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Abstract

In their seminal work ‘A General Theory of Equilibrium Selection in Games’ (The
MIT Press, 1988) Harsanyi and Selten introduce the notion of payoff dominance to
explain how players select some solution of a Nash equilibrium problem from a set
of nonunique equilibria. We formulate this concept for generalized Nash equilib-
rium problems, relax payoff dominance to the more widely applicable requirement
of payoff nondominatedness, and show how different characterizations of generalized
Nash equilibria yield different semi-infinite optimization problems for the computa-
tion of payoff nondominated equilibria. Since all these problems violate a standard
constraint qualification, we also formulate regularized versions of the optimization
problems. Under additional assumptions we state a nonlinear cutting algorithm and
provide numerical results for a multi-agent portfolio optimization problem.
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1 Introduction

In Generalized Nash Equilibrium Problems (GNEPs) a collection of N players each con-
trol a decision variable xν ∈ R

nν , ν ∈ {1, . . . , N}. The decision vector of all play-
ers is denoted by x = (x1, . . . , xN ) ∈ R

n with n = n1 + . . . + nN , and the notation
x = (xν , x−ν) emphasizes the role of player ν’s variable xν within the vector x, where
x−ν =

(
x1, . . . , xν−1, xν+1, . . . , xN

)
∈ R

n−nν contains all decision variables except player
ν’s. For each player ν a continuous cost function θν(·, x

−ν) and a closed strategy set
Xν(x

−ν) define the optimization problem

Pν(x
−ν) : min

xν
θν(x

ν , x−ν) s.t. xν ∈ Xν(x
−ν)

with a set of optimal points Sν(x
−ν). The generalized Nash equilibrium problem then is

stated as

GNEP: find some x ∈ R
n with xν ∈ Sν(x

−ν), ν = 1, . . . , N.
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A solution point x⋆ of GNEP is called a Generalized Nash Equilibrium (GNE). In a GNE
x⋆, no player ν possesses a rational incentive to deviate from the decision xν,⋆, since it is
a minimal point of Pν(x

−ν,⋆).
The difference to a standard Nash Equilibrium Problem (NEP) lies in the x−ν-dependence

of the strategy spaces Xν(x
−ν), that is, in a standard NEP, each player has a fixed strategy

set Xν , and only the cost function depends on the parameter vector x−ν . While NEPs
were introduced in [26], GNEPs go back to [1, 3]. For a survey on theory, applications,
and algorithms for the solution of GNEPs, we refer to [8, 10].

With the graph gphSν = {x ∈ R
n| xν ∈ S(x−ν)} of the set-valued mapping Sν the set

E :=
N⋂

ν=1

gphSν

forms the set of all GNEs of the problem GNEP. The set E may be empty, a singleton,
or a non-singleton set. Sufficient conditions for unique solvability of GNEPs can be found
in [8, 9].

Example 1.1. With N = 2 and n1 = n2 = 1 let q1, q2 : R1 → R
1 be convex quadratic

functions, θ1(x) = x1, θ2(x) = x2, and consider the player problems

P1(x2) : min
x1

x1 s.t. q1(x2) ≤ x1,

P2(x1) : min
x2

x2 s.t. q2(x1) ≤ x2.

This yields S1(x2) = {q1(x2)}, S2(x1) = {q2(x1)} and

E = gphS1 ∩ gphS2 = {x ∈ R
2| x1 = q1(x2), x2 = q2(x1)}.

It is easy to specify functions q1 and q2 such that the equilibrium set is empty or a single-
ton. On the other hand, Figure 1 illustrates a situation with a non-singleton set E =
{x1, x2, x3, x4}.

x4

x1

x2

x1

x2

gphS2

gphS1

x3

Figure 1: Nonunique equilibria in Example 1.1

The present paper focuses on the case of nonunique GNEs (i.e., |E| > 1 as in Fig. 1)
where the players may prefer some equilibria over others. Their preferences may be ex-
plained by refined equilibrium concepts like the ones introduced in [15]. Such consider-
ations are known as equilibrium selection or Nash refinement. We will relax Harsanyi
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and Selten’s selection concept of payoff dominance, introduced in Section 2, to payoff non-
dominatedness. This yields a parametrized objective function f(λ, ·) which lets one select
equilibria by computing optimal points of the equilibrium selection problems

ES(λ) : min
x

f(λ, x) s.t. x ∈ E

with some parameter vector λ ∈ R
N (cf. Sec. 2). Section 3 reviews different possibilities for

functional descriptions of the set E, yielding the semi-infinite models studied in Section 4.
Since in all these models a standard constraint qualification is violated at each feasible
point, Section 5 introduces regularized problems. Section 6 formulates a cutting algorithm
for the special case of player convex standard Nash equilibrium problems with polyhedral
strategy sets and provides numerical results, before Section 7 concludes the article with
some final remarks.

2 Multicriteria optimization and payoff dominance

In multicriteria optimization a vector-valued function θ : Rn → R
N is to be minimized

over a feasible set E ⊆ R
n. Since in many applications the entries θ1, . . . , θN of θ model

conflicting objectives (i.e., a decrease in one of them leads to an increase in another), and
the set R

N is not totally ordered for N ≥ 2, an appropriate concept of global minimality
is not straightforward. For details and motivation of the following notions we refer to
[6, 18, 24]. We mention that throughout this paper we use multiobjective optimality
notions based on the natural ordering cone R

N
+ , and that all inequalities between vectors

are meant componentwise.
The following definition works for any set Y in the image space R

N of θ, but will
subsequently be applied to the set Y = θ(E) of attainable points.

Definition 2.1. For some set Y ⊆ R
N let ȳ ∈ Y .

a) The point ȳ is called a nondominated point of Y if there exists no y ∈ Y with y ≤ ȳ
and y 6= ȳ.

b) The point ȳ is called a weakly nondominated point of Y if there exists no y ∈ Y with
y < ȳ.

c) The point ȳ is called a strongly nondominated point of Y if all y ∈ Y satisfy ȳ ≤ y.

The next definition collects the according notions in the pre-image space R
n.

Definition 2.2. For some set E ⊆ R
n let x̄ ∈ E and θ : E → R

N .

a) The point x̄ is called Pareto-optimal (or efficient) if θ(x̄) is a nondominated point of
θ(E).

b) The point x̄ is called weakly Pareto-optimal (or weakly efficient) if θ(x̄) is a weakly
nondominated point of θ(E).
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c) The point x̄ is called strongly Pareto-optimal (or strongly efficient) if θ(x̄) is a
strongly nondominated point of θ(E).

The pre-image space concepts from Definition 2.2 generalize the concept of globally
minimal points from the single-objective case, while the image space concepts from Defi-
nition 2.1 generalize the concept of the globally minimal value. In particular, the latter
unique scalar is generalized to some subset of RN , the so-called nondominated set.

While multiobjective optimization problems possess Pareto-optimal points under mild
assumptions [6, 18, 24], the existence of strongly Pareto-optimal points is often ruled out
in the presence of conflicting objectives (cf. Ex. 2.3).

Harsanyi and Selten’s concept of payoff dominance, applied to GNEPs, states that
among nonunique equilibria players choose a strongly Pareto-optimal point of the Multi-
objective Optimization Problem

MOP : min θ(x) s.t. x ∈ E

if such a point exists. Then in comparison to other equilibria no player is worse off
(Harsanyi and Selten even strengthen this and require that all players are better off, i.e.,
the nonstrict inequality in Def. 2.1c is replaced by a strict one). Here the ‘payoff’ termi-
nology originates from the formulation of the player problems as maximization problems
in [15], rather than minimization. In the setting of the present paper we could use a more
appropriate term like ‘cost dominance’, but we stick to the original terminology to avoid
confusion.

Example 2.3. In the situation of Example 1.1 we have θ(x) = x, so that the sets of
(strongly) Pareto-optimal points and (strongly) nondominated points of MOP coincide.
While x1, x2 and x3 are Pareto-optimal points, no strongly Pareto-optimal point exists (the
point x4, though, is an example of a strongly Pareto-optimal point for the maximization
of θ over E).

Since the problem MOP can only be expected to possess strongly Pareto-optimal points
under strong assumptions, the concept to select payoff dominant equilibria does not seem
to be widely applicable. Instead one may rather select Pareto-optimal equilibria, that is,
payoff nondominated ones. The disadvantage of the latter approach lies in the fact that,
while such points exist under mild assumptions, typically they are not unique (cf. Ex. 2.3).
Hence this approach does not identify a unique equilibrium as desired by Harsanyi and
Selten. However, at least it filters out equilibria which are not interesting in the following
sense: For an equilibrium which is not Pareto-optimal there exists another equilibrium for
which the objective function θν of at least one player improves while the objectives of all
other players do not deteriorate.

A popular method to compute Pareto-optimal points of multiobjective problems is
weighted sum scalarization. In fact, it is not hard to see that for any λ ∈ R

N with λ ≥ 0,
λ 6= 0, each globally minimal point of the single-objective optimization problem

ES(λ) : min
x
〈λ, θ(x)〉 s.t. x ∈ E

is a weakly Pareto-optimal point of MOP, and that for λ > 0 the globally minimal points of
ES(λ) are Pareto-optimal points of MOP [6]. A major drawback of this approach is that it
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can only find (weak) Pareto-optimal points x̄ ∈ E for which θ(x̄) lies in the boundary of the
convex hull of θ(E)+R

N
+ . For more sophisticated methods which approximate the complete

set of Pareto-optimal points we refer to [6, 18, 24] and to the recent branch-and-bound
method for nonconvex mixed-integer multiobjective problems in [7]. The choice of such a
method does not affect the considerations in Sections 3–6.

In the present paper we focus our attention on making the computation of minimal
points of the problem ES(λ) algorithmically accessible. This amounts to finding an ap-
propriate functional description of its feasible set E.

Given the desired computational solvability of ES(λ), equilibrium selection amounts
to choosing some weight vector λ > 0 and some globally minimal point of the equilibrium
selection problem ES(λ). We emphasize that

• we will not discuss the choice of λ,

• some Pareto-optimal equilibria may not be found by this weighted-sum-based ap-
proach since they are not globally minimal points of ES(λ) for any λ ≥ 0, λ 6= 0,

• for given λ > 0 globally minimal points of ES(λ) need not be unique,

• the possibility of computing globally minimal points for ES(λ) relies on structural
assumptions which allow to apply corresponding algorithms, like convexity, or stan-
dard equilibrium problems with quadratic or factorable defining functions.

3 Functional descriptions of the equilibrium set

Since for any λ the constraint of the equilibrium selection problem ES(λ) requires x to be
an equilibrium of GNEP, the problem ES(λ) falls into the class Mathematical Programs
with Equilibrium Constraints (MPECs) [23]. The present section reviews four possibilities
for functional descriptions of E which allow the data of the MPEC to be communicated
to some optimization algorithm.

We mention that [12] shows that the set of Nash equilibria can be characterized as the
set of Pareto-optimal points of some multicriteria problem with an appropriately defined
nonconvex ordering cone. Since this approach would lead to a computationally intricate
bilevel multicriteria (or semi-vectorial) problem in our setting, we do not follow this line
of thought in the present paper.

As a prerequisite we assume that the players’ strategy sets possess functional descrip-
tions

Xν(x
−ν) = {yν ∈ R

nν | gν(yν , x−ν) ≤ 0}

with gν : Rn → R
mν . The players’ optimization problems then read

Pν(x
−ν) : min

yν
θν(y

ν , x−ν) s.t. gν(yν , x−ν) ≤ 0.
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3.1 A direct reformulation

A point x lies in E =
⋂N

ν=1 gphSν if and only if xν ∈ X(x−ν) and θν(x
ν , x−ν) ≤ θν(y

ν , x−ν)
hold for all yν ∈ Xν(x

−ν), ν = 1, . . . , N . With the joint strategy set

Z(x) := X1(x
−1)× . . .×XN(x

−N)

the player-wise feasibility conditions xν ∈ X(x−ν), ν = 1, . . . , N , can be aggregated to
the condition x ∈ Z(x). This means that x is a fixed point of the set-valued mapping
Z : Rn ⇒ R

n, briefly

x ∈ fixZ = {x ∈ R
n| x ∈ Z(x)} = {x ∈ R

n| gν(x) ≤ 0, ν = 1, . . . , N}.

This yields the functional description

E = {x ∈ fixZ| θν(x
ν , x−ν) ≤ θν(y

ν , x−ν) ∀ yν ∈ Xν(x
−ν), ν = 1, . . . , N} (1)

of the equilibrium set. Thus it is not described by finitely many constraints, but the
indices yν of the inequalities are taken from the infinite sets Xν(x

−ν), ν = 1, . . . , N . Such
inequalities are called semi-infinite [16, 17, 28, 29]. Since the index sets even depend on
the decision variable x, we are actually faced with N generalized semi-infinite inequalities
[33].

In the special case of a standard Nash equilibrium problem joint feasibility does not
need to be modeled by a set-valued mapping, but the fixed set

Z = X1 × . . .×XN

suffices. It satisfies fixZ = Z, and we obtain the description

E = {x ∈ Z| θν(x
ν , x−ν) ≤ θν(y

ν , x−ν) ∀ yν ∈ Xν , ν = 1, . . . , N} (2)

of the equilibrium set byN standard semi-infinite constraints (i.e., semi-infinite constraints
with fixed index sets).

3.2 A Nikaido-Isoda reformulation

While in Section 3.1 the feasibility requirements of the single players were aggregated to
the condition x ∈ fixZ, the optimality requirements remained disaggregated. Nikaido and
Isodas’s approach from [27] allows such an aggregation along the following lines.

For each ν ∈ {1, . . . , N} we define the optimal value function

ϕν(x
−ν) := inf

yν∈Xν(x−ν)
θν(y

ν , x−ν)

of the player problem Pν(x
−ν). Then xν is a minimal point of Pν(x

−ν) if and only if
xν ∈ Xν(x

−ν) and θν(x
ν , x−ν) = ϕν(x

−ν) hold. These conditions may be aggregated to
x ∈ fixZ and

V (x) :=
N∑

ν=1

|θν(x
ν , x−ν)− ϕν(x

−ν)| = 0,
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where V is called gap function. Since for x ∈ fixZ none of the problems Pν(x
−ν) is

inconsistent, we have ϕν(x
−ν) < +∞ and θν(x

ν , x−ν) − ϕν(x
−ν) ≥ 0, which yields the

nonnegativity of V on fixZ even if the absolute values in its definition are dropped and
we write

V (x) =
N∑

ν=1

(θν(x
ν , x−ν)− ϕν(x

−ν)).

While the resulting functional description

E = {x ∈ fixZ| V (x) = 0}

is concise, it is not algorithmically useful since the definition of V involves the optimal
value functions ϕν(x

−ν), ν = 1, . . . , N .
On the other hand, with the Nikaido-Isoda function (also known as Ky-Fan function)

ψ(x, y) :=
N∑

ν=1

(θν(x
ν , x−ν)− θν(y

ν , x−ν)) (3)

one may rewrite the gap function as

V (x) = sup
y∈Z(x)

ψ(x, y).

Since by the nonnegativity of V on fixZ the condition V (x) = 0 is equivalent to V (x) ≤ 0,
and supy∈Z(x) ψ(x, y) ≤ 0 is equivalent to the generalized semi-infinite constraint ψ(x, y) ≤
0 for all y ∈ Z(x), we obtain the aggregated generalized semi-infinite description

E = {x ∈ fixZ| ψ(x, y) ≤ 0 ∀ y ∈ Z(x)}. (4)

For standard NEPs the aggregated description is standard semi-infinite:

E = {x ∈ Z| ψ(x, y) ≤ 0 ∀ y ∈ Z}. (5)

3.3 A quasi-variational inequality reformulation

A natural assumption to make GNEPs algorithmically tractable is the convexity of the
problems Pν(x

−ν), ν = 1, . . . , N , in the respective player variable xν .

Assumption 3.1 (Player convexity). For each ν ∈ {1, . . . , N} and each x−ν ∈ R
n−nν

such that (xν , x−ν) ∈ fixZ holds for some xν ∈ R
nν , the defining functions θν(·, x

−ν),
gνi (·, x

−ν), i = 1, . . . ,mν, of Pν(x
−ν) are convex on R

nν .

GNEPs satisfying Assumption 3.1 are called player convex. Since the GNEP from
Example 1.1 is player convex, this example illustrates that player convexity cannot be
expected to yield convex, let alone unique, equilibrium sets E. We remark that the
GNEP from Example 1.1 exhibits an even stronger convexity property, namely its defining
functions are convex simultaneously in all variables (which is called complete convexity).
So even equilibrium sets of completely convex GNEPs need not be convex (sufficient
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conditions for convex equilibrium sets may be found in [9]). Examples for player convex
GNEPs are the noncooperative transportation problem [35] and the multiportfolio problem
studied in Section 6.

Besides player convexity, the reformulation in this section needs the objective functions
θν to be continuously differentiable in the player variable xν , ν = 1, . . . , N . Given feasibil-
ity of the point xν , under these assumptions its optimality is equivalent to the variational
condition

〈∇xνθν(x
ν , x−ν), yν − xν〉 ≥ 0 ∀ yν ∈ Xν(x

−ν).

For x ∈ fixZ these conditions for the single players ν ∈ {1, . . . , N} can be written equiva-
lently in the aggregated form

〈F (x), y − x〉 ≥ 0 ∀ y ∈ Z(x)

with

F (x) :=



∇x1θ1(x

1, x−1)
...

∇xN θN(x
N , x−N)


 ,

that is, as a quasi-variational inequality. This yields the functional description

E = {x ∈ fixZ| 〈F (x), y − x〉 ≥ 0 ∀ y ∈ Z(x)} (6)

of the equilibrium set. For details we refer to [8, 9].
For standard NEPs the corresponding functional description uses a standard variational

inequality:
E = {x ∈ Z| 〈F (x), y − x〉 ≥ 0 ∀ y ∈ Z}. (7)

In contrast to the descriptions (4) and (5), the descriptions (6) and (7) use linear
(generalized) semi-infinite constraints. This will turn out to be useful algorithmically in
Section 6.

3.4 A Karush-Kuhn-Tucker reformulation

If not only all θν but also all functions gν , ν = 1, . . . , N , are differentiable in the player
variable, one may define the Lagrangian

Lν(x
ν , x−ν , γν) = Lν(x, γ

ν) = θν(x) + (γν)⊺gν(x)

of Pν(x
−ν) and consider the Karush-Kuhn-Tucker system

∇xνLν(x, γ
ν) = 0, gν(x) ≤ 0, γν ≥ 0,

γνi g
ν
i (x) = 0, i = 1, . . . ,mν .

Under player convexity (Ass. 3.1) and some constraint qualification like Slater’s condi-
tion for each appearing set Xν(x

−ν), optimality of xν for Pν(x
−ν) is characterized by the

solvability of the Karush-Kuhn-Tucker system with some γν . Therefore we obtain

E = {x| ∃ γ : ∇xνLν(x, γ
ν) = 0, gν(x) ≤ 0, γν ≥ 0,

γνi g
ν
i (x) = 0, i = 1, . . . ,mν , ν = 1, . . . , N}, (8)
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that is, a functional description of E employing complementarity constraints. In the case
of a standard NEP this description does not simplify significantly.

Unfortunately the assumption of Slater’s condition for each appearing set Xν(x
−ν) is

rather strong since, for continuity reasons, it is necessarily violated at the boundaries of
the effective domains domXν = {x−ν ∈ R

n−nν | Xν(x
−ν) 6= ∅} of the set-valued mappings

Xν , ν = 1, . . . , N . Thus the Karush-Kuhn-Tucker reformulation is possible in the case
domXν = R

n−nν , ν = 1, . . . , N , which holds, for example, for standard NEPs. If the
latter condition is violated, the Karush-Kuhn-Tucker reformulation may still be possible
if weaker constraint qualifications, like the one of Abadie, hold at the optimal points of
Pν(x

−ν) for x−ν from the boundary of domXν .

4 Three semi-infinite and one MPCC model

Plugging the functional descriptions of E from Section 3 into the equilibrium selection
model

ES(λ) : min
x
〈λ, θ(x)〉 s.t. x ∈ E

from Section 2 yields the following alternative optimization models. Equilibrium selection
for GNEPs may be performed by choosing some λ > 0 and

• based on (1), computing a minimal point of the Generalized Semi-Infinite Program

GSIPdirect(λ) : min
x
〈λ, θ(x)〉 s.t. gν(x) ≤ 0,

θν(x
ν , x−ν) ≤ θν(y

ν , x−ν) ∀ yν ∈ Xν(x
−ν), ν = 1, . . . , N,

• or, based on (4), by computing a minimal point of the Generalized Semi-Infinite
Program

GSIPNI(λ) : min
x
〈λ, θ(x)〉 s.t. gν(x) ≤ 0, ν = 1, . . . , N,

ψ(x, y) ≤ 0 ∀ y ∈ Z(x),

• or, based on (6), by computing a minimal point of the Generalized Semi-Infinite
Program

GSIPQVI(λ) : min
x
〈λ, θ(x)〉 s.t. gν(x) ≤ 0, ν = 1, . . . , N,

〈F (x), y − x〉 ≥ 0 ∀ y ∈ Z(x),

(provided that Ass. 3.1 holds and all functions θν are continuously differentiable in
xν),

• or, based on (8), by computing a minimal point of the Mathematical Program with
Complementarity Constraints

MPCC(λ) : min
x,γ
〈λ, θ(x)〉 s.t. ∇xνLν(x, γ

ν) = 0,

gν(x) ≤ 0,

γν ≥ 0,

γνi g
ν
i (x) = 0, i = 1, . . . ,mν , ν = 1, . . . , N,
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(provided that Ass. 3.1 holds, all functions θν , g
ν are continuously differentiable in

xν , and Slater’s condition holds in all appearing sets Xν(x
−ν)).

For standard NEPs, the descriptions (2), (5) and (7) yield the corresponding stan-
dard semi-infinite programs SIPdirect(λ), SIPNI(λ), and SIPVI(λ), while MPCC(λ) does
not simplify significantly. A survey of state-of-the-art solution algorithms for nonconvex
semi-infinite optimization problems is given in [4], and for MPCC solution methods we
refer to [23]. Problems of the type SIPVI(λ) are also known as Optimization Problems
with Variational Inequality Constraints (OPVICs) [11, 19, 32].

Most of the algorithms for semi-infinite optimization problems explicitly or implicitly
assume that a standard constraint qualification like the Mangasarian-Fromovitz Constraint
Qualification (MFCQ) holds at least in the points to which they converge. Unfortunately,
all of the above optimization models violate MFCQ at each feasible point, so that algo-
rithmically they need to be handled with care. The violation of MFCQ is not surprising,
given that equilibrium sets of GNEPs (in the absence of shared constraints) and of NEPs
generically consist of isolated points [5].

For mathematical programs with equilibrium constraints like MPCC(λ) it is well-
known that MFCQ is violated at each feasible point [30]. To see why MFCQ is violated
in the above semi-infinite models, we use the following result.

Lemma 4.1. Let λ > 0 be given. Then at each feasible point of any of the problems
GSIPdirect(λ), GSIPNI(λ), GSIPQVI(λ), SIPdirect(λ), SIPNI(λ) and SIPVI(λ), all ap-
pearing semi-infinite constraints possess active indices.

Proof. We give the proof only for the problem GSIPNI(λ), since the proofs for the other
problems run along the same lines. Let x be a feasible point of GSIPNI(λ). Since the
constraints gν(x) ≤ 0, ν = 1, . . . , N , characterize x ∈ fixZ, we have x ∈ Z(x). The
Nikaido-Isoda function from (3) satisfies ψ(x, x) = 0, so that the semi-infinite constraint
ψ(x, y) ≤ 0 ∀ y ∈ Z(x) is active at the index y := x.

With the notation for problem GSIPNI(λ), Lemma 4.1 implies supy∈Z(x) ψ(x, y) = 0 for
all feasible points x. This means particularly that the gap function V (x) = supy∈Z(x) ψ(x, y)
is constant on the feasible set.

On the other hand, the MFCQ holds at some feasible point x of an optimization
problem if at x a certain inner linearization cone to the feasible set in nonempty. For
semi-infinite optimization problems a natural definition of the inner linearization cone is
provided in [34]. In the notation for problem GSIPNI(λ) it says that a direction d belongs
to the inner linearization cone if the Hadamard upper directional derivative

V ′
+(x, d) := lim sup

tց0, δ→d

V (x+ tδ)− V (x)

t

satisfies V ′
+(x, d) < 0. For a constant function V , however, this is not possible, so that the

inner linearization cone is empty and MFCQ is violated. With analogous arguments for
the other semi-infinite models we have thus shown the following result.

Proposition 4.2. Let λ > 0 be given. Then at each feasible point of any of the problems
GSIPdirect(λ), GSIPNI(λ), GSIPQVI(λ), SIPdirect(λ), SIPNI(λ), SIPVI(λ) and MPCC(λ)
the MFCQ is violated.
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5 Regularized problems

A possible remedy to make the semi-infinite problems and the MPCC algorithmically
tractable is a relaxation which allows ε-feasible points of the semi-infinite and complemen-
tarity constraints, respectively, for some tolerance ε > 0. More precisely, the problems
GSIPdirect(λ), GSIPNI(λ), GSIPQVI(λ) and MPCC(λ) are relaxed to

GSIP ε
direct(λ) : min

x
〈λ, θ(x)〉 s.t. gν(x) ≤ 0,

θν(x
ν , x−ν) ≤ θν(y

ν , x−ν) + ε ∀ yν ∈ Xν(x
−ν), ν = 1, . . . , N,

GSIP ε
NI(λ) : min

x
〈λ, θ(x)〉 s.t. gν(x) ≤ 0, ν = 1, . . . , N,

ψ(x, y) ≤ ε ∀ y ∈ Z(x),

GSIP ε
QVI(λ) : min

x
〈λ, θ(x)〉 s.t. gν(x) ≤ 0, ν = 1, . . . , N,

〈F (x), y − x〉 ≥ −ε ∀ y ∈ Z(x),

and

MPCCε(λ) : min
x,γ
〈λ, θ(x)〉 s.t. ∇xνLν(x, γ

ν) = 0,

gν(x) ≤ 0,

γν ≥ 0,

γνi g
ν
i (x) ≥ −ε/mν , i = 1, . . . ,mν , ν = 1, . . . , N.

The latter relaxation for MPCCs was introduced by Scholtes in [31]. The problems
SIPdirect(λ), SIPNI(λ) and SIPVI(λ) are regularized analogously.

For the regularized problems MFCQ is at least not ruled out at their feasible points. For
the problem GSIP ε

NI(λ) this can be seen by reformulating the semi-infinite constraint in
terms of the (nonnegative) gap function V (x) = supy∈Z(x) ψ(x, y). The relaxation replaces
the original constraint V (x) = 0 by 0 ≤ V (x) ≤ ε, so that V is not constant on the relaxed
feasible set and can satisfy V ′

+(x, d) < 0 at feasible points x for appropriate directions d.
The effect of the regularization on the approximation of the underlying generalized

Nash equilibria is clarified by the following result. For its statement recall that xν is called
an ε-minimal point of Pν(x

ν) if xν ∈ X(x−ν) and θν(x
ν , x−ν) ≤ ϕν(x

−ν) + ε hold. In the
following,

Eε := {x ∈ R
n| xν is ε-minimal for Pν(x

−ν), ν = 1, . . . , N}

is briefly called the set of ε-equilibria of GNEP.

Theorem 5.1. For some ε > 0 and λ > 0 let x be a feasible point of any of the problems
GSIP ε

direct(λ), GSIP
ε
NI(λ) and GSIP ε

QVI(λ), or let (x, γ) be a feasible point of MPCCε(λ).
Then x is an ε-equilibrium of GNEP (i.e., x ∈ Eε holds).
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Proof. For all ν ∈ {1, . . . , N} the constraints of any of the four optimization problems
include the condition gν(x) ≤ 0, that is, xν ∈ Xν(x

−ν). All subsequent arguments in this
proof are based on this feasibility of xν for Pν(x

−ν).
In problem GSIP ε

direct(λ) the constraints θν(x
ν , x−ν) ≤ θν(y

ν , x−ν) + ε ∀ yν ∈ Xν(x
−ν)

are equivalent to θν(x
ν , x−ν) ≤ ϕν(x

−ν) + ε, that is, to ε-minimality of xν for Pν(x
−ν).

In problem GSIP ε
NI(λ) the semi-infinite constraint implies

ε ≥ sup
y∈Z(x)

ψ(x, y) = V (x) =
N∑

λ=1

(θλ(x
λ, x−λ)− ϕλ(x

−λ)) ≥ θν(x
ν , x−ν)− ϕν(x

−ν),

that is, ε-minimality of xν for Pν(x
−ν). The last inequality follows from the nonnegativity

of all summands in the sum.
In problem GSIP ε

QVI(λ) the semi-infinite constraint yields for the particular index
vectors (yν , x−ν) ∈ Z(x) player ν’s semi-infinite constraint

〈∇xνθν(x
ν , x−ν), yν − xν〉 ≥ −ε ∀ yν ∈ Xν(x

−ν).

The C1-characterization of convexity of the function θν(·, x
−ν) on Xν(x

−ν),

θν(y
ν , x−ν)− θν(x

ν , x−ν) ≥ 〈∇xνθν(x
ν , x−ν), yν − xν〉 ∀ yν ∈ Xν(x

−ν),

thus implies
θν(y

ν , x−ν)− θν(x
ν , x−ν) ≥ −ε ∀ yν ∈ Xν(x

−ν),

that is, ε-minimality of xν for Pν(x
−ν).

In problem MPCCε(λ) we consider the Wolfe dual

Dν(x
−ν) : max

yν ,γν
Lν(y

ν , x−ν , γν) s.t. ∇xνLν(y
ν , x−ν , γν) = 0, γν ≥ 0

of Pν(x
−ν). Then for the feasible point (x, γ) of MPCCε(λ) the point (xν , γν) is feasible

for Dν(x
−ν). Weak duality between Pν(x

−ν) and Dν(x
−ν) thus implies

ϕν(x
−ν) ≥ Lν(x

ν , x−ν , γν) = θν(x
ν , x−ν) +

mν∑

i=1

γνi g
ν
i (x

ν , x−ν) ≥ θν(x
ν , x−ν)− ε,

that is, ε-minimality of xν for Pν(x
−ν).

Theorem 5.1 also covers the problems SIP ε
direct(λ), SIP

ε
NI(λ) and SIP ε

VI(λ). We remark
that regularization by replacing optimality with ε-optimality is also a successful technique
in bilevel optimization, in particular for the pessimistic point of view [21, 22].

Note that the following assumption was not required for the analysis of Sections 4 and
5.

Assumption 5.2 (player solvability). For each x ∈ fixZ all player problems Pν(x
−ν),

ν = 1, . . . , N , are solvable.

12



Since we work under the blanket assumption of continuous cost functions θν and closed
strategy sets Xν(x

−ν), and since fixZ ⊆ domZ holds, Assumption 5.2 follows from the
Weierstrass theorem under the additional assumption that Xν(x

−ν) is bounded (under
Ass. 3.1 unbounded strategy sets can be treated, e.g., by the regularization approach from
[13]). However, if Assumption 5.2 is violated and for some x ∈ fixZ some player problem
Pν(x

−ν) is not solvable, this just means that x is infeasible for any reformulation of ES(λ).
Let us also point out that Assumption 5.2 does not imply solvability of the equilibrium

selection problem ES(λ) or any of its reformulations from this section. In particular, the
set E may still be empty.

6 Equilibrium selection for standard NEPs with poly-

hedral strategy sets

For illustration of the above ideas let us focus on a standard Nash equilibrium problem sat-
isfying Assumption 3.1 with bounded polyhedral strategy sets Xν and (in xν) continuously
differentiable cost functions θν , ν = 1, . . . , N . Choosing the semi-infinite model stemming
from the variational inequality reformulation (Sec. 3.3) yields a linear semi-infinite con-
straint, and with a feasibility tolerance ε > 0 we arrive at the relaxed reformulation

SIP ε
VI(λ) : min

x
〈λ, θ(x)〉 s.t. gν(xν) ≤ 0, ν = 1, . . . , N,

〈F (x), y − x〉 ≥ −ε ∀ y ∈ Z

of the equilibrium selection problem ES(λ). Here the functions gν do not depend on x−ν

since we model a standard NEP, and they can be chosen to be linear by the polyhedrality
of the strategy sets. Note that Assumption 3.1 neither implies convexity of the objective
function 〈λ, θ(x)〉 with λ > 0, nor monotonicity of the function F .

The present assumptions allow us to reformulate the semi-infinite problem into one
with finitely many constraints. To this end, let vert(Z) denote the vertex set of the
bounded polyhedral set Z = X1 × . . .×XN .

Proposition 6.1. The problem SIP ε
VI(λ) is equivalent to

NLP ε
VI(λ) : min

x
〈λ, θ(x)〉 s.t. gν(xν) ≤ 0, ν = 1, . . . , N,

〈F (x), y − x〉 ≥ −ε ∀ y ∈ vert(Z).

Proof. The semi-infinite constraint of SIP ε
VI(λ) may be rewritten as miny∈Z〈F (x), y −

x〉 ≥ −ε. Since for any given x the appearing infimum is the optimal value of a linear
optimization problem, the vertex theorem of linear programming yields

min
y∈Z
〈F (x), y − x〉 = min

y∈vert(Z)
〈F (x), y − x〉.

This shows the assertion.

The following example shows that the size of the vertex set vert(Z) may be vast even
for moderate numbers of players and dimension n. Subsequently we shall also use this
example for numerical illustration.
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Example 6.2 (Multi-portfolio optimization). Consider the following multi-portfolio opti-
mization problem from [20]. A group of N portfolio managers wish to invest their respective
budgets bν ≥ 0 in K assets of a market. Their decision variables xν ∈ Xν ⊆ R

K denote the
fractions of bν invested in each available asset, where Xν = {xν ∈ R

K | e⊺xν = 1, xν ≥ 0}
is the standard simplex and e denotes the all-ones vector. Let r ∈ R

K be the vector of
random variables rk modelling the return of asset k ∈ {1, . . . , K} over a single-period in-
vestment. Then µν = E

ν(r) ∈ R
K is the vector of player ν’s expectations of the assets’

returns (depending on the player’s assumption on the distribution of r), leading to the
expected income bν(µν)⊺xν. Moreover, in a Markowitz framework the covariance matrix
Σν = E

ν((r−µν)(r−µν)⊺) may be used for the definition of a risk measure 1
2
(bν)2(xν)⊺Σνxν.

In deviation from a classical Markowitz framework the present model addresses the
case in which trades are grouped and simultaneously executed. Then individual accounts
can suffer from the market impact caused by a shortage of liquidity, which results from
the fact that the joint demand of an asset can be tremendously larger than the individual
demand. To take account of the transaction cost effect, the entry (i, j) of a market impact
matrix models the impact of the liquidity of asset i on the liquidity of asset j. The assumed
market impact matrix Ων is different for each player ν and not necessarily symmetric but,
as motivated in [20], positive semi-definite. As a consequence, for each player ν a different
linear market impact unitary cost function Ων

∑N

λ=1 b
λ(xλ − x̄λ) occurs which depends on

the invested capital from the aggregated trades from all accounts, where x̄λ ∈ R
K denotes

the current portfolio of player λ. The total transaction costs (in unit of currency) of player
ν then is bν(xν − x̄ν)⊺Ων

∑N

λ=1 b
λ(xλ − x̄λ). One arrives at the optimization problem

Pν(x
−ν) : min

xν
θν(x

ν , x−ν) s.t. xν ∈ Xν

for player ν with

θν(x
ν , x−ν) = −bν(µν)⊺xν + ρν 1

2
(bν)2(xν)⊺Σνxν + bν(xν − x̄ν)⊺Ων

∑N

λ=1 b
λ(xλ − x̄λ),

and with the risk aversion parameter ρν ≥ 0.
In [20] it is shown that the corresponding player convex GNEP may possess nonunique

equilibria, and certain equilibrium selection problems (not based on payoff dominance) are
solved by a Tikhonov-like algorithm from [19]. There the numerical experiments use two
data sets, one consisting of daily returns time series of K = 10 assets from banking,
insurance and financial companies belonging to Euro Stoxx 50 (SX5E), and the other in
K = 29 assets from the Dow Jones Industrial Average (DJIA) stock markets.

In this example each player’s decision variable xν possesses dimension nν = K, and the
overall dimension of the GNEP is n = NK. For N = 25 players this yields the practically
relevant but moderate dimensions n = 500 and n = 725 for the two above data sets. On
the other hand, the set

Z = X1 × . . .×XN = {x ∈ R
25K | x ≥ 0, e⊺xν = 1, ν = 1, . . . , 25}

possesses K25 vertices, that is, we have | vert(Z)| = 1025 and | vert(Z)| = 2925 for the two
respective data sets.
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In view of the possibly vast index set vert(Z) we suggest a cutting algorithm for
the solution of NLP ε

VI(λ). It is reminiscent of discretization methods for semi-infinite
programming [16, 17, 28, 29], but does not employ adaptively refined finite subsets Zd of
the infinite set Z, but of the finite (though possibly vast) set vert(Z).

In fact, for any set Zd ⊆ vert(Z) the master problem

NLP ε
VI,d(λ) : min

x
〈λ, θ(x)〉 s.t. gν(xν) ≤ 0, ν = 1, . . . , N,

〈F (x), y − x〉 ≥ −ε ∀ y ∈ Zd

is a relaxation of NLP ε
VI(λ). It possesses a closed and bounded feasible set even for Zd = ∅,

since the constraints gν(xν) ≤ 0, ν = 1, . . . , N , characterize the polyhedral bounded set
fixZ = Z.

An optimal point x̄ of the relaxed problem NLP ε
VI,d(λ) solves NLP ε

VI(λ) if also the
ignored constraints 〈F (x), y − x〉 ≥ −ε ∀ y ∈ vert(Z) \ Zd hold. This may be checked
without knowledge of the complete set vert(Z) by computing an optimal vertex ȳ of the
linear optimization problem

LP (x̄) : min
y
〈F (x̄), y − x̄〉 s.t. y ∈ Z

and checking whether its minimal value satisfies

〈F (x̄), ȳ − x̄〉 ≥ −ε.

If it does, then even the semi-infinite constraint 〈F (x), y − x〉 ≥ −ε ∀ y ∈ Z holds at x̄,
the more so the finitely many constraints (corresponding to y ∈ vert(Z)) from NLP ε

VI(λ).
The crucial point of this construction is that an optimal vertex of the problem LP (x̄) can
be computed without the knowledge of the whole vertex set vert(Z) by, for example, the
simplex algorithm. Such ideas are also used in Benders-type cutting plane algorithms for
mixed-integer linear optimization problems [2].

In the case
〈F (x̄), ȳ − x̄〉 < −ε.

the point x̄ is infeasible for NLP ε
VI(λ), and the master problem is refined by a cut. In

fact, since the point x̄ violates the inequality

〈F (x), ȳ − x〉 ≥ −ε,

and since, due to ȳ ∈ vert(Z), this inequality is valid for the feasible set of NLP ε
VI(λ),

it may be employed as a (nonlinear) cut. This means that the old discretization Zd is
updated to Zd ∪ {ȳ}. Since any ȳ ∈ vert(Z) may only be chosen once for such an update,
and vert(Z) is a finite set, in the worst case the cutting algorithm stops after generating
the whole set Zd = vert(Z). We remark that, in the terminology of cutting methods, in
this construction the LP solver serves as an oracle. The resulting algorithmic scheme is
summarized in Algorithm 1.

Example 6.3 (Numerical experience). We test Algorithm 1 on the multi-portfolio op-
timization problem from Example 6.2 with estimates for the problem data from [20].
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Algorithm 1: Equilibrium selection by nonlinear cuts

Input: Player convex standard NEP with bounded polyhedral strategy sets,
weight vector λ > 0, and feasibility tolerance ε > 0.

Output: Approximation x̄ ∈ Eε of a Pareto-optimal Nash equilibrium.

1 Zd ← ∅
2 repeat

3 Compute an optimal point x̄ of

NLP ε
VI,d(λ) : min

x
〈λ, θ(x)〉 s.t. gν(xν) ≤ 0, ν = 1, . . . , N,

〈F (x), y − x〉 ≥ −ε ∀ y ∈ Zd.

4 Compute an optimal vertex ȳ of

LP (x̄) : min
y
〈F (x̄), y − x̄〉 s.t. y ∈ Z.

5 Zd ← Zd ∪ {ȳ}

6 until 〈F (x̄), ȳ − x̄〉 ≥ −ε;

Since the players’ objective functions θν are quadratic, also the objective function of the
master problems NLP ε

VI,d(λ) in Algorithm 1 is quadratic, and with the data from [20]
it is even convex quadratic. Moreover, the function F then is linear, the constraints
〈F (x), y−x〉 ≥ −ε ∀ y ∈ Zd are quadratic as well and, again, with the data from [20] they
are even convex quadratic. We compute globally minimal points of the master problems by
the solver GUROBI [14]. The linear subproblems LP (x̄) are solved by GUROBI as well.
All experiments were run on an Intel i7 processor with 8 cores with 3.60 GHz and 32 GB
of RAM and with version 9.1.1 of GUROBI.

Tables 1 and 2 provide an analysis of the output of Algorithm 1 for the two data
sets SX5E (K = 10) and DJIA (K = 29), respectively, with N = 25 players and four
randomly generated weight vectors λ1, . . . , λ4. Rather than reporting the output points x̄
(of dimension 500 and 725, resp.), we provide their ℓ1-distance from their mean x̂ in
order to indicate that the choice of different weight vectors yields different approximations
of Pareto-optimal equilibria.

The reported number of iterations coincides with the number of computed vertices of Z
before termination. In this example it turns out that for the data set SX5E at most 11 of
the 1025 vertices need to be computed, and at most 8 of the 2925 vertices for the data set
DJIA.

λ ‖x− x̂‖1 iterations run time [s]

λ1 0.666517 9 22.796807
λ2 0.658469 10 28.127697
λ3 0.578055 11 43.600155
λ4 0.774364 10 24.194173
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Table 1: Data set SX5E, N = 25, K = 10, ε = 10−4

λ ‖x− x̂‖1 iterations run time [s]

λ1 2.658054 7 214.447290
λ2 3.123464 8 306.947685
λ3 2.850787 7 209.581576
λ4 1.941140 8 290.675761

Table 2: Data set DJIA, N = 25, K = 29, ε = 10−3

The numerical experience with Algorithm 1 reported in Example 6.3 indicates that
also in general the cutting idea for computing Pareto-optimal equilibria of standard Nash
equilibrium problems with polyhedral strategy sets may work well for practically relevant
problem sizes, provided that the master problems can be solved to global optimality.

7 Final remarks

This paper provides ideas for the algorithmic selection of generalized Nash equilibria. It
shows that different semi-infinite and an MPCC reformulation suffer from violation of the
Mangasarian-Fromovitz constraint qualification at each point of their feasible sets, and
it suggests a regularization by allowing a feasibility tolerance. Numerical results for a
standard Nash equilibrium problem with polyhedral strategy sets of practically relevant
size encourage future research on this topic.

We point out that, along the lines of Harsanyi and Selten’s reasoning, the present
paper does not address cooperation between players which may lead to their active choice
of some payoff nondominated equilibrium. We rather argue that, when faced with a choice
among equilibria, the players would not agree on a payoff dominated equilibrium, since
this would offer at least one player lower costs when moving to the dominating equilibrium,
while none of the other players face higher costs. However, active cooperation concepts
like the bargaining solution from [25] involve the Pareto-optimality notion as well, so that
our analysis may contribute to the computational realization of such concepts. We leave
such questions for future research.
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