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Abstract

This paper addresses instances of the temporal fixed-charge multi-commodity flow (tfMCF) problem
that arise in a very large scale dynamic transportation application. We model the tfMCF as a discrete-time
Resource Task Network (RTN) with cyclic schedule, and formulate it as a mixed-integer program. These
problems are notoriously hard to solve due to their time-expanded nature, and their size renders their direct
solution difficult. We exploit synergies between flows of certain commodities in the formulation to devise
model condensation techniques that reduce the number of variables and constraints by a factor of 25%-50%.
We propose a solution algorithm that includes balanced graph partitioning, Lagrangian decomposition and
a linear programming filtering heuristic. Computational results show that the proposed algorithm allows
the solution of previously intractable instances, and the primal solution obtained by the heuristic step is
within 2% duality gap of the linear relaxation of the original problem.

Keywords— Transportation, Temporal fixed-charge multi-commodity flow, Resource Task Network,
Task Scheduling, Lagrangian Decomposition

1 Introduction

The growth in online retailing has disrupted shopping patterns and directly impacted logistic networks.
More than 85% of online shoppers consider shipping speed a top priority in the decision to shop online
[18]. The demand for quick delivery requires the outbound transportation network to be operated efficiently
around-the-clock in order to achieve better shipping speed in a cost-effective manner. This necessitates
taking into account timing information when making decisions to accurately model intra-day capacity
needs when designing the network. We formulate this problem as a temporal fixed-charge multicommodity
flow problem.
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In the classical fixed-charge multicommodity flow problem (fMCF), the input consists of a (directed
or undirected) graph G = (V,E), non-negative edge costs Fe, capacities ue for all e ∈ E, and a set C of
commodities (oc,dc), each having an integer demand θc. The goal is to install ye ∈N units of capacity on
each edge e ∈ E (where a unit of capacity for edge e is ue) so that the resulting capacitated graph admits a
feasible multicommodity flow transporting all demands. The unit-capacity installation cost for each edge
e ∈ E is Fe, and the goal is to minimize the total capacity installation cost. The fMCF problem is NP-hard
as the well-known NP-hard Steiner tree problem is a special case (see [38]).

The fMCF problem stated above is static in nature in that its focus is on one-shot decisions about
capacity installation in an underlying fixed network. The focus of this paper is on dynamic aspects of
network design, where the timing of when to move trucks and sort packages needs to be decided. We are
interested in extensions of fMCF where for each integral capacity installation, we now also require to know
when this capacity is supposed to be installed. In the end, we aspire to find timed capacity installations
that allow for the existence of a feasible multicommodity flow over time. Such dynamic models reflect
the reality of many practical decision processes, where the detailed timing of actions is crucial, and where
decisions at a certain point in time impact future ones. Dynamic models have been widely studied, and we
provide a short review and pointers to the extensive literature in Section 1.2.

Models capturing temporal aspects of scheduling traditionally either use a discrete or continuous rep-
resentation of time. Continuous time formulations tend to be more compact in comparison to their discrete
counter-parts. Continuous formulations are, however, known to have weak linear programming (LP) relax-
ations which, using current IP solver technology, limits their use to the solution of small instances only.
Discrete formulations with variables indexed by time tend to have stronger relaxations (e.g., see [51]).
They are also more convenient in modeling synchronized events and shared resources. However, in order
to obtain accurate models for the given timing application, a very large number of time points, and hence
(discrete) variables are needed. Since solvability is the top priority, we model the temporal nature of tfMCF

using a fine-grained discrete, time-indexed model.

1.1 Problem statement

We propose a version of tfMCF that arises in very large scale dynamic transportation applications. In this
setting, the vertices of the underlying graph G = (V,E) correspond to fulfilment centers (FCs; warehouses
that store the goods to be shipped), sort centers (SCs; intermediate locations that facilitate sortation), and
delivery stations (DSs; terminal network nodes for packages), respectively. For each edge uv ∈ E, one is
given the set of vehicle types available to transport packages between u and v, and their capacities. These
vehicles can be of different transportation modes (e.g. air and ground). Once again, a set C of commodities
is given at the input; we will sometimes refer to (oc,dc) as a origin, destination pair associated with
commodity c, and write (oc,dc) ∈ C and c ∈ C interchangeably. In the context of this work, oc will always
be an FC, and dc could either be an SC, or a DS. In the application of interest, each pair (oc,dc) ∈ C
comes with a shipment path Pc connecting oc to dc, the number pkgCountc of packages to be shipped
along this path, and the total volume pkgCubec of these packages (also referred as cube, interchangeably) .
Precise information on how the pkgCountc packages of commodity (oc,dc) are released at oc are provided,
and this determines how packages for this commodity are released into the network over time. Finally,
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the traffic associated with (oc,dc) is supposed to be classified as grouped (say in shipping containers)
or ungrouped (where packages are loaded into transportation vehicles by themselves). In the following,
the terms containerized and fluid-loaded will be used sometimes to refer to grouped and ungrouped ODs,
respectively. Whether an OD is grouped or ungrouped affects the volume of each elementary unit (package
or container) associated with the commodity, the processing time at intermediate vertices, and the utilization
of transport vehicles, among other things.

The overall goal of the proposed model is to compute a feasible multicommodity flow over time that
maximizes speed, where the latter is measured by the number of packages (over all commodities) that arrive
on time (i.e., it arrives at the destination within targetc days, where the latter is a given non-negative integer
parameter). The main decisions to be optimized are the transportation schedule (timing and lot sizing),
and the hourly throughput at each node. For operational consistency, the optimal transportation schedule is
repeated day-over-day (cyclic schedule). We will provide more details on this in Section 2.4.

1.2 Literature review

The history of the Steiner tree problem (and therefore the history of work on fixed charge network design
problems) goes back to a problem posed by Fermat, and was first defined by Gauss in a letter to one of
his students (see page 37 in [55]). It first was coined the Steiner tree problem in much later work by
Courant and Robins [13]. The Steiner tree problem is one of Karp’s 21 original NP-hard problems [38].
The more general class of fixed charge network design problems was first defined in an articles of Hirsch
and Dantzig [34], a technical report version of which appeared in 1954. Single and multi-commodity
versions, respectively, of the fixed charge network design appeared first in seminal papers of Balinski [4],
and Gomory and Hu [27].

Research efforts following the definition of the problem in the above mentioned early work are summa-
rized in two survey papers by Magnanti and Wong [44] and Minoux [45]. The paper of Magnanti and Wong
formally defines an uncapacitated version of fMCF. We refer the reader to a recent and up to date survey
on fixed charge network design in Chapter 3 of the recent book by Crainic, Gendreau, and Gendron [17].

Temporal aspects of network design were first studied by Ford and Fulkerson in their seminal work in
[24, 25]. The authors focused on network flows over time, and more specifically on the single-commodity
maximum flow special case. In their work, the authors introduced a so called time-expanded version of
the underlying base graph. These static networks have multiple layers, one for each discrete time step, and
each containing a copy of the node set of the underlying base graph. An arc uv ∈ A with transit time τ in
the base graph gives rise to several copies in the time expanded graph, one for each pair of copies of u and
v that are in layers of temporal distance τ . Static flows in the time expanded graph correspond to dynamic
flows in the base graph and vice-versa; we refer the reader to a thorough discussion of this correspondence
in the work of Fleischer and Tardos [20].

In many applications, the size of the time-expanded network for a given base graph has pseudo-
polynomial rather than polynomial size. This in turn often means that discrete formulations based on these
time-expanded networks have super-polynomial size as well. Thus, using such a formulation to obtain a
practical algorithm for a given problem is often challenging. In fact, temporal versions of combinatorial
optimization problems are often provably more difficult than their static counterparts: Klinz and Woegin-
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ger [40] showed that the dynamic version of the minimum-cost (o,d)-flow problem is (weakly) NP-hard.
Hall, Hippler, and Skutella [31] later also showed that dynamic variants of the most basic (unweighted)
multicommodity flow problems are (weakly) NP-hard. Subsequently, Fleischer and Skutella [19] intro-
duced carefully constructed, polynomial-sized partial versions of complete time expanded networks to
obtain a fully-polynomial-time approximation scheme for the (weakly NP-hard) quickest multicommodity
flow problem over time. For a more thorough survey of the literature in the area of dynamic flows, we refer
the reader to the recent work of Skutella [54].

The fMCF problem broadly falls into the class of service network design (SND) problems. Roughly
speaking, in these problems we are given origin and destination nodes corresponding to customers, in an
underlying network. Customers are the recipients of a service which, for us, corresponds to the timely and
efficient transportation of goods from the customers’ origins to their respective destinations. Transportation
is accomplished by a service provider which, in our setting, is a consolidation-based freight carrier; i.e.,
normally, the goods transported for one customer do not consume all of a standard transportation vehicle.
Hence, goods from several customers can be consolidated to achieve transportation efficiency. The overall
objective in typical SND instances is to minimize the total cost of providing service.

Mathematical programming, and in particular mixed integer linear programming, are among the most
widely used tools in formulating and solving SND problems. Most prominent formulations extend classical
fixed-charge, capacitated multicommodity flow models as described above (see [14, 15] and [59]). SND
problems instances arise in static and dynamic variants. Static SND problem instances are assumed to have
no time-dependent problem aspects. In dynamic SND instances on the other hand, aspects of the model are
time-dependent; e.g., like in our setting, the traversal of an arc in the network is assumed to take a certain
non-negative transit time. The main classes of mathematical models used for dynamic SND problems are
either based on continuous and compact formulations, or they inherently rely on the time-expanded version
of the underlying graph as discussed above. As mentioned, both classes of formulations have drawbacks:
continuous formulations are known to be compact but weak, while discrete, time-expanded formulations
are known to have strong relaxations that are hard to solve because of their size (e.g., see [7]. We also refer
the reader to [22, 23] for a comparison of discrete and continuous time models for scheduling applications.

Static and especially dynamic versions of fixed-charge multicommodity flow problems are known to be
extremely challenging. As noted, one reason for this is the pseudo-polynomial size of the time-expanded
formulation. Another reason lies in the fact that these models are often highly degenerate. Not surprisingly,
classical decomposition techniques for integer programming formulations like Lagrangian relaxation, Ben-
ders and Dantzig-Wolfe reformulations are useful in this context as well. An in-depth discussion of these
topics is beyond the scope of this paper. We refer the reader to standard text books on integer programming
[12, 46] as well as the treatment in (Chapter 3 of) the excellent recent survey in [17].

In their work, Boland et al. [6] observed that optimal solutions for practical SND instances are often
supported in rather small subgraphs of the time-expanded graph of the model. Motivated by this, the
authors present an iterative algorithm – the so called dynamic discretization discovery (DDD) method.
This algorithm starts with a small subgraph of the time-expanded graph, and solves a lower-bound model
whose optimum value is guaranteed to be no larger than that of the given SND problem instance. Given
the solution to this lower-bound model, the authors then either convert it into a feasible solution for the
original problem, or show how to augment the partial time-expanded graph in order to obtain a stronger
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lower-bound model. Boland et al. [6] provide empirical evidence of the effectiveness of the DDD method
using a family of SND instances described in previous work by Crainic et al. [16]. Since its invention, the
DDD method has been applied to numerous temporal problems; e.g., see the work of Hewitt et al. [33] on
SND instances that arise in the less-than-truckload freight transportation setting, or more recent work of
Lagos et al. [42, 43] on continuous time versions of the inventory routing problem.

Temporal modeling is also of essential importance in the chemical process industry [58]. Grossmann et
al. [29] as well as Pinto and Grossmann [50] provide an overview of the use of mathematical programming
in the area of chemical batch processing for production planning and scheduling. Especially important
in this context is the work of Kondili, Pantelides, and Sargent [41] who develop a general framework to
represent processes. The latter work was extended later by Pantelides [48] who introduced the flexible
resource-task network framework for the modeling of complex interconnected processes. In this paper, we
present a discrete RTN-based mathematical model for tfMCF. The specific problem at hand in this paper
requires our model to encode cyclic temporal capacity installation plans. Schedule cyclicity, especially in
the context of RTN models is a well known model feature. We refer the reader to previous work of Yee and
Shah [62] who develop integer programming models for periodic production scheduling problems. Castro
et al. [9, 11] present RTN-based, discrete and continuous models for periodic scheduling problems arising
in the chemical industry. In more recent work [61], Wu and Maravelias propose a state task network integer
programming model for a periodic production scheduling application. For an extensive survey on previous
work on scheduling applications in the process industry, we refer the reader to the survey by Harjunkoski
et al. [32].

Another recent example of temporal network modeling can be found in the work of Hoch et al. [35],
where the authors discuss disjoint path problems in temporal graphs that arise in aircraft trajectory planning
applications. The main focus of the latter paper lies in studying complexity issues.

Finally, Adjiashvili et al. [1, 2] introduced dynamic counterparts of a class of packing problems. The
authors study the complexity of these problems, and present approximation algorithms.

We conclude this brief review section, mentioning that the literature on static and dynamic network
design is much too large to adequately cover in this paper. There are several excellent surveys in the
area that can be consulted by the interested reader: Powell, Jaillet, and Odoni [53] provide an in-depth
discussion on the use of time-expanded networks in formulations arising in logistic planning models. The
very recent book by Crainic, Gendreau, and Gendron [17] provides a thorough survey of the state of the
art in network design when applied to transportation and logistics; Chapters 2, 3, and 12 of the book are
particularly relevant for this paper as they focus of static and dynamic fixed-charge network flow problems
and algorithms.

1.3 Gaps in the Literature

While there exists a large body of research on time-expanded networks, temporal fixed-charge multi com-
modity flow and resource task network, to the best of our knowledge none of the existing literature attempts
to solve problems of the size of our instances, taking advantage of specific properties of the problem such
as its geometric nature and synergies between commodities. Our work is motivated by the need to capture
operationally relevant constraints that are not present in the classic versions of these problems, and have
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a scalable solution methodology that can provide a good feasible solution and valid optimality guarantees
to instances of the order of 100M+ variables and constraints. The modeling and solution techniques pro-
posed in this paper were developed with this problem in mind, but can be extended to other real-world
applications of tfMCF.

1.4 Contributions

This paper presents a mixed-integer-programming (MIP) model for tfMCF. MIP formulations encoding
discrete timing models are well known to be very large and notoriously difficult to solve. Timing-aware
optimization has become increasingly important in recent years, and much work has gone into the devel-
opment of techniques for finding more efficient models (e.g., see [6, 7, 47, 49, 56, 57] for examples).

The proposed tfMCF model is extremely large, even for moderately-sized input graphs. For example, in
the application considered in this study, while input graphs often have moderate size (up to a few thousand
vertices and edges), the resulting mixed integer programs sometimes have up to a half billion variables
and constraints. Hence, there is no hope to solve the resulting MIPs as is, even on the largest available
hardware. The main contribution of this paper is to present several techniques that make use of inherent
problem structure in order to reduce its size. We develop a solution algorithm based on our new model
and demonstrate that its solution times are vastly superior to standard MIP based strategies. The main
ingredients in the present work are:

1. the modeling of this temporal fixed-charge multicommodity flow problem (tfMCF) as a discrete-time
Resource Task Network (RTN) [48] with cyclic schedule [10].

2. the exploitation of synergies between flows of certain commodities in the formulation in order to
devise model condensation techniques. This yields models whose number of variables and constraints
are reduced by a factor of 25%-50%.

3. the utilization of the geometric nature of the instances in the application studied to break down in-
stances into regions using balanced graph partitioning techniques [39]. The resulting decomposition
is then used in a Lagrangian decomposition-based framework to solve our IP. The objective func-
tion of the balanced decomposition step is designed to yield a small number of dualized constraints,
when optimized. Partition-balance of the resulting cuts yields MIP subproblems that are similar in
difficulty. Lagrangian subproblems are independent, and solved in parallel.

4. the development of a linear programming filtering heuristic that allows to fix certain decision variables
based on solutions to linear relaxation of the Lagrangian subproblems. Computational experiments
reveal that this heuristic yields a large number of fixed variables, and that this in turn results in
significant improvements in the algorithm’s running time.

The scalability of our implementation allows the solution of previously intractable instances.
A formal description of tfMCF’s model, and its mixed integer program is provided in Section 2. Sec-

tion 3 describes the proposed condensed formulation that bucketizes OD paths based on their origin vertex
and average cube (as well as transportation mode and containerization decision), which considerably re-
duces the size of the model. The spatial partition algorithm based on split Lagrangian decomposition is
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discussed in Section 4 and, in Section 4.3, a heuristic leveraging the LP relaxation of the subproblems from
early iterations of the split Lagrangian is proposed. Finally, Section 5 is devoted to the presentation and
discussion of the results of the computational experiments.

2 A mixed-integer model for tfMCF

In this section, we develop a mixed integer programming formulation for tfMCF. As mentioned, to accom-
plish this, we cast tfMCF as an RTN. The versatility and generality of this framework makes it easy to add
constraints to match evolving business operations. We introduce RTN in the context of tfMCF first.

2.1 Resource task networks

The main ingredients in RTNs are resources and tasks. Resources often represent consumable materials
like goods, but also available labor, equipment, etc., while tasks operate on resources and thereby modify
(i.e., deplete, feed, or alter otherwise) these.

In the case of tfMCF, we define sets Rc of resources for each commodity c ∈ C, and we then let the
set of all resources R be the union of the Rc’s. We emphasize that Rc and Rc′ are disjoint for any two
distinct commodities c,c′ ∈ C. The resources for commodity (oc,dc) help us keeping track of packages that
reside at critical points along the path Pc in the underlying network. More specifically, for each (oc,dc),
we have resources for each vertex on path Pc. We will later call r ∈ Rc a supply resource if it corresponds
to vertex oc and if it is the starting point of any package order associated with commodity c. Similarly,
we will say that r ∈ Rc is a product resource if it corresponds to vertex dc, and if it is the final resource
a package belonging to commodity c is associated with. We will also call all other, non-supply and non-
product resources intermediate. We let Rsupply, Rprod , and Rinter be the corresponding sets of all supply,
product, and intermediate resources. We will also RX

c , for X ∈ {supply, prod, inter} for sets of resources
corresponding to a particular commodity c. Our model defines a set I of tasks that is further subdivided
into

• Transportation tasks IT . Such a task is associated with a physical transportation process correspond-
ing to an arc uv in the underlying transportation network. Nodes u and v correspond to geographic
locations, and the task represents the process of moving goods from u to v. In terms of the underlying
RTN, a transportation process depletes the resource at node u, and feeds that at node v. In this paper,
transportation tasks are associated with specific vehicle types, and this determines, for example, the
throughput capacity of the task.

• Sortation tasks IS. These tasks model processing that needs to happen at the various vertices in our
network, like splitting the flow of incoming packages into various output streams, depending on their
destination. Separate sortation tasks are defined for containerized and fluid-loaded packages.

• Last-mile tasks ILM . These tasks model processing that is applied to packages between the destina-
tion network node and final customer delivery. Last-mile tasks are introduced to model the end-to-end
transit time of package flows.
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Each task i has a fixed duration and a set of associated task extentsMi. A task extent is an extension
of the concept of batch size, allowing a single task to operate on multiple disjoint sets of resources [58]. In
this case, the task involves multiple operations that are synchronized in time, but the amount of resources
processed (throughput) by each operation can be optimized independently. In our context, it can be inter-
preted as the flow associated with a commodity going through its associated task at each time period. The
presence of multiple extents for each task models the fact that the material flow associated with various
commodities may share the capacity of a transport vehicle or a sortation process at a certain time. For ease
of notation, we let τm be the duration of the task i corresponding to extent m, and let t ∈ Tm be the horizon
of the extent m associated with commodity (oc,dc) ∈ C.

Extents interact with certain resources. In the case of tfMCF this interaction is quite special, and we
exploit this here to make notation easier (in comparison to general RTNs defined in [48] and [58]. We refer
readers to Sec. A in the appendix for details). In our formulation setting, every extent interacts with exactly
two resources of a single OD; let these be r−m, and r+m. Extent m depletes resource r−m (corresponding to the
usual interaction parameter of −1), and it feeds resource r+m (corresponding to an interaction parameter of
+1). For a resource r ∈R we letM−

r be those extents that deplete r, and similarly,M+
r is the set of extents

that feed r. From the above it follows that each extent m ∈M belongs to a unique commodity c ∈ C. We
can therefore defineMc to be the set of extents of commodity c, and once again observe thatMc andMc′

are disjoint for distinct commodities c and c′. The set of all extentsM is the disjoint union of theMc sets,
over all commodities c.

2.2 Timing assumptions

We adopt a discrete time representation where the modeled time horizon is divided into slots of uniform
length. Each day has a set T day of discrete time units 0, . . . ,T −1, where events (i.e., arrivals, departures,
etc.) may happen. We define the overall time horizon of commodity c as the set Tc; i.e.

Tc = {0, . . . ,NcT −1},

where Nc is the relevant horizon, in number of days, during which we are expected to model each com-
modity c. Nc should be large enough to accommodate the maximum transit hours needed for commodity
c. Notice that the length of the time horizon can differ between OD pairs to avoid generating unnecessary
time indices, and, in turn, variables and constraints. Each commodity c specifies a parameter targetc ≤ Nc,
and a package for commodity c is considered to be delivered on time, whenever it arrives at the destination
within targetc days. We refer to speed as the number of days between when the package is injected into
supply resource r ∈ Rsupply and when it reaches its product resource r ∈ Rprod . The cyclicity assumptions
are defined in Section 2.4

2.3 A mixed-integer programming formulation

Throughout this paper, we make use of the fact that each resource and extent corresponds to a distinct
commodity, and associate certain commodity-specific parameters and sets with resources and extents, re-
spectively. In particular, we will sometimes write Xr and Xm in place of Xc for X ∈ {target,N,T . . .},
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whenever r ∈ Rc, and m ∈Mc.
tfMCF is a cost constrained speed maximization problem, formulated as a mixed-integer linear program

(MIP). The MIP uses continuous variables Rr,t encoding the level of resource r at time t ∈ Tr. These variables
are constrained to have value no larger than a parameter Rmax

r,t . We also have continuous variables bm,t

representing the size of extent m at time t ∈ Tm. Our model also has discrete variables yi,t for transportation
tasks i ∈ IT , and times t ∈ T day encoding the resource provisioning of transportation task i at time t. In a
solution, the value of yi,t will represent the number of vehicles installed for i ∈ IT at time t, each day.

The MIP’s objective function is designed to maximize fulfillment with an emphasis on speed, and this
is accomplished through its two terms:

(i) ∑r∈Rprod Rr,NrT−1 – which describes the total flow arriving within the respective commodity’s horizon,
and hence encodes the goal to maximize fulfillment, and

(ii) ∑r∈Rprod Rr,targetrT−1 – which describes the total flow arriving on time, and hence encodes the speed
objective.

As we will see shortly, feasibility implies that flow that contributes to the speed term (ii) above, will also
contribute to term (i). The implied double counting emphasises speed; i.e., it emphasises our primary goal
of maximizing on-time fulfillment.

We introduce parameters Πr,t to denote the amount of flow (possibly 0) that is injected into (supply)
resource r, at time t. For each task i ∈ I, and corresponding extent m, we define conversion parameters γi,m

to account for multiple units of measure used for different types of processing capacities. Finally, Φ̂
cost is

a given cost upper bound of transport vehicles. We also define the initial resource level Rr,−1 as 0 for all
resources r ∈ R.

max ∑
r∈Rprod

(Rr,targetrT−1+Rr,NrT−1) (1a)

s.t. Rr,t = Rr,t−1+ ∑
m∈M+

r

bm,t−τm − ∑
m∈M−

r

bm,t +Πr,t ∀r ∈ R, t ∈ Tr (1b)

∑
m∈Mi

∑
t′∈Tm∶t′≡t modT

γi,mbm,t′ ≤ Bmax
i,t ∀i ∈ IS∪ILM,t ∈ T day (1c)

∑
m∈Mi

∑
t′∈Tm∶t′≡t modT

γi,mbm,t′ ≤ Bmax
i,t yi,t ∀i ∈ IT ,t ∈ T day (1d)

0 ≤ Rr,t ≤ Rmax
r,t ∀r ∈ R, t ∈ Tr (1e)

Φ
cost(y) ∶= ∑

i∈IT
∑

t∈T day

Ciyi,t ≤ Φ̂
cost (1f)

yi,t ∈Z+ ∀i ∈ IT ,t ∈ T day (1g)

Constraint (1b) expresses resource balance: the level of resource r at time t is comprised of its level at
time t −1, minus negative extents at time t, plus positive extents at earlier times, plus injections Πr,t ≥ 0.
Constraint (1c) limits the total size of extents of a task i ∈ I at some time t ∈ T day to a given amount Bmax

i,t .
Constraint ((1d)) is similar to the previous one and bounds the total size of the extents of transportation
tasks. However, in this case, the total capacity depends on the number of transportation resource units
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allocated for task i at time t (yi,t ), with each of them adding Bmax
i,t to the total capacity. While all tasks

have capacity constraints limiting the extent size at some time t ∈ T day, only transportation tasks i ∈ IT

have a cost associated with its operations, Ci. Therefore, there is no need to model the occurrence of tasks
i ∈ IS∪ILM as discrete variables. Their activity is controlled by the capacity bound Bmax

i,t alone. Constraint
(1e) enforces resource limits, and can be used to model storage capacity in the system. Constraint (1f)
imposes a user-specified upper bound Φ̂

cost on the total line-haul cost (Ci is the cost of adding a vehicle for
transportation task i); we use this constraint to de-incentivize solutions that achieve high speed at the price
of using many nearly empty vehicles. Throughout the remainder of this paper, we will refer to the MIP
comprised of (1a)–(1g) simply as (1).

2.4 Cyclic schedule

In our specific application, the demand associated with OD pairs behaves in a cyclic way; i.e., we assume
that demand exhibits daily repeating patterns and that the optimal schedules are repeated day-to-day. Like
it was done in previous work by Castro [9, 11], we adapt the general-purpose mathematical formulation of
an RTN to account for the ensuing cyclical patterns. While task schedule and demand can be modeled in
a single day horizon, it is important to keep track of commodity flows in a multiple-day horizon to be able
to compute the time in days between order and delivery and, in turn, check if an package of commodity c
reaches its destination within a given targetc number of days.

Therefore, the proposed formulation has a multi-day time window that is consistent with the cyclic
assumption. Specifically, for package orders of a commodity c, our model only registers the shipments at
the origin facility oc in the first day, i.e., Πr,t = 0∀r ∈Rsupply,t ∈ Tr ∶ t ≥T . To account for processing capacity
consumption downstream, our model combines package flows for the same time-in-a-day in different days.
In physical terms, this means that a task carries packages ordered on multiple days of the extended time
window, n ∈ {0, . . . ,N}. This is mathematically done by the use of the modulo operation in task capacity
constraints (1c)-((1d)), which enforces that all extents m assigned to a task i on different days but at the
same time of day consume capacity of such task i. Hence, bm,t , bm,t+nday , bm,t+2nday , . . . contribute to the
same task load.

Raw Network, RTN and MIP Network Flow Model: an example. Consider the physical net-
work in Figure 1 where there are 2 FCs, 1 SC and 2 DSs. Assume that there are three ODs: OD1, OD2
and OD3 with (origin,destination) pairs given by (FC1,DS1), (FC1,DS2) and (FC2,DS1), respectively. The
paths associated to these ODs all have the SC as the unique intermediate vertex. In the following figures,
we associate a unique color with each of the ODs: OD1 is associated with color red, OD2 is blue, and OD3
is purple. We show elements of the figure pertaining to a specific OD in the respective color. For example,
Figure 1 displays the path of OD1 using dashed red arcs.

The RTN corresponding to the physical network Figure 1 is shown in Figure 2, where resources are
represented by circles and tasks by rectangles. Resources are labeled by triples (x,y,z) where x is the OD
identifier, y is the site name in the physical network that is associated to the resource , while the value of
z is “IB” (inbound) or “OB” (outbound), depending on whether the resource is entering or leaving site y,
respectively. Task labels are of two types: “X-Y MV” when the task moves resources from site X to site

10



FC1

FC2

DS1

DS2

O
D
1

O
D
2

O
D
1

SC

O
D
3

O
D
2

O
D
3

Figure 1: Raw network with four arcs (filled lines) and three ODs (dashed lines).

Y and “Z SORT” when it sorts the resource in facility Z. In this figure we assign identifiers ri to each of
the 15 resources. Similarly, identifiers I j are assigned to the seven tasks. Each task has several associated
extents that we label as m1,m2, . . .. Extent labels are placed next to the label of the task they are associated
with. We emphasize that extent labels are relative to their task, and that, for example, extent m1 of task I1

and extent m1 of task I2 represent distinct objects of the RTN model.
Figure 3 sketches how the RTN in Figure 2 is transformed into the corresponding flow network that

forms the basis of the MIP model in section 2. Notice that, the network in this figure is a simplification
of the true network as it does not reflect the fact that we are modeling flow over time. As such, there
are as many copies of a vertex as there are periods in the planning horizon. To be precise, a vertex x
should be represented by xt , where t is a valid time period. Similarly, an arc representing an extent of
duration τ that transforms resource x into resource y corresponds to timed arcs between vertex copies
xt and yt+τ for appropriate values of t. In the figure, we also write the name of the flow variables b
over the corresponding arc. Note, however, that according to the previous observation, these names omit
the subscript corresponding to the time period. Also, observe that the Π constants in the flow balance
constraints (1b) are only indicated for resources associated to the origin of the OD pair as this is the
only place where packages can be injected into the network. As a final remark, notice that a dashed
(purple) rectangle is used in this figure to highlight the arcs (i.e., task extents) that belong to the task whose
identification is written next to that rectangle.
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Figure 2: RTN corresponding to physical network in Figure 1.
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Figure 3: MIP Network corresponding to the RTN in Figure 2.

3 Reducing the MIP model via condensation

The instances of tfMCF considered in this work have the property that the number of vertices on each
commodity path is a small constant (that is independent of the size of the input). Furthermore, the RTN
model in these instances defines a constant number of resources per vertex. Under these two assumptions,
problem (1) has O(∑c∈C ∣Tc∣) variables and constraints. In practical instances of tfMCF the number ∣C∣
of commodities tends to be prohibitively large. Thus, solving MIP model (1) for such instances can be
computationally infeasible. In this section we describe condensation techniques that allow us to write a
more compact MIP.

Consider an origin vertex v ∈V origin where V origin ⊂V , and let cubemin
v and cubemax

v be the minimum
and maximum average cube of OD pairs with origin v, respectively. Let T A and H be the sets of distinct
target values targetc and horizon lengths ∣Tc∣, respectively. For a parameter ε > 0 (called the condensation
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factor), target t̃ ∈ T A, and horizon length h̃ ∈ H, we then let:

Ot̃,h̃
v, j ={(oc,dc) ∶ c ∈ C,oc = v, targetc = t̃, ∣Tc∣ = h̃, and (2)

pkgCubec/pkgCountc ∈ [cubemin
v (1+ε) j,cubemin

v (1+ε) j+1)}

be the bucket of ODs with origin v whose average cube is at least cubemin
v (1+ ε) j , and less than (1+ ε)

times that, whose target is t̃, and whose horizon length is h̃. Note that, for a given origin v, indices j may
take on values in the set

Jv ∶= {0, . . . ,⌈log1+ε cube
max
v /cubemin

v ⌉}.

For the sake of simplicity, we describe here the creation of buckets for each origin vertex, average
cube range, target and horizon values. Our implementation also considers transportation mode (i.e. air and
ground) and containerization decision (i.e. containerized and fluid loaded) in its definition of buckets.

In the following, we let σv, j ∈ [cubemin
v (1+ ε) j,cubemin

v (1+ ε) j+1) be a user-chosen average cube pa-
rameter for each bucket Ot̃,h̃

v, j . We further let σ̃v, j ≤ 1+ε be the maximum ratio of σv, j and the average cube

of OD (oc,dc), over all (oc,dc) ∈ Ot̃,h̃
v, j .

The main idea behind condensation is now as follows: since the ODs inOt̃,h̃
v, j are similar – they have the

same origin, and average cube within a factor of (1+ε) – we may treat them as one commodity. Merging
the commodities in Ot̃,h̃

v, j now allows us to merge the corresponding resource and extent sets.
We point out that the basic idea of condensation – the merging of commodities that share certain char-

acteristics (like a common origin) – is folklore, and has been applied before. The authors were inspired
by prior work in the field approximate fractional multicommodity flow solvers, where the running time of
earlier algorithms [26, 21] was improved in subsequent work of Karakostas [37] by combining commodi-
ties that share an origin. Related ideas were also used by Jarrah et al. [36] in their work on problems in
the context of the less-than-truckload freight shipment industry. The authors make use of their specific
application, where each shipment has a single path, and where the paths destined for the same vertex form
a tree. In this setting the authors reformulate their problem by considering flows on trees instead of on
paths. While in our setting, paths with the same destination do not necessarily form a tree, the ideas are
nevertheless related.

In the following, we start by defining the elements of the condensed resource task network, before we
continue defining the condensed MIP (1̃) of (1).

Condensing resources. Recall from the discussion in Sections 2.1 and 2.3 that the RTN underlying
MIP (1) defines a setRc of resources for each commodity c ∈ C. This set contains resources for all vertices
v on the path Pc in the underlying physical network, and for each resource type. For example, in the RTN
depicted in Figure 2 corresponding to the tfMCF instance with network given in Figure 1, the unique SC
has 6 associated resources for the three ODs, and 2 resource types (IB and OB) given in the instance.

Let Pt̃,h̃
v, j be the set of vertices of paths Pc corresponding to ODs (oc,dc) ∈Ot̃,h̃

v, j . In the condensed RTN, we
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now create a resource for every bucket Ot̃,h̃
v, j, for every vertex in Pt̃,h̃

v, j , and for every resource type. A particular

resource r for OD (oc,dc) ∈Ot̃,h̃
v, j , vertex u ∈Pc, and resource type t is now mapped to the condensed resource

r̃ corresponding to the bucket containing (oc,dc), vertex u, and type t. Notice that several original resources
may be mapped to the same condensed resource, yielding the wanted condensation. For example, Figure 4
shows the condensation of the RTN in Figure 2 where resources r2 and r7 of the original RTN are mapped
to the same condensed resource. Given the above, the set of resources of the condensed RTN is now given
by R̃ = {r̃ ∶ r ∈ R}.

We also point out that whenever resources r′ and r are mapped to the same condensed resource r̃, then
these resources must belong to commodities c′ and c, respectively, that lie in the same bucket; we will refer
to this bucket as the bucket of r̃. For this reason, we can now define targetr̃ and Nr̃ as the target value and
horizon, respectively, of the bucket of r̃.

Because paths of ODs that lie in the same bucket overlap (at the very least in the origin), the above
resource condensation yields an often significant reduction in the number of resources in the RTN. This is
again exemplified in Figures 2 and 4.

Condensing extents. Recall that each extent m ∈Mc specifies a pair (r−m,r+m) of Rc resources that it
depletes, and feeds, respectively. The fact that we combine multiple similar ODs into buckets now allows
us to condense extents of commodities in Ot̃,h̃

v, j whose resources map to the same condensed resources; i.e.,

define the extent set of bucket Ot̃,h̃
v, j as

M̃t̃,h̃
v, j = {(r̃

−
m, r̃
+
m) ∶ m ∈Mc,(oc,dc) ∈ Ot̃,h̃

v, j},

where we use r̃−m and r̃+m to denote the condensed resources associated with r−m and r+m, respectively. This is
the case of extent bI1,m1 in Figure 4 which is the condensed extent obtained from extents bI1,m1 and bI1,m2

in Figure 3. We let M̃ be the extents of the condensed formulation; the set is comprised of the union of
extent sets M̃t̃,h̃

v, j for all buckets Ot̃,h̃
v, j . In the following we say that extent m ∈Mc for some OD (oc,dc) of

bucket Ot̃,h̃
v, j with associated resources (r−m,r+m) maps to condensed extent (r̃−m, r̃+m).

Condensing the MIP – Balance constraints. Consider bucket Ot̃,h̃
v, j , and let Dt̃,h̃

v, j be the set of desti-

nations of OD pairs in Ot̃,h̃
v, j . For any d ∈ Dt̃,h̃

v, j let Ot̃,h̃
v, j,d be the set of ODs in Ot̃,h̃

v, j with destination d. Notice

that resource condensation discussed above will map the product resources of ODs in Ot̃,h̃
v, j,d to the same

condensed product resource. We will abuse notation in the following, and refer to this resource as d as well.
The condensed formulation models the fact that packages of ODs in Ot̃,h̃

v, j travel between v and Dt̃,h̃
v, j (more

precisely, it models flow between the single condensed supply resource at v, and the condensed product
resources at Dt̃,h̃

v, j in the time-expanded RTN graph). The main ingredient for describing the feasible region
is a suitably modified system of balance and capacity constraints (1b) – (1d).

Recall that, for a condensed resource r̃, the set of resources r whose condensed resource is r̃ belongs
to the same bucket. Hence, all such resources r share the target and horizon values of their bucket; we
will use targetr̃ and Tr̃ to refer to these. The condensed MIP has a balance constraint for each condensed
resource r̃, and for each time t ∈ Tr̃. The balance constraint for condensed resource r̃ and t ∈ Tr̃ is obtained
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by summing the original balance constraints (1b) for pairs (r,t), where r ∈ R̃−1(r̃). Note that the summed
balance constraints do not share any variables. In the resulting sum, we replace original extent variables by
their respective condensed variables (dropping duplicates). Similarly, replace the sum of original induction
variables by the one condensed variable Πr̃,t .

For any condensed extent m̃ ∈ M̃, we let M̃−1(m̃) be the set of extents inM whose condensed extent
is m̃. For any such condensed extent m̃, and for any time t ∈ Tm, we replace the set of variables {bm,t ∶ m ∈
M̃−1(m̃)} by bm̃,t .

Condensing the MIP – Capacity constraints. As described, in the capacity constraints (1c) and
(1d) we replace terms of extent variables bm1,t , . . . ,bmq,t that have the same condensed extent m̃ by a single
term for variable bm̃,t . The coefficient of this new variable is the average cube parameter σv, j of the bucket
associated with the ODs of m1, . . . ,mq. We also replace the Bmax

i,t term on the right-hand side of the constraint

by σ̃ Bmax
i,t , where σ̃ is the maximum of σv, j over all buckets Ot̃,h̃

v, j , if this is at least 1, and we let σ̃ = 1,
otherwise.

Condensing the MIP – Resource limits. In (1̃) we have a resource limit constraint for each con-
densed resource r̃ ∈ R̃, and for each time t ∈ Tr̃. This constraint bounds the value of the condensed resource
variable by the sum of the bounds of those resource variables that map to r̃; similar to the extent case, we
let this set be R̃−1(r̃). We then have

Rr̃,t ≤ ∑
r∈R̃−1(r̃)

Rmax
r,t . (3)

Condensing the MIP – Induction. The original model has an induction parameter Πr,t for each
original resource r, and time t ∈ Tr. We now define Π̃r̃,t for condensed resource r̃ and time t ∈ Tr̃ by
summing Πr,t over all resources r ∈ R̃−1(r̃) whose condensed resource is r̃.

Condensation example. To illustrate the condensation procedure, we apply it to the example in Fig-
ure 1. There, if a condensation is done that transforms OD1 and OD2 into a single OD with origin in FC1
and destinations in DS1 and DS2, the flow network corresponding to the condensed MIP model, following
the conventions above, is the one seen in Figure 4. The paths corresponding to the condensed OD are
identified by the red arcs. In this simple example the number of resources (task extents) was reduced from
15 (12) to 13 (11).

3.1 Strengthening the condensed MIP

On the one hand, combining ODs into buckets reduces the number of extent variables as well as the number
of constraints. On the other hand, it results in several subtle issues that all stem from the fact that the
condensed LP can not distinguish between flow from different ODs in the same bucket. For example,
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Figure 4: Condensed MIP Network.

packages associated with ODs in a bucket are now allowed to travel along paths belonging to different ODs
in the same bucket. In the application discussed in this paper this is permissible.

There are problems arising from the inability to distinguish packages that are less harmless, and for
which we need to add model strengthenings.

Bounding the flow into destinations. Let Dt̃,h̃
v, j be the set of product resources of ODs in bucket

Ot̃,h̃
v, j , and let Ot̃,h̃

v, j,d be the subset of ODs in Ot̃,h̃
v, j that have destination d. We need to ensure that the total

number of packages from bucket Ot̃,h̃
v, j reaching product resources at d ∈ Dt̃,h̃

v, j does not exceed the total

number of packages of ODs in Ot̃,h̃
v, j that have destination d (henceforth referred to by pkgCountv, j,d). This

is accomplished by adding the following constraint to (1):

∑
m̃∈M̃t̃,h̃

v, j,d

∑
t∈Td

bm̃,t ≤ pkgCountv, j,d ∀v ∈V origin, j ∈ Jv, d ∈ Dt̃,h̃
v, j , (4)

where we let M̃t̃,h̃
v, j,d be the set of condensed extents of such ODs feeding the product resource

corresponding to destination d.

Early induction. Another subtle side effect has to do with how flow for ODs is introduced into the
network. In our application, we are given an induction curve that specifies what fraction Πr,t of pkgCountc

for each OD c ∈ C is introduced at supply resource r of the OD at each time t of the day. Condensation, as
described above, allows the model to ship more flow of OD c to dc as would normally be possible (see also
Example 3.1). To counteract this phenomenon, here called early induction, we add new constraints that
limit the cumulative package count associated with the ODs of a common bucket arriving at a destination
vertex by some time t. To make this precise, we first let minArrivalv, j,d be the minimum transit time of the
path of any OD in Ot̃,h̃

v, j,d . We then let arrivalUB
v, j,d,t be the cumulative number of packages ordered by ODs
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in Ot̃,h̃
v, j,d between time 0 and time (t −minArrivalv, j,d). The new constraint now is as follows:

∑
m̃∈M̃t̃,h̃

v, j,d ,t
′≤t

bm̃,t′ ≤ arrivalUB
v, j,d,t ∀v ∈V origin, j ∈ Jv, d ∈ Dt̃,h̃

v, j , t ∈ Td (5)

Limit total flow on arcs. Consider the path Pc associated with OD c ∈ C, and define pkgCounte to be
the total number of packages traveling on OD paths containing edge e ∈ E; i.e.,

pkgCounte = ∑
c∈C ∶e∈Pc

pkgCountc.

Let M̃e be the set of all (condensed) extents associated with transportation tasks on edge e. We then
require the total value of extents inMe (the total flow on e) to be bounded by pkgCounte; i.e.,

∑
m̃∈M̃e,t∈Te

bm̃,t ≤ pkgCounte ∀e ∈ E, (6)

where Te is the union of horizons of all ODs whose path uses e. To summarize our discussion, we

provide a full description of (1̃).

max ∑
r̃∈R̃prod

(Rr̃,targetr̃T−1+Rr̃,NrT−1) (1̃a)

s.t. Rr̃,t = Rr̃,t−1+ ∑
m∈M̃+

r̃

bm,t−τm − ∑
m∈M̃−

r̃

bm,t +Πr̃,t ∀r̃ ∈ R̃, t ∈ Tr̃ (1̃b)

∑
m̃∈M̃i

∑
t′∈Tm∶t′≡t modT

σm̃bm̃,t′ ≤ σ̃Bmax
i,t ∀i ∈ IS∪ILM,t ∈ T day (1̃c)

∑
m̃∈M̃i

∑
t′∈Tm̃∶t′≡t modT

σm̃bm̃,t′ ≤ σ̃Bmax
i,t yi,t ∀i ∈ IT ,t ∈ T day (1̃d)

0 ≤ Rr̃,t ≤ ∑
r∈R̃−1(r̃)

Rmax
r,t (1̃e)

(1f),(4)− (6)

In the above MIP, we let M̃i be the set of condensed extents for condensed task i, and we let

σm̃ be the average cube parameter of the bucket corresponding to extent m̃ ∈ M̃i. Recall from the

discussion in the resource condensation section that resources r̃ ∈ R̃ have well-defined target value

and horizon length, corresponding to those of resources that lie in the same bucket as r̃.

The following small example shows that, despite adding constraints (4) – (6) to (1), condensed
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and un-condensed flows may behave quite differently, and early induction is not entirely prevented

through the added constraints.

Example 3.1. The example given in the figure below has two ODs, each having total demand

volume equal to one truck load (henceforth denoted as 1 tl), the same average cube, and target

time t > 0. Arcs in the figure are annotated by their transit times. For both ODs, tl/2 packages are

induced at time 0, and the same amount at time t/2. For i = 1,2, ODi has path ⟨ f ,si,d⟩. For this

simple example, we assume that delay is only incurred while traversing arcs (as opposed to also

at nodes for sortation operations, etc.).
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<latexit sha1_base64="4asFbI5+PfZy3y7AlEPnimqWBz8=">AAAB6nicdVDLSsNAFJ3UV62vqks3g1VwFSe1wWZXcOOyon1AG8pkOmmHTiZhZiKU0E9w40IRt36RO//GSVtBRQ9cOJxzL/feEyScKY3Qh1VYWV1b3yhulra2d3b3yvsHbRWnktAWiXksuwFWlDNBW5ppTruJpDgKOO0Ek6vc79xTqVgs7vQ0oX6ER4KFjGBtpFt9Xh2UK8hGruc6CCLbRY53kRPPq9dcFzo2mqMClmgOyu/9YUzSiApNOFaq56BE+xmWmhFOZ6V+qmiCyQSPaM9QgSOq/Gx+6gyeGmUIw1iaEhrO1e8TGY6UmkaB6YywHqvfXi7+5fVSHdb9jIkk1VSQxaIw5VDHMP8bDpmkRPOpIZhIZm6FZIwlJtqkUzIhfH0K/yftqu24NrqpVRonyziK4AgcgzPggEvQANegCVqAgBF4AE/g2eLWo/VivS5aC9Zy5hD8gPX2CSbFjaE=</latexit>
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<latexit sha1_base64="4p378wQ7q9C5O7R+YgY7JWsRNJg=">AAAB6HicdVDLSgNBEJz1GeMr6tHLYBQ8LbOaxewt4MVjAuYByRJmJ73JmNkHM7NCCPkCLx4U8eonefNvnE0iqGhBQ1HVTXdXkAquNCEf1srq2vrGZmGruL2zu7dfOjhsqSSTDJosEYnsBFSB4DE0NdcCOqkEGgUC2sH4Ovfb9yAVT+JbPUnBj+gw5iFnVBupQfqlMrGJ67kOwcR2ieNd5sTzqhXXxY5N5iijJer90ntvkLAsglgzQZXqOiTV/pRKzZmAWbGXKUgpG9MhdA2NaQTKn84PneEzowxwmEhTscZz9fvElEZKTaLAdEZUj9RvLxf/8rqZDqv+lMdppiFmi0VhJrBOcP41HnAJTIuJIZRJbm7FbEQlZdpkUzQhfH2K/yetC9txbdKolGunyzgK6BidoHPkoCtUQzeojpqIIUAP6Ak9W3fWo/VivS5aV6zlzBH6AevtE+GyjOg=</latexit>

0

Using the above setup, notice that at most tl/2 units of OD1 can make

it to destination d by time t in any un-condensed solution. Note that the

two ODs are in a common bucket in the condensed model. For the ODs

of this bucket tl units of demand are available at time 0. Using early

induction, we designate this demand as belonging to OD1, and send it to

d along path ⟨ f ,s1,d⟩. Another tl units of demand becomes available at

f at time t/2, and is sent to d along path ⟨ f ,s2,d⟩. This way, the entire 2tl units of demand for

both of ODs arrives at d in time.

Note that constraint (4) is clearly satisfied in this solution. To see that (5) is satisfied, no-

tice that both ODs in this example are in the same bucket; let this be Ot̃,h̃
f , j. Further, note that

minArrivalv, j,d equals t/2, and hence arrivalUB
f , j,d,t equals 2 tl. Thus (5) is satisfied. Finally, note

that each arc in the example given belongs to exactly one OD path, and that our solution sends

exactly the demand of the corresponding OD along this path, and hence satisfies (6) as well.

The above example shows that we cannot always assume that a condensed solution may be

converted losslessly into an uncondensed one (e.g., via standard flow decomposition techniques;

see [3]). This and other theoretical aspects involving the two formulations are discussed in the

next subsection. For now, we just highlight the fact that the condensed model proved to be of

sufficient quality for the instances present in our application.

3.2 Properties of the condensed formulation

Our first theorem relates the optimum values of (1) and (1̃).

Theorem 3.2. The optimum value of (1̃) is at least the optimum value of (1).

Proof. Let (b,y,R) be a feasible solution for (1). We now define natural projections of b′ and R′ of

b and R, respectively, such that (b′,y,R′) is feasible for (1̃), and has value equal to that of (b,y,R).
LetM be the set of all extents of the original formulation, and recall the m̃ is the condensed extent

corresponding to m ∈M, and that we defined M̃ as the set of condensed extents. Further, recall
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that we defined M̃−1(m̃) as the set of extents inM whose corresponding condensed extent is m̃.

For m̃ ∈ M̃, and time t ∈ Tm̃ we now define

b′m̃,t = ∑
m∈M̃−1(m̃)

bm,t .

We also let

R′r̃,t = ∑
r∈R̃−1(r̃)

Rr,t ,

for all condensed resources r̃ of the condensed formulation, and for all times t. Recall that, by

our choice of condensation, r̃ = r̃′ for product resources r and r′ only if the corresponding ODs

have the same target values and horizon lengths. This implies that the defined map from (b,y,R)
to (b′,y,R′) is objective value preserving. It remains to show that (b′,y,R′) is feasible for (1̃).

Let r̃ be a condensed resource, and t some time. Recall that constraint (1̃b) for r̃ and t is the

sum of the original balance constraints of resources r and t where r ∈ R̃−1(r̃) and, therefore, is

satisfied by the vector (b′,y,R′).
Constraints (1̃c) and (1̃d) are the same as their uncondensed counterparts, except the possibly

altered σ coefficients. However, by definition, whenever σ is replaced by σ
′ then, by definition,

σ
′/σ ≤ σ̃ . Thus, the scaling of Bmax parameters on the right side of the capacity constraints ensures

that the capacity constraints hold.

The adjusted resource bound constraints (1̃e) are clearly satisfied by the definition of R̃ above.

Finally, since the variables y are the same in both models, constraint (1f) is fulfilled. Constraints

(4) - (6) are satisfied by b′ as the latter vector is obtained from a feasible solution b for (1).

Note that σ̃ = 1 in (1̃) if we choose all average cube parameters equal to the lower bounds of

their respective average cube intervals. Theorem 3.2 therefore shows that the introduced scaling

of right-hand sides of capacity constraints (1̃c) and (1̃d) is not needed to obtain a relaxation in this

case. We note however that, in our implementation, we choose σ parameters equal to the upper

bounds of their respective average cube intervals without scaling the Bmax parameters. In the-

ory, this could of course result in a condensed formulation whose objective value is significantly

smaller than that of (1). However, in our practical experience, this tends not to happen.

Choosing σ parameters equal to the average cube interval upper bounds, allows us to translate

condensed solutions back to their uncondensed counterparts (under certain conditions). In fact,

under the previous condition σ̃ is equal to one and the following result holds.

Theorem 3.3. Let (b′,y,R′) be a solution for (1̃), and assume that all average cube parameters

σ are chosen at their upper bounds. Then we can find (b,y,R) that satisfies the constraints of (1)
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under the following provisos:

(i) For any bucket Ot̃,h̃
v, j , and any OD (od ,dc) ∈ Ot̃,h̃

v, j we allow packages of the OD to be routed

along any oc,dc-path in the union of paths of ODs in this bucket.

(ii) We are allowed to modify induction parameters Π so that the sum of variables associated

with resources of any given bucket remains unchanged.

(iii) We are allowed to relax resource capacity (storage capacity) constraints.

The objective value of (b,y,R) in (1) is at least that of (b′,y,R′) in (1̃).

Proof. The linear systems describing feasible solutions of (1) as well as (1̃) are easily seen to have

network flow structure. We will shortly make this explicit, and proceed to show that this structure

enables us to use well known flow-decomposition techniques to strip the given bucket-granularity

solution into one that has OD-granularity.

In our proof we convert (b′,y,R′) into (b,y,R) iteratively. The y variables are not changed in

this conversion. Variables b′, and R′ are associated with specific buckets. We make use of this,

and translate variables associated with buckets Ot̃,h̃
v, j , for all v and j, in isolation, one by one.

For now, fix a bucket Ot̃,h̃
v, j , and let us construct a digraph H t̃,h̃

v, j . The graph has one vertex for

each condensed resource associated with the bucket; i.e.,

V(H t̃,h̃
v, j ) = {(r̃,t) ∶ r ∈ Rc,(oc,dc) ∈ Ot̃,h̃

v, j ,t ∈ Tr}.

Recall that every condensed extent m̃ has associated condensed resources r̃−̃m, and r̃+̃m as well as

duration τm̃. We add arc ((r̃−̃m,t),(r̃+̃m,t +τm̃))whenever the corresponding variable b′̃m,t is positive.

We also add hold-over arcs ((r̃,t −1),(r̃,t)) for resource r̃, and t ∈ Tr̃ whenever R′r̃,t−1 is positive;

i.e., whenever packages reside at resource r̃ in the time interval [t −1,t). Thus,

E(H t̃,h̃
v, j ) = {((r̃

−
m̃,t),(r̃+m̃,t +τm̃)) ∶ m̃ ∈ M̃t̃,h̃

v, j,b
′
m̃,t > 0} ∪

{((r̃,t −1),(r̃,t)) ∶ r̃ ∈ R̃i for i ∈ Ot̃,h̃
v, j ,t ∈ Tr̃ and R′r̃,t−1 > 0}.

Extent variables b′ yield natural associated arc flows by letting

b′((r̃−m̃,t),(r̃+m̃,t+τm̃)) = b′m̃,t ,

for all m̃ ∈ M̃t̃,h̃
v, j and for all t ∈ Tm̃. Similarly, we define flows on hold-over arcs, by defining

b′((r̃,t−1),(r̃,t)) = R′r̃,t−1, for all resources r̃, and for all t ∈ Tr̃.

In the following, we say that a vertex (r̃,t) is terminal if (r̃,t+1) /∈V(H); i.e., if t is maximal in

Tr̃. Call a vertex non-terminal otherwise. In our setting, terminal vertices correspond to resources
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at the end of their respective horizons, and there are therefore no out-going arcs at these vertices.

With the above, we can now define net in-flow parameters π̄r̃,t for each vertex (r̃,t) ∈ V(H) as

follows:

• If (r̃,t) is non-terminal, we let π̄r̃,t = −Πr̃,t ; i.e., the total flow entering (r̃,t) minus the total

flow leaving (including hold-over) should equal the negative injection volume at the node.

• If (r̃,t) is terminal, we let π̄r̃,t be equal to the total inflow on arcs incident to (r̃,t).

Note that, by definition, π̄r̃,t is positive for all terminal nodes in V(H), and that it is non-positive

anywhere else. Let δ
in(r̃,t) and δ

out(r̃,t) be the set of arcs in E(H) whose head and tail respec-

tively, is (r̃,t), for all (r̃,t) ∈V(H). With the definitions above, and from the fact that variables b′

satisfy constraint (1̃b), it now follows that

∑
e∈δ in(r̃,t)

b′e− ∑
e∈δ+(r̃,t)

b′e = π̄r̃,t ,

for all (r̃,t) ∈V(H). In other words, b′ is a feasible flow for the flow instance given by H and π̄ .

For a thorough introduction to network flow theory, we refer the reader to the excellent textbooks

[3, 60].

Observe now that any arc ((r̃,t),(r̃′,t′)) ∈ E(H) satisfies t′ > t, and hence H is acyclic. Stan-

dard flow-decomposition arguments together with the acyclicity of H now imply that there are

directed paths P1, . . . ,Pq and positive values b′Pi
for all i such that

b′e = ∑
i ∶e∈Pi

b′Pi
,

for all e ∈E(H). In other words, we can split the arc flow b′ into paths. Each of these paths begins

in a non-terminal, and ends in a terminal vertex.

Note that, by definition, Πr̃,t = ∑r∈R̃−1(r̃)Πr,t , for any (r̃,t) ∈ V(H), and that all resources

r ∈ R̃−1(r̃) belong to to OD pairs in bucket Ot̃,h̃
v, j . Once again by standard flow decomposition

arguments, it can be seen that we may assume that each of the directed paths Pj above belongs

to a unique OD (oc,dc) ∈ Ot̃,h̃
v,r , and the total number of packages on these paths is no larger than

pkgCountc. In the following, we will let Pc be the set of directed paths in {P1, . . . ,Pq} that belong

to OD (sc,tc) ∈ Ot̃,h̃
v, j . Flow decomposition implies that we can pick these sets such that each path

P ∈ Pc ends in a node ( p̃c,t′) ∈V(H), where p̃c is a condensed product resource corresponding

to OD (sc,tc), and some time t′. Flow decomposition also implies that the set of paths with start

node (r̃,t) for any r̃ ∈ R̃t̃,h̃
v, j, and t̃ ∈ Tr̃ has total flow equal to ∑r∈R̃−1(r̃)Πr,t .

Note that we cannot argue that the paths in Pc starting at (r̃,t) have total flow value at most

Π
c
r̃,t (hence requiring proviso (ii)). Note also that paths in set Pc may in general be different from

21



the original path shipment path Pc of an OD (oc,dc) (requiring proviso (i)).

It remains to define values of variables in the un-condensed solution corresponding to ODs in

Ot̃,h̃
v, j . Consider a variable bm,t and let e = (r̃−m,t),(r̃+m,t +τm) be the corresponding arc in E(H).

Suppose that the OD corresponding to extent m is (oc,dc) ∈ Oñ,h̃
v, j . We then let

bm,t = ∑
P∈Pc,e∈P

b′P

i.e., we sum the total flow value of paths of OD (oc,dc) that contain e (note, that, by definition,

all ODs in a bucket have the same horizon, and hence variables exist).

Similarly, consider variable Rr,t for some resource r ∈ Rc, (oc,dc) ∈ Ot̃,h̃
v, j , and t ∈ Tr. Let e =

((r,t),(r,t +1)) be the hold-over arc corresponding to this resource at time t, and we then let

Rr,t = ∑
P∈Pc,e∈P

b′P

the total value of flow assigned to paths in P i that contain e. Note that the above definition, and

flow decomposition may yield values of R that violate (1e) (requiring relaxation (iii)). Note that

constraint (1e) is relaxed in all our experiments, i.e., we do not impose storage capacity constraint.

Suppose that we apply the above procedure to all buckets Ot̃,h̃
v, j , and let the resulting solution

be (b,y,R). Directly from the definitions of H above, and from the way we defined the flow

decomposition, it follows that constraints (1b) are satisfied. Constraints (1c) and (1d) are satisfied

as well; this follows (a) as the corresponding task constraints in (1̃) were satisfied by b′, (b) b is

essentially obtained by splitting b′, and (c) our choice of average cube parameters σ equal to the

upper bounds of the average cube interval of the respective bucket, and the definition of σ̃ imply

that condensed flow over-estimates contribution to task capacity.

By our definition of buckets target and horizon values of product resources coincide for ODs

in each bucket. Hence, flow decomposition can be seen to be objective function value preserving.

4 Heuristic solution via Lagrangian decomposition

It is computationally challenging to solve (1) and (1̃) for large instances (e.g.; those arising from

large real-world transportation problems) as a single, full-space optimization problem due to the

complexity of timing decisions at fine (e.g., hourly) granularity. To improve its solution perfor-

mance, and taking advantage of special structures in the formulation of the optimization problem,

we propose a solution algorithm based on geographical decomposition combined with the so

called split Lagrangian method [30].
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4.1 Balanced partitioning

Recall from Section 1 that we defined G= (V,E) to be the graph associated with the input network.

Furthermore, recall that each OD pair (oc,dc) ∈ C in the input has an associated oc,dc-path Pc.

Finally, let Ec ⊆ E(G) be the set of edges in oc,dc-path Pc.

The goal is to find a balanced partition π = (V1, . . . ,Vq) of the vertex set V(G): (i) V =V1 ∪
. . .∪Vq; (ii) Vv ∩Vu = ∅, for all v ≠ u; and (iii) ∣Vv∣ ≤ (1+α)∣V ∣/q, for all v, where α is a given

imbalance parameter. In the context of the tfMCF, the subgraph induced by a subset Vi of the

partition is called a region.

Now, let δ(π) be the set of edges in G whose ends lie in different parts of π . We want to find a

balanced partition that allows us to break the overall optimization problem into smaller problems

that are as independent as possible. In light of the split-Lagrangian approach taken here, achieving

approximate independence translates into minimizing the number of path edges in δ(π). More

formally, we define the weight we of an edge e ∈ E(G) as the number of paths Pc for OD pair

(oc,dc) ∈ C with e ∈ Ec. The goal is now to find a balanced partition π that minimizes ∑e∈δ(π)we.

The balanced separator problem is well-known to be NP-hard as well as hard to approximate

within a constant factor [8]. Because of its central place in divide-and-conquer type algorithmic

strategies, graph partitioning algorithms are widely studied, and the body of previous work is

vast. Here, we use the well-known graph partitioning package Metis [39] which has been known

to efficiently produce partitions of reliable performance. Metis employs the famed multilevel

graph partitioning approach in which the input graph is recursively contracted to achieve smaller

graphs. These smaller graphs are later uncontracted and refined.

4.2 Split Lagrangian

Lagrangian decomposition is a well-known technique to solve optimization problems. Given a

mathematical formulation of the problem to be solved, in this technique the complicating con-

straints are dualized such that the remaining formulation is separable into multiple subproblems

that are easier to optimize. The dualization of a constraint consists in adding a term to the objec-

tive function that penalizes solutions that violate the constraint. The penalty factor associated to

this term is the Lagrange multiplier corresponding to the constraint. The optimization problem

obtained by dualizing the complicating constraints is known to be a relaxation for the original

problem. In the case of tfMCF, this means the optimum of the latter problem yields an upper

bound for (1). To tighten this bound, the Lagrange multipliers need to be optimized. This task can

be accomplished by solving the so called Lagrangian dual to produce the tightest bound which,

for convex problems (not the case for MIPs), coincides with the optimum of the original problem.

For a thorough presentation of Lagrangian Theory, the reader may refer to [46].
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We follow the split Lagrangian methodology proposed by Guignard and Kim [30]. In this

approach copies of a carefully chosen subset of variables are created to generate separable sub-

problems that are easy to solve. The constraints that impose equalities between such variables

and their copies are dualized in the usual Lagrangian way. Guignard and Kim showed that the

bound obtained by split Lagrangian is never bigger (i.e., worse) and is often smaller (i.e., better)

than that of the classical Lagrangian relaxation approach because every constraint in the original

problem appears in one of the subproblems. Therefore, the optimization of multipliers through

the Lagrangian dual problem can be interpreted as optimizing the primal objective function on the

intersection of the convex hulls of the constraint sets of the subproblems (Guignard and Kim [30]

Corollary 3.4). For a graphical interpretation of split Lagrangian as well as some practical exam-

ples, we refer the reader to this tutorial by Grossmann [28]. For details on convergence, please

refer to the original paper by Guignard and Kim [30]. .

Here, we choose to demonstrate the application of Guignard and Kim’s split Lagrangian ap-

proach to formulation (1) rather than its condensed version in (1̃). We do this for notational ease

but observe that the work of [30] can also be applied to the condensed MIP. Modifying (1), we cre-

ate duplicates bout
m,t of extent size variables bm,t for m ∈Mi where the corresponding transportation

tasks i has its origin in a region different from that of its destination. We add constraints that force

equality of bout
m,t and the original variable bm,t to our model. We obtain the Lagrangian subproblem

of (1) by dualizing the latter equality constraints. The resulting Lagrangian subproblem has block

structure, and decomposes neatly into independent regional problems.

Lagrangian subproblem. We state the complete formulation of the Lagrangian subproblem

corresponding to (1) for the region induced by Vp, and p ∈ {1, . . . ,q}. In the following, let λ be a

given vector of Lagrangian multipliers.
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max ∑
r∈Rprod

p

(Rr,ntarget
r T−1+R

r,nday
r T−1)− ∑

i∈Iout
∑

m∈Mi

∑
t∈Tm

λm,tbout
m,t + ∑

i∈Iin,dest
∑

m∈Mi

∑
t∈Tm

λm,tbm,t (7a)

s.t. Rr,t = Rr,t−1+
⎛
⎜
⎝
∑

m∈M+,in
r,p

bm,t−τm + ∑
m∈M+,out

r,p

bout
m,t−τm

⎞
⎟
⎠
− ∑

m∈M−,in
r,p

bm,t +Πr,t ∀r ∈ Rp, t ∈ Tr (7b)

∑
m∈Mi

∑
t′∈Tm∶t′≡t mod tday

σi,mbm,t′ ≤ Bmax
i,t ∀i ∈ IS

p ∪ILM
p ,t ∈ T day (7c)

∑
m∈Mi

∑
t′∈Tm∶t′≡t mod tday

σi,mbm,t′ ≤ Bmax
i,t yi,t ∀i ∈ IT

p ,t ∈ T day (7d)

Rr,t ≤ Rmax
r,t ∀r ∈ Rp, t ∈ Tr (7e)

∑
i∈IT

∑
t∈T day

Ciyi,t ≤ Φ̂
cost
p (7f)

yi,t ∈Z+ ∀i ∈ IT ,t ∈ T day (7g)

We will refer to the optimum of the above Lagrangian subproblem as Φ
LR
p . Above, λm,t is the

Lagrange multiplier of the equality constraint bout
m,t = bm,t . The sets Rp (and Rprod

p ) contain (prod-

uct) resources corresponding to vertices in Vp. The set of tasks that start in a vertex in region p is

represented by I in
p . The setsM+,in

r,p andM−,in
r,p are formed by the extents of tasks in I in

p that feed

and deplete resource r, respectively. Similarly, Iout
p is the set of tasks that start in a vertex that is

not in p, but end in a vertex of p, andM+,out
r,p is the set of extents of tasks in Iout

p that feed resource

r. Also, I in,dest
p ⊂ I in

p is the subset of tasks that start in a vertex that belongs to region p, but have

as destination a vertex outside the region. Thus, one such task is part of the Iout
p′ for some p′ ≠ p.

Finally, we have I in,dest = ⋃p∈[q]I in,dest
p and Iout = ⋃p∈[q]Iout

p .

The regional Lagrangian subproblems introduced above can be solved in parallel, and the

sum of their objective values gives a relaxed upper bound (dual) to the original problem (1).

For the split Lagrangian to converge, we need to optimize the Lagrange multipliers (i.e. solve

the Lagrangian dual). For the maximization problem (1), the Lagrangian dual is given by the

minimization problem in (8).

Φ
LD =
⎧⎪⎪⎨⎪⎪⎩

min
λ

⎛
⎝ ∑p∈[q]

Φ
LR
p (λ)

⎞
⎠
∶ λ ∈Rn

⎫⎪⎪⎬⎪⎪⎭
(8)

In order to solve the Lagrangian dual (8), we update the Lagrange multipliers using the classical

subgradient method where we let λ
k+1
i,m,t = λ

k
i,m,t + µ(bout k

i,m,t − bk
i,m,t), in every iteration k. In the

latter formula, µ is the step-size parameter, which we choose according to Poljak’s rule [52]:

µ = ηk
Φ

LB−Φ
LD
k

(bout k−bk)2 , with ηk ∈ [0,1] and Φ
LB being a lower bound for the optimum of (8). We refer

the reader to the excellent survey of Beasley [5] for more details on the choice of parameters in
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implementing the subgradient method.

4.3 Proposed heuristic algorithm

To be able to solve instances with hundreds of millions of variables and constraints (see Section 5),

we combine the multiple strategies presented above (condensed formulation, balanced partition

of the network, Split Lagrangian algorithm) into the heuristic algorithm described in Algorithm 1.

Please refer to Appendix B for a diagram representation of the main steps in Algorithm 1.

For some very-large-scale instances, even solving the linear relaxation can prove to be a chal-

lenge. Therefore, we use Lagrangian Decomposition to solve the linear relaxation of original MIP

(1), and limit the number of iterations to iterLP ∈ {0,1, ..., itermax}. In our experiments (Section

5), we observe that there are significant similarities between the linear relaxation and the MIP

solution, and 70-80% of the discrete variables have the same value in the linear relaxation and

original MIP. We take advantage of this feature by proposing a rounding heuristic that leverages

the solution of the linear relaxation of the Lagrangian subproblems to reduce the search space of

the MIP, and improve its tractability.

Based on a given a rounding threshold ζ ∈ [0,0.5], we fix a subset of the task occurrences

(discrete variables) to zero if their solution in the linear relaxation of the Lagrangian subproblem

is below the threshold, yi,t ≤ ζ (line 12 in Algorithm 1). However, this heuristic can make low

volume edges infeasible by fixing all transportation task occurrences in an edge to zero (i.e.,

deactivate) because their values in the LP relaxation are all below the rounding threshold. In

order to mitigate this behavior, for edges in which all transportation task occurrences are below

the rounding threshold, yi,t ≤ ζ∀i ∈ IT
e ,t ∈ T day (where IT

e is the set of transportation task in edge

e ∈ E), we fix to 1.0 (i.e., activate) the transportation task occurrence with the highest value in the

LP (line 13 in Algorithm 1)

The solution of this reduced MIP is a primal solution (lower bound) to (1), while the sum of

the linear relaxation of the Lagrangian subproblems gives a valid dual bound (upper bound) to

(1). If the optimality gap between the upper (UB) and lower bound (LB) is within a pre-specified

tolerance, the algorithm stops, else, it goes to a final step where we try to solve the original MIP (1)

but provide a warm-start solution to the root node LP (using the solution of the LP root node from

the reduced MIP), and a warm-start feasible solution (using the optimal solution of the reduced

MIP) (line 17 in Algorithm 1.). In order to stop the solution as soon as the duality gap tolerance,

δ , is satisfied, we add a callback function to the Dual Simplex solver used in the root node LP of

this warm-started original MIP. At each iteration of the Dual Simplex, we check if the current best

solution of the LP is lower than the current upper bound UB. If so, we update the UB and check

again the optimality criterion, UB−LB
UB ≤ δ . If satisfied, we interrupt the solution of the warm-started
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Algorithm 1 Solution algorithm for tfMCF with rounding heuristic
1: Partition the full network into a set P of q balanced regions using Metis.
2: Condense the formulation for this reduced set of paths, bucketizing the origins for a given ε-approximation, and

generate the RTN subproblem for each region using the condensed formulation.
3: Initialize the Lagrange multipliers λ = 0.
4: Calculate the Φ̂

cost
p ∀p ∈ [q] splitting Φ̂

cost proportionally to the total package cube assigned to each region p.
5: for all iterLP ∈ {0,1, ..., itermax} do
6: for all p ∈ [q] do
7: Solve the LP-relaxation of the regional (condensed) subproblems in parallel, given the regional

cost bound Φ̂
cost
p .

8: Use subgradient method to update the Lagrange multipliers.
9: end for

10: end for
11: Compute the (relaxed) upper bound UB =∑p∈[q]Φp.
12: Fix the task occurrence variables yi,t to zero if their solution in the LP-relaxation of the Lagrangian subproblems is

less than or equal to a given rounding threshold ζ .
13: If yi,t ≤ ζ∀i ∈ IT

e ,t ∈ T day for an edge e ∈ E, fix to 1.0 the transportation task occurrence with the highest value in the
LP.

14: Solve the resulting reduced MIP (rounding heuristic).
15: Update the lower bound LB with the cost of the solution of the reduced MIP.
16: if UB−LB

UB > δ then ▷ duality gap threshold not attained
17: Solve warm-started version original MIP (1), providing the LP solution and

the MIP feasible solution of the rounding heuristic to the solver.
When solving the LP relaxation of the root node with Dual Simplex,
update the UB at each iteration. If at any point UB−LB

UB ≤ δ , stop.
18: end if

original MIP.

5 Computational results

In this section we report on computational experiments with Algorithm 1 which was implemented

in Python and uses Xpress, version 8.11, as the MIP solver. All runs were made on an AWS

instance of type r5b.24xlarge equipped with 768.0 GiB of memory and 96 virtual CPUs1. The

algorithm’s performance was evaluated on four real instances of the tfMCF whose main charac-

teristics are summarized in Table 1. Those instances were selected to be tested, as they illustrate

the diversity of complexity we face in practice.

In each run reported in this section, the algorithm was allowed a maximum of 24 hours of

computing time and the target duality gap threshold was fixed to 1%, meaning that the optimiza-

tion was halted whenever the upper (UB) and lower (LB) satisfy (UB−LB)
UB ×100 ≤ 1. In all runs we

1More details on the hardware can be obtained at
https://instances.vantage.sh/?min_memory=769&filter=r5b.24xlarge&region=us-west-2r5b.24xlarge
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Table 1: Statistics of the tested instances.

assume that time is discretized into hourly intervals, and round up the task duration to the nearest

hour.

We focus our analysis mainly on two aspects. The first aims to assess the benefits of the

condensation technique discussed in Section 3. The second is devoted to measure the quality of

the solutions produced by Algorithm 1 for different parameter settings.

The impact of condensation To evaluate the benefits of condensation, for each instance in our

benchmark, we solve the MIP (1) obtained for different values of the condensation factor ε in

equation (2). We compare the runs with no condensation and those with ε set to 0.5, 1 and 3.

The results are summarized in Table 2. The symbols “-” in the cells in columns Dual bound and

Primal bound mean that Xpress was unable to produce the respective bound. Similarly, in column

Duality gap, this symbol is used to denote that the gap could not be computed due to the absence

of at least one of the bounds.

Inspecting the data in the last two columns of the table already gives an overall idea of the

gains produced by condensation. This is best illustrated by the results of the Mid-size instance.

Without condensation, after 24 hours of computation, the duality gap was 37.28%, far above the

admissible threshold of 1%. The smallest condensation factor was enough to reach this threshold

in 7.34 hours, and increasing ε only made it faster to attain the required solution quality. For the

Small instance, no condensation was necessary to find an optimal solution within the time limit.

Nevertheless, for all three condensation factors tested the target duality gap threshold was reached

in about half of the time. Notice that, in all but one case, Xpress was unable to produce a feasible

(primal) solution for the MIPs associated to instances Large and Huge. This highlights the need

of a heuristic approach as provided by Algorithm 1.

Note that the bigger the instance, the bigger the impact of condensation, potentially because

there are more paths to be grouped. Recall that condensation affects the number of resources

and extents, but not the number of tasks. Consequently, the number of integer variables in the

MIP remains the same, while the overall number of variables and constraints reduces by a factor

of 25%-50%. Also, one can see that the dual bounds get looser as the value of ε increases.

But, remarkably, the deterioration is small, showing that the condensed formulation is an useful

approximation for the original MIP. Finally, it is worth noting that condensation was essential to
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allow the solution of the LP relaxation of the Huge instance, for which Xpress failed to compute

the optimal of the original LP after 24 hours.

Table 2: Condensation results.

The impact of the heuristic and its settings We now report on the results we obtained using

the heuristic in Algorithm 1. The heuristic was tested with two different partition strategies. In the

first one, named the “Full-space heuristic”, the network was left unpartitioned, which is equivalent

to set q = 1 in line 1 of the algorithm. In the second one, called the “Decomposition heuristic”,

the network was partitioned into q = 20 regions by Metis using an imbalance factor of 0.2, and

Lagrangian Decomposition step is limited to 3 iterations, itermax = 2. The goal of testing these

two strategies was to identify when the decomposition becomes necessary to ensure scalability.

Table 3 displays the results obtained. In all runs the condensation factor ε was set to 3. The rows

identified by the “No heuristic” in the “Condensation setup” column reproduce results shown in

Table 2 for ε = 3 and are kept here for reference.

For each instance and each strategy, three values were tested for the rounding threshold ζ in

line 12 in Algorithm 1: 0.1, 0.2, and 0.3. As expected, in all cases, the number of integer variables

that are fixed increases as ζ augments with the percentage ranging from about 80% to 90% of their

total. The trade-off here is clear: the higher the number of integer variables fixed, the easier/faster

it should be to find the solution of the reduced MIP, but the more suboptimal it may be relative

to the original MIP. However, for the values of ζ used in our tests, the loss in solution quality

was small as can be observed in columns “Final primal bound” and “Final duality gap”. For all

instances, the “Decomposition heuristic” strategy fixes slightly more variables than “Full-space

heuristic” when ζ ∈ {0.1,0.2} while, for some as yet unknown reason, the reverse happens when

the rounding threshold equals 0.3.
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The importance of the network partitioning becomes evident for the Huge instance, which can

not be solved with the “Full-space heuristic” for the two smallest rounding thresholds. Note that

for this instance and also for Large, the “Decomposition heuristic” with ζ = 0.1 is the only version

that reached the threshold duality gap of 1% in less than 24 hours of run-time.

Another remarkable result can be noticed by inspecting columns “Primal bound from heuris-

tic” and “Duality gap after solving LP relaxation of warm-started MIP”. From there one sees

that all primal bounds found in the reduced MIP heuristic are within 2% duality gap. Therefore,

if the optimality tolerance was 2%, we could have stopped there and saved considerable time

(compare the times reported in columns “Solution time LP relaxation of warm-started MIP” and

“Total solution time”). We have observed that, if we stick to the 1% duality gap threshold, it

pays off to choose a ζ = 0.1 because, even though it takes longer to solve the reduced MIP, it was

not necessary to enter the step to solve the warm-started original MIP (line 17 of Algorithm 1).

In fact, the experiments revealed that, unless the problem is small enough (Small and Mid-size

cases), this step runs out of time without improving the primal and dual bounds. This can be seen

by inspecting the columns “Duality gap after solving LP relaxation of warm-started MIP” and

“Final duality gap” for instances Large and Huge.

Another analysis we made refers to the reason that led the algorithm to stop. In line 17,

the original MIP is solved after being fed with the warm-start solution obtained by the rounding

heuristic. However, there is no need to wait for the solver to compute the optimal of the linear

relaxation when a suboptimal LP solution is already enough to ensure that the 1% desired duality

gap has been reached. This check can be done at any time by comparing the current LP objective

function against the primal bound generated in line 17. Such a situation happened six times as

indicated by the highlighted cells in column “Final dual bound”.

6 Conclusion

In this paper we have proposed a temporal fixed-charge multicommodity flow problem (tfMCF)

to capture the optimization of intra-day decisions in a transportation network in order to increase

delivery speed, which in the application of interest means maximizing the number of packages

delivered on time. We formulate the problem as a Resource Task Network (RTN), a framework

commonly used for chemical process industry applications, and provide an example of how to

map between the raw transportation network and the corresponding RTN.

The proposed mixed-integer program can become prohibitively large as the number of origin,

destination (OD) pairs increases. Therefore, we have proposed a model condensation technique

that groups similar OD pairs into buckets, and yields models whose number of variables and con-

straints are reduced by a factor of 25%-50%. We discuss theoretical properties of the condensed
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Table 3: Heuristic results.
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formulation and show that for some edge cases it is not guaranteed that the condensed formulation

results in a feasible solution to the uncondensed problem. We prove that the condensed formu-

lation is a relaxation to the uncondensed problem, and that, under mild assumptions, its solution

is also feasible to the uncondensed problem. The computational results show that using the the

condensed formulation was crucial to fully solve the Mid-size instance (62M variables and 33M

constraints) and to solve the linear relaxation of the Huge instance (294M variables and 155M

constraints) within the allowed computing time. Across all instances, the condensed formulation

solves faster than the uncondensed formulation. The results also show that the dual bounds get

looser as the value of the condensation factor ε increases, but the deterioration is small.

The proposed condensation alone is not sufficient to solve the two largest test instances (with

100M+ variables and constraints) efficiently. We have proposed a heuristic algorithm that com-

bines balanced partitioning of the network, Split Lagrangian, and an LP filtering heuristic. The

algorithm was tested for different rounding threshold (ζ = {0.1,0.2,0.3}), as well as for a single

region (full-space) and 20 regions. As expected, the number of fixed integer variables increases

with the rounding threshold, ranging from 80 to 90% of the total discrete variables. The higher the

number of variables fixed, the easier/faster it is to solve the reduced MIP, but the more suboptimal

it may be compared to the original MIP. However, for all heuristic variations of all instances, if

the algorithm was able to find a solution to the reduced MIP, this solution was already within 2%

duality gap. For a stricter optimality tolerance of 1% it pays off to use ζ = 0.1 and decompose the

problem into 20 regions. This is the only heuristic configuration that found a solution within 1%

optimality tolerance for the Large and Huge instances in less than 24 hours of run-time.

Overall, the modeling and solution methodology developed in this work made it possible to

address a real-world problem with application to e-commerce logistics, and to solve practical

instances of the order of 100M+ variables and constraints within a day of solution time. As next

steps, we would like to explore ways to co-optimize cost and speed to be able to evaluate their

trade-off, and to explore more heuristic techniques that can potentially reduce the solution time

even further.

Nomenclature

Acronyms

f MCF Fixed multi-commodity flow problem

t f MCF Temporal fixed-charge multicommodity flow problem

DDD Dynamic Discretization Discovery

DS Delivery station
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FC Fulfillment center

IB Inbound

IP Integer program

LB Lower bound

LP Linear program

MIP Mixed-integer program

OB Outbound

OD Origin-destination pair

RTN Resource task network

SC Sort center

SND Service network design

UB Upper bound

Parameters

(oc,dc) (origin, destination) pair of commodity c

arrivalUB
v, j,d,t Cumulative number of packages ordered by ODs in bucket Ot̃,h̃

v, j between time 0 and

time (t −minArrivalv, j,d)

cubemax
v Max total volume of the OD among the ODs in a bucket

cubemin
v Min total volume of the OD among the ODs in a bucket

δ(π) Set of edges in graph G whose ends lie in different parts of π

ε Condensation factor

γi,m Conversion factor between unit of extent size m and unit of task capacity i

Φ̂
cost Upper bound to the total line-haul cost

λ Vector of Lagrangian multipliers

λm,t Lagrange multiplier of the equality bout
m,t = bm,t

Ot̃,h̃
v, j Bucket of ODs with origin v, target t̃ and horizon h̃

minArrivalv, j,d Minimum transit time of the path of any OD in bucket Ot̃,h̃
v, j
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µ Step-size parameter in the subgradient method

pkgCounte Upper bound to total number of packages in edge e

pkgCountc Packages to be shipped along path Pc of commodity c

pkgCountv, j,d Total number of packages of ODs in in bucket Ot̃,h̃
v, j that have destination d

pkgCubec Total volume to be shipped along path Pc of commodity c

π = (V1, ...,Vq) Balanced partition of the vertex set V(G)

Πr,t Amount of flow injected into resource r at time t ∈ Tr

σv, j Average cube parameter for each bucket Ot̃,h̃
v, j

τi Duration of task i

τm Duration of task i corresponding to extent m

iterLP ∈ {0,1, ..., itermax} Set of iterations for the Lagrangian decomposition to solve the LP re-

laxation

θc Demand of commodity c

Π̃r̃,t Amount of flow injected into condensed resource r̃ at time t ∈ Tr̃

σ̃ Maximum of σ̃v, j over all buckets bucket Ot̃,h̃
v, j if at least 1, or 1 otherwise

σ̃v, j Maximum ratio of σv, j and the average cube of any commodity in the bucket

ζ Rounding threshold in the heuristic

Bmax
i,t Capacity of task i at time t

Ci Cost of adding a vehicle for transportation task i

d ∈ Dt̃,h̃
v, j Set of destinations d of ODs in bucket Ot̃,h̃

v, j

Fe Edge cost

G(V,E) Graph with vertices V and edges E

m ∈Mt̃,h̃
v, j Extent set of bucket Ot̃,h̃

v, j

Nc Relevant horizon of commodity c in days

Nr̃ Relevant horizon of condensed resource r̃ in days

Pc Path for commodity c

r+m Resource fed by extent m
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r−m Resource depleted by extent m

Rmax
r,t Upper bound to level of resource r at time t ∈ Tr

targetc Target arrival time of commodity c in days

targetr̃ Target arrival time of condensed resource r̃ in days

ue Edge capacity

we Weight of edge e based on the number of paths Pc for OD pair (oc,dc) ∈ C with e ∈ Ec

ye ∈N Units of capacity of edge e, where a unit of capacity is ue

Sets

T day = {0, . . . ,T −1} Time period in a day, where T is the total number of time periods in a day

Tc = {0, . . . ,NcT −1} Time horizon of commodity c

Tm = {0, . . . ,nday
r T −1} Time horizon of extent m associated with commodity c ∈ C

Tr = Tc Time horizon of resources r ∈ Ri of commodity c

h̃ ∈ H Set of horizon lengths

m̃ ∈ M̃ Set of condensed extents

m̃ ∈ M̃t̃,h̃
v, j,d Set of condensed extents of ODs in bucket Ot̃,h̃

v, j that have destination d

m̃ ∈ M̃e Set of condensed extents with transportation tasks on edge e

r̃ ∈ R̃ Set of condensed resources

t̃ ∈ T A Set of targets

c ∈ C or (oc,tc) ∈ C Commodities

e ∈ E or uv ∈ E Edges in graph G(V,E) with vertices u and v

e ∈ Ec Set of edges in OD path Pc

i ∈ I Tasks

i ∈ ILM Last-mile tasks

i ∈ IS Sortation tasks

i ∈ IT Transportation tasks

i ∈ I in,dest
p ⊂ I in

p Subset of tasks that start in a vertex that belongs to region p, but have as destina-

tion a vertex outside the region
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i ∈ I in
p Set of tasks that start in a vertex in region p

i ∈ Iout
p Set of tasks that start in a vertex that is not in p, but end in a vertex of p

j ∈ Jv Set of indices j used in the logarithmic definition of OD buckets

m ∈M+,in
r,p Extents of tasks in I in

p that feed resource r

m ∈M+,out
r,p Set of extents of tasks in Iout

p that feed resource r

m ∈M+
r Extents that feed resource r

m ∈M−,in
r,p Extents of tasks in I in

p that depletes resource r

m ∈M−
r Extents that deplete resource r

m ∈Mc Extents of commodity c

m ∈Mi Extents of task i

m ∈M+
r Extents that feed resource r

m ∈M−
r Extents that deplete resource r

p ∈ [q] Set of balanced partitions (regions)

r ∈ Rinter Intermediate resources for each commodity c

r ∈ Rprod Product resources for each commodity c

r ∈ Rsupply Supply resources for each commodity c

r ∈ Rc Resources for each commodity c

t ∈ Te Union of horizons of all ODs whose path uses edge e

t ∈ Tr̃ Time horizon of condensed resource r̃ in days

uv ∈ A Arcs with origin vertex u and destination vertex v and transit time τ

Decision variables

Φ
LB Lower bound for the optimum of (8)

Φ
LR
p Optimum of the Lagrangian subproblem (7)

bout
m,t Duplicate of extent size variable bm,t for extent m ∈Mi where corresponding transportation

task i has its origin in a region different from that of its destination

bm̃,t Size of condensed extent m̃ at time t ∈ Tm̃

bm,t Size of extent m at time t ∈ Tm
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Rr̃,t Level of condensed resource r̃ at time t ∈ Tr̃

Rr,t Level of resource r at time t ∈ Tr

yi,t Discrete occurrence of task i ∈ IT at time t ∈ T day. It represents the number of vehicles

installed each day.
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A RTN Formulation for tfMCF

For our tfMCFproblem, a few simplifications are introduced to the conventional RTN MIP for-

mulation notation, taking advantages of the specific task-resource interactions modeled in the

transportation network. For illustration, starting from the multi-extent resource balance equation

in [58]:

Rr,t = Rr,t−1+∑
i∈I

τi

∑
θ=0

αi,r,θ yi,t−θ +∑
i∈I
∑

m∈Mi

τi

∑
θ=0

βi,m,r,θ bi,m,t−θ +Πr,t , ∀r ∈ R,t ∈ T ,

where, r ∈ R is the set of resources, t ∈ T is the set of time intervals, i ∈ I is the set of tasks,

m ∈Mi is the set of extents of task i, Rr,t is the excess resource level of resource r at time t, yi,t

represents task i starting at time t, bi,m,t represents the size of extent m of task i starting at time t,

Πr,t represents the external supply or consumption of resource r at time t, τi is the length of task

i in terms of integer multiple of the unit grid length, αi,r,θ ,βi,r,m,θ are the discrete and continuous

resource task interaction parameters.

1. The discrete resource task interactions are dropped, i.e. αi,r,θ = 0. Packages are treated

as continuous resources in this study. For transportation tasks, vehicle resources are not

explicitly considered, and the cost is calculated using the integer task occurrence variables

instead. This leads to fewer resources defined and therefore reduced number of variables in

the resultant MIP problem.

2. For continuous interactions, there is no intra-task resource production or consumption. More

specifically, resource depletion only occurs at the beginning of a task, and generation at the

end. There are no tasks that split a resource into multiple ones (no fractional interaction

parameters). Therefore, it holds that for all tasks, βi,m,r,θ=0 = −1 for resource consump-

tion, and βi,m,r,θ=τi = 1 for resource generation (otherwise, βi,m,r,θ = 0). We further drop the

task index i and use extent only for the ease of notation, and also use τm for duration in

place of τi as they are always equal. Finally, the continuous task resource interaction term

∑i∈I∑m∈Mi∑
τi
θ=0 βi,m,r,θ bi,m,t−θ is rewritten as ∑m∈M+

r
bm,t−τm −∑m∈M−

r
bm,t , whereM+

r and

M−
r denote extents that feed and deplete resource r, respectively. Here we make the use of

the fact that task extents of different tasks do not overlap, and dropping the task index does

not change the resultant constraints.

B Solution framework

Figure 5 shows the flowchart of the proposed Algorithm 1.
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Figure 5: Overview of the proposed solution methodology.
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