max
A,τττ≥0

D

∑
d=1

λAτd (11a)

s.t.
D

∑
δ=1

τδ + cA
√

τD ≤ 1, (11b)

cA
√

τd ≤ τd+1 ∀d ∈ [D−1]. (11c)

As in previous models, at optimality a vehicle does not idle after a dispatch. This property allows us

to reduce the search space for the optimization problem. Proposition 15 formalizes this property for the

fixed-area ⟨1,D⟩ model, expressed in terms of the total accumulation time and is a known result [5].

Proposition 15 ([5], Theorems 2 and 3). Consider the fixed-area ⟨1,D⟩ model. Given a fixed total accu-

mulation time ∑
D
δ=1 τD ∈ (0,1), the area A and set of accumulation times τ1, . . . ,τD that maximize the total

number of orders served satisfy

cA
√

τd = τd+1, ∀d < D,
D

∑
δ=1

τδ + cA
√

τD = 1.

In other words, after the first dispatch, the vehicle never idles at the depot, and it returns to the depot exactly

at the end of the service day after the last dispatch.

Therefore, constraints (11b) and (11c) hold at equality at an optimal solution. Additionally, values from

the optimal solutions to the variable-area ⟨1,D⟩ problem can be used to derive an upper bound virtually

identical to Proposition 10 on the optimal area in the fixed-area problem (see Appendix A.10 for further
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Dispatch #
Accum.
Time (hrs.)

Area
(sq. mi.)

Radius (mi.) Depart. Time Orders

D = 1 1 3 93.02 6.82 12:00 PM 139.53
Total 139.53

D = 2 1 1.06 77.35 6.22 10:03 AM 41.14
2 2.97 77.35 6.22 1:02 PM 114.91
Total 156.05

D = 3 1 0.20 72.57 6.02 9:11 AM 7.13
2 1.20 72.57 6.02 10:23 AM 43.47
3 2.96 72.57 6.02 1:21 PM 107.32
Total 157.92

D = 4 1 0.0057 72.15 6.01 9:00 AM 0.21
2 0.20 72.15 6.01 9:12 AM 7.34
3 1.21 72.15 6.01 10:25 AM 43.72
4 2.95 72.15 6.01 1:22 PM 106.71
Total 157.97

Table 4: Optimal dispatching policies for the fixed-area ⟨1,D⟩ model for up to D = 4 dispatches.

details). We again calculate optimal solutions via BARON with tolerance not exceeding 10−7 for the same

parameter settings. Table 4 summarizes results for up to D = 4 dispatches, and Figure 7 compares the

variable-area and fixed-area solutions for D = 2.

9 AM 12 PM 3 PM 6 PM

9 AM 12 PM 3 PM 6 PM

Figure 7: Variable-area solution vs. fixed-area solution to scale, ⟨1,2⟩ setting.

We observe some structural similarities between optimal policies for the variable-area and fixed-area

settings, but one notable difference: as the number of dispatches increases, the area served by the fixed-area

model actually decreases. In a fixed-area setting, when dispatches increase the system perceives gains from

shrinking its footprint while offering SDD until later to its reduced customer base.

The fixed-area solutions also exhibit minimal marginal gains in the total orders served beyond D = 2
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dispatches. Additionally, the first dispatch rapidly shrinks to insignificance. Most importantly, we observe

that allowing service areas to vary in a ⟨1,2⟩ model leads to an additional 3.2% orders served over the

course of the service day. As in the ⟨m,1⟩ case, this highlights equity trade-offs in SDD access that we

discuss further in the following section, in the context of a real-world case study.

5 Computational Examples
In this section, we describe results of a case study designed using realistic data from a metropolitan area,

including with dispatch time functions calibrated with drive times from its road network. For selected

examples, we also validate our models against a more detailed operational setting in which we simulate a

service day with order arrivals given by a Poisson point process, and dispatch durations calculated on the

road network. We use these computational examples to motivate further discussion regarding the roles of

equity and access considerations in the design of SDD systems.

The study is set in the Phoenix, Arizona metropolitan area, with the depot located in the major suburb

of Glendale, Arizona. Each service day begins at 9 AM and ends at 6 PM. We assume a homogeneous order

rate of 0.2 orders per hour per square mile. For additional realism, we assume each delivery incurs a service

time of one minute, which may include time taken to load the package onto the vehicle at the depot or time

taken for the vehicle driver to drop off packages at residences. Recall that our model assumes a dispatch

time function of the form c0
√

An, while including a per-order service time would seemingly require the

routing time function to include a linear component. We instead adhere to the original functional form, and

demonstrate that the model provides reliable solutions even when a small per-order service time is present.

For each instance in the study, we choose a distinct “best-fit” value of the BHH routing constant c0 via a

method detailed in Appendix B. A distinct value of c0 is required for each instance because the value of the

constant exhibits dependence on various parameters (particularly area and orders served) when calibrated for

real-world road networks with multiple road types. At a high level, the method for choosing a value of c0 for

a particular model proceeds as follows. First, the model is solved with an initial guess of the BHH constant.

Then, using the values of A and n associated with each dispatch, a BHH constant is calculated for each

dispatch. The largest of these constants (or, alternately, some type of weighted average of these constants)

is set as the new overall BHH constant, which is used to re-solve the model. This process is repeated until

the BHH constant converges. Our routing constant estimation process is necessitated by the fact that areas

change between dispatches; we refer to [7, 30] for recent examples of routing constant estimation for static
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real-world regions.

For the order arrival process, customer locations are generated uniformly at random along the road net-

work using VeRoViz [36]. Specifically, initial customer locations are generated uniformly at random within

30 meters of an existing road, and each customer is then automatically assigned to its closest location on the

road network. Isochrones and actual driving times between customer locations are queried via Openroute-

service [21]. We calculate optimal vehicle tours with a standard arc-based asymmetric TSP formulation

implemented in Gurobi 9.1.1 via Python 3.7.3. We created all maps in Leaflet via VeRoViz.

5.1 Two Vehicles, One Dispatch Each

Figure 8: Service regions for variable-area
⟨2,1⟩ solution.

We first study the multi-vehicle model; specifically, we con-

sider the ⟨2,1⟩ case with two vehicles, each dispatching once

per day. If the system planner allows service areas to vary

between each dispatch, the first and second vehicles serve ar-

eas of 186 square miles and 102 square miles, respectively.

To construct the corresponding service region for each ve-

hicle, we seek an isochrone (i.e., a zone for which all of

its locations can be reached from the depot within a certain

driving time) with the given area. In this case, the region

reachable from the depot in 22 min. 21 sec. of driving time

has an area of 186 square miles; this isochrone corresponds

to the first vehicle’s service region. Similarly, the second ve-

hicle’s service region has a drive time radius of 17 min. 5 sec. around the depot. Figure 8 illustrates the

service regions for each vehicle. The policy implied by the continuous approximation model is as follows:

the first vehicle dispatches at 10:39 AM, serves 61.60 orders, and returns at the 6 PM deadline; the second

vehicle dispatches at 1:06 PM, serves 49.91 orders, and returns at the 6 PM deadline.

As a point of comparison, we also examine a system design in which the service regions are fixed

between dispatches. Under this design assumption, the continuous approximation model implies a service

area of 151 square miles (corresponding to a driving time radius of 20 min. 26 sec.) for each dispatch. The

first vehicle dispatches at 11:12 AM, serves 66.66 orders, and returns at the 6 PM deadline. The second

vehicle dispatches at 12:36 PM, serves 42.09 orders, and returns at the 6 PM deadline.
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In order to validate these recommendations, we also assess the performance of the system in an opera-

tional setting. We consider a simulated version of a service day in which SDD orders arrive according to a

Poisson point process with the same rate (0.2 per hour per square mile), with locations chosen randomly as

described above. Vehicle dispatches to customer locations include a per-order service time of one minute

and driving time given by the solution of a TSP that uses actual driving times between locations.

We implement the following operational version of the multi-vehicle dispatching policy. For each dis-

patch, orders accumulate from the beginning of the service day. As orders arrive into the system, the dis-

patcher re-calculates an optimal TSP tour (including the one minute per-delivery service time) that serves all

accumulated demand. The SDD dispatcher allows orders to accrue until the calculated dispatch time equals

the remaining time in the service day, at which point the first dispatch occurs. If an order arrives that would

cause the vehicle to finish after the deadline, the dispatch occurs immediately but that order is not included,

ensuring the vehicle returns before the end of the service day. However, if this order originates within the

second vehicle’s region, it is added to the second vehicle’s load. The dispatch procedure for the second

vehicle is analogous to the first. We simulate 120 service days for each system design and serve orders

according to the aforementioned operational policy. We report average quantities and dispatch durations for

the operational simulations in Table 5, along with 95% confidence intervals (in parentheses). The predicted

amounts are remarkably close to their simulated counterparts. In particular, predicted total orders served

nearly coincide with the simulated operational quantities in both the variable- and fixed-area models.

Variable Areas Fixed Areas
Predicted Simulated Predicted Simulated

Dispatch 1 Quantity 61.60 64.51 (± 0.59) 66.66 65.19 (± 0.63)
Dispatch 1 Duration (min.) 440.59 426.06 (± 1.88) 407.48 400.78 (± 2.18)

Dispatch 2 Quantity 49.91 46.94 (± 0.55) 42.09 43.50 (± 0.61)
Dispatch 2 Duration (min.) 293.71 285.51 (± 2.40) 323.80 309.44 (± 2.47)

Total Quantity Served 111.50 111.45 (± 0.86) 108.75 108.70 (± 0.98)
Total Dispatch Duration (min.) 734.29 711.57 (± 3.50) 731.27 710.22 (± 4.17)

Table 5: Predicted and simulated (operational) results for ⟨2,1⟩ solutions.

We now examine the perspective of an e-retailer choosing between these two system designs. We con-

sider three criteria: profitability, access, and equity. Generally, the most important of these is profitability,

since margins on last-mile delivery tend to be small. The variable cost of a design may be proportional to

the average total dispatch duration (i.e., total routing and service time); however, the empirical difference in

28



this quantity is negligible between the two designs (711.57 min. versus 710.22 min. for the variable-area and

fixed-area model, respectively). Thus, the differentiating factor is the revenue earned by serving customers:

in the operational simulations, the variable-area design serves 2.53% more customers than the fixed-area

model on average. Whether this represents sufficient reason to select the variable-area model likely depends

on factors whose monetary value is not directly measurable, which we discuss next.

Figure 9: Customers whose SDD order
window is reduced in the variable-area model.

Consider the number of customers who have access

to the SDD system at any level of service. Assuming

customers are distributed uniformly, the variable-area de-

sign provides SDD access to approximately 23% more cus-

tomers than the fixed-area design (calculated by comparing

the area served by the first dispatch in the variable-area de-

sign and the service region of the fixed-area design). From

the e-retailer’s viewpoint, greater customer access to SDD

via the variable-area model can aid in establishing a larger

customer base for future expansions. The benefits to cus-

tomers located further from the depot are evident, espe-

cially since an e-retailer with a small fleet may be offering

a niche product unavailable via other means. However, expanding the number of customers who have ac-

cess to the SDD system makes some other customers worse off. In this case, we predict that the customers

located in the region depicted in Figure 9, which has an area of 49 square miles, can place orders until 12:36

PM in the fixed-area design but can only place orders until 10:39 AM in the variable-area design.

This phenomenon motivates an analysis of equity issues. In an ideal scenario (with respect to equity),

every potential customer in a metropolitan area would receive access and a high level of service. While a

large established e-retailer may have the resources to provide such offerings, as Amazon did in response to

criticism in 2016 [44, 45], the small e-retailer in this example likely cannot do so while remaining profitable.

One measure of equity in this setting is the variation in service level between customers in the system. By

this criteria, the fixed-area model is perfectly equitable: every single potential customer in the service region

faces the same SDD order cutoff time. On the other hand, in the variable-area model, approximately 45%

of the potential customers in the system (i.e., within the boundaries of the first vehicle’s service region) face

a cutoff time nearly 2.5 hours earlier than the other 55%. This bias against distant customers may motivate
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the SDD e-retailer to prefer the less-profitable fixed-area model, especially if customers located farther from

the depot are disproportionately from a particular socioeconomic group. It should be noted, however, that

there are many characterizations of equity within logistics systems [e.g., 29]. A Rawlsian [39] approach

to equity — often referred to as the maximin criterion — seeks to maximize the utility of the least well-

off. By this measure, the variable-area design is more equitable because it provides some level of access to

customers outside the fixed-area system. Ultimately, the choice of system design depends on which of these

considerations have more weight for the system manager.

5.2 Three Vehicles, One Dispatch Each

We conclude our discussion of ⟨m,1⟩ systems with an illustration of how constraining the service area

impacts system design, using results from Section 3.3. Suppose the same e-retailer has a fleet of three

vehicles, each dispatching once daily. The unconstrained variable-area ⟨3,1⟩ model implies concentric

service regions with areas of approximately 246, 176, and 97 square miles for the first, second, and third

dispatches, respectively (Figure 10a). The three dispatches in this solution occur at 10:07 AM, 11:34 AM,

and 1:42 PM and serve a total of 147.65 orders.

However, preliminary simulations suggest that the quality of the routing time approximation deteriorates

as the service area approaches 200 square miles. This is likely due to service regions of that size reaching

the unpopulated North Mountain and Shaw Butte nature preserves northeast of the depot. Therefore, we

choose to constrain the service area to 190 square miles. Under this constraint, Algorithm 1 implies that the

service area of the first dispatch is 190 square miles, the service area of the second dispatch is approximately

172 square miles, and the service area of the third dispatch is approximately 94 square miles. Figure 10b

illustrates the service regions; the three dispatches occur at 10:39 AM, 12:01 PM, and 2 PM to serve a total

of 146.90 orders. We highlight two observations. First, our model predicts a very small reduction in the

total quantity served when constraining the service area (approximately 0.5%). Second, constraining the

areas extends the order placement windows slightly, albeit for a smaller group of customers. Results of

operational simulations and a comparison to the fixed-area ⟨3,1⟩ design are included in Appendix C.

5.3 One Vehicle, Two Dispatches

We now study the single-vehicle model. The depot is located at the same address; however, we assume that

the overall system has been partitioned into four geographical quadrants, each served by a single vehicle

dispatching twice daily. We focus specifically on the ⟨1,2⟩ subsystem in the southeastern quadrant.
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(a) Unconstrained areas (b) Constrained areas, B = 190 sq. mi.

Figure 10: Service areas for ⟨3,1⟩ model.

As before, we first consider the setting in which the system planner allows service areas to vary between

each dispatch. The first and second dispatches serve areas of approximately 123 square miles and 61 square

miles, respectively. These areas correspond to driving time radii of 31 min. 57 sec. and 24 min. 37 sec.,

respectively. The service regions for each dispatch are illustrated in Figure 11a. Based on the optimal

solution’s policy, the vehicle first dispatches at 10 AM, serves 24.57 orders, and returns to the depot at 2

PM. The vehicle departs immediately on its second dispatch at 2 PM, serves 49.14 orders, and returns to the

depot at the 6 PM deadline.

For comparison, we again examine an alternative subsystem design in which the service regions are

fixed between dispatches. Under this design assumption, the approximation model implies a service area of

approximately 89 square miles (corresponding to a driving time radius of 28 min. 24 sec.) for each dispatch,

illustrated in Figure 11b. The vehicle first dispatches at 10:04 AM, serves 18.54 orders, and returns to the

depot at 1:02 PM. The vehicle dispatches immediately on its second dispatch at 1:02 PM, serves 52.80

orders, and returns to the depot at the 6 PM deadline. Note that, as expected, the total quantity served is

greater in the variable-area design (73.71) than in the fixed-area design (71.73), and thus the discussions on

profitability, access, and equity in Section 5.1 remain relevant in the ⟨1,2⟩ case considered here. Appendix
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C includes results of comparative operational simulations.

(a) Variable service areas. (b) Fixed service area.

Figure 11: Service areas for ⟨1,2⟩ model.

6 Conclusions
We studied the design of SDD systems, and particularly investigated whether these systems can benefit by

allowing their service regions to vary over the course of the service day. We perform structural analyses for

two important settings. First, we examine the case of multiple vehicles each dispatching once daily, which

allows us to assess the marginal benefit of adding vehicles to a delivery fleet. Second, we consider one

vehicle dispatching multiple times daily, and show that allowing a second dispatch indeed increases order

volume, but additional dispatches offer negligible benefit. For each of these settings, we derive theoretical

properties that allow us to efficiently optimize the model and calculate vehicle dispatching policies. In

order to quantify the value of allowing service areas to vary, we also calculate solutions to the problem

of maximizing orders served with fixed service areas for each setting. Our case study set in the Phoenix

metropolitan area verifies our model’s applicability to real-world settings and its predictions’ fidelity when

compared to a detailed operational model. Our findings suggest that variable-area system designs earn more

revenue and provide some level of SDD access to more customers, but fixed-area models entail a greater

degree of equity for customers within the system.

Our analysis provides multiple avenues for future work. An immediate extension is to study similar

optimization problems for settings in which customer delivery locations vary significantly with respect to
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geography. A similar extension may consider settings in which the order arrival rate varies over the course

of the service day. Another related direction is to consider an optimization model in which the routing

constant itself is a function of the shape, area, and/or density profile of the service region. Finally, a natural

question is to ask whether the insights in this paper apply to similar contexts in which delivery deadlines are

order-specific, such as meal delivery or on-demand delivery.
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Appendix A Omitted Proofs
A.1 Proof of Proposition 1
First consider the case where B ≥ 2

c
√

3
. In this case, the optimal dispatch policy for the unconstrained-area

problem of τ∗1 = 1
3 , A∗1 =

2
c
√

3
is feasible and therefore optimal for the constrained-area problem. Further-

more, it is also the dispatch policy prescribed by Proposition 1, which proves this case.

Now consider the case where B < 2
c
√

3
. Let us define time τB as the time which solves τB + cB

√
τB = 1

over τB ∈ (0,1]. As τB+cB
√

τB is strictly increasing with respect to τB over this domain, it must be a unique

solution to the equation. Furthermore, as B < 2
c
√

3
, τB ∈ (1

3 ,1]. For any given τ1 ∈ [0,τB] the optimal service

area choice is to set A1 = B, and for any given τ1 ∈ [τB,1] the optimal service area choice is to set A1 =
1−τ1
c
√

τ1
.

It follows that the maximal number of orders served is equal to λBτ1 when τ1 ∈ [0,τB], which is maximized

when τ1 = τB. Additionally, the maximal number of orders served is equal to λ

c (1−τ1)
√

τ1 when τ1 ∈ [τB,1],

which is also maximized when τ1 = τB. Thus in the case that B < 2
c
√

3
, we have that τ∗1 = τB and A∗1 = B. As

this is the dispatch policy prescribed by Proposition 1, this case is proven as well.

A.2 Proof of Proposition 2
Given a set of fixed, positive, accumulation times, {τ1,τ2, . . . ,τm}, consider the d-th vehicle to dispatch.

Inequality (3b) constrains the service area by: Ad ≤
1−∑

d
δ=1 τδ

c
√

τd
. As the objective value (3a) increases linearly

with each Ad , we have that Ad =
1−∑

d
δ=1 τδ

c
√

τd
maximizes the number of orders fulfilled for the d-th vehicle. As

this is true for all vehicles d, we are done.

A.3 Proof of Theorem 3
Consider the optimization problem for the ⟨m+1,1⟩ model:

max
τττ

λ

c

(
m+1

∑
d=1

(
1−

d

∑
δ=1

τδ

)√
τd

)
(A1a)

s.t.
m+1

∑
d=1

τd ≤ 1, (A1b)

τd ≥ 0 ∀d ∈ [D]. (A1c)

We can re-formulate the problem as follows:

max
τττ

λ

c

(
(1− τ1)

√
τ1 +

m+1

∑
d=2

(
(1− τ1)−

d

∑
δ=2

τδ

)√
τd

)
(A2a)

s.t.
m+1

∑
d=2

τd ≤ (1− τ1), (A2b)

τd ≥ 0 ∀d ∈ [D]. (A2c)

Note that, given a value of τ1 ∈ [0,1), choosing the optimal values for τ2, . . . ,τm+1 equates to solving the

⟨m,1⟩ problem over a reduced service day. With this in mind, define τ ′d such that τ ′d = τd
(1−τ1)

for all d ≥ 2

in order to equate the remaining accumulation times as proportions of the remaining service day. Thus, we
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can again re-formulate the problem as:

max
τττ

λ

c

(
(1− τ1)

√
τ1 +(1− τ1)

1.5
m+1

∑
d=2

(
1−

d

∑
δ=2

τ
′
δ

)√
τ ′d

)
(A3a)

s.t.
m+1

∑
d=2

τ
′
d ≤ 1, (A3b)

τ1 ≤ 1, (A3c)

τd ≥ 0 ∀d ∈ [D]. (A3d)

There are no constraints in this optimization problem linking the τ
′
d decision variables to the τ1 decision

variable. Thus we can independently optimize for the τ
′
d decision variables; this equates to solving the

⟨m,1⟩ model to optimality. By the presumptions of the Theorem, we have that τ ′∗d = τ∗m,d−1 for all d ≥ 2.

Additionally, by Proposition 2, we have that A′∗d = A∗m,d−1 for all d ≥ 2. What remains in the ⟨m+ 1,1⟩
model is to optimize:

max
0≤τ1≤1

λ

c
(1− τ1)

√
τ1 +(1− τ1)

1.5zm,1,

which proves the first claim given in Theorem 3. Once this function is optimized for τ∗1 , we can use Proposi-

tion 2 to determine that A∗1 =
1
c (1−τ∗1 )(τ

∗
1 )
−0.5. Furthermore, we can translate the optimal (τ ′d ,A

′
d) decision

variables back to the (τd ,Ad) decision space by performing the updates:

τ
∗
d ← (1− τ

∗
1 )τ
′∗
d = (1− τ

∗
1 )τ
∗
m,d−1 ∀d ≥ 2

and

A∗d ←
1−∑

d
δ=1 τ∗

δ√
τ∗d

= (1− τ
∗
1 )

0.5 1−∑
d
δ=2 τ ′∗

δ√
τ ′∗d

= (1− τ
∗
1 )

0.5A′∗d = (1− τ
∗
1 )

0.5A∗m,d−1 ∀d ≥ 2,

which completes the proof.

A.4 Proof of Theorem 4
Fix a number of vehicles m. Consider the objective function of the one variable optimization problem for

m+1 vehicles as given in Theorem 3:

λ

c
(1− τm+1,1)

√
τm+1,1 +(1− τm+1,1)

1.5zm,1.

When solving for the optimal value of τm+1,1 ∈ [0,1], first order conditions imply that τ∗m+1,1 is the unique

value of τm+1,1 ∈ (0, 1
3 ] which satisfies the equation

1
3
= τm+1,1 +

c
λ

zm,1

√
(τm+1,1)(1− τm+1,1).

By the uniqueness of τ∗m+1,1 and the fact that τ∗m+1,1 ̸= 0, we are able to claim that zm+1,1 > zm,1. From this,

it directly follows that τ∗m+2,1 < τ∗m+1,1 as τ∗m+2,1 is the unique value of τm+2,1 ∈ (0, 1
3 ] which satisfies the
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equation
1
3
= τm+2,1 +

c
λ

zm+1,1

√
(τm+2,1)(1− τm+2,1).

Thus, the first part of Theorem 4 is proven.

Now consider an m vehicle, one dispatch each policy where each vehicle (feasibly) accumulates orders

for 1
m+1 units of time, that is, τd = 1

m+1 for all d. By Proposition 2, we would like these vehicles to each

serve a maximal area of Ad =
1−∑

d
δ=1 τδ

c
√

τd
. It follows that the total number of orders served by this policy is

equal to
λ

c

m

∑
d=1

(
1−

d

∑
δ=1

τδ

)√
τd =

λ

c

m

∑
d=1

(
1− d

m+1

)√ 1
m+1

=
λm

2c
√

m+1
>

λ

4c
√

m,

which tends to infinity as m→ ∞. As the optimal m vehicle policy serves at least as many orders as this

policy, it follows that zm,1→ ∞; specifically, zm,1 = Ω(
√

m).

We next show that zm,1 = O(
√

m) by constructing an upper bound. We relax the problem by removing

the vehicle return deadline, instead limiting the duration of each dispatch to not exceed 1. The relaxed

problem is as follows:

max
A,τττ≥0

λ

m

∑
d=1

Adτd (A4a)

s.t. cAd
√

τd ≤ 1 ∀d ∈ [m], (A4b)
m

∑
d=1

τd ≤ 1. (A4c)

Without loss of optimality, we may assume the constraints (A4b) hold at equality. This implies that, for all

d ∈ [m], Ad = 1
c
√

τd
. As such, we may rewrite the problem without the Ad variables:

max
τττ≥0

λ

c

m

∑
d=1

√
τd (A5a)

s.t.
m

∑
d=1

τd ≤ 1. (A5b)

The optimal solution to this problem is τ1 = τ2 = · · · = τm = 1
m . The corresponding objective value is

λ

c m
√

1
m = λ

c
√

m. Thus, for all m, zm,1 ≤ λ

c
√

m, implying zm,1 = O(m). We conclude that zm,1 = Θ(m).

What remains to be seen is that as m→ ∞, τ∗m,1 → 0. By the construction of τ∗m+1,1 via the first order

conditions described above, we have that

zm+1,1 =
λ

c
(1− τ

∗
m+1,1)

√
τ∗m+1,1 +(1− τ

∗
m+1,1)

1.5zm,1

=
λ

c

1− τ∗m+1,1√
τ∗m+1,1

(
τ
∗
m+1,1 +

c
λ

zm,1

√
(τ∗m+1,1)(1− τ∗m+1,1)

)
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=
λ

c

1− τ∗m+1,1

3
√

τ∗m+1,1

.

As we know that zm,1→ ∞ as m→ ∞, we can equivalently state that as m→ ∞,
1−τ∗m,1

3
√

τ∗m,1
→ ∞. This implies

that τ∗m,1→ 0, which completes the proof.

A.5 Proof of Theorem 5
Fix a number of vehicles m. Consider the objective function of the one variable optimization problem given

in Theorem 3. It can be shown via first order conditions that τ∗m+1,1 is the unique value of τm+1,1 ∈ (0, 1
3 ]

which satisfies the equation 1 = 3τm+1,1+
3c
λ

zm,1
√
(τm+1,1)(1− τm+1,1) and that zm+1,1 =

λ

c
1−τ∗m+1,1

3
√

τ∗m+1,1
(see the

proof of Theorem 4). This leads to the relation

zm+1,1− zm,1 =
λ

c

1− τ∗m+1,1

3
√

τ∗m+1,1

−
1−3τ∗m+1,1

3
√
(τ∗m+1,1)(1− τ∗m+1,1)

 ,

which decreases as τ∗m+1,1 decreases and tends to 0 as τ∗m+1,1 tends to 0. Since τ∗m+1,1 is decreasing as

m increases by Theorem 4, we have that zm+1,1− zm,1 also decreases as m increases. Therefore, we can

conclude that (zm+2,1− zm+1,1) < (zm+1,1− zm,1). Additionally, since τ∗m+1,1→ 0 as m→ ∞ by Theorem 4,

we have that (zm+1,1− zm,1)→ 0 as m→ ∞.

A.6 Proof of Proposition 6
For the sake of induction, assume for a given m that τ∗m,1 < τ∗m,2 < · · ·< τ∗m,m. We we now show that it must

be true that τ∗m+1,1 < τ∗m+1,2 < · · ·< τ∗m+1,m+1. By Theorem 3, we have that τ∗m+1,d = (1− τ∗m+1,1)τ
∗
m,d−1 for

all d ≥ 2. Thus, we can infer that τ∗m+1,2 < τ∗m+1,3 < · · ·< τ∗m+1,m+1 by induction. What remains to be seen

is if τ∗m+1,1 < τ∗m+1,2.

Consider the objective value given in (4a), λ

c ∑
m
d=1 (1−∑

d
δ=1 τδ )

√
τd . The only term of this summation

that depends on either τm+1,1 or τm+1,2, but not their sum, is given by

λ

c
(1− τm+1,1)

√
τm+1,1 +

λ

c
(1− τm+1,1− τm+1,2)

√
τm+1,2. (A6)

We claim that (A6) can never be maximized when τm+1,1≥ τm+1,2. Consider a fixed θ = τm+1,1+τm+1,2, and

note that 0 < θ ≤ 1. We can rewrite (A6), without the multiplicative constant, as a function hθ : [0,θ ]→ R
of τm+1,1 that we wish to maximize in the interval τm+1,1 ∈ [0,θ ]:

hθ (τm+1,1) = (1− τm+1,1)
√

τm+1,1 +(1−θ)
√

θ − τm+1,1.

Differentiating once and twice gives

h′θ (τm+1,1) =
1−3τm+1,1

2
√

τm+1,1
− 1−θ

2
√

θ − τm+1,1
,
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h′′θ (τm+1,1) =−
1

4τ
3/2
m+1,1

− 3
4
√

τm+1,1
− 1−θ

4(θ − τm+1,1)3/2 .

Observe that h′
θ
(θ/4) > 0, h′

θ
(θ/2) < 0, and h′′

θ
(τm+1,1) < 0 for all τm+1,1 ∈ (0,θ). It follows that hθ ’s

unique maximizer is located in the interval (θ/4,θ/2), implying that (A6) can never be maximized when

τm+1,1 ≥ τm+1,2 (i.e., when τm+1,1 ≥ θ/2). Thus, we have that τ∗m+1,1 < τ∗m+1,2.

To finish our proof by induction, what remains to be seen is if a base case value of m yields τ∗m,1 < τ∗m,2 <

· · ·< τ∗m,m. From Table 1 we see that this is indeed true for m = 2. Thus, we have shown that accumulation

times are strictly increasing throughout the service day. From this fact, and Proposition 2, it directly follows

that the optimal service areas are strictly decreasing throughout the service day.

A.7 Proof of Theorem 7
Suppose we relax the ⟨m,D⟩ problem by removing constraint (1b), which requires that each vehicle’s dis-

patches are non-overlapping; this results in the ⟨mD,1⟩ problem. Therefore, zm,1 ≤ zm,D ≤ zmD,1. Since

zmD,1 = Θ(
√

mD) by Theorem 4, it follows that zm,D = O(
√

mD). Additionally, since zm,1 = Θ(
√

m) by

Theorem 4, for any fixed D we also have that zm,D = Θ(
√

m).

A.8 Proof of Theorem 8
We prove a series of results which together imply the correctness of Algorithm 1.

Lemma 16. Let zm,1 denote the optimal objective value of the unconstrained ⟨m,1⟩ problem, and let λ

c ẑm,1 =

zm,1. For notational convenience, let θm = τ∗m,1 denote the corresponding optimal first dispatch time. Then,

ẑm,1

√
1−θm

1−2θm
−
√

1−θm

θm
≤ 0 (A7)

for all m.

Proof. By the proof of Theorem 4, we have that

ẑm,1 =
1−θm

3
√

θm
. (A8)

By the results of the ⟨1,1⟩ model and Theorem 4, we know that θm ≤ 1
3 . Additionally, observe that for all

θm ∈ (0, 1
3 ],

1−θm

3
√

θm
≤
√

1−2θm

θm
. (A9)

Hence,

ẑm,1 ≤
√

1−2θm

θm
, (A10)

which implies

ẑm,1

√
1

1−2θm
≤
√

1
θm

, (A11)
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which in turn implies

ẑm,1

√
1−θm

1−2θm
≤
√

1−θm

θm
, (A12)

as desired.

Henceforth, let A∗1 denote the optimal first dispatch area in the unconstrained problem, and define τ∗1 such

that τ∗1 +cA∗1
√

τ∗1 = 1. The next lemma proves the correctness of the algorithm when m = 2 and also serves

as the base case for the inductive proof of the general result.

Lemma 17. Let m = 2 and B < A∗1. In an optimal solution to the B-constrained problem, it must hold that

B = A1 ≥ A2.

Proof. Suppose we are given an optimal solution
(
(τ1,A1),(τ2,A2)

)
such that B > A1. We know that

τ1 + cA1
√

τ1 = 1 (A13)

and

τ2 + cA2
√

τ2 = 1− τ1. (A14)

As a preliminary note, if we are to solve the unconstrained ⟨1,1⟩ problem on a truncated service day of

length 1− τ1 by re-scaling the service day to have unit length, then we must use the following parameters

instead of λ ,c0, and c:

λ̂ = λ (1− τ1),

ĉ0 =
c0

1− τ1
,

ĉ = ĉ0

√
λ̂ =

c√
1− τ1

.

First, suppose that τ1 >
1
3 . Recall from the analysis of the unconstrained ⟨1,1⟩ problem that the total

quantity is maximized when the accumulation time is τ = 1
3 . Additionally, the derivative of the total quantity

as a function of the accumulation time is negative for all τ ∈ (1
3 ,1) in that problem. Therefore, we can

decrease τ1 by a sufficiently small amount (and increase A1 by a corresponding amount such that (A13) still

holds) to increase the quantity served by the first dispatch without decreasing the quantity served by the

second dispatch. By contradiction, the solution
(
(τ1,A1),(τ2,A2)

)
cannot be optimal, so it must hold that

τ1 ≤ 1
3 in the optimal solution to the constrained problem.

Now, let us consider the case when A1 ≤ A2. This implies

1− τ1

c
√

τ1
≤ 2

ĉ
√

3
(A15)

or, equivalently,
1− τ1

c
√

τ1
≤ 2
√

1− τ1

c
√

3
. (A16)
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Rearranging gives τ1 ≥ 3
7 > 1

3 , a contradiction to our previous result. Thus, it must hold that A1 > A2.

Since B > A1 > A2, we can express each of the first two dispatch quantities in terms of τ1:

q1(τ1) =
λ

c
(1− τ1)

√
τ1, (A17)

q2(τ1) =
λ̂

ĉ
· 2

3
√

3
=

2λ

3c
√

3
(1− τ1)

3/2. (A18)

We then take the derivative of the total quantity with respect to τ1:

q′(τ1) =
λ

c

(
1
2

τ
−1/2
1 − 3

2
τ

1/2
1 − 1√

3
(1− τ1)

1/2
)
. (A19)

It can be verified that this expression is negative for all τ1 for which the corresponding A1 < A∗1 (i.e., for

all τ1 ∈ (τ∗1 ,
1
3 ]). Thus, we can decrease τ1 by a sufficiently small quantity, increase A1 accordingly, and

re-optimize q2 accordingly such that the total quantity served increases. This contradicts the optimality of

the given solution. Therefore, any solution with A1 < B cannot be optimal.

The following two results prove the correctness of the algorithm when m≥ 3.

Lemma 18. Let m≥ 3 and B < A∗1. Then, any solution with A1 < B and A1 ≤ A2 cannot be optimal for the

B-constrained problem.

Proof. We will prove this claim by contradiction. Suppose we are given a candidate optimal solution to

the constrained ⟨m,1⟩ problem
(
(τ1,A1),(τ2,A2), . . . ,(τm,Am)

)
with m ≥ 3, B > A1, and A2 ≥ A1. By our

previous discussion, we know that τ1 ∈ (τ∗1 ,
1
3 ].

Let t2 = τ1 + τ2. We will show that we can slightly simultaneously perturb τ1 and τ2 (while leaving

their sum t2 unchanged) such that the total quantity served increases. Specifically, we wish to perform the

following operations: decrease τ1 by some small ε > 0, increase τ2 by the same ε , increase A1 by some δ1

such that (A13) is maintained, and decrease A2 by some δ2 such that (A14) is maintained.

It remains to be seen whether the rate of increase of q2 outpaces the rate of decrease of q1 when we

perform the above operations. With a slight abuse of notation, let us represent q1 and q2 as functions of τ1

under the assumption that t2 is fixed:

q1(τ1) = λA1τ1 = λ

(
1− τ1

c
√

τ1

)
τ1 =

λ

c
(1− τ1)

√
τ1, (A20)

q2(τ1) = λA2τ2 = λA2(t2− τ1) = λ

(
1− t2

c
√

t2− τ1

)
(t2− τ1) =

λ

c
(1− t2)

√
t2− τ1. (A21)

Omitting the constant factors λ

c , the derivatives of both quantities with respect to τ1 are

q′1(τ1) =
1
2

τ
−1/2
1 − 3

2
τ

1/2
1 , (A22)

q′2(τ1) =
t2−1

2
√

t2− τ1
. (A23)
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To show that the perturbation procedure increases the total quantity served by the first and second dispatches,

we must prove that the sum of these derivatives evaluated at τ1 is negative, i.e., that

h(τ1) =
3
2

τ
1/2
1 − 1

2
τ
−1/2
1 +

1− t2
2
√

t2− τ1
> 0. (A24)

Since A2 ≥ A1, by (A13) and (A14), it must hold that τ2 ≤ τ1. This implies t2 ≤ 2τ1, further implying

1− t2
2
√

t2− τ1
≥ 1−2τ1

2
√

2τ1− τ1
. (A25)

Therefore,

h(τ1) =
3
2

τ
1/2
1 − 1

2
τ
−1/2
1 +

1− t2
2
√

t2− τ1

≥ 3
2

τ
1/2
1 − 1

2
τ
−1/2
1 +

1−2τ1

2
√

2τ1− τ1

=
3
2

τ
1/2
1 − 1

2
τ
−1/2
1 +

1
2

τ
−1/2
1 − τ

1/2
1

=
1
2

τ
1/2
1

> 0.

Thus, if A2 ≥ A1, we can find sufficiently small ε,δ1,δ2 > 0 such that
(
(τ1 − ε,A1 + δ1),(τ2 + ε,A2 −

δ2), . . . ,(τm,Am)
)

is an improved feasible solution. Hence, by contradiction, if B < A∗1, then the optimal

solution to the constrained problem must have either A1 = B or A1 > A2.

Applying induction implies that the B-constrained optimal solution must have B≥ A1 ≥ A2 ≥ ·· · ≥ Am.

Lemma 19. Let m≥ 3 and B < A∗1. Then, in an optimal solution to the constrained ⟨m,1⟩ problem, A1 = B.

Proof. We proceed by induction with the result in Lemma 17 as the base case. Assume that the claim is true

for m−1 vehicles. For the purposes of contradiction, suppose we are given a candidate optimal solution to

the constrained m-vehicle problem
(
(τ1,A1),(τ2,A2), . . . ,(τm,Am)

)
with m ≥ 3 and B > A1. Observe first

that τ1 > τ∗1 . By Lemma 18, we may assume that A1 > A2.

Because the full solution is assumed optimal, the final m− 1 dispatches are also optimized over the

truncated service day induced by τ1. By the induction hypothesis, if the final m−1 vehicles were optimized

with respect to the constrained problem but not the unconstrained problem, it would hold that A2 = B.

However, because A2 < B, we know that the the final m−1 vehicles must be optimized with respect to the

unconstrained (m− 1)-vehicle problem as well. Therefore, by Theorem 3, τ2 = θm−1(1− τ1), where θm−1

is the optimal first dispatch time in the unconstrained ⟨m+1,1⟩ problem. Consequently, A1 > A2 implies

1− τ1

c
√

τ1
>

1− τ1−θm−1(1− τ1)

c
√

θm−1(1− τ1)
(A26)
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which in turn implies

τ1 <
1

1
θm−1
−1+θm−1

<
θm−1

1−θm−1
. (A27)

Let zm−1 represent the optimal total quantity served in the unconstrained ⟨m− 1,1⟩ problem, and let
λ

c ẑm,1 = zm,1. Theorem 3 implies that the total quantity as a function of τ1 is

q(τ1) =
λ

c
(1− τ1)

√
τ1 +

λ

c
ẑm−1,1(1− τ1)

3/2 (A28)

when A1 > A2. Our goal is to show that q′(τ1) < 0 for all τ1 ∈
(
τ∗1 ,

θm−1
1−θm−1

)
so that we can slightly reduce

τ1 (equivalently, slightly increase A1) and improve the total quantity served. As such, we henceforth ignore

the scaling factor λ

c .

Differentiating gives

q′(τ1) =−
3
2

τ
1/2
1 +

1
2

τ
−1/2
1 − 3

2
ẑm−1,1(1− τ1)

1/2. (A29)

Note that, by definition, q′(τ∗1 ) = 0. Therefore, it suffices to show that q′′(τ1)< 0 for all τ1 ∈
(
0, θm−1

1−θm−1

]
.

Differentiating twice gives

q′′(τ1) =−
3
4

τ
−1/2
1 − 1

4
τ
−3/2
1 +

3
4

ẑm−1,1(1− τ1)
−1/2, (A30)

and differentiating thrice gives

q′′′(τ1) =
3
8

τ
−3/2
1 +

3
8

τ
−5/2
1 +

3
8

ẑm−1,1(1− τ1)
−3/2 > 0. (A31)

Observe that limτ1↓0 q′′(τ1) =−∞. Additionally,

q′′
(

θm−1

1−θm−1

)
=−3

4

(
θm−1

1−θm−1

)−1/2

− 1
4

(
θm−1

1−θm−1

)−3/2

+
3
4

ẑm−1,1

(
1− θm−1

1−θm−1

)−1/2

=−3
4

(
θm−1

1−θm−1

)−1/2

− 1
4

(
θm−1

1−θm−1

)−3/2

+
3
4

ẑm−1,1

(
1−2θm−1

1−θm−1

)−1/2

=
3
4

(
ẑm−1,1

√
1−θm−1

1−2θm−1
−

√
1−θm−1

θm−1

)
− 1

4

(
θm−1

1−θm−1

)−3/2

≤−1
4

(
θm−1

1−θm−1

)−3/2

< 0,

where the penultimate step is implied by Lemma 16. It follows that q′′(τ1) < 0 for all τ1 ∈
(
0, θm−1

1−θm−1

]
.

Because q′(τ∗1 ) = 0, it follows that q′(τ1) < 0 for all τ1 ∈
(
τ∗1 ,

θm−1
1−θm−1

]
. Thus, we can decrease τ1 by a
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sufficiently small quantity, increase A1 accordingly, and re-optimize the remaining dispatches accordingly

such that the total quantity served increases. This contradicts the optimality of the given solution. Therefore,

any solution with A1 < B cannot be optimal.

Note that θm−1 < θm−1
1−θm−1

, so by the proof above we have that q′′(τ1) < 0 for all τ1 ∈
(
0,θm−1

)
. This

implies that the function in Problem 6 is concave over the interval, as noted earlier.

A.9 Proof of Proposition 9
Given a fixed value for A > 0, let us assume for the sake of contradiction that there exists such optimal

dispatch policy {(τ∗d ,A)}m
d=1 such that at least one of the inequalities defined by constraint (7b) hold strictly.

Fix such a policy and consider the first dispatch, d′, such that, ∑
d′
δ=1 τδ +cA

√
τd′ < 1. There must exist some

ε ∈ (0,1) such that ∑
d′
δ=1 τδ + ε + cA

√
τd′+ ε = 1. We can then feasibly replace the d′-th dispatch with

(τ∗d′+ ε,A) by removing the next ε orders from the subsequent dispatch(es). Any remaining dispatches will

remain feasible since they are either: completely removed from the dispatch policy (i.e., their quantity is set

to zero), set to depart at the same time of day with strictly less orders to serve, or set to depart at the same

time of day with the exact same order amount to serve as before. This process of shifting orders to earlier

dispatches can be repeated until (7b) holds at equality for each of the first m− 1 dispatches. Eventually,

it will be the case that (7b) holds strictly for d = m. Then, this last dispatch could feasibly serve some

δ > 0 additional orders, which contradicts the assumed optimality of the given initial dispatch policy. Thus,

constraints (7b) must hold at equality for all d in an optimal solution.

A.10 Proof of Proposition 10
Let {(τ∗d ,A∗d)}m

d=1 denote the optimal solution to the variable-area ⟨m,1⟩ problem. Since A∗1 > A∗2 > · · · >
A∗m by Proposition 6, {(τ∗d ,A∗m)}m

d=1 is a feasible solution to the fixed-area problem. The objective value

associated with this feasible solution, λAm ∑
m
d=1 τd , is therefore a lower bound on the optimal objective

value associated with the fixed-area problem. Let τ∗=,1 and A∗= denote the first dispatch time and service

area, respectively, associated with the optimal solution to the fixed-area problem.

In any feasible solution to the fixed-area problem, all dispatches are associated with the same area (by

definition) and all dispatches return at the same time T (by Proposition 9). Therefore, in the optimal solution

to the fixed-area problem, a vehicle that departs later in the day serves a smaller quantity. This further implies

that, in the optimal solution to the fixed-area problem, a vehicle that departs later in the day is associated

with a shorter accumulation time. Hence, in the optimal solution, the total quantity served by each dispatch

is decreasing over the course of the day.

Therefore,

λA∗=τ
∗
=,1 ≥

λ

m

m

∑
d=1

Amτd =⇒ A∗=τ
∗
=,1 ≥

1
m

m

∑
d=1

Amτd .

For notational purposes, let bm denote the right-hand side of the previous inequality. Since A∗= =
1−τ∗=,1

c
√

τ∗=,1
, it

follows that 1
c

√
τ∗=,1(1− τ∗=,1)≥ bm. This implies that τ∗=,1 ≥ τ−, where τ− is the solution to the problem

min τ s.t.
1
c
√

τ(1− τ)≥ bm.
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By our work on the ⟨1,1⟩ problem, we know that there exists exactly one τ ∈
[
0, 1

3

]
satisfying 1

c
√

τ(1−τ) =

bm; additionally, because 1
c
√

τ(1− τ) is increasing in the interval
[
0, 1

3

]
, this τ is necessarily the desired

solution τ−. Since a lower bound on the first accumulation time corresponds to an upper bound on the

service area, it follows that A∗= ≤ 1−τ−

c
√

τ−
.

Note that the bound above remains valid if, for a different fixed-area model variant, the largest dispatch

is not the first or if the vehicle is required to return to the depot at some time before the end of the service day.

Hence, an analogous procedure can be used to derive an essentially identical upper bound on the optimal

area for the fixed-area ⟨1,D⟩ model discussed later. The equivalent equation to (8) in that case is

1
c
√

τ(1− τ) =
1
m
× min

d∈[D]
{A∗d} ×

D

∑
d=1

τ
∗
d ,

where {(τ∗d ,A∗d)}D
d=1 is the optimal solution to the variable-area ⟨1,D⟩ problem with the same parameters.

A.11 Proof of Proposition 11
Given a set of positive accumulation times, {τ1,τ2, . . . ,τD}, consider the d-th dispatch, where d < D. In-

equality (9c) constrains the service area by Ad ≤ τd+1
c
√

τd
. As the objective value (9a) increases linearly with

Ad , choosing the service area such that this inequality holds at equality will maximize the quantity served

on the d-th dispatch for all d < D. Now, consider the last dispatch. Inequality (9b) constrains the service

area by: AD ≤
1−∑

D
δ=1 τδ

c
√

τD
. As the objective value (9a) scales linearly with AD, we choose this service area

such that this inequality holds at equality in order to serve the maximal number of orders served by the D-th

dispatch, which completes the proof.

A.12 Proof of Lemma 12
For a set of accumulation times to be a part of an optimal dispatching solution to the ⟨1,D⟩ model (10), by

first order conditions it must be true that both

τ
∗
1 =

(τ∗2 )
2

4τ∗D

and

τ
∗
d =

(τ∗d+1)
2

4(
√

τ∗D−
√

τ∗d−1)
2

for all d ∈ {2, . . . ,D−1}. By Proposition 11, these equations imply that A∗1 =
2
c

√
τ∗D, and

A∗d =
2
c

(√
τ∗D−

√
τ∗d−1

)
≤ 2

c

√
τ∗D

for all d ∈ {2, . . . ,D−1}.

A.13 Proof of Theorem 13
By Lemma 12, we have that A∗d ≤

2
c

√
τ∗D for all d < D. Thus, we can consider a relaxation of the original

problem defined by (9) where each of the first D− 1 dispatches serves an area of Ad = 2
c
√

τD without any
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regard for returning to the depot in time for the next dispatch. That is, consider the relaxation:

max
AD,τττ≥0

λADτD +
D−1

∑
d=1

λ
2
√

τD

c
τd (A32a)

s.t.
D

∑
δ=1

τδ + cAD
√

τD ≤ 1. (A32b)

In this relaxed system, it is a strictly dominant strategy for the final dispatch to serve an area large

enough such that the vehicle will arrive back to the depot exactly at the end of the service day, implying that

AD =
1−∑

D
δ=1 τδ

c
√

τD
. Without loss of optimality, as each of the first D− 1 dispatches serve the same area, and

themselves have no explicit concerns of arriving back before a future dispatch, everything can be served on

the first dispatch while the remaining D− 2 dispatches serve nothing. Thus, this relaxed problem can be

re-formulated as:

max
τ1,τD≥0

λ

(
1− τ1− τD

c
√

τD

)
τD +λ

(
2
√

τD

c

)
τ1 (A33a)

s.t. τ1 + τD ≤ 1. (A33b)

Since this objective function is equivalent to λ

c (1+ τ1− τD)
√

τD, we see that τ1 + τD ≤ 1 will hold at

equality for an optimal dispatching policy, so after a substitution of τ1 = 1− τD we arrive at the problem:

max
τD∈[0,1]

2λ

c
(1− τD)

√
τD. (A34a)

This problem is identical to the optimization problem presented in Section 2.2 for the ⟨1,1⟩ model with

the caveat that the objective value is exactly twice is large. Therefore, this relaxation of the ⟨1,D⟩model has

an optimal objective value of λ

c
4

3
√

3
, as desired.

A.14 Proof of Theorem 14
Assume λ = c = 1 without loss of generality. By an intermediate result within the proof of Theorem 4

(Section A.4), we know that zm,D ≥ 1
4
√

m. Since z1,1 =
2

3
√

3
, rearranging gives

3
√

3
8

z1,1 ·
√

m≤ zm,1 =⇒ z1,1 ≤
8

3
√

3m
· zm,1 .

Now, consider the ⟨m,D⟩ problem. Suppose we relax the problem by allowing accumulation times

of different vehicles to overlap (accumulation times associated with the same vehicle must still be non-

overlapping). Note that this relaxation results in m independent “copies” of the ⟨1,D⟩ problem. Therefore,

we have that zm,D ≤ m · z1,D. Applying the inequality above and Theorem 13 gives

zm,D ≤ m · z1,D ≤ 2m · z1,1 ≤
16
3

√
m
3
· zm,1,

as desired.
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Appendix B Empirical Routing Constant Estimation
For several combinations of n and area A (where the corresponding region is given by a driving time

isochrone), we simulate 100 TSP tours through the depot and n random locations in the region. For every

tour with length ℓ minutes (which includes the one minute per-customer service time), the corresponding

ratio is calculated as ℓ/
√

An. Table 6 displays the average ratio, in units of minutes/
(
miles× customers1/2

)
,

for combinations of n and A for the ⟨m,1⟩ computational studies (in which the service regions extend in all

directions). Table 7 similarly displays the average ratio for the ⟨1,2⟩ study (in which the service regions

extend only in the southeast direction from the depot).

Observe that, in both tables, the ratios are decreasing in A for each fixed n. This behavior is due to the

average inter-node distance increasing as A increases, which subsequently increases the likelihood of travel

on faster major roads and highways (which are relatively sparse compared to residential streets) between

customers. For a similar reason, the ratios are increasing in n for each fixed A. As the density of points in

a given area increases, it becomes more difficult to leverage faster roads when traveling between customers.

This effect is slightly exacerbated by the linearly accumulating per-order service times. For comparison, if

point-to-point travel times were given by the Euclidean or Manhattan metric and per-customer service times

were ignored, we would expect the average ratios to be asymptotically decreasing in n and invariant to A.

To estimate the corresponding ratio for any given A and n, we define a function β (A,n) by linearly

interpolating between the respective tabular values for each corresponding computational study. Similarly,

the value of β (·, ·) is linearly extrapolated for arguments A,n which may fall just outside the domain given

in the corresponding table. Scaling the value β (A,n) appropriately produces the routing constant c0 used in

the planning models. Suppose that we solve a two-dispatch planning model with an estimated routing con-

stant. Our tabular results indicate that each dispatch’s calculated values of A and n will likely subsequently

Area (square miles)
50 100 150 200 250

n = 15 3.9843 3.6079 3.3794 3.2168 3.1422
20 4.1277 3.7227 3.4420 3.3359 3.2638
25 4.2155 3.7692 3.5302 3.4157 3.3385
30 4.3613 3.8719 3.6152 3.4748 3.3804
35 4.4324 3.9334 3.6820 3.5255 3.4646
40 4.5305 4.0033 3.7583 3.5878 3.5192
45 4.6508 4.0865 3.7945 3.6859 3.5702
50 4.7073 4.1285 3.8710 3.7285 3.6164
55 4.7457 4.1722 3.9372 3.7906 3.6980
60 4.8385 4.2638 4.0008 3.8204 3.7591
65 4.9181 4.3541 4.0510 3.8970 3.8073
70 4.9878 4.3775 4.0946 3.9454 3.8265
75 5.0602 4.4432 4.1207 3.9606 3.8691
80 5.1412 4.4760 4.1852 4.0170 3.9145

Table 6: Empirically estimated routing constants for multi-vehicle computational studies.
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Area (square miles)
40 80 120 160

n = 15 4.3503 3.9787 3.7695 3.5506
25 4.5813 4.1344 3.9172 3.6664
35 4.7489 4.3157 3.9742 3.7747
45 4.9635 4.4301 4.1197 3.8773
55 5.1088 4.5194 4.2320 3.9693
65 5.2501 4.6383 4.3370 4.0813
75 5.3761 4.8075 4.4258
85 5.5541 4.8831 4.5097

Table 7: Empirically estimated routing constants for single-vehicle computational studies.

Algorithm 2 Convergence of BHH routing constant

1: given interpolant function β (·, ·), initial estimate βinit, tolerance ε

2: initialize βold← βinit, βnew← ∞

3: while |βold−βnew|> ε do
4: set βold← βnew
5: use βold to calculate optimal policy areas and quantities A1,A2,n1,n2
6: set βnew←max{β (n1,A1),β (n2,A2)}
7: end while
8: return βnew

correspond to two different routing constants β (A1,n1) and β (A2,n2) which may be significantly different

from our initial estimate. This requires us to iteratively re-estimate the routing constant and re-solve the

planning model until the routing constant converges to a final value. The following pseudocode formalizes

this procedure. An analogous method is used when the model requires three total dispatches.

In our studies, convergence occurs rapidly (within ten iterations for a tolerance of ε = 10−5) given

a reasonable starting estimate. We use the following resulting routing constants, scaled as appropriate,

to determine service regions in the computational studies: 4.1176 for the ⟨2,1⟩ case with variable areas,

4.0627 for the ⟨2,1⟩ case with constant areas, 4.0630 for the unconstrained ⟨3,1⟩ case, and 4.0302 for the

constrained ⟨3,1⟩ case.

The above constant estimation procedure is not the only valid method; rather, it easily admits modifi-

cations. Our computed examples for the fixed-area ⟨1,2⟩ setting uses routing constants calculated with a

slightly different procedure that updates the constant via a weighted average (instead of by selecting the

most conservative options). Specifically, line 6 of Algorithm 2 is replaced with

set ω ← n1

n1 +n2

set βnew← β
(
ωn1 +(1−ω)n2,ωA1 +(1−ω)A2

)
.

Using this method and the estimated values from Table 7, the resulting routing constants are 4.3684 for the

variable-area ⟨1,2⟩ setting and 4.3477 for the fixed-area ⟨1,2⟩ setting.
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Appendix C Additional Computational Data
This appendix includes the results of additional computations and simulations.

C.1 Multiple Vehicles, One Dispatch Each
For validation and comparison with the ⟨2,1⟩ model, we consider the ⟨1,1⟩ model in the same radial set-

ting. The tactical solution requires the vehicle to dispatch at 12 PM with 64.81 orders over an area of

approximately 108 square miles (corresponding to a driving time radius of 17 min. 32 sec.). Note that the

variable-area and fixed-area solutions are identical in the ⟨1,1⟩ case because only one dispatch is made in to-

tal. Table 8 compares the predicted quantity and route duration to the average values across 120 simulations,

along with 95% confidence intervals (in parentheses).

Predicted Simulated

Dispatch Quantity 64.81 63.83 (± 0.67)
Dispatch Duration (min.) 360 356.22 (± 2.48)

Table 8: Predicted and simulated (operational) results for radial ⟨1,1⟩ instance.

The average simulated quantity is within one order (1.5%) of the predicted results. The slight underes-

timation in this single-dispatch case is partly because vehicles cannot serve fractional quantities in practice,

leading to the vehicle returning before 6 PM in the majority of simulations. In the ⟨2,1⟩ studies, this effect

is mitigated by the inherent conservatism of the routing constant selection procedure (Algorithm 2) that

takes the maximum over multiple options. Thus, these results suggest that some slight conservatism may be

desirable when choosing the routing constant for a ⟨1,1⟩ setting, perhaps by including a small additive or

multiplicative factor.

We also compare our constrained variable-area ⟨3,1⟩ solution from Section 5.2 to the analogous fixed-

area solution, and we perform operational simulations on both system designs for validation. When the

service region is fixed across dispatches (but not constrained by an upper bound), the optimal solution is

associated with an area of approximately 186 square miles. The three dispatches occur at 10:45 AM, 11:58

Constrained Variable Areas Fixed Areas
Predicted Simulated Predicted Simulated

Dispatch 1 Quantity 62.92 64.17 (± 0.57) 65.33 64.73 (± 0.58)
Dispatch 1 Duration (min.) 440.65 428.55 (± 1.93) 434.54 423.85 (± 1.90)

Dispatch 2 Quantity 46.39 47.66 (± 0.64) 45.22 46.58 (± 0.46)
Dispatch 2 Duration (min.) 359.51 340.79 (± 2.39) 361.53 342.67 (± 2.25)

Dispatch 3 Quantity 37.59 34.00 (± 0.59) 32.91 34.19 (± 0.48)
Dispatch 3 Duration (min.) 239.67 225.26 (± 2.52) 308.40 281.72 (± 2.25)

Total Quantity Served 146.90 145.83 (± 1.13) 143.46 145.50 (± 1.09)
Total Dispatch Duration (min.) 1039.84 994.60 (± 5.47) 1040.16 1048.25 (± 5.39)

Table 9: Predicted and simulated (operational) results for ⟨3,1⟩ solutions.
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AM, and 1:52 PM to serve a total of 143.46 orders. Table 8 compares the predicted quantity and route

duration to the average values across 120 simulations for both the constrained variable-area and fixed-area

solutions. We observe that the simulated objective values continue to nearly align with the predictions, with

small deviations of about 0.7% in the constrained variable-area solution and 1.4% in the fixed-area solution.

C.2 One Vehicle, Multiple Dispatches
For validation and comparison with the ⟨1,2⟩ model, we consider the ⟨1,1⟩ model in the southeastern quad-

rant. The tactical solution requires the vehicle to dispatch at 12 PM with 62.98 orders over an area of

approximately 105 square miles (corresponding to a driving time radius of 29 min. 53 sec.). For this design,

Table 10 compares the predicted quantity and route duration to the average values across 120 simulations,

along with 95% confidence intervals (in parentheses). As in the prior ⟨1,1⟩ study, we again observe that the

average simulated quantity is within one order (1.5%) of the predicted results.

Predicted Simulated

Dispatch Quantity 62.98 62.03 (± 0.71)
Dispatch Duration (min.) 360 358.71 (± 2.73)

Table 10: Predicted and simulated (operational) results for ⟨1,1⟩ solution in southeastern quadrant.

Finally, we simulate operational realizations with respect to the ⟨1,2⟩ variable-area and fixed-area de-

signs. For the variable-area design, we implement the following operational version of the one-vehicle,

two-dispatch policy. As orders arrive prior to the first dispatch in the full service region, we continually

re-solve for θ1, the duration of the optimal TSP tour over the depot and the accumulated orders. The vehicle

is first dispatched with all accumulated orders at the earliest time t when the value t +θ1 + f (A2,θ1) equals

or exceeds the deadline T . The values in Table 7 are used to estimate f . Additionally, at time t, the service

region shrinks to the inner sub-region with area A2 (i.e., orders originating in the outer “ring” are no longer

accepted). While the vehicle is away on its first dispatch, we continually re-calculate θ2, the duration of

the optimal TSP tour over the depot and the orders accumulated after t. Orders are cut off when the second

dispatch’s return time calculated via θ2 equals or exceeds the deadline T , noting that the second dispatch can

depart no earlier than its first return time t +θ1. Additionally, if an arriving order would cause the vehicle

to return after T , it is rejected. The vehicle departs on its second dispatch at this cutoff time or, if the cutoff

time occurs prior to t +θ1, at t +θ1. The operational policy for the fixed-area design is similar except that

the service region is constant across both dispatches.

Table 11 compares the results of 120 simulated operational days to our model’s predictions. The simu-

lated quantities are again quite consistent with the predicted values for both system designs. In the variable-

area model, we observe that the average objective value in the simulations deviates by approximately 1.8

orders (2.6%) from the predicted quantity. In the variable-area model, we observe that the average ob-

jective value in the simulations deviates by approximately 1.1 orders (1.5%) from the predicted quantity.

The predicted first dispatch quantities for both solutions (24.57 and 18.93 orders, respectively) are near the

empirically-observed lower limit for the validity of the square-root functional form based on prior studies;

e.g., [28] estimate routing constants for as few as n = 20 customers. Notwithstanding this fact, we note that
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the tactical ⟨1,2⟩ predictions in Table 11 are nearly as accurate as those of the earlier ⟨3,1⟩ solutions, in

which the dispatch quantities are higher.

Variable Areas Fixed Areas
Predicted Simulated Predicted Simulated

Dispatch 1 Quantity 24.57 27.23 (± 0.42) 18.93 18.86 (± 0.38)
Dispatch 1 Duration (min.) 240.00 227.32 (± 1.19) 178.29 164.68 (± 1.06)

Dispatch 2 Quantity 49.14 44.68 (± 0.68) 52.80 51.78 (± 0.74)
Dispatch 2 Duration (min.) 240.00 239.03 (± 1.93) 297.80 302.81 (± 2.45)

Total Quantity Served 73.71 71.90 (± 0.83) 71.73 70.63 (± 0.82)
Total Dispatch Duration (min.) 480.00 466.36 (± 2.62) 476.09 467.49 (± 2.97)

Table 11: Predicted and simulated (operational) results for ⟨1,2⟩ solutions.
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