
Efficient MIP Techniques for Computing the
Relaxation Complexity

Gennadiy Averkov1, Christopher Hojny2, and Matthias Schymura1

1BTU Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046
Cottbus, Germany, email {averkov, schymura}@b-tu.de

2Eindhoven University of Technology, Combinatorial Optimization
Group, PO Box 513, 5600 MB Eindhoven, The Netherlands, email

c.hojny@tue.nl

Abstract

The relaxation complexity rc(X) of the set of integer points X contained
in a polyhedron is the minimal number of inequalities needed to formulate
a linear optimization problem over X without using auxiliary variables. Be-
sides its relevance in integer programming, this concept has interpretations
in aspects of social choice, symmetric cryptanalysis, and machine learning.

We employ efficient mixed-integer programming techniques to compute
a robust and numerically more practical variant of the relaxation complex-
ity. Our proposed models require row or column generation techniques
and can be enhanced by symmetry handling and suitable propagation al-
gorithms. Theoretically, we compare the quality of our models in terms of
their LP relaxation values. The performance of those models is investigated
on a broad test set and is underlined by their ability to solve challenging
instances that could not be solved previously.

Keywords: mixed-integer programming models, relaxation complexity,
branch-and-cut, branch-and-price

1 Introduction

Let X ⊆ Zd be such that X = conv(X) ∩ Zd and let Y ⊆ Zd. A fundamental
problem in various fields is to find a polyhedron P with the minimum number
of facets such that X ⊆ P and (Y \ X) ∩ P = ∅. We call this quantity the
relaxation complexity of X w.r.t. Y , in formulae, rc(X,Y), and any such polyhe-
dron a relaxation. In case Y = Zd, we write rc(X) instead of rc(X,Zd). In the
theory of social choice, X ⊆ {0, 1}d can be interpreted as the winning strate-
gies of a simple game, see [26, Chap. 8.3]. One is then interested in comput-
ing rc(X, {0, 1}d), i.e., the smallest number of inequalities needed to distinguish
winning and loosing strategies. In symmetric cryptanalysis, a subfield of cryp-
tography, rc(X, {0, 1}d) corresponds to the minimum number of substitutions in
symmetric key algorithms [25]. In machine learning, relaxations P correspond
to polyhedral classifiers that distinguish two types of data points [1]. The re-
laxation complexity is then the minimum size of a polyhedral classifier. Finally,

1

of course, rc(X) is the minimum number of inequalities needed to formulate a
linear optimization problem over X ⊆ Zd without using auxiliary variables.

Depending on the application, different strategies have been pursued for
computing and bounding the relaxation complexity. For example, Kaibel &
Weltge [19] introduced the notion of hiding sets for deriving lower bounds
on rc(X). Using this technique, they could show that several sets X aris-
ing from combinatorial optimization problems have superpolynomial relaxation
complexity. Moreover, rc(X,Y) can be found by computing the chromatic num-
ber of a suitably defined hypergraph; deriving lower bounds on the chromatic
number allowed Kurz & Napel [20] to find a lower bound on rc(X, {0, 1}d) in the
context of social choice. In machine learning, algorithms have been devised to
construct polyhedral classifiers and thus providing upper bounds on rc(X,Y),
see [1, 8, 21, 22]. To find the exact value of rc(X, {0, 1}d) in the context of
symmetric cryptanalysis, mixed-integer programming models have been inves-
tigated. For higher dimensions, however, many of these models cannot com-
pute rc(X, {0, 1}d) efficiently in practice.

In this article, we follow the latter line of research. Given the relevance
of knowing the exact value of rc(X,Y), our aim is to develop efficient mixed-
integer programming (MIP) techniques for computing rc(X,Y), if bothX and Y
are finite. More precisely, we investigate methods to compute rcε(X,Y), a more
robust variant of rc(X,Y) that is numerically more practical as we discuss be-
low. To this end, we propose in Section 2 three different MIP models that allow
to compute rcε(X,Y): a compact model as well as two more sophisticated mod-
els that require row or column generation techniques. Section 3 compares the
quality of the three models in terms of their LP relaxation value, and we discuss
several enhancements of the basic models in Section 4. These enhancements in-
clude tailored symmetry handling and propagation techniques as well as cutting
planes. Finally, we compare the performance of the three different models on
a broad test set comprised of instances with different geometric properties and
instances arising in symmetric cryptanalysis (Section 5). Our novel methods
allow to solve many challenging instances efficiently, which was not possible
using the basic models.

We remark that the basic versions of two models have already been used
by us in [2] to find rcε(X,Y) for X being the integer points in low-dimensional
cubes and crosspolytopes. These experiments helped us to prove general formu-
lae for rc(X) in these cases. For this reason, we believe that the more sophisti-
cated algorithms described in this article are not only of relevance for practical
applications, but also to develop hypotheses for theoretical results. Our code is
publicly available at github1.

Related Literature One of the earliest references on the relaxation complexity
goes back to Jeroslow [15] who showed the tight bound rc(X, {0, 1}d) ≤ 2d−1,
for any X ⊆ {0, 1}d. This result has been complemented by Weltge [28] who
showed that most X ⊆ {0, 1}d have rc(X, {0, 1}d) ≥ 2d

c·d3 , for some absolute
constant c > 0. Moreover, hiding sets proposed by Kaibel & Weltge [19] provide
a lower bound on rc(X). The bound given by hiding sets can be improved by
computing the chromatic number of a graph derived from hiding sets, see [2].
Regarding the computability of rc(X), it has been shown in [3] that there exists

1https://github.com/christopherhojny/relaxation_complexity

2

https://github.com/christopherhojny/relaxation_complexity

a proper subset Obs(X) of Zd \X such that rc(X) = rc(X,Obs(X)). If Obs(X)
is finite, they show that rc(X,Obs(X)), and thus rc(X), can be computed by
solving a mixed-integer program. They also provide sufficient conditions on X
that guarantee Obs(X) to be finite. Moreover, they establish that rc(X) is com-
putable if d ≤ 3; for d = 2, a polynomial time algorithm to compute rc(X) is
discussed in [2]. In general, however, it is an open question whether rc(X) is
computable.

One drawback of relaxations of X as defined above is that they might be
sensitive to numerical errors. If aᵀx ≤ β is a facet defining inequality of a re-
laxation of X that separates y ∈ Zd \ X, then we only know aᵀy > β. Thus,
slightly perturbing a might not separate y anymore. To take care of this, we sug-
gested in [2] to add a safety margin ε > 0 to the separation condition. That is,
if aᵀx ≤ β is a facet defining inequality of a relaxation of X with ‖a‖∞ = 1 that
separates y, then we require aᵀy ≥ β+ε. In this case, we say that y is ε-separated
from X. Then, rcε(X) denotes the smallest number of facets of any relaxation
of X that satisfies the safety margin condition2. We call such a relaxation an ε-
relaxation of X. Analogously to rc(X,Y), we define rcε(X,Y) to be the smallest
number of inequalities needed to ε-separate X and Y \X. As ε-relaxations are
more restrictive than relaxations, rcε(X) ≥ rc(X) for each ε > 0. In contrast
to rc(X), however, we show in [2] that for every finite and full-dimensional
X ⊆ Zd there is a finite set Y ⊆ Zd \ X such that rcε(X) = rcε(X,Y).
Thus, rcε(X) is computable and the aim of this article is to develop MIP tech-
niques that allow to find rcε(X,Y) efficiently. In particular, if ε approaches 0,
then rcε(X) converges towards rcQ(X), a variant of the relaxation complex-
ity which requires the relaxations to be rational. Further variations of rc(X)
in which the size of coefficients in facet defining inequalities are bounded are
discussed in [10, 11].

Besides finding relaxations of X, another field of research aims to find outer
descriptions of P = conv(X) to be able to use linear programming techniques to
solve optimization problems over X. Since P might have exponentially many
facets, the concept of extended formulations has been introduced. Extended
formulations are polyhedra Q ⊆ Rd+k whose projection onto Rd yields P . The
smallest number of facets of an extended formulation of P is its extension com-
plexity xc(P). We refer the reader to the surveys of Conforti et al. [7] and
Kaibel [18] as well as the references therein. Extended formulations that allow
to use integer variables have been discussed, e.g., by Bader et al. [4], Ceval-
los et al. [6], and Weltge [28, Chap. 7.1]. A combination of rc(X, {0, 1}d) and
xc(conv(X)) has been studied by Hrubeš & Talebanfard [14].

Basic Definitions and Notation Throughout this article, we assume that d is
a positive integer. The set {1, . . . , d} is denoted by [d], and we write e1, . . . , ed to
denote the d canonical unit vectors in Rd. Moreover, ∆d = {0, e1, . . . , ed} ⊆ Rd
is the vertex set of the standard simplex inRd, and ♦d = {0,±e1, . . . ,±ed} ⊆ Rd
denotes the integer points in the d-dimensional standard crosspolytope. The
affine hull of a set X ⊆ Rd is denoted by aff(X).

A set X ⊆ Zd is called lattice-convex if X = conv(X) ∩ Zd. For a lattice-

2Note that the definition in [2] is different, but both concepts coincide if the value of ε is defined
appropriately. We follow the definition provided here, because it simplifies the discussion in this
article.

3

convex set X ⊆ Zd, we say that H ⊆ (aff(X)∩Zd) \X is a hiding set if, for any
distinct y1, y2 ∈ H, we have conv({y1, y2})∩conv(X) 6= ∅. Kaibel & Weltge [19]
proved that the cardinality of any hiding set is a lower bound on rc(X). The
maximum size of a hiding set is denoted by H(X). Moreover, if Y ⊆ Zd, we say
that H is a Y -hiding set if H is a hiding set that is contained in Y . Analogously
to H(X), H(X,Y) denotes the maximum size of a Y -hiding set.

2 Mixed-Integer Programming Models to Compute
rcε(X, Y)

In this section, we discuss three different mixed-integer programming models
to compute rcε(X,Y). The three different MIP formulations that we discuss
differ in the way how they model rcε(X,Y). The first model uses only polyno-
mially many variables and inequalities, the second model needs exponentially
many inequalities while the number of variables is still polynomial, and the
third model requires exponentially many variables but only polynomially many
inequalities. For this reason, we refer to these three models as the compact, the
cutting plane, and the column generation model, respectively. In preliminary
experiments with our code, we have already used the compact and column gen-
eration model [2]. Nevertheless, we provide the full details of these models to
make the article self-contained and to be able to explain the model enhance-
ments. For the sake of convenience, we assume for the remainder of this article
that X and Y are disjoint. This is without loss of generality, because we can re-
place Y by Y \X, which does not change the value of rcε(X,Y). We also refer
to X as the set of feasible points, whereas the points in Y are called infeasible.

2.1 Compact Model

Observe that lattice-convex sets are exactly those subsets of Zd that admit a re-
laxation. In [3], a mixed-integer programming formulation has been proposed
to check whether a finite lattice-convex set X admits a relaxation with k in-
equalities, and we have explained in [2] how to adapt the model to be able to
compute rcε(X,Y).

Given an upper bound k on the number of inequalities needed to separate X
and Y , the model’s idea is to introduce variables aij and bi, (i, j) ∈ [k] × [d],
to model the k potential inequalities needed in a relaxation. Moreover, for
each y ∈ Y and i ∈ [k], a binary variable syi is introduced that indicates
whether the i-th inequality is violated by y; additional binary variables ui,
i ∈ [k], indicate whether the i-th inequality is needed in a relaxation. Using
a big-M term with M ≥ d(ρX + ρY) + ε, with ρX = max{‖x‖∞ : x ∈ X}
and ρY = max{‖y‖∞ : y ∈ Y }, the mixed-integer programming formulation

4

for rcε(X,Y) is as follows:

min

k∑
i=1

ui (1a)

d∑
j=1

aijxj ≤ bi, x ∈ X, i ∈ [k], (1b)

k∑
i=1

syi ≥ 1, y ∈ Y, (1c)

d∑
j=1

aijyj ≥ bi + ε−M(1− syi), y ∈ Y, i ∈ [k], (1d)

syi ≤ ui, y ∈ Y, i ∈ [k], (1e)

−1 ≤ aij ≤ 1, (i, j) ∈ [k]× [d], (1f)

−dρX ≤ bi ≤ dρX , i ∈ [k], (1g)

syi, ui ∈ {0, 1}, y ∈ Y, i ∈ [k]. (1h)

Inequalities (1b) ensure that the k inequalities are valid for X and Inequali-
ties (1c) guarantee that each y ∈ Y is cut off by at least one inequality. If an
inequality is selected to separate y ∈ Y and X, Inequalities (1d) ensure that
this is consistent with the k inequalities defined by the model. Finally, Inequal-
ities (1e) ensure that ui is 1 if inequality i ∈ [k] separates an infeasible point,
whereas Inequalities (1f) and (1g) scale the k inequalities without loss of gen-
erality. For details on correctness, we refer the reader to [3, Sect. 4.2].

2.2 Cutting Plane Model

To be able to find rcε(X,Y), Model (1) introduces two classes of variables:
variables u and s model which inequalities are used and subsets of Y that are
separated by the selected inequalities, respectively, whereas variables a and b
guarantee that the subsets defined by s can be cut by valid inequalities for X.
The problem of computing rcε(X,Y) can thus be interpreted as a two stage
problem, where the first stage selects a set of subsets of Y and the second stage
checks whether the selected subsets correspond to feasible cut patterns. Since
the first stage variables are binary and the second stage problem is a feasibility
problem, logic-based Benders decomposition can be used to compute rcε(X,Y),
see [13]. While classical Benders decomposition requires the subproblem to be
a linear programming problem, logic-based Benders decomposition allows the
subproblem to be an arbitrary optimization problem.

Let C = {C ⊆ Y : C and X are not linearly ε-separable}. We refer to C as
the conflict set. For all (C, i) ∈ C × [k], the conflict inequality

∑
y∈C syi ≤ |C| − 1

models that not all points in C can be cut by an inequality valid for X. Conse-

5

quently,

min

k∑
i=1

ui (2a)

k∑
i=1

syi ≥ 1, y ∈ Y, (2b)∑
y∈C

syi ≤ |C| − 1, C ∈ C, i ∈ [k], (2c)

syi ≤ ui, y ∈ Y, i ∈ [k], (2d)

syi, ui ∈ {0, 1}, y ∈ Y, i ∈ [k]. (2e)

is an alternative model for computing rcε(X,Y).

2.3 Column Generation Model

Let I = {I ⊆ Y : I and X are linearly ε-separable}. Then, rcε(X,Y) is the
smallest number ` of sets I1, . . . , I` ∈ I such that Y =

⋃`
i=1 Ii. Thus, instead of

using the matrix s ∈ {0, 1}Y×[k] to encode which inequality cuts which points
from Y , we can introduce for every I ∈ I a binary variable zI ∈ {0, 1} that
encodes whether an inequality separates I or not:

min
∑
I∈I

zI (3a)∑
I∈Iy

zI ≥ 1, y ∈ Y, (3b)

z ∈ ZI+, (3c)

where Iy = {I ∈ I : y ∈ I}.

Remark 2.1. In contrast to Model (1), Models (2) and (3) do not directly pro-
vide an ε-relaxation of X w.r.t. Y . To find such a relaxation, rcε(X,Y) many
linear programs need to be solved in a post-processing step.

3 Comparison of Basic Models

While the compact model (1) can be immediately handed to an MIP solver due
to the relatively small number of variables and constraints, the cutting plane
model (2) and column generation model (3) require to implement separation
and pricing routines, respectively. At least for the column generation model,
this additional computational effort comes with the benefit of a stronger LP
relaxation in comparison with the compact model. To make this precise, we
denote by v?com, v?cut, and v?CG the optimal LP relaxation value of the compact,
cutting plane, and column generation model, respectively.

Proposition 3.1. Let X ⊆ Zd be finite and lattice-convex, let Y ⊆ Zd \ X be
finite, let ε > 0 such that rcε(X,Y) exists, and suppose both Models (1) and (2)
are feasible.

6

1. Then, v?com ≥ v?cut = 1.

2. Moreover, if ε ≤ (d− 1)(ρX + ρY), then v?com = 1.

Note that 2 is a technical assumption that is almost always satisfied in prac-
tice, e.g., to approximate rc(X,Y) by rcε(X,Y), one selects ε < 1 ≤ (d−1)(ρX+
ρY). Thus, v?cut = v?com = 1 in all relevant cases.

Proof. First we show v?cut ≥ 1 and v?com ≥ 1. Observe that we get for every
(partial) feasible solution (s, u) and every ȳ ∈ Y the estimation

k∑
i=1

ui ≥
k∑
i=1

max{syi : y ∈ Y } ≥
k∑
i=1

sȳi ≥ 1,

where k is the upper bound used in Model (1) of (2). Hence, v?cut ≥ 1 and
v?com ≥ 1. If the upper bound k = 1, we thus have necessarily v?cut = 1. If k ≥ 2,
we construct a feasible solution for (2) with objective value 1 by assigning all
variables value 0 except for syi, (y, i) ∈ Y × [2], u1, and u2, which get value 1

2 .
Indeed, the left-hand side of each conflict inequality evaluates to |C|

2 , while
the right-hand side is |C| − 1. Thus, because |C| ≥ 2 for any conflict as X is
lattice-convex, the find |C|2 ≤ |C| − 1, i.e., all conflict inequalities are satisfied.
Since the remaining inequalities hold trivially, 1 ≥ v?cut follows. Consequently,
v?com ≥ 1 ≥ v?cut ≥ 1.

For the second statement, we assume k ≥ 2, because otherwise v?com = 1 fol-
lows as above. We define a feasible solution with objective value 1 of Model (1)
by assigning all variables value 0 except for

• u1 = sy1 = ε
M for all y ∈ Y ;

• u2 = sy2 = 1− ε
M for all y ∈ Y ;

• a11 = 1 and b1 = ρX .

The inequalities ai·ᵀx ≤ bi defined this way are either 0 ≤ 0 or x1 ≤ ρX , which
are valid for X. Moreover, the Inequalities (1d) are satisfied, because for i = 1
and every y ∈ Y , we have

d∑
j=1

a1jyj − b1 = y1 − ρX ≥ −ρY − ρX ≥ −d(ρX + ρY) + ε ≥ ε−M(1− sy1),

and for the remaining i ≥ 2, we get ε −M(1 − sy2) = 0. Since one can easily
check that the remaining inequalities of (1) are also satisfied, v?com ≤ 1 follows,
concluding the proof using the first part of the assertion.

The value of the LP relaxations thus does not indicate whether the compact
or cutting plane model performs better in practice. An advantage of the latter is
that the conflict inequalities encode a hypergraph coloring problem, which is a
structure appearing frequently in practice. Hence, there might be a chance that
a solver can exploit this structure if sufficiently many inequalities have been
separated. The compact model, however, might have the advantage that the
a- and b-variables guide the solver in the right direction when branching on s-
or u-variables, because feasibility is already encoded in the model and does not
need to be added to the model by separating cutting planes.

7

Proposition 3.2. LetX ⊆ Zd be finite and lattice-convex, let Y ⊆ Zd\X be finite,
let ε > 0 be such that rcε(X,Y) exists, and suppose both Models (1) and (2) are
feasible. Let k be the number of inequalities encoded in Model (1).

1. If there exists an optimal solution of the LP relaxation of (3) that assigns at
most k variables a positive value, then v?CG ≥ v?com ≥ v?cut = 1.

2. We have v?CG ≥ H(X,Y), and this can be strict.

Proof. To show v?CG ≥ v?com, recall that for each I ∈ I there exists an inequal-
ity a(I)

ᵀ
x ≤ b(I) + ε separating I and X. Due to rescaling, we may assume

that a(I) ∈ [−1, 1]d and b(I) ∈ [−dρX , dρX].
If we are given a solution z ∈ RI+ of (3) with at most k non-zero entries,

we define a solution of the LP relaxation of (1) with the same objective value as
follows. Let I1, . . . , I` ∈ I be the indices of non-zero entries in z. For each i ∈ [`]
and y ∈ Y , define

syi =

{
zIi , if y ∈ Ii,
0, otherwise,

and ui = zIi .

For i ∈ {` + 1, . . . , k} and y ∈ Y , we define syi = 0 and ui = 0. Finally,
let aij = a(Ii)j and bi = b(Ii) for (i, j) ∈ [`] × [d]. For i ∈ {` + 1, . . . , k},
define aij = 0 and bi = 1. Indeed, this solution adheres to (1b) since (a, b)
defines valid inequalities, and also (1e)–(1g) hold trivially. By definition, s
and u also satisfy the box constraints corresponding to (1h). To see that (1c)
holds, note that for each y ∈ Y ,

k∑
i=1

syi =
∑

i∈[`] : y∈Ii

zIi
(3b)
≥ 1,

since z is feasible for the LP relaxation of (3). For the last constraint (1d), note
that the constraint is trivially satisfied if syi = 0. If syi > 0, then ai·

ᵀx ≤ bi
corresponds to an inequality separating X and y, which finally shows that the
newly defined solution is feasible for the LP relaxation of (1). To conclude, note
that

∑k
i=1 ui =

∑`
i=1 zIi . Hence, v?CG ≥ v?com and the remaining estimations

hold by Proposition 3.1.
For the second part, let H ⊆ Y be a hiding set for X and let z ∈ RI+ be an

optimal solution of the LP relaxation of (3). Then, for distinct y1, y2 ∈ H, we
have Iy1 ∩ Iy2 = ∅. Consequently, we can estimate

v?CG =
∑
I∈I

zI ≥
∑
y∈H

∑
I∈Iy

zI
(3b)
≥ |H|,

which shows v?CG ≥ H(X,Y).
To see that the inequality can be strict, consider X = {0, 1}2 and let Y be

all infeasible points in Z2 with `∞-distance 1 from X. One can readily verify
that a maximum hiding set for X has size 2, while the LP relaxation of (3) has
value 8

3 .

If Y contains a hiding set of size at least 2, the column generation model is
thus strictly stronger than the compact and cutting plane model. In particular,
the gap between v?CG and v?cut (and v?com) can be arbitrarily large: if d = 2 and
Y = Obs(X), there is always a hiding set of size rc(X,Y)− 1, see [2, Thm. 23].

8

4 Enhancements of Basic Models and Algorithmic
Aspects

In their basic versions, the compact and cutting plane model are rather difficult
to solve for a standard MIP solver, e.g., because not enough structural properties
of rcε(X,Y) are encoded in the models that are helpful for a solver. Moreover,
the cutting plane and column generation model require to solve a separation
and pricing problem, respectively, to be used in practice. In this section, we
discuss these aspects and suggest model improvements.

4.1 Incorporation of Structural Properties

In the following, we describe cutting planes, propagation algorithms, and tech-
niques to handle symmetries and redundancies in the compact and cutting plane
model.

Cutting Planes In both the compact and cutting plane model, variable syi en-
codes whether a point y ∈ Y is separated by inequality i ∈ [k]. To strengthen
the compact model and the initial LP without separated inequalities in the cut-
ting plane model, we can add inequalities that rule out combinations of points
from Y that cannot be separated simultaneously.

For any hiding set H ⊆ Y , the hiding set cut∑
y∈H

syi ≤ 1, i ∈ [k]

encodes that each inequality i ∈ [k] can separate at most one element from a
hiding set. Although these cuts are the stronger the bigger the underlying hiding
set, we add these inequalities just for hiding sets of size 2. The reason for this
is that such hiding sets can be found easily by iterating over all pairs (y1, y2)
of distinct points in Y and checking whether the line segment conv({y1, y2})
intersects conv(X) non-trivially. In our implementation, we insert the expres-
sion λy1+(1−λ)y2 in each facet defining inequality of conv(X) to derive bounds
on the parameter λ. Then, the final bounds on λ are within [0, 1] if and only
if {y1, y2} is a hiding set.

For hiding sets of arbitrary cardinality, the task is more difficult, because
there might exist exponentially many hiding sets. Thus, we are relying on a
separation routine for hiding set cuts. The separation problem for hiding set
cuts, however, is at least as difficult as finding a maximum hiding set for X, and
the complexity of the latter is open.

Propagation Suppose we are solving the compact and cutting plane model
using branch-and-bound. At each node of the branch-and-bound tree, there
might exist some binary variables that are fixed to 0 or 1, e.g., by branching
decisions. The aim of propagation is to find further variable fixings based on
the already existing ones.

Our first propagation algorithm is based on the following observation.

9

Observation 4.1. Suppose some s-variables have been fixed and let i ∈ [k]. Then,
Fi := {y ∈ Y : syi = 1} can be separated from X if and only if F ′i := Y ∩conv(Fi)
can be separated from X.

The convexity propagation algorithm computes the sets F ′i , i ∈ [k], and
fixes syi to 1 for all y ∈ F ′i . If there is y′ ∈ F ′i such that sy′i is already
fixed to 0, then the algorithm prunes the node of the branch-and-bound tree.
This is indeed a valid operation, because Inequalities (1c) and (2b) allow each
point y ∈ Y to be separated by several inequalities.

The second propagation algorithm exploits that Fi ∩ conv(X) needs to be
empty in each feasible solution. The intersection propagation algorithm thus
iterates over all y ∈ Y \ Fi and checks whether conv(Fi ∪ {y}) ∩ conv(X) 6= ∅.
If the check evaluates positively, syi is fixed to 0.

Comparing both propagation algorithms, the convexity propagator requires
to compute only a single convex hull per set Fi, whereas the intersection prop-
agator needs to compute O(|Y |) convex hulls per set Fi, which can be rather
expensive. In our experiments, we will investigate whether the additional effort
pays off in reducing the running time drastically. To avoid computing unneces-
sary convex hulls, we call both propagation algorithms in our implementation
only if the branching decision at the parent node is based on a variable syi, and
in this case only for this particular inequality index i and no further i′ ∈ [k]\{i}.

Symmetry Handling It is well-known that the presence of symmetries slows
down MIP solvers, because symmetric solutions are found repeatedly during
the solving process leading to an exploration of unnecessary parts of the search
space. In a solution of the compact and cutting plane model, e.g., we can per-
mute the inequality labels i ∈ [k] without changing the structure of the solution.
For this reason, one can enforce that only one representative solution per set of
equivalent solutions is computed without losing optimal solutions.

One way of handling symmetric relabelings of inequalities is to require that
the columns of the matrix s ∈ {0, 1}Y×[k] are sorted lexicographically non-
increasingly. To enforce sorted columns, we use a separation routine for or-
bisack minimal cover inequalities as suggested in [12] and the propagation al-
gorithm orbitopal fixing by Bendotti et al. [5]. Both algorithms’ running time
is in O(|Y | · k). Moreover, sorting the columns of s implies that we can also
require the u-variables to be sorted, i.e., the first rcε(X,Y) inequalities are the
inequalities defining an ε-relaxation, which can be enforced by adding

ui ≥ ui+1, i ∈ [k − 1], (4)

to the problem.
Besides the symmetries of relabeling inequalities, we might also be able

to relabel points in Y without changing the structure of the problem. This is
the case if we find a permutation π of [d] such that π(X) = X and π(Y) =
Y , where for a set T ⊆ Rd we define π(T) = {π(t) : t ∈ T} and π(t) =
(tπ−1(1), . . . , tπ−1(d)). The permutation π gives rise to a permutation φ of Y
and ψ of X, where φ(y) := π(y) and ψ(x) := π(x).

Lemma 4.2. Let (s, u) be a (partial) solution of Model (1) or (2) for rcε(X,Y).
If there exists a permutation π of [d] such that π(X) = X and π(Y) = Y , then
also (s′, u) is a (partial) solution, where s′ arises from s by reordering the rows
of s according to φ.

10

Proof. Suppose (s, u) is a solution of Model (2). Then, (s, u) can be extended to
a solution of Model (1), i.e., there exist k inequalities

∑d
j=1 aijxj ≤ bi, i ∈ [k],

such that the i-th inequality separates the points in Fi = {y ∈ Y : syi = 1}
from X. If we apply permutation π to X and Y , we do not change the structure
of the problem, that is,

∑d
j=1 aijπ(x)j ≤ bi, i ∈ [k], defines also a relaxation

of X w.r.t. Y . Thus, if the original i-th inequality separated point y ∈ Y , the
permuted inequality separates φ(y). Consequently, if we define s′ by relabel-
ing the rows of s according to φ, (π(a), b, s′, u) is a solution of Model (1) and
thus (s′, u) is a solution of Model (2).

If Π = {π ∈ Sd : π(X) = X, π(Y) = Y } and Φ is the group containing all φ
associated with the permutations π ∈ Π, Lemma 4.2 tells us that we can also
force the rows of s to be sorted lexicographically non-increasingly w.r.t. permu-
tations from Φ. In our implementation, we compute a set Γ of generators of the
group Φ and enforce for each γ ∈ Γ that matrix s is lexicographically not smaller
than the reordering of s w.r.t. γ. We enforce this property by separating minimal
cover inequalities for symresacks and a propagation algorithm, see [12]. Both
run in O(k) time per γ ∈ Γ.

To detect the symmetries Φ, we construct a colored bipartite graph G =
(V,E). The left side of the bipartition is given by X ∪ Y and the right side is
defined as R = {(v, j) ∈ Z × [d] : there is z ∈ X ∪ Y with zj = v}. There is
an edge between z ∈ X ∪ Y and (v, j) ∈ R if and only if zj = v. Moreover,
each node gets a color uniquely determining its type: all nodes in X are colored
equally with color “X”, all nodes in Y are colored equally by color “Y ”, and
node (v, j) ∈ R is colored by color “v”. Then, the restriction of every automor-
phism σ of G to R corresponds to a permutation in Π, and thus, restricting σ
to Y is a permutation in Φ.

Note that the graph G defined above might not allow to detect symmetries if
a symmetric arrangement ofX and Y is translated asymmetrically. For example,
if X = t+∆2, Y = t+(∆2 +♦2)\∆2, and t =

(
1
2

)
, then there is no permutation

keeping X invariant. For this reason, we use in the construction of G relative
coordinates. That is, for each coordinate j ∈ [d], we compute µj = minz∈X∪Y zj
and translate X ∪ Y by −µ before building G.

Another way of handling symmetries for the compact model (1) is to handle
symmetries of the inequalities

∑d
j=1 aijxj ≤ bi defined in the model. We can

reorder the inequalities
∑d
j=1 aijxj ≤ bi, i ∈ [k] that are (not) used in the

relaxation, to obtain another solution with the same objective value. To handle
these symmetries, we can add the inequalities

ai1 ≥ a(i+1)1 − 2(ui − ui+1), i ∈ [k − 1]. (5)

Inequalities (5) sort the inequalities (not) present in a relaxation by their first
coefficient. The inequalities are compatible with Inequalities (4), but not neces-
sarily with the lexicographic ordering constraints. The latter is the case because
cutting the point y ∈ Y associated with the first row of matrix s might require
a very small first coefficient in any separating inequality, whereas other points
might require a very large first coefficient. In our experiments, we will investi-
gate which symmetry handling method works best for the compact and cutting
plane model.

11

Finally, additional redundancies in Model (1) can be handled by enforcing
that

∑d
j=1 aijxj ≤ bi becomes the trivial inequality 0ᵀx ≤ dρX if it is not used

in a relaxation of X (i.e., ui = 0). This removes infinitely many equivalent
solutions from the search space, and can be modeled by replacing (1f) by

−ui ≤ aij ≤ ui, (i, j) ∈ [k]× [d],

and the lower bound constraint in (1g) by

dρX ≤ bi + 2dρXui, i ∈ [k].

This method is compatible with both the lexicographic symmetry handling ap-
proach and Inequalities (5).

4.2 Algorithmic Aspects of the Cutting Plane Model

To be able to deal with the exponentially many conflict inequalities (2c) in the
cutting plane Model (2), we are relying on a separation routine. We start by
discussing the case that the point s? to be separated is contained in {0, 1}Y×[k],
i.e., for each of the k inequalities we already know which points it is supposed
to separate.

To check whether s? ∈ {0, 1}Y×[k] satisfies all conflict inequalities, we can
compute for each i ∈ [k] the set Fi = {y ∈ Y : s?yi = 1}, and build a linear
program similar to Model (1) that decides whether X and Fi are ε-separable. If
the answer is yes, we know s? is feasible. Otherwise, we have found a violated
conflict inequality, namely

∑
y∈Fi

syi ≤ |Fi| − 1. Of course, this inequality will
be rather weak in practice, because it excludes only the single assignment Fi.

One way to strengthen the inequality is to search for a minimum cardinal-
ity subset Fmin of Fi, which cannot be separated from X. The corresponding
inequality

∑
y∈Fmin

syi ≤ |Fmin| − 1 then does not only cut off s?, but every
solution that assigns inequality i all points from Fmin. However, we do not
expect that Fmin can be computed efficiently, because detecting a minimum car-
dinality set of inequalities whose removal leads to a feasible LP is NP-hard, see
Sankaran [24]. Instead, we compute a minimal cardinality subset F ⊆ Fi by
initializing F = ∅, adding points y ∈ Fi to F until F and X are no longer
separable, and then iterating over all points y′ in F and checking whether their
removal leads to a separable set. In the latter case, we keep y′ in F ; otherwise,
we remove it. Although this procedure is costly as it requires to solve Θ(|Fi|) LPs
to find F , preliminary experiments revealed that the running time of the cutting
plane model can be reduced drastically when using the sparsified inequalities.

Since we expect the separation problem of (2c) to be difficult even for inte-
ger points, we only heuristically separate non-integral points s? ∈ [0, 1]Y×[k] in
our implementation. To this end, for each i ∈ [k], we again initialize an empty
set F and iteratively add y ∈ Y in non-increasing order w.r.t. s?yi until F ∈ C
and s? violates the inequality (or we know that such an inequality cannot be
violated).

4.2.1 Algorithmic Aspects of the Column Generation Model

In contrast to the compact model (1), the number of variables in (3) grows ex-
ponentially in |Y |, which makes it already challenging to solve the LP relaxation

12

of (3). In our implementation, we thus use a branch-and-price procedure for
solving (3), i.e., we use a branch-and-bound procedure in which each LP relax-
ation is solved by column generation. In the following, we discuss the different
components of the branch-and-price procedure.

Solving the Root Relaxation At the root node of the branch-and-bound tree,
we are given a subset I ′ of all possible variables in I and solve the LP relaxation
of (3) restricted to the variables in I ′. To check whether the solution obtained
for the variables in I ′ is indeed an optimal solution of the LP relaxation, we need
to solve the pricing problem, i.e., to check whether all variables in I have non-
negative reduced costs. Since the pricing problem is equivalent to the separation
problem for the dual, we determine the dual of the root node LP relaxation
of (3), which is given by

max
∑
y∈Y

αy (6a)

∑
y∈I

αy ≤ 1, I ∈ I, (6b)

αy ≥ 0, y ∈ Y. (6c)

The pricing problem at the root node is thus to decide, for given dual weights αy,
y ∈ Y , whether there exists a set I ∈ I with

∑
y∈I αy > 1. Unfortunately, we

cannot expect to solve this problem efficiently in general.

Proposition 4.3. Let X ⊆ Zd be finite and lattice-convex, let Y ⊆ Zd \ X be
finite, and let αy ≥ 0 be a rational weight for y ∈ Y . Then, the pricing problem
for the LP relaxation of (3), i.e., deciding whether there exists I ∈ I(X,Y) with∑
y∈Y αy > 1, is NP-hard.

Proof. Note that the pricing problem is equivalent to finding a set I ∈ I(X,Y)
that maximizes the value

∑
y∈I αy. If all weights αy, y ∈ Y , have the same

value α > 0, the problem reduces to find a set I ∈ I of maximum cardinality.
The latter problem is NP-hard even if X consists of a single point, in which case
it reduces to the open hemisphere problem, see Johnson & Preparata [16].

To solve the pricing problem, we use a mixed-integer program that is a vari-
ant of (1) with k = 1. The only difference is that instead of minimizing the
number of needed inequalities, we maximize the expression

∑
y∈Y αysy1. If

this value is at most 1, we have found an optimal solution of the LP relaxation.
Otherwise, we have found a variable zI with negative reduced cost, add I to I ′,
and iterate this procedure until all reduced costs are non-negative. In our im-
plementation, we initialize the set I ′ by

I ′ =
{
{y ∈ Y : aᵀy > b} : aᵀx ≤ b defines facet of conv(X)

}
∪
{
{y} : y ∈ Y

}
.

Branching Strategy Let u be a node of the branch-and-bound tree and denote
by zu an optimal solution of the LP relaxation at node u. A classical branching
strategy is to select a variable zI with zuI /∈ Z and to create two child nodes u0

and u1 by enforcing zI = 0 in u0 and zI = 1 in u1. While the branching
decision zI = 1 has strong implications for computing rcε(X,Y) (we basically

13

fix an inequality used in the relaxation), branching zI = 0 only rules out one of
the exponentially many choices in I for a separated set.

To obtain a more balanced branching rule, we use the branching rule sug-
gested by Ryan & Foster [23]. We are looking for two distinct variables zI
and zJ with zuI , z

u
J /∈ Z such that both the intersection I ∩ J and symmetric dif-

ference I∆J of I and J are non-empty. Let y1 ∈ I ∩J and y2 ∈ I∆J . Then, two
child nodes u0 and u1 of u are created as follows. In u0, variables zI′ are fixed
to 0 if I ′ contains both y1 and y2. In u1, we fix zI′ to 0 if I ′ contains either y1

or y2. That is, u0 enforces y1 and y2 to be contained in different sets, and u1

forces them to be contained in the same set I ′. This branching rule obviously
partitions the integer solutions feasible at node u. To show its validity it is thus
sufficient to show that for every non-integral solution zu the sets I and J exist.

Lemma 4.4. Let zu be a non-integral optimal solution of the LP relaxation of (3)
at node u of the branch-and-bound tree. Then, there exist two distinct sets I, J ∈ I ′
with zuI , z

u
J /∈ Z such that I ∩ J 6= ∅ and I∆J 6= ∅.

Proof. Let I ∈ I ′ be such that zuI /∈ Z. Then, zuI ∈ (0, 1), since zu is an optimal
solution of the LP relaxation. Due to (3b), for every y ∈ I, there exists Jy ∈
I ′ \ {I} with y ∈ Jy such that zuJy > 0. For at least one Jy we have zuJy ∈ (0, 1),
because otherwise, we could improve the objective value of zu by setting zuI
to 0 and still satisfying all constraints. Such a set Jy together with I satisfy the
properties in the statement of the lemma: Since y is contained in both I and Jy,
we have I ∩ Jy 6= ∅. Moreover, as I 6= Jy, I∆Jy 6= ∅.

In our implementation, we compute for each variable zuI its fractionality
θ(I) = 1

2 − min{zuI , 1 − zuI }. Then, we select I and J such that θ(I) + θ(J) is
maximized; the branching candidates y1 ∈ I ∩ J and y2 ∈ I∆J are selected
arbitrarily.

Solving LP Relaxations in the Tree To not re-generate variables that have
been fixed to 0 by the branching rule, we need to incorporate the branching de-
cisions active at a node of the branch-and-bound tree into the pricing problem.
This can easily be done by adding linear constraints to the root node formula-
tion of the pricing problem. If a branching decision was that y1 and y2 shall be
contained in different sets, we add sy11 + sy21 ≤ 1 to the pricing problem. The
branching decision that y1 and y2 have to be contained in the same set can be
enforced by the constraint sy11 = sy21.

5 Numerical Experiments

The aim of this section is to compare the practical performance of the three mod-
els for computing rcε(X,Y) as well as their enhancements. To this end, we have
implemented all three models in C/C++ using SCIP 7.0.3 as modeling and
branch-and-bound framework and SoPlex 5.0.2 to solve all LP relaxations. All
branching, propagation, separation, and pricing methods are implemented us-
ing the corresponding plug-in types of SCIP. Since we are not aware of an alter-
native separation routine for hiding set cuts, we compute all hiding sets of size
two in a straightforward fashion before starting the branch-and-bound process.
During the solving process, we separate these inequalities if the corresponding

14

cuts are violated. To handle symmetries via lexicographic orderings, we use
SCIP’s internal plug-ins cons orbitope, cons orbisack, and cons symresack

that implement the methods discussed in Section 4; the branching and pricing
plug-ins for the column generation model strongly build up on the correspond-
ing plug-ins of the binpacking example provided in the SCIP Optimization Suite.
All convex hull computations have been carried out using cdd 0.94m [9] and
graph symmetries are detected using bliss 0.73 [17].

Our implementation is available online at github3.

Implementation Details All models admit some degrees of freedom that we
detail in the following. Both the compact model and the cut model require an
upper bound on the relaxation complexity. In both models, we impose the trivial
upper bound which is given by the number of facets of conv(X). We also use
the facet description to derive an initial solution for both models. In the column
generation model, we need to select a subset of I to define initial variables. We
use the sets I ∈ I that are defined by the facet defining inequalities of conv(X),
i.e., the sets of points in Y that are separated from X by the facet defining
inequalities. Moreover, we include the singleton sets {y}, for y ∈ Y , to make
sure that the LP relaxation remains feasible after branching.

Settings To encode the different settings that we have tested, we make use of
the following abbreviations:

hiding Whether hiding set cuts are added (1) or not (0).

sym. Which symmetry method is used: none (0), simple (s), or advanced (a),
where simple is (4) and (5), and advanced uses (4) and additionally en-
forcing lexicographically maximal solutions based on symmetries of X
and Y .

prop. Whether the convexity propagator is used (1) or not (0).

Note that we do not report on results for the intersection propagation algorithm.
This is because, in preliminary experiments, we have seen that its running time
is very high, in particular, because it needs to compute in each iteration O(|Y |)
convex hulls. As a result, we could hardly solve any instance, not even small
ones.

Test Sets In our experiments, we have used three different test sets:

basic The sets X are the vertices of the 0/1 cube, the crosspolytope, or
the standard simplex in dimensions d ∈ {3, 4, 5}. For X ⊆ Zd, the
sets Y consist of all points in Zd \ X whose `1-distance to X is at
most k, where 1 ≤ k ≤ 10− d. The reason for smaller distance in
higher dimension is that the problems get considerably more difficult
to solve with increasing k.

3https://github.com/christopherhojny/relaxation_complexity (githash 4ffb6c0e was
used for our experiments)

15

https://github.com/christopherhojny/relaxation_complexity

downcld This test set consists of 99 full-dimensional subsets X of {0, 1}5 that
correspond to down-closed subsets (or abstract simplicial complexes)
of the Boolean lattice on 5 elements. The corresponding sets Y are
the points in Z5 \X whose `1-distance to X is at most k ∈ {1, 2, 3}.
The sets X have been generated by the natural one-to-one correspon-
dence between inclusion-maximal sets in a down-closed family and
antichains in the Boolean lattice.

sboxes The test set comprises 18 instances modeling 4-bit (12 instances)
and 5-bit (6 instances) S-boxes, which are certain non-sparse Boolean
functions arising in symmetric-key cryptography. The derived sets X
are contained in {0, 1}8 and {0, 1}10, respectively, and Y are the com-
plementary binary points. These instances have also been used by
Udovenko [27] who solved the full model (3), i.e., without column
generation.

The basic instances feature various aspects that might be relevant for comput-
ing rc(X) via computing a series of values rcε(X,Y) for different Y and ε ac-
cording to [3]: The cube is parity complete, thus there exists a small set Y such
that rc(X) = rcε(X,Y) (in fact, this set is {−1, 0, 1, 2}d \X); the crosspolytope
has an interior integer point and thus there exists a (potentially large) finite
set Y with rc(X) = rcε(X,Y); for the simplex ∆4 in R4, no finite set Y exists
with rc(∆4) = rc(∆4, Y); see [2]. That is, rc(∆4, Y) < rc(∆4) ≤ rcQ(X,Y) for
all finite sets Y ⊆ Z4.

Since the standard simplex ∆d is a down-closed subset of {0, 1}d, the small-
sized downcld instances might be good candidates for further examples X such
that rcε(X,Y) < rcQ(X), for every finite set Y ⊆ Zd and for ε > 0 small enough.
Our aim for selecting these instances is thus to identify whether there are po-
tentially further candidates for sets X whose relaxation complexity cannot be
computed via finite sets Y .

Finally, the sboxes instances are used to investigate whether our techniques
are suited to compute rcε(X,Y) also in higher dimensions. This is relevant,
among others, in the field of social choice or symmetric cryptanalysis, where
the aim is to find rc(X, {0, 1}d) for sets X ⊆ {0, 1}d.

Computational Setup All experiments have been run on a Linux cluster with
Intel Xeon E5 3.5 GHz quad core processors and 32 GB memory. The code was
executed using a single thread and the time limit for all computations was 4 h
per instance.

All mean numbers are reported in shifted geometric mean
∏n
i=1(ti + s)

1
n − s

to reduce the impact of outliers. For mean running times, a shift of s = 10 is
used; for nodes of the branch-and-bound tree, we use s = 100. The value of ε in
computing rcε(·, ·) is set to 0.001. The upper bound on the number of inequali-
ties needed in the compact and cutting plane model is given by the number of
facets of conv(X). We also provide an initial primal solution corresponding to a
facet description of conv(X).

16

Table 1: Run times for different settings for basic instances using the compact
model.

setting cube cross simplex

hiding sym. prop. time #solved time #solved time #solved

0 0 0 598.7 13 1317.2 8 232.8 14
0 0 1 795.3 13 1395.4 8 237.3 14
0 a 0 347.3 14 476.7 12 165.5 14
0 s 0 217.7 15 283.3 13 118.3 15
1 0 0 303.6 13 682.0 10 69.9 15
1 a 0 95.2 15 206.1 14 49.9 16
1 a 1 84.8 15 221.5 14 67.0 16
1 s 0 75.9 18 151.0 15 61.1 16
1 s 1 76.9 18 158.4 16 64.6 16

5.1 Results for Test Set basic

Due to our choice of the sets X and Y , the basic test set comprises 18 cube,
crosspolytope, and simplex instances, respectively. Table 1 shows the results for
the compact model. For the plain compact model, we observe that SCIP can
already solve quite some instances, but, in comparison to the enhanced vari-
ants, the running times are rather high. Checking each of the enhancements
separately, handling symmetries is most important to reduce running time and
to increase the number of instances solvable within the time limit. Interestingly,
handling symmetries on the a-variables modeling the inequalities in a relax-
ation performs better than handling the symmetries of the points to separate.
Adding hiding set cuts to the problem formulation is also beneficial, whereas the
convexity propagator seems to harm the solving process in particular for cube
instances. The worse performance for enabled propagation cannot be explained
on the running time of the propagator: For cube instances, e.g., the maximum
running time per instance of the propagator was 27 s, which is much smaller
than the increase of mean running time. Thus, it seems that the found reduc-
tions guide the branch-and-bound search into the wrong direction or make it
more difficult for SCIP to find other reductions.

Combining simple symmetry handling and hiding set cuts leads consistently
to the best results, reducing mean running time for cube instances by 87 %, for
crosspolytope instances by 89 %, and simplex instances by 74 %. In particular,
the combined setting can solve all cube instances and almost all crosspolytope
and simplex instances within the time limit.

Next, we discuss the column generation model for which we only compare
two variants: we either disable or enable hiding set cuts in the pricing problem.
Since the convexity propagator does not seem to be helpful for the compact mo-
del, we do not enable it when solving the pricing problem. Moreover, symmetry
handling is not important, because there is only one inequality to be identified
by the pricing model.

Comparing the column generation model with disabled hiding set cuts, we
can see that it performs for cube and crosspolytope instances much better than
the plain compact model: the running time for cubes reduces by 82 % and for
cross polytopes by 74 %. For cubes, all solvable instances are solved within
the root node which is, on the one hand, because of the strong dual bound as
described in Proposition 3.2. On the other hand, the generated sets I ∈ I allow
heuristics to find high quality solutions yielding a matching primal bound. For

17

Table 2: Run times for different settings for basic instances using the column
generation model.

setting cube cross simplex

hiding sym. prop. time #solved time #solved time #solved

0 0 0 109.0 15 350.4 13 455.2 13
1 0 0 73.5 14 282.1 12 312.7 14

Table 3: Run times for different settings for basic instances using the cut model.
setting cube cross simplex

hiding sym. prop. time #solved time #solved time #solved

0 0 0 9229.1 7 9411.0 3 3099.1 7
0 0 1 9122.2 7 9361.5 3 3072.6 7
0 a 0 2549.9 8 3734.6 9 1726.5 10
0 s 0 4206.1 7 5488.5 6 2129.0 8
1 0 0 1733.0 8 994.6 7 428.5 12
1 a 0 528.0 10 382.9 10 257.8 11
1 a 1 424.8 13 350.7 10 259.8 11
1 s 0 433.6 10 435.9 11 296.3 11
1 s 1 435.9 10 378.2 12 277.0 12

crosspolytopes, all instances of 3-dimensional sets X can be solved within the
root node; for 4- and 5-dimensional sets, however, SCIP needs to start branching
to find an optimal solution. Looking onto results on a per-instance basis reveals
that the pricing problems become considerably harder if d and k increases. For
example, SCIP is only able to process 2 nodes of the branch-and-bound tree
for d = k = 5. For the simplex instances, the column generation model needs
approximately twice as much time as the plain compact model, which is again
explained by the very high running time of the pricing problem.

Enabling also hiding set cuts helps to solve the pricing problems more ef-
ficiently. In comparison with the enhanced compact model, however, the en-
hanced column generation model is only competitive on the cube instances. On
the crosspolytope and simplex instances, it is much slower.

Finally, we consider the cutting plane model. In the plain version, this model
can hardly solve any instance efficiently. Comparing the different enhancements
with each other, we can see, analogously to the compact model, that adding hid-
ing set cuts and handling symmetries is beneficial. Interestingly, the convexity
propagator helps to improve the running time if both the previous enhance-
ments are enabled by 90 %–95 %, leading to the best setting for this model. But
even this winner setting cannot compete with the enhanced compact model.

From the results using the compact and cutting plane model, we draw the
following conclusion regarding the convexity propagator. In principle, this
method models the important aspect that the points being cut by an inequal-
ity form a lattice-convex set. The cutting plane method can thus benefit from
the propagator as this property is not encoded in the model. The compact mo-
del, however, makes use of additional variables modeling the inequalities of
a relaxation. Since the convexity propagator does not improve SCIP’s perfor-
mance, we conclude that these additional variables already sufficiently encode
the lattice-convexity of cut points.

In summary, the column generation model provides very good primal and
dual bounds. If these bounds match, rcε(X,Y) can be computed rather effi-

18

ciently if not too many pricing problems need to be solved. However, if the
bounds do not match, the NP-hardness of the pricing problem strikes back and
solving many further pricing problems is too expensive. In this case, the com-
pact model is a rather effective alternative that also allows to compute rcε(X,Y)
for d = 5 in many cases.

5.2 Results for Test Set downcld

In this section, we turn the focus on 5-dimensional 0/1 down-closed sets. On the
one hand, our aim is to investigate whether the findings of the previous section
carry over to a much broader test set in dimension 5. On the other hand, we
are interested in identifying further sets X ⊆ {0, 1}5 with rcε(X,Y) < rcQ(X)
for every choice of a finite set Y ⊆ Zd and ε > 0 small enough. Because
of our results on the basic test set, we did not run any experiments using the
cutting plane model as we expect that it can hardly solve any instance. Instead,
we consider a hybrid version of the compact model and the column generation
model: We only solve the column generation model’s LP relaxation to derive a
strong lower bound on rcε(X,Y) and to find good primal solutions. Both are
transferred to the compact model with the hope to drastically reduce solving
time. The running times and number of nodes reported for the hybrid model
are means of the total running time and total number of nodes for solving the
LP relaxation in the column generation model and the resulting compact model.

Table 4 shows aggregated results for the 99 instances of the downcld test
set for different `1-neighborhoods Y of X (radius 1–3). While the plain com-
pact model is able to solve two third of all instances for radius 1, comput-
ing rcε(X,Y) for larger radii becomes much harder. As the plain model can
hardly solve any instance for radius at least 2, there is definitively a need for
model enhancements. In general, the same observations as in the previous sec-
tion can be made: symmetry handling and adding hiding set cuts improve the
solution process a lot. The biggest impact is achieved by symmetry handling;
the convexity propagator is not helpful in the best setting. However, sometimes
it can improve the running time, e.g., if the “wrong” symmetry handling method
is used.

For radius 2 and 3, we find that the simple symmetry handling methods
perform much better than the advanced methods. Using hiding set cuts and
simple symmetry handling is 59 % faster than the corresponding setting with
advanced symmetry handling if the radius is 2; for radius 3, it is 45 % faster.
Moreover, simple symmetry handling can solve all 99 instances for radius 2
(resp. 69 instances for radius 3), whereas the advanced setting can only solve 75
(resp. 14) instances. Interestingly, for radius 1, the advanced setting is 26 %
faster than the simple setting. A possible explanation is based on the nature
of the advanced setting: Each inequality defining a relaxation of X w.r.t. Y
defines a pattern on the points from Y that are cut by this inequality. The
advanced method enforces that the cut patterns of the inequalities are sorted
lexicographically based on a sorting of the elements of Y . Since the results of
the lexicographic comparison is determined by the first position in which two
vectors differ, it is unlikely that points having a late position in the ordering of Y
are very relevant for the lexicographic constraint. Thus, the symmetries are in
a certain sense mostly handled for the early points in this ordering. In contrast
to this, the simple method takes the geometry of the inequalities in a relaxation

19

Table 4: Comparison of running times for different settings for downcld instances.
setting radius 1 radius 2 radius 3

hiding sym. prop. #solved #nodes time #solved #nodes time #solved #nodes time

compact model:
0 0 0 69 351 640.3 3168.5 5 149 820.2 13 173.5 0 29 710.1 14 400.0
0 0 1 69 342 597.2 3155.1 3 145 207.9 13 237.5 0 29 539.2 14 400.0
0 a 0 97 59 896.3 569.7 18 201 253.6 12 041.9 2 37 865.0 14 213.4
0 s 0 99 27 421.4 187.8 58 278 139.2 6299.6 3 83 758.4 14 033.7
1 0 0 82 24 247.7 399.3 34 103 717.2 7077.9 2 13 704.6 14 056.9
1 a 0 99 424.0 22.6 75 16 209.4 1870.2 14 14 882.7 11 990.5
1 a 1 99 424.4 22.6 78 14 936.4 1680.6 14 15 975.0 11 858.9
1 s 0 99 793.3 30.5 99 8558.6 774.2 69 21 696.0 6563.0
1 s 1 99 792.6 30.5 99 8789.0 783.0 68 24 044.2 7172.8

column generation model:
0 78 87.7 1223.6 4 19.8 13 424.8 1 8.4 14 089.9
1 85 109.3 644.5 6 48.9 11 500.4 1 14.5 13 949.5

hybrid model:
0 s 0 99 8081.0 89.0 85 375 957.5 2865.8 15 341 632.4 11 644.5
0 s 1 99 8377.1 99.2 84 375 309.0 3406.0 11 377 211.9 11 959.0
1 s 0 99 347.1 22.8 99 4219.6 339.3 80 18 162.5 3203.7
1 s 1 99 346.2 22.8 99 4437.3 347.0 79 18 278.0 3123.0

20

into account by sorting inequalities based on their first coefficients. Together
with other components of the solver, this seems to have more implications on
the cut points from Y if the radius becomes larger.

In comparison to the enhanced compact model, the column generation mo-
del is again inferior. For radius at least 2, it can hardly solve any instance and,
as already discussed in the previous section, the reason for this is the long run-
ning time of the pricing models that need to be solved often at each node of
the tree. This is reflected by the number of processed nodes during the branch-
and-price procedure that drops drastically (as the number of solved instances)
if the radius is getting larger. However, we can again observe that the root
node can be solved relatively efficiently and that the obtained primal and dual
bounds are rather strong. This is reflected in the hybrid model, which solves
most instances and reduces the running time (in comparison to the best com-
pact model) by 52–56 % for radius 2 and 3. For radius 1, the running times are
comparable.

Regarding the usefulness of hiding set cuts in the hybrid model, we observe
that they are essential for solving the downcld instances efficiently. They allow
to solve all instances for radius 1 and 2 and improve on the hybrid setting with-
out cuts by 74 % and 88 %, respectively. This effect is even more dominant for
radius 3, where it significantly increases the number of solvable instances, re-
ducing the running time by 72 %. It is also noteworthy that the hybrid setting
with hiding set cuts is the only setting allowing to solve 80 instances, which im-
proves the running time of the compact model by 51 %. In summary, based on
our experiments, the hybrid model is the best choice for computing rcε(X,Y) as
it combines the strong bounds from the column generation model with the abil-
ity of the compact model to quickly solve LP relaxations within the branch-and-
bound tree. In particular, it benefits from hiding set cuts since their implications
are very difficult to be found by SCIP.

Finally, concerning our goal to identify candidates for sets X ⊆ {0, 1}5 such
that rcε(X,Y) < rcQ(X) for all finite Y ⊆ Z5 and ε > 0 small enough, our
experiments for radius 3 revealed the following: If Y (X) are the integer points
in the `1-neighborhood of X with radius 3, then there are three sets X such
that rcε(X,Y (X)) = 4. These sets are ∆5, ∆5 ∪ {e1 + e2} and ∆4 × {0, 1}.
Moreover, there are 16 sets X with rcε(X,Y (X)) = 5. It is left open for future
research to identify which other sets than ∆5 satisfy rcε(X,Y (X)) < rcQ(X).
Note that rcQ(X) ≥ 6, whenever X ⊆ {0, 1}5 is full-dimensional, because ratio-
nal relaxations must be bounded.

5.3 Results for Test Set sboxes

The results for the sboxes test set are summarized in Table 5. Note that we
do not report on results for the 10-dimensional instances in the compact mo-
del with enabled hiding set cuts, because all these experiments hit a memory
limit of 20 GB. The reason is that these models grow very large even with-
out any enhancements as we use the number of facets of conv(X) to upper
bound rcε(X,Y); the number of facets for these instances ranges between 888
and 2395. For the largest instances, even the basic compact model hits the
memory limit. Adding hiding set cuts for the remaining instances causes that
all instances hit the memory limit. But also for the smaller instances, SCIP is

21

Table 5: Comparison of running times for different settings for sboxes instances.
setting dimension 8 dimension 10

hiding sym. prop. #solved #nodes time #solved #nodes time

compact model:
0 0 0 0 31 942.1 14 400.0 0 4.1 14 400.0
0 0 1 0 31 947.4 14 400.0 0 4.1 14 400.0
0 a 0 0 5497.3 14 400.0 3 6.6 12 046.1
0 s 0 0 3598.9 14 400.0 2 6.0 12 492.2
1 0 0 0 2970.5 14 400.0 — — —
1 a 0 0 177.5 14 400.0 — — —
1 s 0 0 163.5 14 400.0 — — —

column generation model:
0 12 41.7 185.7 2 7.5 6254.4
1 12 61.8 358.2 1 3.8 14 238.1

hybrid model:
0 s 0 7 6192.5 400.8 1 7471.5 7153.2
0 s 1 7 6180.4 398.9 1 7513.8 7153.0
1 s 0 9 14 551.0 1251.3 1 56.0 14 054.3
1 s 1 9 14 551.0 1243.6 1 56.0 14 053.4

hardly able to solve any of these instances even if model enhancements are
enabled due to huge number of variables and constraints.

In contrast to this, we see that the column generation model performs ex-
tremely well for the problems in dimension 8. It can solve all twelve 8-dimen-
sional instances within the time limit, on average in 185.7 s if hiding set cuts are
disabled and in roughly twice this amount of time with enabled hiding set cuts.
An explanation for the worse behavior with enabled cuts is that the number
of hiding set cuts increases drastically in comparison with lower dimensional
problems. Thus, creating and separating these cuts is a non-trivial task. For
dimension 10, the column generation model is also able to solve 2 out of 6
instances within the time limit.

Finally, the hybrid model performs worse than the column generation model.
Although the derived bounds from solving the column generation model’s LP
relaxation yield again very good bounds on the relaxation complexity, the value
of rc(X, {0, 1}d) can still be large if d ∈ {8, 10}. Thus, also the compact model
embedded in the hybrid model is struggling with the number of variables and
constraints. For this reason, computing rc(X, {0, 1}d) via the column generation
model is most competitive.

5.4 Conclusions

Being able to compute the exact value of the quantity rcε(X,Y) is highly rele-
vant in many areas, such as, social choice, symmetric cryptanalysis, or machine
learning. For this reason, we have proposed three different models that allow to
compute rcε(X,Y) using mixed-integer programming techniques. As our exper-
iments reveal, each of these models comes with advantages and disadvantages.
The compact model, for example, works well in small dimensions as the number

22

of variables and inequalities is small and it encapsulates all essential informa-
tion about rcε(X,Y). In higher dimensions, however, the dual bounds of the
compact model become weaker. In this case, the column generation model pro-
vides very good bounds that can be transferred to the compact model to still
compute rcε(X,Y) rather efficiently if d = 5. But if the dimension d grows even
larger, only the column generation model seems to be competitive as it does not
scale as badly as the compact model when rcε(X,Y) increases. The main reason
is that the compact model is relying on a good upper bound on rcε(X,Y) to be
indeed compact.

These findings thus open the following directions for future research. Since
the compact model requires a good upper bound on rcε(X,Y), it is natural to
investigate heuristic approaches for finding ε-relaxations of X or to develop ap-
proximation algorithms. Moreover, since the column generation model becomes
more relevant if d is large, it is essential that the pricing problem can be solved
efficiently. Since the pricing problem is NP-hard, also here a possible future di-
rection could be to develop heuristics or approximation algorithms for solving it.
For both the compact and column generation model, hiding set cuts turned out
to be useful. However, we are not aware of an efficient routine for generating
these cutting planes. Thus, it is natural to devise an efficient scheme for gener-
ating hiding set cuts on the fly. Finally, as additional inequalities such as hiding
set cuts and symmetry handling inequalities drastically improved the perfor-
mance of the compact model, the development of further inequalities modeling
structural properties of relaxation complexity might allow to solve the compact
model even more efficiently.

Acknowledgements We thank Aleksei Udovenko for providing the sboxes
instances used by him in [27].

References

[1] Astorino, A., Gaudioso, M.: Polyhedral separability through successive LP.
J. Optim. Theory Appl. 112, 265–293 (2002)

[2] Averkov, G., Hojny, C., Schymura, M.: Computational aspects of relax-
ation complexity: possibilities and limitations. Math. Program. (2021).
DOI 10.1007/s10107-021-01754-8. URL https://doi.org/10.1007/

s10107-021-01754-8

[3] Averkov, G., Schymura, M.: Complexity of linear relaxations in integer
programming. Math. Program. (2021). DOI https://doi.org/10.1007/
s10107-021-01623-4

[4] Bader, J., Hildebrand, R., Weismantel, R., Zenklusen, R.: Mixed
integer reformulations of integer programs and the affine tu-
dimension of a matrix. Math. Program. 169(2), 565–584 (2018).
DOI 10.1007/s10107-017-1147-2. URL https://doi.org/10.1007/

s10107-017-1147-2

[5] Bendotti, P., Fouilhoux, P., Rottner, C.: Orbitopal fixing for the full (sub-
)orbitope and application to the unit commitment problem. Math. Pro-

23

https://doi.org/10.1007/s10107-021-01754-8
https://doi.org/10.1007/s10107-021-01754-8
https://doi.org/10.1007/s10107-017-1147-2
https://doi.org/10.1007/s10107-017-1147-2

gram. 186, 337–372 (2021). DOI 10.1007/s10107-019-01457-1. URL
https://doi.org/10.1007/s10107-019-01457-1

[6] Cevallos, A., Weltge, S., Zenklusen, R.: Lifting linear extension complexity
bounds to the mixed-integer setting. In: A. Czumaj (ed.) Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pp. 788–807.
SIAM (2018). DOI 10.1137/1.9781611975031.51. URL https://doi.

org/10.1137/1.9781611975031.51

[7] Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in
combinatorial optimization. Ann. Oper. Res. 204(1), 97–143 (2013).
DOI 10.1007/s10479-012-1269-0. URL http://dx.doi.org/10.1007/

s10479-012-1269-0

[8] Dundar, M.M., Wolf, M., Lakare, S., Salganicoff, M., Raykar, V.C.: Poly-
hedral classifier for target detection: a case study: colorectal cancer. In:
ICML ’08: Proceedings of the 25th international conference on Machine
learning, pp. 288–295 (2008)

[9] Fukuda, K.: cdd/cdd+ reference manual. Institute for Operations Re-
search, ETH-Zentrum pp. 91–111 (1997)

[10] Hojny, C.: Polynomial size IP formulations of knapsack may require expo-
nentially large coefficients. Oper. Res. Lett. 48(5), 612–618 (2020)

[11] Hojny, C.: Strong IP formulations need large coefficients. Discrete Optim.
39, 100624 (2021)

[12] Hojny, C., Pfetsch, M.E.: Polytopes associated with symmetry handling.
Math. Program. 175, 197–240 (2019). DOI 10.1007/s10107-018-1239-7.
URL https://doi.org/10.1007/s10107-018-1239-7

[13] Hooker, J.N.: Logic-Based Methods for Optimization: Combining Opti-
mization and Constraint Satisfaction. Wiley, New York (2000)

[14] Hrubeš, P., Talebanfard, N.: On the extension complexity of polytopes
separating subsets of the Boolean cube. https://arxiv.org/abs/2105.

11996 (2021)

[15] Jeroslow, R.G.: On defining sets of vertices of the hypercube by linear
inequalities. Discrete Math. 11, 119–124 (1975)

[16] Johnson, D., Preparata, F.: The densest hemisphere problem. Theoret.
Comput. Sci. 6, 93–107 (1978)

[17] Junttila, T., Kaski, P.: bliss: A tool for computing automorphism groups
and canonical labelings of graphs. http://www.tcs.hut.fi/Software/

bliss/ (2012)

[18] Kaibel, V.: Extended formulations in combinatorial optimization. Optima
85, 2–7 (2011). Newsletter of the Mathematical Optimization Society

24

https://doi.org/10.1007/s10107-019-01457-1
https://doi.org/10.1137/1.9781611975031.51
https://doi.org/10.1137/1.9781611975031.51
http://dx.doi.org/10.1007/s10479-012-1269-0
http://dx.doi.org/10.1007/s10479-012-1269-0
https://doi.org/10.1007/s10107-018-1239-7
https://arxiv.org/abs/2105.11996
https://arxiv.org/abs/2105.11996
http://www.tcs.hut.fi/Software/bliss/
http://www.tcs.hut.fi/Software/bliss/

[19] Kaibel, V., Weltge, S.: Lower bounds on the sizes of integer programs
without additional variables. Math. Program. 154(1-2, Ser. B), 407–425
(2015)

[20] Kurz, S., Napel, S.: Dimension of the lisbon voting rules in the EU council:
a challenge and new world record. Optim. Lett. 10, 1245–1256 (2016)

[21] Manwani, N., Sastry, P.S.: Learning polyhedral classifiers using logistic
function. In: M. Sugiyama, Q. Yang (eds.) Proceedings of 2nd Asian
Conference on Machine Learning, Proceedings of Machine Learning Re-
search, vol. 13, pp. 17–30. PMLR, Tokyo, Japan (2010). URL https:

//proceedings.mlr.press/v13/manwani10a.html

[22] Orsenigo, C., Vercellis, C.: Accurately learning from few examples with a
polyhedral classifier. Comput. Optim. Appl. 38, 235–247 (2007)

[23] Ryan, D., Foster, B.: An integer programming approach to scheduling. In:
A. Wren (ed.) Computer scheduling of public transport: Urban passenger
vehicle and crew scheduling, pp. 269–280. North-Holland (1981)

[24] Sankaran, J.K.: A note on resolving infeasibility in linear programs by
constraint relaxation. Oper. Res. Lett. 13(1), 19–20 (1993). DOI 10.1016/
0167-6377(93)90079-V

[25] Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security
evaluation and (related-key) differential characteristic search: Application
to simon, present, lblock, des(l) and other bit-oriented block ciphers. In:
P. Sarkar, T. Iwata (eds.) Advances in Cryptology – ASIACRYPT 2014, pp.
158–178. Springer Berlin Heidelberg (2014)

[26] Taylor, A.D., Pacelli, A.M.: Mathematics and Politics: Strategy, Voting,
Power and Proof, 2 edn. Springer New York (2008)

[27] Udovenko, A.: Milp modeling of boolean functions by minimum num-
ber of inequalities. Cryptology ePrint Archive, Report 2021/1099 (2021).
https://ia.cr/2021/1099

[28] Weltge, S.: Sizes of Linear Descriptions in Combinatorial Optimization.
Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg (2015). DOI http:
//dx.doi.org/10.25673/4350

25

https://proceedings.mlr.press/v13/manwani10a.html
https://proceedings.mlr.press/v13/manwani10a.html
https://ia.cr/2021/1099

	Introduction
	Mixed-Integer Programming Models to Compute `3́9`42`"̇613A``45`47`"603Arc(X,Y)
	Compact Model
	Cutting Plane Model
	Column Generation Model

	Comparison of Basic Models
	Enhancements of Basic Models and Algorithmic Aspects
	Incorporation of Structural Properties
	Algorithmic Aspects of the Cutting Plane Model
	Algorithmic Aspects of the Column Generation Model

	Numerical Experiments
	Results for Test Set basic
	Results for Test Set downcld
	Results for Test Set sboxes
	Conclusions

