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Abstract

We study the design of same-day delivery (SDD) systems under the assumption that service regions
are allowed to vary over the course of the day; equivalently, that customers in different locations may
have access to SDD for different lengths of time over the service day or may have no access at all. This
contrasts with the bulk of the literature, in which a service region is defined in advance and all customers
in the service region can place SDD orders during the same time window. Leveraging continuous ap-
proximation techniques to capture average-case system behavior, we derive optimal service region areas
and corresponding SDD order cutoff times to maximize the expected number of orders served per day.
We quantify the benefit of allowing the service regions to vary, both theoretically and empirically, and
discuss related equity issues in SDD systems. We illustrate and validate our results with a case study set
in the Phoenix, Arizona metropolitan area.

1 Introduction
Driven by increased internet access, the e-commerce retail sector has been expanding steadily in recent

years. Changes in consumer behavior due to the COVID-19 pandemic [8, 18] have accelerated this trend:

total e-retail volume in the U.S. between April 2020 and March 2021 surpassed $817 billion, representing

an increase of over 30% from the prior year [54, 55]. In an effort to capture a larger share of this market, e-

retailers have improved their delivery time guarantees. Same-day delivery (SDD), which was once leveraged

as a service offering differentiator, has now become expected by consumers at large. Amazon, which has

offered SDD to select premium subscribers for over a decade [1], continues to expand its same-day supply

chain network in order to serve customers faster and provide SDD options in more cities [9]. Large American

retailers such as Walmart, Target and Costco have recently partnered with third party managers of their SDD

systems [10]. Some smaller niche retailers, including Sephora (beauty products) and Michael’s (arts and

crafts), have done the same in order to provide SDD to their customers [23, 58].
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SDD allows e-commerce �rms to compete more effectively with brick-and-mortar retail by providing the

customer with near-instant demand ful�llment; however, delivering cost-effectively given a same-day dead-

line requires careful planning. The last-mile component of traditional parcel delivery often generates more

than 50% of the total cost of delivery [19], and SDD systems face even greater potential cost inef�ciencies

since they may suffer from reduced opportunities for consolidation due to a high degree of dynamism.

An important design problem for modern e-commerce systems is the question of where and when (how

late in the service day) to offer the SDD promise. A service region that is too small or an early order deadline

will result in fewer SDD customers and market share, while a large region or a late SDD order cutoff time

may result in costly operations or failed deliveries and loss of customer goodwill. Considerations of equity

and access are also important. For example, Amazon faced criticism in recent years for perceived racial bias

in SDD service region design [22] which the company later addressed [44, 45]. If designed well, however, e-

commerce systems including those offering same-day delivery have the potential to help customers unable to

travel to traditional brick-and-mortal retail stores, and thus may improve access to food and other important

household goods. With this motivation in mind, our goal in this study is the selection of SDD service

regions and order cutoff deadlines from the perspective of an e-retailer operating a single ful�llment center

(i.e., depot) with a �xed delivery �eet. Such a time-varying approach to service region sizing is fairly novel,

with little formal analysis outside of the related context of restaurant meal delivery [49].

Our objective is to choose a service region and deadline that maximize the expected order volume the

retailer can feasibly serve each day. In particular, we seek an understanding of the potential system gains

that result by allowing the service region to vary over the course of the service day by offering different order

cutoff times to different parts of the overall region. Our results indicate that the system may indeed bene�t

by allowing such variation; we observe an approximate increase in total SDD orders served of approximately

2.5 to 4% even when the service area changes only once per day. The intuition behind this result is clear:

customers that are far away from the ful�llment center (e.g. in suburban areas) cannot be served as ef�ciently

as nearby (e.g. in-town) customers, and thus the system may operate more ef�ciently if we only accept

faraway SDD orders early in the day but allow nearby customers to continue placing orders until later.

Interestingly, this tiered approach may also allow the SDD system to increase its overall footprint, by

offering SDD farther away from the ful�llment center than a system with a single common order cutoff. Our

results thus contribute to the growing discussion in the literature regarding fairness, equity, and access in

SDD and e-commerce more broadly. Some recent work in SDD [11, 13] assumes all customers in the service
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region should be treated roughly the same according to some metric of customer service, such as expected

waiting time or order acceptance rate. Our models suggest that imposing such requirements implicitly

constrains the system to a reduced service area, thus potentially denying SDD to customers who live outside

the smaller region. There is no single agreed-upon metric for what constitutes a more fair or equitable

outcome [see e.g. 29], and thus different companies, managers and customers may perceive different system

choices as more or less desirable; nevertheless, our results allow decision makers to quantify the impact

of important SDD system variables, such as service region size and order cutoff times, in order to make

informed decisions.

While there has been signi�cant research attention devoted to SDD in the past decade, work has focused

primarily on the operational management of SDD systems (decisions made over the course of a service day)

rather than on system design at longer time scales (every few weeks or months). This research stream seeks

to optimize day-to-day operations of SDD systems, including vehicle routing plans and order acceptance

mechanisms [e.g., 12, 25, 26, 31, 56, 57]. While these studies are crucial to ef�ciently manage a de�ned

system, they generally do not focus on designing elements of the system itself. In particular, operationally-

focused SDD literature often assumes a �xed service region from which SDD demand realizes.

More recent work [5, 11, 46] has focused on studying broader design aspects of SDD systems, including

the partitioning of a service region into vehicle zones and related �eet sizing questions. Our work shares

some methodological features with this literature stream, particularly in the use of continuous approximation

techniques to capture the average-case behavior of SDD systems. Nonetheless, as with the operational SDD

literature, the models that have been developed to date all assume a given, �xed service region and ignore

the question of choosing the SDD system's overall footprint.

1.1 Contributions

We consider our main contributions to be the following:

(1) Using continuous approximations of order arrivals and vehicle routing times, we propose a mathemat-

ical optimization model for maximizing order quantities served in a single-depot SDD system when

the service region is allowed to vary between vehicle dispatches. The decision space for the model

includes choosing the order accumulation time between successive dispatches as well as determining

the size of time-varying service regions from which orders accrue.

(2) We perform an in-depth theoretical analysis of this system design question for a few important SDD
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system variations. Speci�cally, we study a setting in which multiple vehicles each dispatch once per

day to analyze the marginal bene�ts of increasing the �eet size. We also study a setting in which

one vehicle dispatches multiple times per day to analyze the marginal bene�ts of re-using a particular

vehicle. We leverage our theoretical results to design ef�cient solution procedures.

(3) We study the quanti�able effects of allowing time-varying service regions compared to traditional

designs with a �xed service region. We describe the effects of such dynamics on both the service

provider as well as the customers.

(4) We conduct an extensive computational study using the Phoenix, Arizona metro area road network,

and use these results to motivate a discussion on issues of pro�tability, equity, and access in SDD

systems.

Section 1 concludes with a review of the relevant literature. A formal de�nition of our general model is

given in Section 2. In Section 2.2, we analyze a one-vehicle, one-dispatch variant of the model to motivate

more complex settings. In Section 3, we study the setting in which multiple vehicles each dispatch once per

day. In Section 4, we study the setting in which one vehicle dispatches multiple times per day. In Section

5, we perform computational validation and discuss managerial insights. Section 6 contains concluding

remarks. Appendices contain proofs and other omitted material.

1.2 Literature Review

The majority of the SDD literature has focused on operational problems, in which system features are �xed

and a system manager must determine an optimal policy to guide decision-making over a short horizon

(typically a single service day). Such works typically focus on vehicle dispatching and routing as customer

information is dynamically revealed. Proposed solutions are compared to of�ine heuristics or current best

practices. Speci�c problems considered in the literature include the same-day delivery problem for online

purchases [14, 57] and the dynamic dispatch waves problem [25, 26, 27]. Other works integrate autonomous

vehicles [50], drones [12, 17, 51], and additional extensions [53, 59]. Operational SDD problems are closely

related to the broad problem classes of stochastic VRPs [34, 35] and dynamic VRPs [37, 38]. In the remain-

der of this work, we speci�cally use the term `SDD' to refer to settings in which all orders placed on the

same day share the same end-of-day delivery time guarantee. We contrast this with similar contexts in which

each order has its own delivery deadline, such as meal delivery [40, 52] and on-demand delivery [4, 42].
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Operational SDD problems are often modeled as mixed-integer linear programs (MILPs), Markov de-

cision processes (MDPs), or a combination of such models. Because of their underlying stochasticity and

extremely large decision spaces, these problems are generally solved without optimality guarantees; solu-

tion techniques include approximate dynamic programming [e.g., 25, 53], neighborhood search [14], and

tailored heuristics [17]. Such models may be suf�cient for day-to-day operational usage. However, it is

dif�cult to perform high-level SDD system design with detailed operational models since they often require

signi�cant computational effort to approximately solve even moderately-sized instances, without optimality

guarantees, over a single set of design parameters. While simulation is an option for gaining managerial

insights [43, 48], the lack of transparency and interpretability in simulation-based methods motivates a need

for simpler analytical approaches to SDD system design problems.

While we are not aware of any literature directly studying service region sizing and design for SDD

systems, a few papers examining operational problems have considered how service regions in�uence their

modeling and results. Notably, [13] formulates an operational SDD model where the dispatcher of the

system can choose whether or not to accept SDD orders, but is constrained to accept orders across different

customer zones at the same rate. The authors note that the bene�ts of enforcing such fairness constraints

come at the cost of lowering the total quantity of served orders. Another work [12] that also allows a

dispatcher to accept or reject orders for SDD observes that as the service day progresses, the operator is less

likely to accept orders from customers living farther away from the depot if the dispatcher is to maximize

the number of orders served. Finally, [49] present empirical evidence that allowing service regions to vary

allows meal delivery systems to substantially reduce lateness for customers.

Seminal works in the area of continuous approximations for vehicle routing show that the expected

length of vehicle tours can be functionally approximated by the number of stops in the tour, the region from

which demand points originate, and the probability distribution governing the points' locations. The foun-

dational Beardwood-Halton-Hammersley (BHH) Theorem [6] states that the expected length of an optimal

traveling salesperson problem (TSP) tour overn points in a region of areaA approachesb
p

An asn grows,

whereb is a region-, distribution- and metric-dependentrouting constant. Many studies analyze BHH-type

approximations of vehicle tour lengths in various settings [15, 16, 32, 33]. Various works have focused on

empirical estimation of BHH routing constants on stylized regions [3, 24] and real-world road networks

[30]. Comprehensive surveys of the continuous approximation literature, from fundamental works to recent

results and applications, are given by [2, 20].
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Recent papers [5, 11, 46] use continuous approximation methods to design last-mile e-commerce sys-

tems with very short delivery deadlines. In [46], the authors assume that SDD orders arrive from a prede-

�ned, �xed service region until some prede�ned cutoff time. In contrast, this work treats the service region

itself as a decision variable and allows the service region to vary over the course of the day. This additional

�exibility doubles the number of decision variables in the underlying mathematical optimization problems.

The authors in [46] seek to minimize the total routing time to serve all of the accrued SDD orders, whereas

the objective in this paper is to maximize the quantity of SDD orders that can be served daily. Therefore,

although both papers use continuous approximation techniques, the decision space, technical results, and

managerial insights in this paper are signi�cantly different from those in [46].

In a similar setting, again with a prede�ned �xed service region and cutoff time, [5] minimize the total

number of vehicles needed to serve SDD orders assuming the region is to be partitioned into single-vehicle

zones. Similarly, [11] also use continuous approximations to partition a �xed e-commerce service region

into single-vehicle delivery zones, enforcing the additional requirement that the expected order-to-delivery

time is equitable across all customers. This is in contrast to our SDD setting, in which customers simply

share the same end-of-day delivery deadline.

2 Model Formulation and Preliminary Results

We consider an SDD system with a single ful�llment center (or depot) from which a �eet of uncapacitated,

homogeneous vehicles is dispatched. Customer orders arrive via a two-dimensional (random) point process

beginning at the start of the service day. All orders are to be served (i.e., delivered) and all vehicles must

return to the depot by the end of the service day. Our goal is to design this system by selecting theservice

region: the geographical area, potentially varying over time, from which customers are permitted to place

SDD orders. The objective is to maximize the expected number of SDD orders served each day. We solve

this design problem via a continuous approximation model of the system characterized as follows.

Service Day:The beginning of the service day is denoted as timet = 0. The end of the service day, which

represents both the order delivery and vehicle return deadlines, is denoted as timet = T. We assume without

loss of generality thatT = 1 and all other parameters are appropriately scaled.

Service Region: At the start of the service day, and after each dispatch, we must determine the service

region from which SDD orders accrue until the next vehicle dispatch. Hence, if vehicles dispatch a total ofk
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times, the service region changes at mostk� 1 times over the course of the day; no service region exists after

the �nal vehicle dispatch since no orders can be placed after that time. We assume, unless stated otherwise,

that service regions grow concentrically from the depot, either in all directions or in a �xed direction (i.e.,

as a wedge). Speci�cally, regions are constructed so that the driving time from the depot to any point along

the outer edge of a region is equal. In practice, the shape of a region depends on the road network topology

and the depot's location. In our computational case studies, we consider travel in a real-world road network.

In this initial discussion, we illustrate our model with the simpler`1 or `2 metrics.

depot

A1

A2

(a) Circular service regions.

depot

A1

A2

(b) Quadrant service regions.

Figure 1: Concentric service
regions.

As a result, we can characterize a service region by its areaA; a

region can be equivalently characterized by its maximum driving time

radius. To illustrate, consider the service regions in Figure 1a. We as-

sume the travel time is given by the`2 metric, so regions are circular.

The initial region has areaA1, and after the �rst vehicle dispatch, the

service region shrinks to an areaA2 = A1=2; equivalently, the drive time

radius decreases by a factor of
p

2 from the �rst service region to the

second. Note that the �rst service region includes the full area within

the outer circle, including the inner circle. Figure 1b illustrates the same

service region structure restricted to the depot's northeast quadrant.

Customer Orders: SDD order requests accumulate continuously at a

rate ofl orders per unit time per unit area starting att = 0. At any given

time, SDD orders accumulate only within the current service region. All

accumulated orders must be served (i.e., delivered) byT. We assume the

order rate per time and area remains constant for any region we choose

to serve. In practice, this may only apply to regions within a certain size;

in Section 3.3, we discuss bounding the maximum service area.

Vehicle Dispatches:The �eet is comprised ofmhomogeneous vehicles.

Vehicles are not explicitly constrained by capacity nor are they restricted

to carry an integer number of orders. However, each vehicle in the �eet is allowed at mostD dispatches in

total over the service day, whereD is an integer. At each dispatch time, a vehicle leaves the depot with all

of the accumulated orders since the previous dispatch, implying a �rst in, �rst out (FIFO) order processing
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approach. Equivalently, dispatches do not batch or differentiate orders based on geography, and therefore

those orders are distributed uniformly across the service region associated with the dispatch.

Routing Time Function: The time it takes for a vehicle to dispatch from the depot, serven 2 R� 0 orders

uniformly distributed over a region of areaA, and return to the depot is given by a deterministic, contin-

uous routing time functionf (A;n) = c0
p

An, wherec0 is a known positive constant. For our analysis, we

equivalently de�ne the routing time function asf (A; t ) = cA
p

t , wheret is the accumulation time since the

previous dispatch andc = c0
p

l . The structure of the routing function is derived from the BHH theorem

[6] discussed earlier, which has been empirically shown to work well for relatively small and largen [Table

16.7 of 3]; recent work has leveraged this functional form for as few asn = 20 customers [28].

As a basic illustrative example, consider the system in Figure 2 with one vehicle (m= 1) that dispatches

twice (D = 2) over the course of the day. At the beginning of the day, the service region isA1, as depicted in

Figure 1a. Over a duration oft 1, a total ofl A1t 1 SDD orders accumulate in this service region. At timet 1,

the vehicle dispatches from the depot to serve these accumulated orders. Simultaneously, the service region

shrinks toA2, as depicted in Figure 1. Over a duration oft 2, a total ofl A2t 2 orders accumulate over this

smaller service region. At timet 1 + t 2, the vehicle dispatches from the depot to serve these orders. Note

that this example is feasible: all accumulated orders are served, the vehicle never dispatches before it returns

to the depot from a prior trip, and the vehicle returns to the depot for the �nal time beforeT = 1.

t 1 t 2

f (A1; t 1) = cA1
p

t 1 f (A2; t 2) = cA2
p

t 2

0 T = 1

Figure 2: Basic model illustration.

2.1 General Mathematical Formulation

The goal of this decision problem is to choose a set of feasible accumulation times and service regions in

order to maximize the number of SDD orders served. We formally de�ne thed-th time-ordered dispatch as

a tuple(t d;Ad; id), wheret d de�nes the order accumulation time (since the previous dispatch, or sincet = 0

for the �rst dispatch) for vehicleid serving all of the accumulated orders in a region of areaAd. A set of

dispatchesf (t d;Ad; id)gmD
d= 1 de�nes apolicy. A policy is feasible for our model if the following conditions

are satis�ed:
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d

å
d= 1

t d + f (Ad; t d) � 1 8d 2 [mD]; (1a)

d

å
d= 1

t d + f (Ad; t d) �
d0

å
d= 1

t d 8d 2 [mD]; d0s.t. id = id0; d < d0; (1b)

id 2 [m] 8d 2 [mD]; (1c)

Ad; t d � 0 8d 2 [mD]: (1d)

The objective is to maximize the total number of SDD orders served,å mD
d= 1 l Adt d, subject to the con-

straints (1a)-(1d). Constraint (1a) ensures that all vehicles will return to the depot by the end of the service

day. Constraint (1b) ensures that each vehicle returns to the depot prior to any of its subsequent dispatches.

Constraint (1c) assigns each dispatch to a vehicle in the �eet. Lastly, (1d) enforces non-negativity for the

service area and accumulation time variables.

This is the most general statement of the problem; we next study speci�c variants motivated by practical

considerations. Concurrently, we use results derived for these speci�c variants to analyze features of the

general model. Henceforth, we denote a setting withm vehicles andD dispatches per vehicle ashm;Di for

clarity and notational convenience. We letzm;D denote the optimal objective value of anhm;Di problem

with the constraints and objective described above.

2.2 One Vehicle, One Dispatch

We begin our analysis by studying the simplest case, with one vehicle that is permitted to dispatch once per

day. Such a system may be of interest to a small retailer with limited resources and limited scope for online

optimization during the service day. More importantly, studying suchh1;1i systems can provide insights on

how to approach the optimization of more complicated families of problem instances.

In this h1;1i setting, the system designer is responsible for two choices: determining the service area

A1 and the duration of timet 1 during which customers can place orders. Sincem = D = 1, Problem (1)

simpli�es to the following:

max
A1;t 1� 0

l A1t 1 (2a)

s.t. t 1 + cA1
p

t 1 � 1: (2b)

Intuitively, we face a tradeoff between the two decision variables. If the service area is too large, we can

only accumulate SDD orders for a shorter duration to ensure that the vehicle has suf�cient time to service
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all customers. Similarly, if we allow customers to place SDD orders for an excessive duration, we must

concurrently shrink the service region to shorten the vehicle's tour duration. Our goal is to balance these

factors in such a way that the total number of SDD orders is maximized.

We �rst observe that it is inef�cient for the vehicle to idle at the depot after completing its dispatch. If

the vehicle returns to the depot prior toT, the continuity off implies that we can increase the service area,

accumulation time, or both; this improves the objective while maintaining feasibility. As a result, constraint

(2b) is tight at optimality. This observation, which will prove useful in analyses of more complicated sys-

tems, allows us to reduce the decision space to only the accumulation time variable. Speci�cally, given a

�xed accumulation timet 1 2 (0;1], the service area that maximizes the number of orders ful�lled in the

h1;1i setting is given byA1 = 1� t 1
c
p

t 1
via rearranging the constraint.

We can now reformulate the problem solely over the variablet 1:

max
t 12[0;1]

l
c

(1� t 1)
p

t 1:

This problem can be solved analytically via the �rst-order condition. The optimal solution ist �
1 = 1

3, invari-

ant to the values ofc andl , with optimal objective valuez1;1 = l
c

2
3
p

3
, and it follows thatA�

1 = 2
c
p

3
.

Consider the following example of ah1;1i system. For simplicity, suppose that the travel time between

points is given by thè1 metric to approximate a grid-like road network. Orders accumulate at a rate of

0.5 per hour per square mile within the chosen service region. The service day ranges from 9 AM to 6

PM, and the vehicle travels at 20 mph. Using the empirically estimated BHH constant of 1.0533 (with

units of orders� 1=2) from [5], we arrive at parameter values ofl = 4:5 andc = 1:0533
p

4:5
20� 9 � 0:0124. Via

the results above, the optimal service area is approximately 93.02 sq. mi.; the vehicle dispatches at noon

with approximately 93:02� 3� l = 139:53 orders and returns to the depot at 6 PM. The service region is a

diamond centered at the depot with a driving radius of approximately 6.82 mi.

In practice, it may be necessary to impose a restriction on the size of the service area. For example, the

modeling of customer order arrivals and the routing time function may rely on a speci�c customer density

which is bounded geographically, or the SDD retailer may only have regulatory authorization to operate

within a certain area. To account for such a restriction, we can introduce the constraintA1 � B into the

model. Proposition 1 extends the optimization results of the baseh1;1i model under this constraint.

Proposition 1. The optimal dispatching policy for theh1;1i model where the service area is bounded by
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A1 � B is to serve an area of A�1 = min
n

2
c
p

3
;B

o
after accumulating orders for a durationt �

1 , wheret �
1

uniquely solvest �
1 + cA�

1

p
t �

1 = 1.

Proof. See Appendix A.1.

3 Multiple Vehicles, One Dispatch Each

Suppose the SDD system has a �nite �eet ofm> 1 vehicles, each dispatching once per day. The analysis

of this hm;1i setting is more complex, but it admits more sophisticated managerial insights. Speci�cally,

studying this setting allows us to answer the following fundamental question: can allowing service regions

to vary over time improve the total order service rate of an SDD system?

We must now determine the service regionAd and accumulation timet d for each dispatchd 2 [m]

(or, equivalently, for each vehicle). Figure 3 depicts an example dispatching policy (not necessarily optimal)

whenm= 2; observe the difference in the service area associated with each vehicle. The formal optimization

problem associated with thehm;1i model is as follows:

max
A;ttt � 0

m

å
d= 1

l Adt d (3a)

s.t.
d

å
d= 1

t d + cAd
p

t d � 1 8d 2 [m]: (3b)

Constraints (3b) in particular de�ne a 2m-dimensional non-convex feasible region, implying that the problem

may be dif�cult to solve by conventional methods.

t 1 t 2

A2

A1

0 T = 1

Figure 3: hm;1i dispatching policy example.

However, as in the single-vehicle case, it is inef�cient for a vehicle to leave idle time after its return to

the depot. If a vehicled 2 [m] returns to the depot prior toT, the continuity off implies that we can slightly

increase the service area associated with the vehicle's dispatch. This increasesl Adt d (and thus the overall

objective) while satisfying vehicled's feasibility condition. Additionally, increasingAd does not affect the
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operation or service area of any other vehicle, so overall feasibility is maintained as well. Therefore, the

constraints (3b) are all tight at optimality. By simple inspection, the dispatching policy illustrated in Figure

3 is thus suboptimal. Analogous to theh1;1i setting, we can again reduce the decision space to only the

accumulation time variables. Proposition 2 formalizes this result.

Proposition 2. Given a set of positive accumulation times,f t 1; t 2; : : : ; t mg for thehm;1i model, the service

areas that maximize the total number of orders served are given by Ad = 1� å d
d= 1 t d

c
p

t d
, for all d 2 [m].

Proof. See Appendix A.2.

Here is another interpretation of the argument above: given a set of accumulation times, each vehicle is

indifferent to the service regions associated with the otherm� 1 vehicles. Hence, given a set of accumulation

times, each vehicle operates within its own region with a truncated service day. Nevertheless, this does

not imply that vehicles can be dispatched in a greedy fashion throughout the service day. The dispatcher

must still determine the set of optimal accumulation times, which are linked since each accumulation time

in�uences the departure times of later dispatches.

Applying Proposition 2, we arrive at the following optimization problem:

max
ttt � 0

l
c

m

å
d= 1

(1�
d

å
d= 1

t d)
p

t d (4a)

s.t.
m

å
d= 1

t d � 1: (4b)

Solving this problem to optimality may still be computationally inef�cient due to the non-linear, non-convex

objective. We therefore seek an ef�cient solution method.

3.1 Model Analysis and Structural Properties

Consider the perspective of the system manager immediately after the �rst vehicle dispatches,i.e., at t =

t 1. Once this occurs, the �rst vehicle has no further bearing on the service areas or accumulation times

associated with the remainingm� 1 vehicles. Intuitively, the subsequent decisions are “memoryless” with

respect to the �rst vehicle, equivalent to starting withm� 1 vehicles but with a reduced service day.

Algorithmically, we can use this property to derive a recursive solution procedure for thehm;1i family of

instances. Consider the speci�c case ofm= 2. At the time of the �rst vehicle's dispatch, we know exactly

how to optimize the second vehicle's dispatch over the service day's remaining duration, 1� t 1. This is
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true no matter the actual value oft 1: by our analysis in Section 2.2, the second vehicle should dispatch

after accumulating orders for one third of the remaining day in order to optimize its total orders served.

Given thatt 2 = ( 1� t 1)=3 in an optimal solution, we can ef�ciently optimize solely overt 1 to optimize

the overall problem. In general, given knowledge of the structure of an(m� 1)-vehicle optimal solution,

we can ef�ciently solve fort 1 in the m-vehicle problem. Theorem 3 formalizes this idea into a solution

approach. For clarity in exposition, we introduce the notationt m;d andAmd to denote the accumulation time

and service area, respectively, of thed-th dispatch in thehm;1i model. Similarly,t �
m;d andA�

m;d denote the

optimal values of these variables.

Theorem 3. Given the optimal dispatch policyf (t �
m;d;A�

m;d)gm
d= 1 for the hm;1i model with an objective

value of zm;1 = l
c å m

d= 1 (1� å d
d= 1 t �

m;d)
q

t �
m;d, we can formulate thehm+ 1;1i optimization problem as

max
0� t m+ 1;1� 1

l
c

(1� t m+ 1;1)
p

t m+ 1;1 + ( 1� t m+ 1;1)1:5zm;1: (5)

Furthermore, we can perform the following updates to thehm;1i optimal policy to obtain thehm+ 1;1i

optimal policy:

t �
m+ 1;d  (1� t �

m+ 1;1)t �
m;d� 1 8d 2 f 2; : : : ;m+ 1g;

A�
m+ 1;d  A�

m;d� 1

q
1� t �

m+ 1;1 8d 2 f 2; : : : ;m+ 1g;

A�
m+ 1;1  

1� t �
m+ 1;1

c
q

t �
m+ 1;1

:

Proof. See Appendix A.3.

Beginning with the solution form= 1, which we computed in Section 2.2, we can iteratively compute the

optimal dispatching solution and objective for anym using the method above. We next seek to guarantee

that the optimization problem in (5) is ef�ciently solvable.

Another property of optimal dispatching solutions proves useful to this end. Intuitively, we expect that

the optimal total quantity of orders served increases as the number of vehiclesm increases. Concurrently,

the optimal �rst accumulation time shrinks towards zero as the number of vehicles increases. Theorem 4

formalizes this result.

Theorem 4. As the number of vehicles m in thehm;1i model increases, the optimal accumulation time of

13



the �rst vehiclet �
m;1 strictly decreases, and the total number of SDD orders zm;1 served strictly increases.

Furthermore, as m! ¥ , t �
m;1 ! 0 and zm;1 ! ¥ ; speci�cally, zm;1 = Q(

p
m).

Proof. See Appendix A.4.

It follows that the optimal solution to problem (5) lies within the interval
h
0; t �

m;1

i
. Hence, we can instead

solve the following problem within our solution procedure:

max
0� t m+ 1;1� t �

m;1

l
c

(1� t m+ 1;1)
p

t m+ 1;1 + ( 1� t m+ 1;1)1:5zm;1: (6)

Additionally, the objective function in Problem 6 is concave over[0; t m;1] (see Lemma 19, Appendix A.8).

As a result, optimizing Problem 6 is guaranteed to be ef�cient, as is our overall solution method. Observe

that we began with a formulation over 2m decision variables in Problem 3, reduced the decision space in

half via Proposition 2, and �nally arrived at a recursive, one-variable concave maximization problem.

Recall our example from Section 2.2 with`1 travel distances and times,l = 9, andc � 0:0124. Using

the approach described above, implemented in MATLAB 2019b usingfminbnd to solve (6) to optimality,

we calculated the optimal solutions for these parameters up tom= 4. The results are displayed in Table 1,

and the solutions form= 1;2;3 are illustrated to scale in Figure 4. Note that the relative scale of areas and

quantities across different values ofm is invariant tol andc. Additionally, the accumulation and dispatch

departure times are invariant tol andc; e.g., the second dispatch's optimal departure time in theh3;1i

model is always 11:34 AM when the service day is 9 AM to 6 PM regardless of the values ofl andc.

These computed values suggest clear trends concerning the structure of optimalhm;1i dispatching poli-

cies, which may provide important insights to system managers. First, we observe diminishing marginal

returns in the total order quantity as more vehicles are added to the system. This potential trend suggests

that, at some point, operating an additional vehicle may provide no practical bene�t in thehm;1i setting.

Indeed, it can be shown that this is always the case; Proposition 5 formalizes this property.

Proposition 5. There is a strictly decreasing marginal gain in additional orders served in thehm;1i model

when adding an additional vehicle. That is,(zm+ 2;1 � zm+ 1;1) < (zm+ 1;1 � zm;1) for all m � 1.

Proof. See Appendix A.5.

We also observe that, over the course of the day, dispatch accumulation times seem to increase while

service areas seem to decrease. The proof of Proposition 6 shows that these observations indeed hold for any
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Dispatch #
Accum.
Time (hrs.)

Area
(sq. mi.)

Radius (mi.) Depart. Time Orders

m= 1 1 3.00 93.02 6.82 12:00 PM 139.53
Total 139.53

m= 2 1 1.66 153.16 8.75 10:39 AM 126.92
2 2.45 84.02 6.48 1:06 PM 102.82
Total 229.74

m= 3 1 1.12 200.12 10.00 10:07 AM 111.91
2 1.45 143.33 8.47 11:34 AM 104.01
3 2.14 78.63 6.27 1:42 PM 84.27
Total 300.19

m= 4 1 0.84 239.71 10.95 9:50 AM 100.24
2 1.01 190.60 9.76 10:51 AM 96.68
3 1.31 136.51 8.26 12:10 PM 89.85
4 1.94 74.89 6.12 2:06 PM 78.80
Total 359.57

Table 1: Example computed optimal dispatching policies for thehm;1i model, up tom= 4.

9 AM 12 PM 3 PM 6 PM

9 AM 12 PM 3 PM 6 PM

9 AM 12 PM 3 PM 6 PM

Figure 4: Service regions and dispatching policies to scale form= 1;2;3 vehicles,hm;1i setting.

hm;1i system. The fact that optimal dispatch areas are strictly decreasing is an important design implication

since, from a customer's perspective, it implies that SDD offerings will not “�uctuate” during the course of

a service day.

Proposition 6. In the optimal dispatch policy for thehm;1i model, accumulation times are strictly increas-
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ing while service areas are strictly decreasing; that is,t �
m;1 < t �

m;2 < � � � < t �
m;m and A�

m;1 > A�
m;2 > � � � > A�

m;m.

Proof. See Appendix A.6.

Furthermore, the result veri�es the intuition that the system can operate more ef�ciently by limiting

faraway customers to an earlier cutoff, and simultaneously offering nearby customers SDD until later in the

day. As the �eet size increases, the system's overall footprint (the largest area served) increases, but some

customers are worse off. For instance, by increasing the �eet from one to two vehicles, we can signi�cantly

increase the area where we offer SDD and the total number of orders served; however, some customers will

experience a reduced SDD order cutoff. In the example, customers outside of a 6.48-mile radius but within

a 6.82-mile radius would only be able to place SDD orders until 10:39 AM instead of noon.

We note here that ourhm;1i algorithms and results remain applicable to a similar setting in which the

routing function is of the formf (A; t ) = b+ cA
p

t ; the b term may be included to account for dispatch

setup times or linehaul travel between a distant depot and the region. Because every vehicle's working time

is essentially reduced byb, we can simply subtractb from the service day's durationT and proceed as usual.

3.2 Bounding the Multiple-Dispatch Case

Thehm;1i model is appealing from an operational perspective, as it is simple to implement; each vehicle is

only dispatched once, with a planned return at the end of the day. A manager may therefore wonder how

much the system gains by adding dispatches, which may complicate the depot's operations.

Consider the generalhm;Di model (1) with arbitrarymandD, and recall thatzm;1 = Q(
p

m) by Theorem

4. A simple corollary of this result characterizes the objective's growth for arbitrarymandD.

Corollary 7. zm;D = O(
p

mD), and, for any �xed D, zm;D = Q(
p

m).

Proof. See Appendix A.7.

Corollary 7 generalizes the growth rate of thehm;1i model to the case of an arbitrary number of dis-

patches. In particular, it implieszm;D=zm;1 = O(
p

D), which means that the system's potential gains from

allowing D dispatches per vehicle instead of one are limited. However, Corollary 7 does not rule out the

unlimited growth ofzm;D asD ! ¥ for a �xed �eet sizem. In Section 4, we strengthen this upper bound by

leveraging results from theh1;Di case.
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3.3 Impact of Constrained Service Regions

The precedinghm;1i results assume the SDD service area is unbounded and can be chosen as large as

necessary. In particular, as the �eet sizemgrows, the largest service areaA�
m;1 tends to in�nity. Nonetheless,

in practical situations it is natural to expect that the service area must be limited, either explicitly, such as by

regulations that determine the maximum area where a company can offer SDD, or implicitly because SDD

demand decreases or disappears once we are too far from the depot. Motivated by these considerations, we

now consider thehm;1i model where service areas are bounded by a maximum areaB > 0.

As before, the resulting optimization problem is non-linear and non-convex; therefore, we are interested

in an ef�cient solution method. A natural idea is to compareA�
1 in the unconstrained solution toB. By

Proposition 6, as long as the �rst service region has an area smaller than thanB, the unconstrained solution

is feasible, and therefore optimal for the constrained problem. IfA�
1 > B, we �x A1 = B and chooset 1 so the

�rst vehicle returns atT. We then re-optimize with respect to the remainingm� 1 vehicles and the remaining

service day, repeating the process as required. Theorem 8 states that this intuitive procedure, formalized in

Algorithm 1, indeed produces an optimal dispatching policy.

Theorem 8. For thehm;1i model with an upper bound B> 0 on the service areas, Algorithm 1 returns an

optimal policy. Additionally, the optimal areas satisfy A�
m;1 � A�

m;2 � � � � � A�
m;m.

Proof. See Appendix A.8.

3.4 Value of Varying Service Regions

We now return our focus to the original question regarding the bene�t of allowing service regions to vary

over time. To this end, we study the samehm;1i model with the additional requirement that the service

area must stay constant over the course of the day until the �nal vehicle's dispatch. Formally, we add the

constraintA = A1 = A2 = � � � = Am. The optimization problem for the �xed-areahm;1i model is as follows:

max
A;ttt � 0

m

å
d= 1

l At d (7a)

s.t.
d

å
d= 1

t d + cA
p

t d � 1 8d 2 [D]: (7b)

In the variable-areahm;1i optimization model (3), we simpli�ed the optimization problem by noting

that, for a given set of accumulation times, the service areas should be as large as possible in order to serve
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Algorithm 1 Iterative solution procedure for the constrainedhm;1i model

1: givenvehiclesm, area upper boundB, parametersc; l
2: initialize remaining service day timeTvar  1, remaining vehiclesw  m
3: while w > 0 do
4: calculate the optimal policyf (t �

w;d;A�
w;d)gw

d= 1 to the unconstrainedhw;1i model as given by (3)
5: Let t �

w;d  t �
w;dTvar 8d 2 [w]

6: Let A�
w;d  A�

w;d
p

Tvar 8d 2 [w]
7: if A�

w;1 � B then
8: A�

m;m� w+ d  A�
w;d 8d 2 [w]

9: t �
m;m� w+ d  t �

w;d 8d 2 [w]
10: w  0
11: else
12: A�

m;m� w+ 1  B

13: t �
m;m� w+ 1  Tvar + cB

2

�
cB�

p
(cB)2 + 4Tvar

�

14: w  w� 1
15: Tvar  Tvar � t �

m;m� w+ 1
16: end if
17: end while
18: return optimal dispatching policyf (t �

m;d;A�
m;d)gm

d= 1

a maximal number of orders. In the �xed-area setting, this is generally not possible since all areas must be

equal. However, we can show that it is still a dominant dispatching policy to have all of the vehicles return

to the depot exactly at the end of the service day. This implies that, for any given �xed service area, all of

the constraints (7b) are tight at optimality. Proposition 9 formalizes this result.

Proposition 9. Consider a variant of thehm;1i model where each service region serves a �xed area of

size A> 0. The set of accumulation times that maximize the total number of orders served are such that

å d
d= 1 t d + cA

p
t d = 1 for all dispatches d2 [D].

Proof. See Appendix A.9.

Unfortunately, while the resulting problem is more tractable than (7), we don't have a method analogous

to that described in Theorem 3 to optimize for the order-maximizing area. Therefore, we rely on general-

purpose numerical optimization software to solve for the optimal dispatching policy. To facilitate global

optimality certi�cation, such software may require bounds on all decision variables. Proposition 10 provides

an ef�ciently computable upper bound onA to the optimization routine.

Proposition 10. Let f (t �
d ;A�

d)gm
d= 1 denote the optimal solution to the variable-areahm;1i problem. The

optimal area A�= associated with the �xed-areahm;1i problem satis�es A�= � 1� t �

c
p

t � , wheret � 2
�
0; 1

3

�
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uniquely solves
1
c

p
t (1� t ) =

1
m

A�
m

m

å
d= 1

t �
d : (8)

Proof. See Appendix A.10.

We solve this optimization problem via BARON 21.1.13 [41, 47] within a numerical tolerance not exceeding

10� 7. For comparison with the time-varyinghm;1i model, Table 2 presents the computed solutions to the

�xed-areahm;1i model with parameters identical to the problem studied in Table 1. Figure 5 compares the

variable-area and �xed-area solutions to scale form= 2.

Dispatch #
Accum.
Time (hrs.)

Area
(sq. mi.)

Radius (mi.) Depart. Time Orders

m= 1 1 3 93.02 6.82 12:00 PM 139.53
Total 139.53

m= 2 1 2.21 122.71 7.83 11:12 AM 135.51
2 1.39 122.71 7.83 12:36 PM 85.57
Total 221.08

m= 3 1 1.76 146.66 8.56 10:45 AM 128.92
2 1.22 146.66 8.56 11:58 AM 89.24
3 0.89 146.66 8.56 12:51 PM 64.94
Total 283.10

m= 4 1 1.46 167.28 9.15 10:27 AM 122.23
2 1.08 167.28 9.15 11:32 AM 89.96
3 0.82 167.28 9.15 12:21 PM 68.65
4 0.64 167.28 9.15 1:00 PM 53.94
Total 334.79

Table 2: Example computed optimal dispatching policies for the �xed-areahm;1i model, up tom= 4.

As before, the relative scale of areas and quantities across different values ofm is invariant tol and

c. Additionally, the accumulation and dispatch departure times are invariant tol andc. Therefore, the

relative objective value gaps between the �xed-area and variable-area models are invariant tol andc. We

can use Tables 1 and 2 to compare the objective values between the two models. Whenm= 2, 3.9% more

SDD orders can be served by allowing the service regions to vary. This gap is 6.0% and 7.4% form = 3

andm = 4, respectively. Empirical evidence for up tom = 10 suggests that both the relative and absolute

gap in the optimal order �ll rate between the �xed-area and variable-area models increase withm, albeit at a

decreasing rate. Therefore, we can conclude that allowing service areas to vary over time leads to signi�cant

gains in the SDD order quantity served in thehm;1i setting for realistic values ofm.
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9 AM 12 PM 3 PM 6 PM

9 AM 12 PM 3 PM 6 PM

Figure 5: Variable-area solution vs. �xed-area solution to scale,h2;1i setting

These results also highlight the equity trade-offs involved in SDD service region design. In the example

results described in Tables 1 and 2, whenm= 2, varying service regions between dispatches yields a system

footprint (largest service region) equivalent to an 8.75-mile driving radius. By restricting the system to

a single, unchanging service region, we reduce the footprint to a 7.83-mile radius, a decrease of over 30

square miles. In other words, by requiring all customers in the chosen service region to be treated equally,

we implicitly deny SDD to other customers that could be served in a more �exible system.

4 One Vehicle, Multiple Dispatches

The results in the previous section illustrate the effects of a changing �eet size on the SDD system using

thehm;1i model, which assumes each vehicle makes a single dispatch per day. In this section we study the

potential bene�t of allowing a vehicle to make additional dispatches over varying service areas, using the

h1;Di model. One potential use of theh1;Di model, which we illustrate in Section 5 on a real-world road

network, is for partitioning schemes, where each vehicle is responsible for a wedge-shaped region emanating

from the depot. Our analysis of theh1;Di model is also useful to compare thehm;1i andhm;Di models.

Formally, we wish to �nd an optimal dispatch policyf (t �
d ;A�

d)gD
d= 1 for the following problem:

max
A;ttt � 0

D

å
d= 1

l Adt d (9a)

s.t.
D

å
d= 1

t d + cAD
p

t D � 1; (9b)

cAd
p

t d � t d+ 1 8d 2 [D � 1]: (9c)
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Constraint (9b) requires the vehicle to return to the depot by the end of the service day after its �nal dispatch,

while constraints (9c) require the vehicle to return to the depot prior to departing on its next dispatch. Note

that constraints (1b) reduce to (9c) whenm= 1. Figure 2 is an example of a feasible policy forD = 2.

4.1 Model Analysis and Structural Properties

Analogously to the previous models, it is inef�cient to leave the vehicle idle between dispatches. If a vehicle

waits at the depot after completing itsd-th dispatch, the total number of orders served can be increased by

slightly increasingAd. Proposition 11 formalizes this observation.

Proposition 11. Given a set of positive accumulation timesf t 1; t 2; : : : ; t Dg for theh1;Di model, the set of

service areas which maximize the total number of served orders are given by Ad = t d+ 1
c
p

t d
for all d < D, and

AD = 1� å D
d= 1 t d

c
p

t D
.

Proof. See Appendix A.11.

This result implies that the dispatching policy in Figure 2 is suboptimal. Having no idle vehicle time

during the course of the day after the �rst dispatch is a property found in other SDD planning models [e.g.

5, 26, 46] with deterministic order arrivals. More generally, this result also suggests that minimizing vehicle

idle time between dispatches may be bene�cial at the operational level.

Knowing that we can choose service areas to maximize orders served given a set of accumulation times,

we focus on choosing the best set of accumulation times for the system. This reduces (9) to

max
ttt � 0

l
c

 
D� 1

å
d= 1

t d+ 1
p

t d +

 

1�
D

å
d= 1

t d

!
p

t D

!

(10a)

s.t.
D

å
d= 1

t d � 1: (10b)

We solve this simpli�edd-dimensional problem (with a non-concave objective) over a convex set via

BARON within a tolerance not exceeding 10� 7. We compute optimal solutions for up toD = 4 for the

same setting considered in Tables 1 and 2. Summary results are presented in Table 3, and optimal policies

for up toD = 3 are illustrated in Figure 6. As in the previous settings, the relative scale of areas and quan-

tities across different values ofD is invariant tol andc, and the accumulation and dispatch departure times

are invariant tol andc.
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Dispatch #
Accum.
Time (hrs.)

Area
(sq. mi.)

Radius (mi.) Depart. Time Orders

D = 1 1 3 93.02 6.82 12:00 PM 139.53
Total 139.53

D = 2 1 1 107.41 7.33 10:00 AM 53.71
2 4 53.71 5.18 2:00 PM 107.41
Total 161.12

D = 3 1 0.15 109.06 7.38 9:09 AM 8.20
2 1.58 88.23 6.64 10:43 AM 69.49
3 4.12 41.66 4.56 2:50 PM 85.90
Total 163.60

D = 4 1 0.0016 109.09 7.39 9:00 AM 0.09
2 0.16 106.94 7.31 9:09 AM 8.69
3 1.61 87.44 6.61 10:46 AM 70.20
4 4.13 41.04 4.53 2:53 PM 84.66
Total 163.64

Table 3: Optimal dispatching policies for theh1;Di model for up toD = 4 dispatches.

9 AM 12 PM 3 PM 6 PM

9 AM 12 PM 3 PM 6 PM

9 AM 12 PM 3 PM 6 PM

Figure 6: Service regions and dispatching policies to scale forD = 1;2;3 dispatches,h1;Di setting.

We observe an increase in total orders served of 15.5% when using two dispatches instead of one.

However, the marginal improvement when adding dispatches shrinks rapidly: only 1.5% more orders are

served when using three dispatches instead of two, and only 0.002% more orders are served when using four

dispatches instead of three. A similar trend is evident when observing the �rst dispatch times and quantities
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as the number of total dispatches increases. WhenD = 3, the �rst dispatch accumulates only a handful

of orders for less than the �rst ten minutes of the day before dispatching. WhenD = 4, the �rst dispatch

is entirely insigni�cant: the vehicle dispatches less than a minute into the day to serve less than one-tenth

of an order. As a practical design implication, this suggests a vehicle should not be dispatched more than

twice in a service day in SDD settings similar to the one we describe, as the marginal gains from additional

dispatches are negligible.

As in the multiple-vehicle case, these results also highlight equity trade-offs in terms of SDD access.

Compared to a single dispatch, by allowing two dispatches that serve different regions, we increase the

system's overall footprint from 93 to 107 square miles. However, customers outside a 5.18-mile driving

radius but within a 6.82-mile radius see their SDD order cutoff reduced from noon to 10 AM.

Recall the behavior of the variable-areahm;1i model asmincreases: despite decreasing marginal returns,

the total number of orders served grows with
p

m, and the �rst (largest) service area grows to in�nity.

Naturally, we ask whether the same is true in theh1;Di systems; Lemma 12 and Theorem 13 state that

this is not the case. Speci�cally, we show that the maximum number of orders that can be served with any

number of dispatchesD is no more than twice the number of orders served by the optimalh1;1i solution.

Our empirical calculations suggest that this factor is in fact tighter, approximately 1.18 times the optimal

h1;1i order quantity.

Lemma 12. In the optimal dispatch policy for ah1;Di model, optimal service areas are bounded with

respect to a function of the D-th optimal accumulation time. Speci�cally, A�
d � 2

c

p
t �

D for all d < D.

Proof. See Appendix A.12.

Theorem 13. For any D, z1;D � 2z1;1 = 4l =c3
p

3.

Proof. See Appendix A.13.

4.2 Improved Bounds for the Multiple-Dispatch Case

Theorem 13 allows us to more precisely analyze thehm;Di model and compare it tohm;1i , where we only

allow one dispatch per vehicle.

In Section 3 we showed that,zm;D = O(
p

D) when m is �xed. A direct application of Theorem 13

provides a stronger result: for a �xedm, the total quantity of orders served is bounded above, regardless of

the number of dispatches per vehicleD.
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Theorem 14. For a �xed m and for any D, zm;D � 2mz1;1 and zm;D � 16zm;1
p

m=27� 3:1zm;1
p

m.

Proof. See Appendix A.14.

As a consequence of this result,zm;D=zm;1 is bounded above by a constant for any �xedm. In other

words, there is limited bene�t to considering additional dispatches per vehicle regardless of the �eet size.

4.3 Value of Varying Service Regions

We return to our primary question of quantifying the bene�t associated with allowing areas to vary between

dispatches in theh1;Di setting. As in thehm;1i setting, we now consider the �xed-area variant of theh1;Di

model with the added constraintA = A1 = A2 = � � � = Am. The resulting optimization problem is as follows:

max
A;ttt � 0

D

å
d= 1

l At d (11a)

s.t.
D

å
d= 1

t d + cA
p

t D � 1; (11b)

cA
p

t d � t d+ 1 8d 2 [D � 1]: (11c)

As in previous models, at optimality a vehicle does not idle after a dispatch. This property allows us

to reduce the search space for the optimization problem. Proposition 15 formalizes this property for the

�xed-areah1;Di model, expressed in terms of the total accumulation time and is a known result [5].

Proposition 15 ([5], Theorems 2 and 3). Consider the �xed-areah1;Di model. Given a �xed total accu-

mulation timeå D
d= 1 t D 2 (0;1), the area A and set of accumulation timest 1; : : : ; t D that maximize the total

number of orders served satisfy

cA
p

t d = t d+ 1; 8d < D;
D

å
d= 1

t d + cA
p

t D = 1:

In other words, after the �rst dispatch, the vehicle never idles at the depot, and it returns to the depot exactly

at the end of the service day after the last dispatch.

Therefore, constraints (11b) and (11c) hold at equality at an optimal solution. Additionally, values from

the optimal solutions to the variable-areah1;Di problem can be used to derive an upper bound virtually

identical to Proposition 10 on the optimal area in the �xed-area problem (see Appendix A.10 for further
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Dispatch #
Accum.
Time (hrs.)

Area
(sq. mi.)

Radius (mi.) Depart. Time Orders

D = 1 1 3 93.02 6.82 12:00 PM 139.53
Total 139.53

D = 2 1 1.06 77.35 6.22 10:03 AM 41.14
2 2.97 77.35 6.22 1:02 PM 114.91
Total 156.05

D = 3 1 0.20 72.57 6.02 9:11 AM 7.13
2 1.20 72.57 6.02 10:23 AM 43.47
3 2.96 72.57 6.02 1:21 PM 107.32
Total 157.92

D = 4 1 0.0057 72.15 6.01 9:00 AM 0.21
2 0.20 72.15 6.01 9:12 AM 7.34
3 1.21 72.15 6.01 10:25 AM 43.72
4 2.95 72.15 6.01 1:22 PM 106.71
Total 157.97

Table 4: Optimal dispatching policies for the �xed-areah1;Di model for up toD = 4 dispatches.

details). We again calculate optimal solutions via BARON with tolerance not exceeding 10� 7 for the same

parameter settings. Table 4 summarizes results for up toD = 4 dispatches, and Figure 7 compares the

variable-area and �xed-area solutions forD = 2.

9 AM 12 PM 3 PM 6 PM

9 AM 12 PM 3 PM 6 PM

Figure 7: Variable-area solution vs. �xed-area solution to scale,h1;2i setting.

We observe some structural similarities between optimal policies for the variable-area and �xed-area

settings, but one notable difference: as the number of dispatches increases, the area served by the �xed-area

model actuallydecreases. In a �xed-area setting, when dispatches increase the system perceives gains from

shrinking its footprint while offering SDD until later to its reduced customer base.

The �xed-area solutions also exhibit minimal marginal gains in the total orders served beyondD = 2
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dispatches. Additionally, the �rst dispatch rapidly shrinks to insigni�cance. Most importantly, we observe

that allowing service areas to vary in ah1;2i model leads to an additional 3.2% orders served over the

course of the service day. As in thehm;1i case, this highlights equity trade-offs in SDD access that we

discuss further in the following section, in the context of a real-world case study.

5 Computational Examples

In this section, we describe results of a case study designed using realistic data from a metropolitan area,

including with dispatch time functions calibrated with drive times from its road network. For selected

examples, we also validate our models against a more detailed operational setting in which we simulate a

service day with order arrivals given by a Poisson point process, and dispatch durations calculated on the

road network. We use these computational examples to motivate further discussion regarding the roles of

equity and access considerations in the design of SDD systems.

The study is set in the Phoenix, Arizona metropolitan area, with the depot located in the major suburb

of Glendale, Arizona. Each service day begins at 9 AM and ends at 6 PM. We assume a homogeneous order

rate of 0.2 orders per hour per square mile. For additional realism, we assume each delivery incurs a service

time of one minute, which may include time taken to load the package onto the vehicle at the depot or time

taken for the vehicle driver to drop off packages at residences. Recall that our model assumes a dispatch

time function of the formc0
p

An, while including a per-order service time would seemingly require the

routing time function to include a linear component. We instead adhere to the original functional form, and

demonstrate that the model provides reliable solutions even when a small per-order service time is present.

For each instance in the study, we choose a distinct “best-�t” value of the BHH routing constantc0 via a

method detailed in Appendix B. A distinct value ofc0 is required for each instance because the value of the

constant exhibits dependence on various parameters (particularly area and orders served) when calibrated for

real-world road networks with multiple road types. At a high level, the method for choosing a value ofc0 for

a particular model proceeds as follows. First, the model is solved with an initial guess of the BHH constant.

Then, using the values ofA andn associated with each dispatch, a BHH constant is calculated for each

dispatch. The largest of these constants (or, alternately, some type of weighted average of these constants)

is set as the new overall BHH constant, which is used to re-solve the model. This process is repeated until

the BHH constant converges. Our routing constant estimation process is necessitated by the fact that areas

change between dispatches; we refer to [7, 30] for recent examples of routing constant estimation for static
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real-world regions.

For the order arrival process, customer locations are generated uniformly at random along the road net-

work using VeRoViz [36]. Speci�cally, initial customer locations are generated uniformly at random within

30 meters of an existing road, and each customer is then automatically assigned to its closest location on the

road network. Isochrones and actual driving times between customer locations are queried via Openroute-

service [21]. We calculate optimal vehicle tours with a standard arc-based asymmetric TSP formulation

implemented in Gurobi 9.1.1 via Python 3.7.3. We created all maps in Lea�et via VeRoViz.

5.1 Two Vehicles, One Dispatch Each

Figure 8: Service regions for variable-area
h2;1i solution.

We �rst study the multi-vehicle model; speci�cally, we con-

sider theh2;1i case with two vehicles, each dispatching once

per day. If the system planner allows service areas to vary

between each dispatch, the �rst and second vehicles serve ar-

eas of 186 square miles and 102 square miles, respectively.

To construct the corresponding service region for each ve-

hicle, we seek anisochrone(i.e., a zone for which all of

its locations can be reached from the depot within a certain

driving time) with the given area. In this case, the region

reachable from the depot in 22 min. 21 sec. of driving time

has an area of 186 square miles; this isochrone corresponds

to the �rst vehicle's service region. Similarly, the second ve-

hicle's service region has a drive time radius of 17 min. 5 sec. around the depot. Figure 8 illustrates the

service regions for each vehicle. The policy implied by the continuous approximation model is as follows:

the �rst vehicle dispatches at 10:39 AM, serves 61.60 orders, and returns at the 6 PM deadline; the second

vehicle dispatches at 1:06 PM, serves 49.91 orders, and returns at the 6 PM deadline.

As a point of comparison, we also examine a system design in which the service regions are �xed

between dispatches. Under this design assumption, the continuous approximation model implies a service

area of 151 square miles (corresponding to a driving time radius of 20 min. 26 sec.) for each dispatch. The

�rst vehicle dispatches at 11:12 AM, serves 66.66 orders, and returns at the 6 PM deadline. The second

vehicle dispatches at 12:36 PM, serves 42.09 orders, and returns at the 6 PM deadline.
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In order to validate these recommendations, we also assess the performance of the system in an opera-

tional setting. We consider a simulated version of a service day in which SDD orders arrive according to a

Poisson point process with the same rate (0.2 per hour per square mile), with locations chosen randomly as

described above. Vehicle dispatches to customer locations include a per-order service time of one minute

and driving time given by the solution of a TSP that uses actual driving times between locations.

We implement the following operational version of the multi-vehicle dispatching policy. For each dis-

patch, orders accumulate from the beginning of the service day. As orders arrive into the system, the dis-

patcher re-calculates an optimal TSP tour (including the one minute per-delivery service time) that serves all

accumulated demand. The SDD dispatcher allows orders to accrue until the calculated dispatch time equals

the remaining time in the service day, at which point the �rst dispatch occurs. If an order arrives that would

cause the vehicle to �nish after the deadline, the dispatch occurs immediately but that order is not included,

ensuring the vehicle returns before the end of the service day. However, if this order originates within the

second vehicle's region, it is added to the second vehicle's load. The dispatch procedure for the second

vehicle is analogous to the �rst. We simulate 120 service days for each system design and serve orders

according to the aforementioned operational policy. We report average quantities and dispatch durations for

the operational simulations in Table 5, along with 95% con�dence intervals (in parentheses). The predicted

amounts are remarkably close to their simulated counterparts. In particular, predicted total orders served

nearly coincide with the simulated operational quantities in both the variable- and �xed-area models.

Variable Areas Fixed Areas

Predicted Simulated Predicted Simulated

Dispatch 1 Quantity 61.60 64.51 (� 0.59) 66.66 65.19 (� 0.63)

Dispatch 1 Duration (min.) 440.59 426.06 (� 1.88) 407.48 400.78 (� 2.18)

Dispatch 2 Quantity 49.91 46.94 (� 0.55) 42.09 43.50 (� 0.61)

Dispatch 2 Duration (min.) 293.71 285.51 (� 2.40) 323.80 309.44 (� 2.47)

Total Quantity Served 111.50 111.45 (� 0.86) 108.75 108.70 (� 0.98)

Total Dispatch Duration (min.) 734.29 711.57 (� 3.50) 731.27 710.22 (� 4.17)

Table 5: Predicted and simulated (operational) results forh2;1i solutions.

We now examine the perspective of an e-retailer choosing between these two system designs. We con-

sider three criteria: pro�tability, access, and equity. Generally, the most important of these is pro�tability,

since margins on last-mile delivery tend to be small. The variable cost of a design may be proportional to

the average total dispatch duration (i.e., total routing and service time); however, the empirical difference in
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this quantity is negligible between the two designs (711.57 min. versus 710.22 min. for the variable-area and

�xed-area model, respectively). Thus, the differentiating factor is the revenue earned by serving customers:

in the operational simulations, the variable-area design serves 2.53% more customers than the �xed-area

model on average. Whether this represents suf�cient reason to select the variable-area model likely depends

on factors whose monetary value is not directly measurable, which we discuss next.

Figure 9: Customers whose SDD order
window is reduced in the variable-area model.

Consider the number of customers who have access

to the SDD system at any level of service. Assuming

customers are distributed uniformly, the variable-area de-

sign provides SDD access to approximately 23% more cus-

tomers than the �xed-area design (calculated by comparing

the area served by the �rst dispatch in the variable-area de-

sign and the service region of the �xed-area design). From

the e-retailer's viewpoint, greater customer access to SDD

via the variable-area model can aid in establishing a larger

customer base for future expansions. The bene�ts to cus-

tomers located further from the depot are evident, espe-

cially since an e-retailer with a small �eet may be offering

a niche product unavailable via other means. However, expanding the number of customers who have ac-

cess to the SDD system makes some other customers worse off. In this case, we predict that the customers

located in the region depicted in Figure 9, which has an area of 49 square miles, can place orders until 12:36

PM in the �xed-area design but can only place orders until 10:39 AM in the variable-area design.

This phenomenon motivates an analysis of equity issues. In an ideal scenario (with respect to equity),

every potential customer in a metropolitan area would receive access and a high level of service. While a

large established e-retailer may have the resources to provide such offerings, as Amazon did in response to

criticism in 2016 [44, 45], the small e-retailer in this example likely cannot do so while remaining pro�table.

One measure of equity in this setting is the variation in service level between customers in the system. By

this criteria, the �xed-area model is perfectly equitable: every single potential customer in the service region

faces the same SDD order cutoff time. On the other hand, in the variable-area model, approximately 45%

of the potential customers in the system (i.e., within the boundaries of the �rst vehicle's service region) face

a cutoff time nearly 2.5 hours earlier than the other 55%. This bias against distant customers may motivate
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the SDD e-retailer to prefer the less-pro�table �xed-area model, especially if customers located farther from

the depot are disproportionately from a particular socioeconomic group. It should be noted, however, that

there are many characterizations of equity within logistics systems [e.g., 29]. A Rawlsian [39] approach

to equity — often referred to as themaximincriterion — seeks to maximize the utility of the least well-

off. By this measure, the variable-area design is more equitable because it provides some level of access to

customers outside the �xed-area system. Ultimately, the choice of system design depends on which of these

considerations have more weight for the system manager.

5.2 Three Vehicles, One Dispatch Each

We conclude our discussion ofhm;1i systems with an illustration of how constraining the service area

impacts system design, using results from Section 3.3. Suppose the same e-retailer has a �eet of three

vehicles, each dispatching once daily. The unconstrained variable-areah3;1i model implies concentric

service regions with areas of approximately 246, 176, and 97 square miles for the �rst, second, and third

dispatches, respectively (Figure 10a). The three dispatches in this solution occur at 10:07 AM, 11:34 AM,

and 1:42 PM and serve a total of 147.65 orders.

However, preliminary simulations suggest that the quality of the routing time approximation deteriorates

as the service area approaches 200 square miles. This is likely due to service regions of that size reaching

the unpopulated North Mountain and Shaw Butte nature preserves northeast of the depot. Therefore, we

choose to constrain the service area to 190 square miles. Under this constraint, Algorithm 1 implies that the

service area of the �rst dispatch is 190 square miles, the service area of the second dispatch is approximately

172 square miles, and the service area of the third dispatch is approximately 94 square miles. Figure 10b

illustrates the service regions; the three dispatches occur at 10:39 AM, 12:01 PM, and 2 PM to serve a total

of 146.90 orders. We highlight two observations. First, our model predicts a very small reduction in the

total quantity served when constraining the service area (approximately 0.5%). Second, constraining the

areas extends the order placement windows slightly, albeit for a smaller group of customers. Results of

operational simulations and a comparison to the �xed-areah3;1i design are included in Appendix C.

5.3 One Vehicle, Two Dispatches

We now study the single-vehicle model. The depot is located at the same address; however, we assume that

the overall system has been partitioned into four geographical quadrants, each served by a single vehicle

dispatching twice daily. We focus speci�cally on theh1;2i subsystem in the southeastern quadrant.
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