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Abstract

Using tail bounds, we introduce a new probabilistic condition for function estimation
in stochastic derivative-free optimization which leads to a reduction in the number of
samples and eases algorithmic analyses. Moreover, we develop simple stochastic direct-
search and trust-region methods for the optimization of a potentially non-smooth func-
tion whose values can only be estimated via stochastic observations. For trial points to
be accepted, these algorithms require the estimated function values to yield a sufficient
decrease measured in terms of a power larger than 1 of the algoritmic stepsize.

Our new tail bound condition is precisely imposed on the reduction estimate used to
achieve such a sufficient decrease. This condition allows us to select the stepsize power
used for sufficient decrease in such a way to reduce the number of samples needed per
iteration. In previous works, the number of samples necessary for global convergence
at every iteration k of this type of algorithms was O(∆−4

k ), where ∆k is the stepsize
or trust-region radius. However, using the new tail bound condition, and under mild
assumptions on the noise, one can prove that such a number of samples is only O(∆−2−ε

k ),
where ε > 0 can be made arbitrarily small by selecting the power of the stepsize in the
sufficient decrease test arbitrarily close to 1. The global convergence properties of the
stochastic direct-search and trust-region algorithms are established under the new tail
bound condition.

1 Introduction
We consider the following unconstrained optimization problem

min
x∈Rn

f(x), (1.1)
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where f is locally Lipschitz continuous and possibly non-smooth with inf f = f ∗ ∈ R. We
assume that the original function f is not computable and that the only information available
about f is given by a stochastic oracle producing an estimate f̃(x) for any x ∈ Rn. In some
contexts, we can assume that the estimate is a random variable parameterized by x, that is

f̃(x) = F (x, ξ),

with the black-box oracle given by sampling on the ξ space. When dealing with statistical
learning problems [21], the function F (x, ξ) evaluates the loss of the decision rule parametrized
by x on a data point ξ. In simulation-based engineering applications [1], the function F (x, ξ)
is simply related to some noisy computable version of the original function. In this case, ξ
represents the random variable that induces the noise, with a classic example given by Monte
Carlo simulations. When this random variable is exact in expected value, problem (1.1) turns
out to be the expected loss formulation

min
x∈Rn

Eξ[F (x, ξ)], (1.2)

a case addressed in recent literature, see, e.g., [22, 36] for further details.

1.1 A short review of stochastic derivative-free optimization
Although the role of derivative-free optimization is particularly important when the black box
representing the function is somehow noisy or, in general, of a stochastic type, traditional DFO
methods have been developed primarily for deterministic functions, and only recently adapted
to deal with stochastic observations (see, e.g., [9] for a detailed discussion on this matter). We
give here a brief overview of the main results available in the literature by first focusing on
model-based strategies and then moving to direct-search approaches. Further details on these
two classes of methods can be found, e.g., in [3, 11].

In [22], the authors describe a trust-region algorithm to handle noisy objectives and prove
convergence when f is sufficiently smooth (i.e., with Lipschitz continuous gradient) and the
noise is drawn independently from a distribution with zero mean and finite variance, that is
they aim at solving a smooth version of problem (1.2), when ξ is additive noise. In the same
line of research, the authors in [36] developed a class of derivative-free trust-region algorithms,
called ASTRO-DF, for unconstrained optimization problems whose objective function has
Lipschitz continuous gradient and can only be implicitly expressed via a Monte Carlo oracle.
The authors consider again an objective with noise drawn independently from a distribution
with zero mean, finite variance and a bound on the 4v-th moment (with v ≥ 2), and prove
the almost sure convergence of their method when using stochastic polynomial interpolation
models. Another relevant reference in this context is given by [9], where the authors analyze
a trust-region model-based algorithm for solving unconstrained stochastic optimization prob-
lems. They consider random models of a smooth objective function, obtained from stochastic
observations of the function or its gradient. Convergence rates for this class of methods are
reported in [7]. The frameworks analyzed in [7, 8, 9] extend the trust-region DFO method
based on probabilistic models described in [5]. It is important to notice that the randomness

2



in the models described in [5] comes from the way sample points are chosen, rather than from
noise in the function evaluations. All the above-mentioned model-based approaches consider
functions with a certain degree of smoothness (e.g., with Lipschitz continuous gradient) and
assume that a probabilistically accurate gradient estimate (e.g., some kind of probabilistically
fully-linear model) can be generated, while of course such an estimate is not available when
dealing with non-smooth functions.

A detailed convergence rate analysis of stochastic direct-search variants is reported in [13]
for the smooth case, i.e., for an objective function with Lipschitz continuous gradient. The
main theoretical results are obtained by suitably adapting the supermartingale-based frame-
work proposed in [7]. A stochastic mesh adaptive direct search for black-box nonsmooth
optimization is proposed in [2]. The authors prove convergence with probability one to a
Clarke stationary point [10] of the objective function by assuming that stochastic observations
are sufficiently accurate and satisfy a variance condition. The considered analysis adapts to
the direct-search gradient-free framework the theoretical analysis given in [32] for a class of
stochastic gradient-based methods. It was extended in [14] to the constrained case.

In a different line of work, zeroth-order methods, first analyzed in [31] for stochastic ob-
jectives, make use of two point estimates to approximate the gradient of a smoothed version
of the objective. In [16] and [31], complexity bounds are given in the stochastic smooth
non-convex setting and the stochastic convex non-smooth setting respectively. In [24], such
bounds are extended to the stochastic non-smooth non-convex setting, measuring convergence
with the (δ, ε)-Goldstein subdifferential. For a survey of zeroth order methods with applica-
tions to machine learning problems we refer the reader to [23]. Other approaches recently
adapted from the deterministic setting to stochastic derivative-free/zeroth-order optimization
include quasi-Newton methods [29], the stochastic cubic regularized Newton [33], and adaptive
regularization methods with cubics [34], requiring stochastic estimates of both the objective
gradient and also of the objective Hessian in the latter two cases.

1.2 The contributions of this manuscript
A main goal of this manuscript is to introduce a tail bound probabilistic condition leading to
a reduced number of samples per iteration when dealing with a stochastic black-box function
in general direct-search and trust-region schemes. This probabilistic condition focuses on the
reduction estimate, that is the estimate of the difference between the function at the current
iterate and at a potential next iterate, used in the acceptance test of those derivative-free
algorithms. It expresses a bound on the probability that the reduction estimate error is
greater than a fraction of a stepsize power characterizing the sufficient decrease needed for
trial-point acceptance, and can therefore be easily adapted to different choices of the power
defining such a sufficient decrease.

Our condition enables us to define a trade-off between noise, algorithm parameters, and
number of samples per iteration needed to achieve global convergence, which in this context
should be intended as convergence to stationary points regardless of the starting point cho-
sen [27]. One of our results is that if all the noise moments are finite, like in the case of
Gaussian noise, we only need O(∆−2−ε

k ) samples, where ∆k is the stepsize at iteration k, as
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described in Corollary 2.5. Here, ε > 0 can be made arbitrarily small by selecting the suf-
ficient decrease power arbitrarily close to 1. This result compares to the O(∆−4

k ) number of
samples required in previous works on stochastic trust-region methods [7, 9, 36] and stochastic
direct-search methods [2, 13, 14], under a finite variance assumption for the noise. In those
works, the sufficient decrease power is taken equal to 2, with the exception of [13] where the
power is considered greater than 1. This article also shows that the number of samples needed
can be lowered to O(∆−ε

k ) when the sampling errors are suitably correlated and the random
number generator is known, and in particular under a Lipschitz continuity assumption used
in the analysis of zeroth-order methods, as it is proved in Corollary 2.9.

We introduce two different algorithmic schemes, namely a simple stochastic direct-search
strategy and a stochastic version of the basic deterministic trust-region scheme reported in [25].
Both schemes work as follows: they randomly generate a direction (direct search) or a linear
term (trust region); then generate the new iterate by either moving along the direction (direct
search) or by solving a trust-region subproblem (trust region); finally they use a sufficient
decrease acceptance test to decide if the new point can be accepted (successful iteration) or
not. In this work, we use stochastic function estimates in the acceptance tests rather than exact
values. Our tail bound condition applies to the function reduction estimates of both schemes,
and it allows us to deduce global convergence and to take advantage of the improvement in the
number of samples per iteration. We point out that this is the first time global convergence
is proved for a stochastic derivative-free trust-region algorithm for non-smooth unconstrained
optimization problems. We also remark that the convergence analysis of our trust-region
scheme is developed under a new bound on the Hessian of the quadratic model which allows
us to generate non-unit linear terms, and thus generalizing the deterministic version given
in [25].

Lastly, we show that, for suitable choices of the algorithmic parameters, our tail bound
condition is implied by the variance conditions considered in [2] and by the probabilistically
accurate function estimate assumption used in [2, 9, 32]. It is also interesting to notice that the
finite variance oracle usually considered in the literature (see, e.g., [22, 36]) can be replaced by
a more general finite moment oracle (see Subsection 2.2 for further details) when constructing
estimates satisfying our conditions.

1.3 Outline of the manuscript
In Section 2, we introduce our tail bound probabilistic condition, prove the new bounds on the
number of samples needed per iteration to satisfy the condition, and compare it to existing
conditions from the literature. We then analyze the direct-search and trust-region schemes
in Sections 3 and 4, respectively. In both cases, the analysis has two main steps. In the
first one, we show a result that implies convergence of the stepsize/trust-region radius to
zero almost surely. In the second one, we focus on the random sequence of the unsuccessful
iterations and prove, by exploiting the first result, Clarke stationarity at certain limit points.
Numerical results comparing our schemes to StoMADS on a standard set of problems are
reported in Section 5. Finally, we draw some conclusions and discuss some possible extensions
in Section 6. In order to improve readability and ease the comprehension, we leave some proofs
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and additional numerical results to an appendix.

2 A weak tail bound probabilistic condition for function
estimation

In order to give convergence results for our algorithms, we need to introduce a tail bound
probabilistic condition on the accuracy of the function oracle. The stochastic quantities defined
hereafter lie in a probability space (P, Ω, F), with probability measure P and σ-algebra F
containing subsets of Ω called events, which is the space of the realizations of the algorithms
under analysis. Any single outcome of the sample space Ω will be denoted by ω. For a random
variable X defined in Ω and A ⊂ R we use the shorthand {X ∈ A} to denote {ω | X(ω) ∈ A}.

Our algorithms take a step along a certain direction, which can be a direct-search di-
rection or a trust-region step, and in both cases there is a suitable stepsize quantifying the
displacement. The algorithms generate a random process, as described in detail for analogous
methods, e.g., in [2, Section 2.2] and [9, Section 3]. The random quantity realizations of the
process are indicated as follows. The random direction, the stepsize, and the current point
are denoted by Gk, ∆k, and Xk, with realizations gk, δk, and xk respectively. The random
estimates of f(Xk) and f(Xk + ∆kGk) are denoted by Fk and F g

k , with realizations fk and f g
k

respectively. In the direct-search case, the acceptance criterion will be defined as

fk − f g
k ≥ θδq

k , (2.1)

for some θ > 0 and q > 1, with δk replaced by the norm of the step ∥sk∥ in the trust-region case.
Fk−1 is defined as the σ-algebra of events up to the choice of Gk, so that in particular, Gk is
always measurable with respect to Fk−1, which will be considered in the proof of Theorem 3.1.
This σ-algebra will be used to formalize conditioning on the “past history” of the algorithm up
to the choice of Gk. More explicitly, Fk−1 is defined as the σ-algebra generated by (Fj, F g

j )k−1
j=0

and (Gj)k
j=0. E is used to denote expectation and conditional expectation, v̂ as a shorthand

for v/∥v∥, with v̂ = 0 for v = 0, a.s. as a shorthand for almost surely, and [1 : p] to denote
the integers in the interval [1, p]. The starting stepsize ∆0 is assumed to be deterministic, so
that in particular E[∆0] < +∞, implying that the conditional expectations appearing in the
rest of the article are well defined.

2.1 The weak tail bound probabilistic condition
We now introduce our tail bound assumption related to the acceptance criterion (2.1).

Assumption 2.1. For some εq > 0 (independent of k):

P (|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≥ α∆q

k |Fk−1) ≤ εq

αq/(q−1) (2.2)

a.s. for every α > 0.
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The above assumption is in particular a power law [38] tail bound with exponent q/(q−1)+
1. Notice that an error bound is only assumed for the estimate of the difference f(Xk)−f(Xk+
∆kGk) and not for the estimates of f(Xk) and f(Xk + ∆kGk) taken individually; basically,
this bounds the probability that the error in that estimate is large, as such an estimation
plays a crucial role in the acceptance tests of the algorithms of this work. It will be clear from
Sections 3.2 and 4.2 that the knowledge of an upper bound on εq is needed in order to ensure
convergence in the proposed algorithms.

Remark 2.2. As described in Section 2.2, Assumption 2.1 can be made for any q, if the r-th
moment of the evaluation noise is finite, for r = q/(q − 1). Furthermore, for q ∈ (1, 2], the
number of samples needed to satisfy Assumption 2.1 is just O(∆−2q

k ) rather than the standard
O(∆−4

k ) required under finite variance assumptions [2] with exponent 2 in the sufficient decrease
condition (2.1). This improvement is possible thanks to the relation between the tail bound
(2.2) and the acceptance criterion (2.1), together with classic results from probability theory
on the convergence rate for the law of large numbers. More precisely, this property will be
used: for an average A of m i.i.d. samples with finite r-th finite moment, there is a tail
bound of the form P(A ≥ α) ≤ Km,r/αr with Km,r ∝ m− r

2 , as a consequence of Rosenthal’s
inequality [18] and where ∝ stands for "proportional to". Details about these inequalities will
be discussed in the appendix.

For convergence purposes, a variant of Assumption 2.1 where the real number α is replaced
with a Fk−1-measurable random variable A will be needed. This is justified by the following
lemma.

Lemma 2.3. Let A be a nonnegative Fk−1 measurable random variable. If (2.2) holds, then

P (|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≥ A∆q

k |Fk−1) ≤ ε(A) := +∞1{0} + εq

Aq/(q−1) 1(0,+∞)

(2.3)

Proof. Let Y = |Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))|/∆q

k, and r = q
q−1 . We prove that in this

case that for every F ∈ Fk−1:

E
[
1F 1{Y ≥A}

]
≤ E [1F ε(A)] . (2.4)

We prove this intermediate result in the case where A is a discrete random variable with a
countable set of possible realizations {ai}i∈N, and then extend the result to the general case
by approximation. Indeed we have

E
[
1F 1{Y ≥A}

]
=
∑
i∈N

E
[
1F 1{Y ≥A}1{A=ai}

]
=
∑
i∈N

E
[
1F ∩{A=ai}1{Y ≥ai}

]
≤
∑
i∈N

E
[
1F ∩{A=ai}ε(ai)

]
=
∑
i∈N

E
[
1F 1{A=ai}ε(A)

]
= E [1F ε(A)]

(2.5)

as desired, where we used that F ∩ {A = ai} is measurable w.r.t. Fk−1 together with (2.2)
for α = ai in the inequality. Notice that if ai = 0 then by assumption ε(ai) = +∞ so the
inequality is trivial.
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Let now A be a general positive random variable, and {Ai}i∈N be a decreasing sequence
of discrete random variables converging to A (e.g., Ai = ∑+∞

j=0 1A∈[j/2i,(j+1)/2i)
j+1
2i ). Then { εq

Ar
i
}

is non decreasing and converges a.s. to ε(A), so we have all the assumptions needed to apply
Beppo Levi’s Lemma and get

lim
i→∞

E

[
1F

εq

Ar
i

]
= E [1F ε(A)] . (2.6)

Therefore

E
[
1F 1{Y ≥A}

]
= lim

i→∞
E
[
1F 1{Y ≥Ai}

]
≤ lim

i→∞
E[1F ε(Ai)] = E [1F ε(A)] , (2.7)

where we used the dominated convergence theorem in the first equality, (2.5) in the first
inequality, and (2.6) in the second equality. We have thus proved (2.4) in the general case.
Now, let Z = P(1Y ≥A | Fk−1) = E [1Y ≥A | Fk−1]. We have, for every F ∈ Fk−1,

E [Z1F ] = E [1Y ≥A1F ] ≤ E [ε(A)1F ] , (2.8)

where the first equality follows by definition of conditional expectation and the inequality
follows by (2.4). Since both Z and εq

Ar are Fk−1 measurable, from (2.8) we get Z ≤ εq

Ar a.s. as
desired.

The proof is technical and can be found in the Appendix.
In the remaining of this section, we will report the bounds on the number of samples needed

to satisfy Assumption 2.1, as well as a comparison with existing conditions. The proofs are
rather technical and can be found in the appendix.

2.2 Sampling improvement under the new condition
We will show that our tail bound condition can be satisfied under a reduced number of function
samples.

We deal first with the case where the error of the oracle has finite r-th moment, for some
r > 1:

f(x) = Eξ[F (x, ξ)] , Eξ [|F (x, ξ) − f(x)|r] ≤ Mr < +∞ . (2.9)
Recall that finite r-th moment implies finite r′-th moment for any r′ ∈ (1, r]. Thus for
r < 2 assumption (2.9) is weaker than assuming finite variance, while for r > 2 (2.9) is
stronger than assuming finite variance. The next result describes the number of samples
needed asymptotically to satisfy the tail bound conditions as a function of r.

Theorem 2.4. Assume that (2.9) holds with r = q
q−1 . If q > 2, then Assumption 2.1 can

be satisfied using O(∆−q2

k ) i.i.d. samples, while if q ∈ (1, 2], it can be satisfied using O(∆−2q
k )

i.i.d. samples.

We thus have the following corollary illustrating an improvement on the number of samples
per iteration with respect to the finite variance case.
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Corollary 2.5. Let ε ∈ (0, 2]. Then, for q = 1 + ε/2, O(∆−2−ε
k ) samples are sufficient to

satisfy Assumption 2.1, under the finite moment assumption (2.9) for r = q
q−1 .

In the rest of this section we assume that the objective is given in the form (1.2), and that
the CRN (common number generator) framework can be applied, that is different x can be
sampled with fixed ξ. Let now F̄ (x, ξ) = F (x, ξ) − f(x) be the sampling error. The sampling
errors of close points are assumed to be correlated in the following way:

Eξ

[
|F̄ (x, ξ) − F̄ (y, ξ)|r

]
≤ Dr∥x − y∥r (2.10)

for some Dr > 0. First, we prove that (2.10) is satisfied if F (·, ξ) is Lipschitz continuous,
uniformly in ξ. We remark that uniform Lipschitz continuity assumptions analogous to the
one made here are standard in the analysis of zeroth-order methods [24, 31]. In the finite sum
setting, this assumption is equivalent to the Lipschitz continuity of every summand.
Proposition 2.6. Assume that |F (x, ξ) − F (y, ξ)| ≤ Lf∥x − y∥ for every ξ, and for every
x, y ∈ Rn. Then (2.10) holds for every r, with Dr = 2rLr

f .

Proof. Notice that from (1.2) and the uniform Lf Lipschitz continuity assumption it follows
that f is Lf Lipschitz continuous as well. Hence, we can write

|F̄ (x, ξ) − F̄ (y, ξ)| = |F (x, ξ) − F (y, ξ) + (f(y) − f(x))|
≤ |f(x) − f(y)| + |F (x, ξ) − F (y, ξ)| ≤ 2Lf∥x − y∥ ,

and conclude

Eξ

[
|F̄ (x, ξ) − F̄ (y, ξ)|r

]
≤ Eξ

[
2rLr

f∥x − y∥r
]

= 2rLr
f∥x − y∥r ,

as desired.

We now present another example where (2.10) is satisfied, with the noise modelled as a
Gaussian process, as is common practice in Bayesian optimization (see, e.g., [35]).
Proposition 2.7. Assume that {F (x, ξ)} is a Gaussian process with expectation f(x), expo-
nentiated kernel with amplitude σ > 0 and lengthscale l > 0, so that in particular

Covξ(F (x, ξ), F (y, ξ)) = σ2exp
(

−∥x − y∥2

2l2

)
(2.11)

for every x, y ∈ Rn. Then assumption (2.10) is satisfied for every r ≥ 2 (with Dr depending
on r).

We now show how the bound given in Theorem 2.4 improves under (2.10), for r ≥ 2.
Theorem 2.8. If the random number generator is known and (2.10) holds with r = q

q−1 , then
Assumption 2.1 can be satisfied for q ∈ (1, 2] using O(∆2−2q

k ) i.i.d. samples.

As a corollary we can state a further improvement in samples per iteration with respect to
Corollary 2.5.
Corollary 2.9. If q = 1 + ε

2 with ε ∈ (0, 2] then O(∆−ε
k ) samples are sufficient to satisfy

Assumption 2.1 under (2.10) for r = q
q−1 .
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2.3 Comparison with existing conditions
In this subsection, we compare our condition with others found in the literature. We will start
by showing that our condition is weaker than the ones imposed in [2]. More precisely, it is
implied by [2, Equation (2)], rewritten in our notation as

E
[
|F g

k − f(Xk + ∆kGk)|2 | Fk−1
]

≤ k2
f∆4

k

E
[
|Fk − f(Xk)|2 | Fk−1

]
≤ k2

f∆4
k ,

(2.12)

for a constant kf > 0. The kf -variance condition in (2.12) is a gradient-free version of [32,
Assumption 2.4, (iii)], and more precisely can be obtained from the latter by removing the
gradient related terms in the right-hand side. It is important to note here that in [32] as well
as in other works on smooth stochastic derivative free optimization (see, e.g., [9, 22, 36] and
references therein), a probabilistically accurate gradient estimate is also used, while of course
such an estimate is not available in a possibly non-smooth setting.

Proposition 2.10. Condition (2.12) implies Assumption 2.1 for εq = 4k2
f and q = 2.

The proof of the above result relies on the conditional Chebyshev’s inequality (see the
proof in the appendix for details).

Remark 2.11. In the algorithm proposed in [2] the direct-search direction at iteration k is
chosen before the computation of the function estimates used in the acceptance test. Thus
our analysis can also be extended to that algorithm.

We now describe the relation between our assumption and the β-probabilistic accuracy
assumption

P
(
{|Fk − f(Xk)| ≤ τf∆2

k} ∩ {|F g
k − f(Xk + ∆kGk)| ≤ τf∆2

k|} | Fk−1
)

≥ β , (2.13)

used in [2, 9, 32] in combination with other assumptions. In particular, conditions (2.12) are
used in [2] and [32] (as discussed above), and a probabilistic assumption on the accuracy of
random models for the objective is considered in [9].

We show that if (2.13) is satisfied for every β in a certain interval, with τf depending on β
and an accuracy parameter ε, then also our assumption is satisfied with εq dependent on ε.

Proposition 2.12. Let ε > 0 and p̄ ∈ (0, 1). Assume that (2.13) holds for every β ∈ [1− p̄, 1),
with τf = τf (β) < 1

2

√
ε

1−β
. Then Assumption 2.1 holds with εq = ε

p̄
and q = 2.

The proposition above follows from the inclusion

{|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| < α∆2

k}
⊃ {|Fk − f(Xk)| ≤ τf (β)∆2

k} ∩ {|F g
k − f(Xk + ∆kGk)| ≤ τf (β)∆2

k} ,
(2.14)

whenever τf (β) < α
2 . A detailed proof is presented in the appendix.
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3 A simple direct-search method for stochastic non-
smooth functions

In this section, we first describe a simple stochastic direct-search algorithm for the uncon-
strained minimization problem given in (1.1), where f is possibly non-smooth, and then ana-
lyze its convergence.

3.1 The stochastic direct-search scheme
A detailed description of our stochastic direct-search method is given in Algorithm 1. At each
iteration, we generate a direction gk in the unit sphere (independently of the estimates of the
objective function generated so far; see Step 3), and perform a step along the direction gk

with stepsize δk. Then, at Step 4, we compute f g
k and fk, that is the estimate values of the

function at the resulting trial point xk + δkgk and also at xk. We then accept or reject the
trial point based on a sufficient decrease condition, imposing that the improvement on the
objective estimate at the trial point is at least θδq

k. If the sufficient decrease condition is
satisfied, we have a successful iteration. We hence update our iterate xk+1 by setting it equal
to the trial point and expand or keep the same stepsize at Step 5. Otherwise, the iteration
is unsuccessful, so we do not update the current solution, that is, xk+1 = xk, but shrink the
stepsize (see Step 6).

Algorithm 1 Stochastic direct search

1 Initialization. Choose a point x0, δ0, θ > 0, τ ∈ (0, 1), τ̄ ∈ [1, 1 + τ ].
2 For k = 0, 1 . . .

3 Select a direction gk in the unit sphere.
4 Compute estimates fk and f g

k for f at xk and xk + δkgk.
5 If fk − f g

k ≥ θδq
k, Then set SUCCESS = true, xk+1 = xk + δkgk, δk+1 = τ̄ δk.

6 Else set SUCCESS = false, xk+1 = xk, δk+1 = (1 − τ)δk.
7 End if
8 End for

In order for the method to convergence to Clarke stationary points, certain subsequences
of {gk} must be dense in the unit sphere as described in Theorem 3.3. As a remark, a dense
sequence in the unit sphere can be generated using a suitable quasirandom sequence [17, 25].

3.2 Convergence analysis under the tail bound probabilistic condi-
tion

The following theorem, which implies that the stepsize sequence {∆k} converges to zero almost
surely, is a key result in the convergence analysis. In the proof, Assumption 2.1 makes it
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possible to unify the argument for unsuccessful and successful steps.
We define now for convenience the positive constants τ+

q = (1 + τ)q − 1, τ−
q = 1 − (1 − τ)q,

and τ̄q = τ+
q + τ−

q . To obtain our result we need the following lower bound on the parameter θ
defining the sufficient decrease condition, dependent on the stepsize update parameter τ and
the tail bound parameter εq:

θ >
r(q)
√

εq τ̄q

τ−
q

, (3.1)

with r(q) = q
q−1 . Notice that since τ ∈ (0, 1) we must always have θ > 0. The bound (3.1)

allows us to relate stepsize expansions to improvements of the objective.

Theorem 3.1. Under Assumption 2.1, if Inequality (3.1) holds then ∑
k∈N0 E [∆q

k] < ∞.

Proof. Let εf = r(q)
√

εq, Φk = f(Xk)−f ∗ +η∆q
k, with η = θ

τ̄q
, and ε = −εf + τ−

q θ/τ̄q > 0 where
the inequality follows by (3.1).

We will prove, for every k ≥ 0, that

E [Φk − Φk+1 | Fk−1] ≥ ε∆q
k . (3.2)

The thesis then follows as in [13, Theorem 3].
Let Zk be the random variable such that f(Xk) − f(Xk + ∆kGk) = (θ − Zk)∆q

k, and let Jk

be the event that the step k is successful. We have

E [(Φk − Φk+1)|Fk−1] = E [(Φk − Φk+1)(1Jk
+ (1 − 1Jk

))|Fk−1]
= (f(Xk) − f(Xk+1) + η(∆q

k − ∆q
k+1))E [1Jk

|Fk−1]
+ (f(Xk) − f(Xk+1) + η(∆q

k − ∆q
k+1))E [ 1 − 1Jk

|Fk−1]
= (f(Xk) − f(Xk + ∆kGk) + η(∆q

k − ∆q
k+1))E [1Jk

|Fk−1]
+ η(∆q

k − ∆q
k+1)E [1 − 1Jk

|Fk−1]
≥ (((θ − Zk) − ητ+

q )E [1Jk
|Fk−1] + ητ−

q E [1 − 1Jk
|Fk−1])∆q

k,

(3.3)

where we used Xk = Xk+1 for unsuccessful steps in the second equality, and ∆k+1 = τ̄∆k ≤
(1 + τ)∆k for successful steps in the inequality. In turn,

(((θ − Zk) − ητ+
q )E [1Jk

|Fk−1] + ητ−
q E [1 − 1Jk

|Fk−1])∆q
k

= ((θ − Zk − ητ̄q)E [1Jk
|Fk−1] + ητ−

q )∆q
k

= −Zk∆q
kE [1Jk

|Fk−1] + ητ−
q ∆q

k ,

(3.4)

where we used E[1−1Jk
|Fk−1] = 1−E[1Jk

|Fk−1] in the first equality, and θ = ητ̄q in the second
one. By combining (3.3) and (3.4) we can therefore conclude

E [(Φk − Φk+1)|Fk−1] ≥ −Zk∆q
kE [1Jk

|Fk−1] + ητ−
q ∆q

k . (3.5)

Notice that if the step is successful then fk − f g
k ≥ θδq

k, which implies

fk − f g
k − (f(xk) − f(xk + δkgk)) ≥ θδq

k − (θ − Zk(ω))δq
k = Zk(ω)δq

k .
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In particular Jk ⊂ {|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≥ Zk∆q

k} and we can write, for
Z+

k = Zk1Zk>0,

E [1Jk
|Fk−1] = E

[
1Jk

1{Zk>0} + 1Jk
1{Zk≤0}|Fk−1

]
= E

[
1Jk∩{Zk>0}|Fk−1

]
+ 1{Zk≤0}E [1Jk

|Fk−1]

≤ P
(
|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))| ≥ Z+
k ∆q

k|Fk−1
)

+ 1{Zk≤0}E [1Jk
|Fk−1] ,

(3.6)

where we used the measurability of Zk w.r.t. Fk−1 in the second equality. We now have

− ρkE [1Jk
|Fk−1] ≥ −ρ+

k E [1Jk
|Fk−1]

≥ −ρ+
k (P

(
|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))| ≥ ρ+
k ∆q

k|Fk−1
)

+ 1{ρk≤0}E [1Jk
|Fk−1])

= −ρ+
k P

(
|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))| ≥ ρ+
k ∆q

k|Fk−1
)

≥ −ρ+
k min

(
1, ε(ρ+

k )
)

= −ρ+
k min

(
1, ε(ρ+

k )
)

≥ −ρ+
k min

(
1, ε1(ρ+

k )
)

≥ −εf ,

(3.7)
where we applied (3.6) in the first inequality, the second inequality is a direct consequence of
Lemma 2.3 for A = Z+

k , and ε1(t) = +∞1{0} + εq/t · 1(0,+∞). Hence,

−Zk∆q
kE [1Jk

|Fk−1] + ητ−
q ∆q

k ≥ (−εf + ητ−
q )∆q

k = ε∆q
k , (3.8)

where we used (3.7) in the inequality.
Claim (3.2) can finally be obtained by concatenating (3.5) and (3.8).

The next lemma will be useful for the proof of the optimality result of Theorem 3.3 which
is based on the Clarke generalized directional derivative. We notice that Assumption 2.1 plays
a key role in this result, allowing us to upper bound the error of the reduction estimate by a
quantity that depends on the stepsize ∆k.

Lemma 3.2. Let K be the random set of indices of unsuccessful iterations. Then under
Assumption 2.1 and (3.1), a.s. in Ω

lim inf
k∈K, k→∞

f(Xk + ∆kGk) − f(Xk)
∆k

≥ 0 . (3.9)

Proof. Clearly it suffices to show that, for any given m ∈ N and a.s.,

lim inf
k∈K, k→∞

f(Xk + ∆kGk) − f(Xk)
∆k

≥ − 1
m

. (3.10)

To start with, by applying Lemma 2.3 with A = ∆1−q
k

m
we have

P

(
|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))| ≥ ∆k

m
| Fk−1

)
≤ mr(q)∆q

kεq ,
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and therefore taking expectations on both sides

P

(
|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))| ≥ ∆k

m

)
≤ mr(q)E [∆q

k] εq .

We can now deduce
∑

k∈N0

P

(
|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))| ≥ ∆k

m

)
≤
∑

k∈N0

mr(q)E [∆q
k] εq < ∞ ,

where we applied Theorem 3.1 in the last inequality. In particular, by the Borel–Cantelli’s
first lemma

P

({
|Fk − f g

k − (f(Xk) − f(Xk + ∆kGk))| ≥ ∆k

m

}
i.o.
)

= 0 ,

where “i.o.” stands for infinitely often. Hence, we have a.s.

|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≤ ∆k

m
for k large enough. (3.11)

From this we can infer that a.s., for every k ∈ K large enough

f(Xk + ∆kGk) − f(Xk)
∆k

≥ F g
k − Fk − |Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))|
∆k

≥ −θ∆k − 1
m

,

(3.12)

where we used (3.11) combined with the unsuccessful step condition of Algorithm 1 in the
second inequality. Finally, (3.10) follows passing to the liminf for k → ∞ in (3.12).

We now report the main convergence result for our stochastic direct-search scheme. The
result requires the existence of accumulation points for the sequence {xk}, which can be
obtained assuming that the iterates generated by the algorithm lie in a compact set as in [2,
Assumption 1].

Theorem 3.3. Assume that f is Lipschitz continuous with constant L∗
f around any limit

point of the sequence of iterates {Xk}. Let K be the random set of indices of unsuccessful
iterations. Let Assumptions 2.1 and (3.1) hold. Then, the following property holds a.s. in Ω:
if L ⊂ K is a random set such that the sequence {Gk}k∈L is dense in the unit sphere and
limk∈L, k→∞ Xk = X∗, then the point X∗ is Clarke stationary, i.e., f ◦(X∗, d) ≥ 0 for every
d ∈ Rn.

Proof. We refer to V as the event with probability one that (3.9) holds, and assume
ω ∈ V in the rest of the proof, with L(ω), K(ω) satisfying the assumption described in
the statement. Let d be a direction in the unit sphere, and let S(ω) ⊂ L(ω) be such that
limk∈S(ω), k→∞ Gk(ω) = d . By definition of Clarke stationarity, since

f ◦(X∗(ω), d) ≥ lim sup
k∈S(ω), k→∞

f(Xk(ω) + ∆k(ω)d) − f(Xk(ω))
∆k(ω) ,
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we just need to prove that on V , and therefore a.s.,

lim sup
k∈S(ω), k→∞

f(Xk(ω) + ∆k(ω)d) − f(Xk(ω))
∆k(ω) ≥ 0 .

For ω ∈ V we can write

lim sup
k∈S(ω), k→∞

f(Xk(ω) + ∆k(ω)Gk(ω)) − f(Xk(ω))
∆k(ω)

≥ lim inf
k∈K(ω), k→∞

f(Xk(ω) + ∆k(ω)Gk(ω)) − f(Xk(ω))
∆k(ω) ≥ 0 ,

(3.13)

where the last inequality follows by (3.9).
Now using the Lipschitz property of f we can write, for k ∈ S(ω) large enough,

f(Xk(ω) + ∆k(ω)d) − f(Xk(ω))
∆k(ω)

= f(Xk(ω) + ∆k(ω)Gk(ω)) − f(Xk(ω))
∆k(ω) + f(Xk(ω) + ∆k(ω)d) − f(Xk(ω) + ∆k(ω)Gk(ω))

∆k(ω)

≥ f(Xk(ω) + ∆k(ω)Gk(ω)) − f(Xk(ω))
∆k(ω) − L∗

f∥Gk(ω) − d∥.

Passing to the limsup for k ∈ S(ω) we get

lim sup
k∈S(ω), k→∞

f(Xk(ω) + ∆k(ω)d) − f(Xk(ω))
∆k(ω)

≥ lim sup
k∈S(ω), k→∞

f(Xk(ω) + ∆k(ω)Gk(ω)) − f(Xk(ω))
∆k(ω) ≥ 0 ,

for every ω ∈ V , where we used ∥Gk(ω) − d∥ → 0 by construction in the first inequality
and (3.13) in the second.

4 A simple trust-region method for stochastic non-
smooth functions

After having analyzed a simple stochastic direct-search method, we focus on a stochastic
version of the Basic DFO-TRNS presented in [25], and analyze its convergence properties
under tail bound probabilistic conditions like the ones used in Section 3. Some minor changes
in notation are convenient and will be introduced with a clear reference to the corresponding
elements of Algorithm 1.
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4.1 The stochastic trust-region scheme
As already mentioned, the simple trust-region algorithm that we reported here is a minor
modification of the Basic DFO-TRNS algorithm proposed in [25]. Indeed, there are two
differences between the Basic DFO-TRNS algorithm and its stochastic counterpart.

The first difference is in the updating rule related to the trust-region radius. In the modifi-
cation presented in this work, τ ∈ (0, 1) is chosen, with 1 − τ corresponding contraction factor
and τ̄ ∈ [1, 1 + τ ] as expansion factor.

The second, more relevant difference is the fact that the linear term gk is not constrained
to the unit sphere as is the case in DFO-TRNS. This makes more sense when modeling cases
where gk resembles an approximation of the gradient.

The detailed scheme is reported in Algorithm 2. At every iteration k, a symmetric ma-
trix Bk is built from interpolation or regression on a sample set of points. The linear term gk

needs to randomly cover the unit sphere when normalized. By using these quantities, a
quadratic model of the objective function around xk is built. The step sk is obtained by solv-
ing the trust-region subproblem, i.e., by minimizing the quadratic model within the spherical
trust-region constraint. Once the current step has been computed, the algorithm generates
an estimate of the true objective function f at the trial point xk + sk and recomputes a new
estimate at xk, after which the acceptance ratio ρ̄k is computed. Note that, as in [25], the
non-standard acceptance ratio is motivated by convergence requirements. In this scheme,
realizations related to the estimates of the function values f(xk) at the current iterate and
f(xk + sk) at the potential next iterate are indicated with fk and f s

k , thus replacing f g
k used

in the direct-search scheme, as a shorthand for Fk(ω) and F s
k (ω), respectively.

Algorithm 2 Stochastic DFO Trust-Region Algorithm

1 Initialization. Select x0 ∈ Rn, θ > 0, τ ∈ (0, 1), τ̄ ∈ [1, 1 + τ ], δ0 > 0, q > 1.
2 For k = 0, 1 . . .

3 Select a direction gk ̸= 0 and build a symmetric matrix Bk.
4 Compute sk ∈ arg min

∥s∥≤δk

g⊤
k s + 1

2s⊤Bks.

5 Compute estimates fk, f s
k for f at xk, xk + sk, respectively, and let

ρ̄k = fk − f s
k

θ∥sk∥q
.

6 If ρ̄k ≥ 1 Then set SUCCESS = true, xk+1 = xk + sk, δk+1 = τ̄ δk.
7 Else set SUCCESS = false, xk+1 = xk, δk+1 = (1 − τ)δk.
8 End If
9 End For

For convergence purposes, we require the Hessian model to satisfy the assumption below.
Assumption 4.1. There exist ρ ∈ (0, 1] such that, for every k ∈ N0, ∥Bk∥ ≤ 1

ρ
∥Gk∥
∆k

.
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When ∥Gk∥ = 1, the above assumption is essentially saying that Bk can be unbounded as
long as it does not go to infinity faster than 1/∆k, that is a weaker version of [25, Assumption
2.1].

We now show, under Assumption 4.1, that the norm ∥Sk∥ of every trust-region subproblem
solution is equal to ∆k, up to a constant. This will allow us to deduce convergence to 0 of the
trust-region radius from convergence to 0 of the solution norm.

Lemma 4.2. Under Assumption 4.1, ∥Sk∥ ≥ ρ∆k.

Proof. The thesis is clear if Sk is on the boundary of the trust region, which includes the
case Bk = 0 since Gk ̸= 0 by assumption. Otherwise, if Sk is in the interior we must have
BkSk = −Gk, and therefore ∥Bk∥∥Sk∥ ≥ ∥Gk∥ ≥ ρ∆k∥Bk∥, where we used Assumption 4.1 in
the second inequality, and the proof is completed.

4.2 Convergence analysis under the tail bound probabilistic condi-
tion

In order to analyze the method introduced above, we adapt Assumption 2.1, replacing Gk with
Ŝk, using the ·̂ notation introduced at the beginning of Section 2, and ∆k with ∥Sk∥. Now ∆k

stands for the trust-region radius. Hence, we obtain the following tail bound condition.

Assumption 4.3. For some εq > 0 independent of k:

P (|Fk − F g
k − (f(Xk) − f(Xk + Sk))| ≥ α∥Sk∥q |Fk−1) ≤ εq

αq/(q−1)

a.s. for every α > 0.

Importantly, if Bk is random the definition of Fk−1 must be modified as the σ-algebra of
events up to the generation of Bk and gk.
The next theorem implies convergence of the series of trust-region radii elevated to the q
almost surely. This obviously implies that the trust-region radius converges to zero almost
surely.

Theorem 4.4. Under Assumptions 4.1 and 4.3, if

θ >
(ρqτ−

q + τ+
q ) r(q)

√
εq

ρqτ−
q

, (4.1)

then ∑
k∈N0 E [∆q

k] < ∞.

Proof. Let εf = r(q)
√

εq, Φk = f(Xk) − f ∗ + η∥Sk∥q, with η = θρq

τ+
q +ρqτ−

q
. Let also ε = −εf +

ρqθ

τ+
q +ρqτ−

q
> 0, where the inequality follows by (4.1). We will prove, for every k ≥ 0, that

E [Φk − Φk+1 | Fk−1] ≥ ε∥Sk∥q . (4.2)
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Then for the same reasons stated in the proof of Theorem 3.1, with ∥Sk∥ instead of ∆k, we
get ∑

k∈N0

E [∥Sk∥q] < +∞ ,

and therefore ∑
k∈N0

E [∆q
k] ≤ 1

ρq

∑
k∈N0

E [∥Sk∥q] < +∞ ,

where we used Assumption 4.1 in the inequality. Let Zk be the random variable such that
f(Xk) − f(Xk + Sk) = (θ − Zk)∥Sk∥q, and let Jk be the event that the step k is successful. We
have

E [(Φk − Φk+1)|Fk−1]
≥ (f(Xk) − f(Xk + Sk) − ητ+

q ∆q
k)E [1Jk

|Fk−1]
+ η(∆q

k − ∆q
k+1)E [1 − 1Jk

|Fk−1]
≥ (θ − Zk)E [1Jk

|Fk−1] ∥Sk∥q − ητ+
q ∆q

kE [1Jk
|Fk−1] + ητ−

q ∆q
kE [1 − 1Jk

|Fk−1]

≥ (θ − Zk)E [1Jk
|Fk−1] ∥Sk∥q − η

τ+
q

ρq
∥Sk∥qE [1Jk

|Fk−1] + ητ−
q ∥Sk∥qE [1 − 1Jk

|Fk−1]

=
(

(θ − Zk) − η
τ+

q

ρq
E [1Jk

|Fk−1] + ητ−
q E [1 − 1Jk

|Fk−1]
)

∥Sk∥q

(4.3)

where the first inequality follows as in (3.3), the second inequality by definition of Zk, and the
third inequality we use (4.1) on the second summand and ∥Sk∥ ≤ ∆k in the third summand.
In turn, (

(θ − Zk) − η
τ+

q

ρq
E [1Jk

|Fk−1] + ητ−
q E [1 − 1Jk

|Fk−1]
)

∥Sk∥q

=
(

θ − Zk − η

(
τ+

q

ρq
+ τ−

q

)
E [1Jk

|Fk−1] + ητ−
q

)
∥Sk∥q

= −Zk∥Sk∥qE [1Jk
|Fk−1] + ητ−

q ∥Sk∥q ,

(4.4)

where we used E[1 − 1Jk
|Fk−1] = 1 − E[1Jk

|Fk−1] in the first equality, and η = θρq

τ+
q +ρqτ−

q
in the

second one. By combining (4.3) and (4.4) we therefore get

E [(Φk − Φk+1)|Fk−1] ≥ −Zk∥Sk∥qE [1Jk
|Fk−1] + ητ−

q ∆q
k .

The conclusion now follows as in the proof of Theorem 3.1, replacing ∆k with ∥Sk∥.

As for the analysis of our direct-search scheme in Section 3, we now state a lemma that
will be useful for the proof of the optimality result based on the Clarke generalized derivative.

Lemma 4.5. Let K be the random set of indices of unsuccessful iterations. Then under
Assumptions 4.1, 4.3, and (4.1), a.s.

lim inf
k∈K, k→∞

f(Xk + Sk) − f(Xk)
∥Sk∥

≥ 0 .
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Proof. Follows analogously to Lemma 3.2.

We now state a convergence result extending Theorem 3.3 to our trust-region method.
Theorem 4.6. Assume that f is Lipschitz continuous with constant L∗

f around any accumula-
tion point of the sequence of iterates {Xk}. Let K be the random set of indices of unsuccessful
iterations. Let Assumptions 4.1, 4.3, and (4.1) hold. Then, the following property holds
a.s. in Ω: if L ⊂ K is a random set such that {Ŝk}k∈L is dense in the unit sphere and
limk∈L, k→∞ Xk = X∗, then the point X∗ is Clarke stationary, i.e., f ◦(X∗, d) ≥ 0 for every
d ∈ Rn.
Proof. The proof follows the lines of Theorem 3.3’s proof, replacing ∆k and Gk by ∥Sk∥ and
Ŝk, respectively.

We now introduce a stronger version of Assumption 4.1, and show that under this stronger
assumption the trust-region scheme becomes at the limit a search along a direction Gk with
stepsize ∆k.
Assumption 4.7. For some positive sequence of uniformly bounded random variables {Ak}
such that Ak → 0 a.s., it holds a.s. ∥Bk∥ ≤ Ak∥Gk∥/∆k.

Trivially, Assumption 4.7 implies Assumption 4.1, with ρ = 1
max({∥Ak∥∞}) .

Proposition 4.8. Let Assumptions 4.3, 4.7, and (4.1) hold. Then a.s. limk→∞ Ĝk + Ŝk = 0.
Proof. First, notice that ∥Ĝk∥ = 1, as well as ∥Ŝk∥ = 1 since Gk must be always different
from 0 and therefore Sk as well. Now define F m

k as the local model F m
k (s) = G⊤

k s + 1
2s⊤Bks,

and let Γk = Ĝ⊤
k Ŝk be the cosine of the angle between Ĝk and Ŝk. We need to prove Γk → −1

almost surely.
We have on the one hand

F m
k (Sk) = S⊤

k Gk + 1
2S⊤

k BkSk = Γk∥Sk∥∥Gk∥ + 1
2S⊤

k BkSk

≥ min(0, Γk)∆k∥Gk∥ − 1
2∥Bk∥∆2

k ,
(4.5)

where we used ∥Sk∥ ≤ ∆k in the inequality. On the other hand

F m
k (−∆kĜk) = −∆k∥Gk∥ + ∆2

k

2 Ĝ⊤
k BkĜk ≤ −∆k∥Gk∥ + 1

2∆2
k∥Bk∥ . (4.6)

Putting (4.5) and (4.6) together we obtain

−∆k∥Gk∥ + 1
2∆2

k∥Bk∥ ≥ F m
k (−∆kĜk) ≥ F m

k (Sk) ≥ min(0, Γk)∆k∥Gk∥ − 1
2∥Bk∥∆2

k , (4.7)

where in the second inequality we used that Sk is a solution of the trust-region subproblem.
Then rearranging (4.7) and dividing by ∆k∥Gk∥ we get

(1 + min(0, γk)) ≤ ∥Bk∥∆k

∥Gk∥
. (4.8)

Since the right-hand side of (4.8) converges to 0 a.s. thanks to Assumption 4.7, we get 1 +
min(0, γk) → 0 a.s., and we can conclude Γk → −1 a.s. as desired.
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Under the conditions of Proposition 4.8, we just need to ensure that Ĝk is dense in the
unit sphere on subsequences to obtain convergence to Clarke stationary points, as expressed
in the following corollary.

Corollary 4.9. Assume that f is Lipschitz continuous with constant L∗
f around any accumula-

tion point of the sequence of iterates {Xk}. Let K be the random set of indices of unsuccessful
iterations. Let Assumptions 4.3, 4.7 and (4.1) hold. Then, the following property holds a.s. in
Ω: if L ⊂ K is a random set such that the sequence {Ĝk}k∈L is dense in the unit sphere and
limk∈L, k→∞ Xk = X∗ then the point X∗ is Clarke stationary, i.e., f ◦(X∗, d) ≥ 0 for all d ∈ Rn.

Proof. Thanks to Proposition 4.8, for almost every ω in Ω, if the sequence {Ĝk(ω)}k∈L is dense
in the unit sphere {Ŝk(ω)}k∈L also is, and we can therefore apply Theorem 4.6.

5 Numerical results
We report here some numerical results, first comparing the performance of Algorithm 1 for
different choices of q, and then comparing Algorithms 1 and 2 to StoMADS from [2].
To compare the performance of the algorithms, we use data and performance profiles as defined
in [30]. Their definitions are briefly recalled here. Given a set S of algorithms and a set P
of problems, for s ∈ S and p ∈ P , let tp,s be the number of function evaluations required by
algorithm s on problem p to satisfy the condition

f(xk) ≤ fL + γp(f(x0) − fL) , (5.1)

where γp > 0 and fL is the best objective function value achieved by any solver on problem p.
Then, the performance and data profiles of solver s are generated using

ρs(α) = 1
|P |

∣∣∣∣∣
{

p ∈ P : tp,s

min{tp,s′ : s′ ∈ S}
≤ α

}∣∣∣∣∣ ,
ds(κ) = 1

|P |
|{p ∈ P : tp,s ≤ κ(np + 1)}| ,

where np is the dimension of problem p. A budget of 10000(np + 1) sample evaluations for
both algorithms is used, and two different tolerances for (5.1), that is γp ∈ {10−2, 10−4}.
All the profiles are built with the true function values, while applying the algorithms to the
noisy functions. The set P includes 96 well known instances of derivative-free unconstrained
nonsmooth optimization problems. The full problem list, with dimensions and references, is
reported in an appendix (see Table 1 in Section A.2). Each of the instances is used 10 times,
so that the algorithms perform 10 runs on every instance, thus getting |P | = 960.

5.1 Algorithm 1 for different choices of q

In this section, we compare two basic instances of Algorithm 1, obtained choosing uniformly
at random the search direction in the unit sphere, for different choices of the sufficient de-
crease parameter and sampling strategies, corresponding to different values of q and r in the
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algorithmic scheme and in the assumptions. The main goal is to provide further evidence that
choosing q smaller than 2 and using fewer samples per iteration as suggested by the theory
can improve numerical performance. In particular, we will show that the claim remains true
also in the case of correlated errors discussed in Section 2.2.

Remark 5.1. It is of course not always the case that an improvement in number of samples
per iteration leads to an improvement in the solution found with a fixed budget of samples,
since using lower values of q might increase the iteration complexity. For instance, for smooth
objectives with deterministic oracles, a complexity of O(ϵ− q

q−1 ) was proved in [37] for a scheme
analogous to Algorithm 1, with q ∈ (1, 2]. Then in this case, the lower number of samples
per iteration for q approaching 1 comes at the price of a potentially much higher iteration
complexity. However, it is important to note that the complexity bounds from [37] heavily
rely on the Lipschitz continuity of the gradient, so that this trade-off does not necessarily
generalize to potentially non-smooth objectives.

The basic version of Algorithm 1 used here is referred to as SDSq for q ∈ {2, 1.5}. We are
therefore comparing a standard choice [2, 13, 14] to one allowing the use of a lower number
of samples per iteration as proved in Theorems 2.4 and 2.8. The noise on the objective was
assumed to be 0 in expectation and normally distributed with standard deviation 0.1. By
Theorem 2.4, O(∆−2q

k ) samples are needed to satisfy the weak tail bound assumptions. Given
that the Gaussian noise has finite r-th moment for every r, Theorem 2.4 can be applied with
r = q/(q − 1). The number of samples needed per iteration is then O(∆−4

k ) and O(∆−3
k )

respectively for q = 2 and q = 1.5. Thus, we simulated the resulting noise after averaging pk

independent samples by adding to the objective N(0, 1/
√

pk) distributed random variables.
The remaining parameters were tuned with a basic grid search to obtain good performances
for both instances of Algorithm 1 to τ = 0.001, τ̄ = 1.001, θ = 0.5 and δ0 = 2.

Remark 5.2. It is not difficult to check that the bound (3.1) translates to θ > c with c = 4
and c ≈ 9 for q = 2 and q = 1.5 respectively. However, both algorithms show bad performance
for θ greater than 1. The authors conjecture here that lower values of θ and therefore a more
tolerant acceptance test might still lead to convergence in practice in most cases, with a
lower number of samples needed to find a good solution due to the resulting more aggressive
exploration. Finding weaker versions of (3.1) that still guarantee convergence under reasonable
assumptions remains of course an open problem to be studied more in depth in future works.

Data and performance profile in the general case of finite r-th moment and correlated
errors are reported in Figures 1 and 2 respectively. In the case of finite r-th moment, the
number of samples was set equal to pk = ⌈0.01δ−4

k ⌉ and pk = ⌈0.01δ−3
k ⌉ for q = 2 and q = 1.5

respectively, consistently with the bound proved in Theorem 2.4. In the correlated error case,
at the iteration k we add noise with standard deviation 0.1δk in the estimate of the difference
and set the number of samples to ⌈0.01δ−2

k ⌉ and ⌈0.01δ−1
k ⌉ for q = 2 and q = 1.5 respectively,

consistently with the bound proved in Theorem 2.8. For both cases it can clearly be seen how
choosing q = 1.5 rather than q = 2 leads to a better performance.
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Figure 1: Data and performance profiles for Algorithm 1 with q ∈ {2, 1.5} and in the finite
r−th moment setting, corresponding to SDS2 and SDS1.5, on the set of problems reported in
Table 1.

5.2 Comparison of Algorithms 1 and 2 with STOMADS
We describe in this section numerical results comparing a modified version of Algorithm 1,
Algorithm 2, and the StoMADS algorithm from [2]. The version of Algorithm 1 considered here
is obtained alternating coordinate search directions with random directions after the stepsize
falls below a certain threshold ∆̄, like it was done in the deterministic case, e.g., in [15, 20].
The convergence result of Theorem 3.3 extends to this variant in a straightforward way. In
the tests, we used the threshold ∆̄ = 0.5. As for Algorithm 2, we adopt at all iterations the
approach described in [6, Section 5] to build the model at iteration 0, i.e., we build a minimum
Frobenius norm model using the sample set {xk} ∪ {xk ± δkei}i∈[1:n] at all iterations k. Unlike
in [6, Algorithm 5.1] we do not add or subtract any point to the sample set, and rebuild from
scratch the model at every iteration.

For both Algorithm 1 and Algorithm 2, two choices of the parameter q were tested, that
is q = 2 and q = 1.5. The two instances of the modified version of Algorithm 1 are referred to
as SDS+q for q ∈ {2, 1.5}, and analogously the two instances of Algorithm 2 are referred to
as STRq for q ∈ {2, 1.5}. In accordance with this bound and the one in our Theorem 2.4, the
number of samples was set equal to pk = ⌈0.01δ−4

k ⌉ and pk = ⌈0.01δ−3
k ⌉ for q = 2 and q = 1.5

respectively, like in the previous section. In the case of StoMADS, when using the default
choice q = 2 for the frame size exponent in the acceptance criterion, the theory in [2] suggests
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Figure 2: Data and performance profiles for Algorithm 1 with q ∈ {2, 1.5} and in the correlated
error setting, corresponding to SDS2c and SDS1.5c, on the set of problems reported in Table 1.

the use of O(∆−4
k ) samples per iteration.

By taking a look at the profiles, it can be easily seen that SDS+1.5 and STR1.5 outperform
the other methods for γp = 10−2 and γp = 10−4 respectively. This suggests that the algorithms
analyzed in this work can outperform StoMADS, and that using q = 1.5 with fewer samples per
iteration can give better performances both for Algorithm 1 and 2. The trust-region method
also appear to show better performance when considering lower accuracy parameters. The
trus-region approach seems to work better than the direct-search one, which is not surprising
even considering fixed geometry model building.

6 Concluding remarks and future work
This manuscript proposed a new tail bound condition for function estimation in stochastic
derivative-free optimization, provably weaker than probabilistic conditions appearing in pre-
vious works. We showed how this condition can be obtained under a finite moment assumption
on the black-box noise, generalizing finite variance. This naturally led to defining a trade-off
between noise moment and number of samples per iteration, generalizing the classic O(∆−4

k )
sample bound of the finite variance case, with improvements for higher moments.

Our tail bound assumption allowed us to obtain convergence of both a direct-search and
a trust-region method using a reduced number of samples per iteration. Surprisingly, unlike
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Figure 3: Data and performance profiles for Algorithm 1 with q ∈ {2, 1.5}, Algorithm 2 with
q ∈ {2, 1.5} and StoMADS.

prior works on stochastic DFO requiring multiple probabilistic conditions for convergence, in
this work a single tail bound is sufficient to prove that the sequence of stepsizes/radii converges
to 0, and to conclude convergence to Clarke stationary points.

There are a few future research developments. A first one is the analysis of trust-region
algorithms based on non-smooth random local models under the new conditions. Possible
choices of the model include piecewise linear models and random smooth functions like those
used in Bayesian optimization. Studying tailored models for special cases where the objective
is the non-smooth composition of smooth functions (like for instance the maximum of smooth
functions) is a related challenge. Other possible research topics include the extension of
our analysis to the constrained case, its integration within global optimization schemes, and
numerical tests for non-smooth versions of the trust-region scheme.
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A Appendix
In this appendix, we report the missing proofs and some additional numerical results.

A.1 Proofs
We now recall the Rosenthal inequality [18, Equation (1)], together with a corollary useful
for several results of Section 2.2. This inequality states that, if {Zi}i∈[1:p] is a sequence of
independent random variables with 0 mean and finite r-th moment, r > 2, and S = 1

p

∑p
i=1 Zi,

one has

E [|S|r] ≤ p−rCr max
 p∑

i=1
E [|Zi|r] ,

( p∑
i=1

E
[
|Zi|2

]) r
2
 , (A.1)
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for some constant Cr > 0 depending from r.
We report here the corollary, which concerns the special case of i.i.d. samples.

Proposition A.1. If {Zi} is a sequence of independent copies of a random variable Z, r ≥ 2
and S are defined as above, then

E [|S|r] ≤ Crp
− r

2 E [|Z|r] . (A.2)

Proof. For r = 2, the result trivially holds with Cr = 1, since

E
[
|S|2

]
= p−2

p∑
i=1

E
[
Z2

i

]
= p−1E

[
Z2
]

.

Under the assumptions of this proposition (A.1) reduces to

E [|S|r] ≤ p−rCr max
(

pE [|Z|r] , p
r
2 E
[
|Z|2

] r
2
)

. (A.3)

Now,
p−rCr max

(
pE [|Z|r] , p

r
2 E
[
|Z|2

] r
2
)

≤ Crp
−r max

(
pE [|Z|r] , p

r
2 E [|Z|r]

)
≤ Crp

− r
2 E [|Z|r] ,

(A.4)

where Jensen’s inequality is used on the second argument of the max operator in the first
inequality and r ≥ 2 and p ≥ 1 in the second inequality. By concatenating (A.3) and (A.4),
(A.2) is proved.

Proof of Theorem 2.4. Let F̄k = Fk − f(Xk) and F̄ g
k = F g

k − f(Xk + ∆kGk), for Fk and F g
k

average of pk samples, with ξk,i and ξg
k,i independent samples for i ∈ [1 : p]:

Fk = 1
pk

pk∑
i=1

F (Xk, ξk,i)

F g
k = 1

pk

pk∑
i=1

F (Xk + ∆kGk, ξg
k,i) .

We start with the case q > 2, implying r ∈ (1, 2). By the conditional version of [4, Theorem
2], we have

E
[
|Āk|r | Fk−1

]
≤ 2Mrp

1−r
k (A.5)

for Āk = F̄k, F̄ g
k . Let now Ak = F̄k − F̄ g

k . We can then prove

E [|Ak|r | Fk−1] ≤ 2r−1E
[
|F̄k|r + |F̄ g

k |r | Fk−1
]

≤ 2r+1Mrp
1−r
k , (A.6)

where we used (|a| + |b|)r ≤ 2r−1(|a|r + |b|r) for a, b ∈ R in the first inequality, and (A.5) in
the second. Applying (A.6) we obtain

P
(

|Ak| ≥ α∆
r

r−1
k | Fk−1

)
= P

(
|Ak|r ≥ α∆r2/r−1

k | Fk−1
)

≤ E [|Ak|r | Fk−1]
αr∆r2/(r−1)

k

≤ 2r+1Mr
p1−r

k

αr∆r2/(r−1)
k

,
(A.7)
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where for pk = O(∆
− r2

(r−1)2

k ) = O(∆−q2

k ) the right-hand side of (A.7) is O(1/αr) and Assump-
tion 2.1 follows.

We now deal with the case q ∈ (1, 2], corresponding to r ∈ [2, +∞). We will apply the
conditional version of (A.2) with S = F̄k and Z = F (Xk, ξ) − f(Xk), and write

E
[
|F̄k|r | Fk−1

]
≤ Crp

− r
2

k E [|Z|r | Fk−1] ≤ CrMrp
− r

2
k , (A.8)

where we used (2.9) in the second inequality. Of course (A.8) holds with F̄ g
k instead of F̄k as

well. Then, reasoning as in (A.5), we get

E [|Ak|r | Fk−1] ≤ 2rCrMrp
− r

2
k ,

and analogously to (A.7):

P
(

|Ak| ≥ α∆
r

r−1
k | Fk−1

)
= P

(
|Ak|r ≥ αr∆

r2
r−1
k | Fk−1

)

≤ E [|Ak|r | Fk−1]
αr∆r2/(r−1)

k

≤ 2rCrMrp
− r

2
k

αr∆r2/(r−1)
k

.

In particular, for pk = O(∆
−2r
r−1
k ) = O(∆−2q

k ), we retrieve Assumption 2.1.

Proof of Proposition 2.7. By setting x = y in (2.11) we get

Varξ[F (x, ξ)] = σ2 . (A.9)

Moreover, we have

Covξ(F (x, ξ), F (y, ξ)) = σ2exp
(

−∥x − y∥2

2l2

)
≥ σ2(1 − ∥x − y∥2

2l2 ) , (A.10)

where we used (2.11) in the equality and ex ≥ 1 + x in the inequality. We therefore have

Eξ

[
|F̄ (x, ξ) − F̄ (y, ξ)|2

]
= Eξ

[
F̄ (x, ξ)2

]
+ Eξ

[
F̄ (y, ξ)2

]
− 2Eξ

[
F̄ (x, ξ)F̄ (y, ξ)

]
= Varξ(F (x, ξ)) + Varξ(F (y, ξ)) − 2Covξ(F (x, ξ), F (y, ξ))

≤ 2σ2 − 2σ2(1 − ∥x − y∥2

2l2 ) = σ2

l2 ∥x − y∥2 .

(A.11)

where we applied (A.9) and (A.10) in the last inequality. Let now Vx,y = Eξ

[
|F̄ (x, ξ) − F̄ (y, ξ)|2

]
=

Varξ

[
F̄ (x, ξ) − F̄ (y, ξ)

]
. (F (x, ξ), F (y, ξ)) is a bivariate Gaussian vector since {(F (x, ξ)} is

a Gaussian process. Thus, the linear combination F (x, ξ) − F (y, ξ) is still Gaussian, whence
F̄ (x, ξ) − F̄ (y, ξ) is Gaussian with mean 0. In particular, we can write F̄ (x, ξ) − F̄ (y, ξ) =√

Vx,yN , with N having standard normal distribution. We conclude by noticing, for r ≥ 2,

Eξ

[
|F̄ (x, ξ) − F̄ (y, ξ)|r

]
= E

[
V

r
2

x,y|N |r
]

= V
r
2

x,yE [|N |r] = V
r
2

x,yM̄r ≤ σr

lr
∥x − y∥rM̄r ,

where we used (A.11) in the second inequality, and M̄r is the r-th moment of the absolute
value of a normal distribution with mean 0 and variance 1.
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Proof of Theorem 2.8. Let Ak be an estimate of the difference between the errors at the current
and the tentative points obtained with pk samples:

Ak = 1
pk

pk∑
i=1

(F̄ (Xk, ξk,i) − F̄ (Xk + ∆kGk, ξk,i)) .

Then, for Z = F̄ (Xk, ξ) − F̄ (Xk + ∆kGk, ξ), and Cr constant depending only on r

E [|Ak|r | Fk−1] ≤ Crp
− r

2
k E [|Z|r | Fk−1] ≤ DrCrp

− r
2

k ∥∆kGk∥r = DrCrp
− r

2
k ∆r

k , (A.12)

where we used the conditional version of (A.2) in the first inequality, (2.10) in the second
inequality, and ∥Gk∥ = 1 in the equality.

We thus have

P
(

|Ak| ≥ α∆
r

r−1
k | Fk−1

)
= P

(
|Ak|r ≥ αr∆

r2
r−1
k | Fk−1

)

≤ E [|Ak|r | |Fk−1]
αr∆r2/(r−1)

k

≤ DrCr∆
− r

r−1
k

p
r
2
k αr

,

where we used the conditional Chebyshev’s inequality in the first inequality, and (A.12) in
the last inequality. Hence we obtain Assumption 2.1 for pk = O(∆− 2

r−1
k ) = O(∆2−2q

k ) as
desired.

Proof of Proposition 2.10. First, notice that

E
[
|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))|2 | Fk−1
]

≤ 2(E
[
|F g

k − f(Xk + ∆kGk)|2 | Fk−1
]

+ E
[
|Fk − f(Xk)|2 | Fk−1

]
)

≤ 4k2
f∆4

k ,

(A.13)

where we used (a+b)2 ≤ 2(a2 +b2) for a, b ∈ R in the first inequality, and (2.12) in the second.
We now have

P[|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≥ α∆2

k | Fk−1]
= P[|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))|2 ≥ α2∆4
k | Fk−1]

≤ E [|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))|2 | Fk−1]

α2∆4
k

≤
4k2

f

α2 ,

where we used the conditional Chebyshev’s inequality in the first inequality, and (A.13) in the
second inequality. By setting εq = 4k2

f in the above equation we obtain

P[|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≥ α∆2

k | Fk−1] ≤ εq

α2

as desired.
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Proof of Proposition 2.12. Notice that (2.2) is trivially satisfied for α <
√

εq. We then just
need to deal with the case α ≥ √

εq. First observe that by the triangular inequality

|Fk − f(Xk)| + |F g
k − f(Xk + ∆kGk)| ≥ |Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))| ,

which proves in particular (2.14). Let α ≥ √
εq be arbitrary. For β = 1 − εq

α2 p̄ ∈ [1 − p̄, 1),

P
(
|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))| ≥ α∆2
k |Fk−1

)
= 1 − P

(
|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))| < α∆2
k |Fk−1

)
≤ 1 − P

(
{|Fk − f(Xk)| ≤ τf (β)∆2

k} ∩ {|F g
k − f(Xk + ∆kGk)| ≤ τf (β)∆2

k} | Fk−1
)

≤ 1 − β = εq

α2 p̄ ≤ εq

α2 ,

where the second inequality follows from (2.13), and we were able to apply (2.14) in the first
inequality since by assumption

τf (β) <
1
2

√
ε

1 − β
= 1

2

√√√√εα2

εqp̄
= α

2 ,

using εq = ε
p̄

in the last equality. Given that α ≥ √
εq is arbitrary, this concludes the proof.

A.2 Benchmark problems
T

Table 1: Problems used in numerical experiments.
name dimension reference
crescent 2 [30]
cb2 2 [28]
charconn1 2 [26]
charconn2 2 [26]
demyanov-malozemov 2 [26]
dennis-woods 2 [12]
wong1 7 [28]
wong2 10 [28]
wong3 20 [28]
elattar 6 [28]
goffin 50 [28]
hald-madsen 1 2 [26]
lq 2 [28]
ql 2 [28]
maxl 20 [28]
maxq 20 [30]
mifflin 1 2 [19]
mifflin 2 2 [19]
rosen-suzuki 4 [28]
wf 2 [28]
spiral 2 [28]
evd 52 3 [28]
kowalik-osborne 4 [28]
oet 5 4 [28]
oet 6 4 [28]
gamma 4 [28]
exp 5 [28]
pbc1 5 [28]
evd61 6 [28]
filter 9 [28]
polak 2 10 [28]
polak 3 11 [28]
polak 6 4 [28]

name dimension reference
watson 20 [28]
osborne 2 11 [28]
shor 5 [28]
colville 1 5 [28]
hs 78 5 [28]
maxquad 10 [28]
gill 10 [28]
mxhilb 50 [19]
l1hilb 50 [28]
davidon 2 4 [28]
shelldual 15 [28]
steiner 2 12 [28]
transformer 6 [28]
polak 6.10 1 [28]
wild1 20 [19]
wild2 20 [19]
wild3 20 [19]
wild19 20 [19]
wild11 20 [19]
wild16 20 [19]
wild20 20 [19]
wild15 20 [19]
wild21 20 [19]
maxq {10, 20, 30, 40} [19]
l1hilb {10, 20, 30, 40} [30]
lq {10, 20, 30, 40} [30]
cb3 {10, 20, 30, 40} [30]
cb32 {10, 20, 30, 40} [30]
af {10, 20, 30, 40} [30]
brown {10, 20, 30, 40} [30]
mifflin2 {10, 20, 30, 40} [30]
crescent {10, 20, 30, 40} [30]
crescent2 {10, 20, 30, 40} [30]
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