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Abstract

In this paper, we study a network interdiction problem on a multiple allocation, uncapacitated

hub network. The problem is formulated as a bilevel Stackelberg game between an attacker

and a defender, where the attacker identifies r out of p hubs to interdict so as to maximize

the worst-case post-interdiction performance of the system with the surviving hubs. We study

three variants of the problem, namely, the r-hub median interdiction problem, the r-hub cen-

ter interdiction problem, and the r-hub maximal covering interdiction problem. The bilevel

problems are reduced to single-level mixed integer programs (MIP) using dual and penalty-

based formulations. We exploit the properties of the models to present tighter single-level MIP

formulations. We compare the linear programming relaxations of dual and penalty-based for-

mulations to establish the dominance relations between them. Our theoretical analysis shows

that the single-level dual formulations of all the three problems are stronger than their cor-

responding penalty-based formulations. We validate these theoretical results using extensive

computational experiments on moderate to large-scale instances. Our computational results on

networks with up to 200 nodes and 15 hubs confirm the strength of the proposed formulations.
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1. Introduction

Hub networks have wide applications ranging from airline transportation, less-than-truckload

freight transportation, rail freight transportation, liner shipping, urban traffic, postal delivery,

express package delivery, telecommunications to supply chains. These networks use transship-

ment, consolidation, or sorting points for commodities, called hub facilities, to connect a large

number of origin/destination (O/D) pairs by using a small number of links. Commodities having

the same origin but different destinations are consolidated at the hubs and are then combined

with other commodities having different origins but the same destination. In a typical hub

operation, a flow between a origin node to the destination node passes through at most two

intermediate hubs. When the flow reaches the first hub from the origin, it is collected along with

the flows from other nodes connected to the hub. The collected flows are then sorted based on

their respective destinations. If the destination node is also connected to the same hub, the flow

is routed directly, else it is transshipped to the hub to which the destination node is connected.

In the second intermediate hub, the incoming flows are again sorted and routed to their re-

spective destination spoke nodes. The use of hub facilities helps centralize commodity handling

and sorting operations, reduce set-up costs, and achieve economies of scale on routing costs

through the consolidation of flows. Hub networks can be seen as hierarchical networks, which

in their most basic form, contain two levels: an access-level network connecting O/D nodes to

hubs, and a hub-level network connecting hub nodes among them. A Hub network typically

results in fewer links, which makes it very attractive for use in telecommunication sector where

there is a fixed cost for constructing links. Sparseness of the hub network also aids in effective

monitoring and maintenance of the network. For a detailed discussion on hub networks, the

readers are referred to the review papers by Alumur and Kara (2008), Campbell and O’Kelly

(2012), Farahani et al. (2013), Contreras (2015), Alumur et al. (2021), and Contreras (2021).

In literature, different variants of hub location problem have been studied. They are: p-hub

median (minimizing the demand weighted transportation cost by locating p hubs) (O’kelly, 1987;

Campbell, 1994; Skorin-Kapov et al., 1996; Ernst and Krishnamoorthy, 1996, 1998; Ebery et al.,

2000; Boland et al., 2004), fixed charge (minimizing the sum of demand weighted transportation

cost and the fixed cost of locating hubs), p-hub center (minimize the maximum distance between

any source-destination pair by locating p hubs) (Kara and Tansel, 2000; Tan and Kara, 2007;

Alumur and Kara, 2009; Ernst et al., 2009) and hub covering problems (minimizing the number

of located hubs under the constraint that demand has to be met within a given threshold path

length β) (Kara and Tansel, 2003; Ernst et al., 2005). These problems are further classified as

single allocation and multiple allocation hub location problems. In a single allocation case, a

nonhub node is connected to only one hub, while in multiple allocation, the nonhub node can

be connected to either one or more than one hubs. Further, these problems are classified based

on the consideration of hub capacities (capacitated or uncapacitated) in the model formulation.

For a more detailed discussion on the hub location research, the readers are referred to Alumur

and Kara (2008), Campbell and O’Kelly (2012), Farahani et al. (2013), Alumur et al. (2021),

and Contreras (2021).

Recently, researchers have studied an anti-thesis of the hub location problem, known as
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the hub interdiction problem, which takes an adversarial approach to identify critical hubs

in a hub network. This problem is practically very useful since hub networks are employed

in industrial sectors like, power distribution, telecommunication, passenger transportation and

goods logistics, some of which fall under the category of critical infrastructure. In a hub network,

the average degree of a hub node is much larger than an individual spoke node, resulting in the

hub nodes forming the backbone of the entire network. Thus, a failure on any of the hubs can

significantly impact the network operations. The identification of critical hubs also can help

the decision maker to judiciously deploy the scarce protection resources on such hubs to ensure

reliable hub-and-spoke network operations.

In this paper, we study three variants of the multiple allocation uncapacitated hub interdic-

tion problem (MUHIP), namely r-hub median interdiction problem, r-hub center interdiction

problem, and r-hub maximal covering interdiction problem. The problems are formulated as

bilevel Stackelberg games between an attacker and a defender, where the attacker identifies r

(out of p) hubs to interdict so as to maximize the worst-case post-interdiction performance of

the system by routing the flows through the remaining (p´ r) hubs in the network. Then, we

present single-level mixed-integer programming reformulations of these variants of HIP using

the dual and penalty-based reformulations. We exploit the properties of the models to develop

tighter dual and penalty-based reformulations of the problems. By comparing the linear pro-

gramming relaxations of dual and penalty formulations, we establish the dominance between

them. We show that our dual reformulations yield tighter LP relaxations the penalty-based

reformulations. These theoretical results are validated using extensive computational experi-

ments on moderate to large-scale instances. Our computational results on the Australian Postal

Service (AP) data set with up to 200 nodes and 15 hubs confirm the strength of the proposed

reformulations.

The remainder of the paper is organized as follows. In the following section, we present a

brief review of the relevant literature. Section 3 presents the bilevel formulations of the three

variants of the HIP. In Section 4, we present dual reformulations of the three variants of the

bilevel problem. In Section 5, we present penalty-based reformulations of the three variants.

In section 6, we present theoretical comparisons between both the dual and penalty based

formulations to identify the best formulation for each of the three variants of HIPs. We validate

the theoretical results through extensive computational experiments described in Section 7.

Using the stronger formulation, we solve large instances of the HIPs. Conclusions and future

research directions are outlined in Section 8.

2. Literature Review

Network interdiction problems seek to identify critical nodes or arcs in the network. In a

network interdiction problem, often modeled as a stackelberg game between a leader (also called

as interdictor) and a follower (also called evader), a leader partially or fully destroys some arcs

or nodes of the network in order to block the follower’s flows, delay the delivery length of a

supply, detect a stealth traverse, or minimize the follower’s profit function. Network interdiction

problems studied in the literature include shortest path network interdiction (maximize the
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shortest path of the defender) (Corley and Sha, 1982; Israeli and Wood, 2002; Cappanera

and Scaparra, 2011), maximal flow network interdiction (minimize the maximal flow passing

through the network) (Wood, 1993; Cormican et al., 1998; Akgün et al., 2011), clique interdiction

(minimize the maximal clique in the graph) (Furini et al., 2019, 2021). Some of the applications

of these problems include: national defense and military logistics (McMasters and Mustin,

1970), infectious disease control (Assimakopoulos, 1987; Furini et al., 2019), counter-terrorism

(Farley, 2003; Furini et al., 2019), the interception of contraband and illegal items such as drugs

(Washburn and Wood, 1995) and interception of nuclear material smuggling (Pan and Morton,

2008; Gutfraind et al., 2009). Interested readers in the network interdiction literature can refer

to the recent review by Smith and Song (2020).

Facility interdiction problems have been well studied in the literature. Church et al. (2004)

presented r-interdiction median problem (r-IMP) and r- interdiction covering problem (r-ICP)

to study the interdiction of facilities in a supply system. In r-IMP, the attacker in interdicts r

(out of p) facilities to maximise the post-interdiction disruption cost, whereas in r-ICP, the at-

tacker interdicts r (out of p) facilities to minimize the coverage of the defender after interdiction.

Several variants of r-IMP are studied in the literature (Church and Scaparra, 2007a; Losada

et al., 2012; Aksen et al., 2014). Church and Scaparra (2007b) studied an extension of r-IMP

known as the r-interdiction median problem with fortification (r-IMPF). In this problem, before

the worst case attack of r facilities by the attacker, the defender has an option to protect q of

the p facilities (q ` r ă p) so as to minimize the impact of the worst case attack. This problem

is modeled as a trilevel stackleberg game. Several variations of r-IMPF have been studied in

the literature by Scaparra and Church (2008a,b); Aksen et al. (2010); Aksen and Aras (2012);

Aksen et al. (2013); Liberatore et al. (2012).

The literature on the hub interdiction is scarce. To the best of our knowledge, Lei (2013)

is one of the earliest papers to study the identification of critical hubs in a hub network. The

author studied the hub interdiction median problem (HIM) and presented a bilevel model where

the attacker makes the first move by choosing to interdict r out of the p hubs so as the defender’s

minimum routing cost through the remaining hubs post-interdiction is maximum. The bilevel

problem was reduced to a single level problem using a set of closest assignment constraint

(CAC) which makes it easier to solve. The author introduced a hub protection problem (HPP)

in which the defender has an option to protect q hubs to mitigate the worst case attack by

an attacker. The paper presents no results for the HPP owing to its computational difficulty.

Recent papers on hub interdiction problems include Parvaresh et al. (2013); Ghaffarinasab and

Motallebzadeh (2017); Ghaffarinasab and Atayi (2017); Ramamoorthy et al. (2018); Ullmert

et al. (2020), among others.

Parvaresh et al. (2013) formulated the multiple allocation p-hub median problem under

intentional disruptions as a bilevel model in which the follower’s objective is to identify and

interdict those hubs that would cause the maximum deterioration in the system’s efficiency.

For solving the problem, they propose two heuristic algorithms based on simulated annealing.

Ghaffarinasab and Motallebzadeh (2017) studied HIP and presented an enumeration based

algorithm for solving it. Ghaffarinasab and Atayi (2017) studied the hub median, hub covering
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and hub center interdiction problems. The authors presented alternate set of CACs for the

problem and solved it using a simulated annealing based metaheuristic approach. They solved

smaller to medium size problem instances using 25-node CAB dataset and 81-node Turkish

data set. Recently, Ramamoorthy et al. (2018) studied r-HMIP and presented several CACs by

exploiting the properties of the model. These CACs were used for reducing the bilevel model to

single level MIP model. The authors studied the dominance relationship between various CACs

to identify the best among them. In addition to CAC based reduction, they also studied a dual

based approach to reduce the problem to single level. The authors showed that some of the

proposed CACs are more efficient in solving HIP than the dual based reduction method. They

also solved large-scale instances of r-HMIPs using Benders decomposition approach. Ullmert

et al. (2020) studied p-hub r-median location problem under the risk of interdiction where the

decision maker has to locate p hubs knowing that r of the located hubs will be interdicted. The

objective is to minimize the post-interdiction routing cost. The authors also present an exact

algorithm to solve the problem.

In this paper, we study hub interdiction problems on uncapacitated p-hub median network,

p-hub center network and p-hub covering network. We present bilevel formulations, where the

attacker identifies r out of p hubs to interdict so as to maximize the worst-case post-interdiction

performance of the system with the remaining hubs. We reduce the bilevel formulations to

single levels through dual and penalty based reformulations. We identify the best formulation

for each of the three variants and validate the theoretical results through computational results.

We solve large scale instances of the problem for each of the variants and present their results.

3. Mathematical Formulations

Consider a hub network with a set of nodes |N | and a set H Ď N of p hubs. Let Wij

denote the amount of flow that the follower (defender) routes between origin node i P N and

destination node j P N through one or at most two of the hubs from the set H. We use k and m

as indices to denote the hubs that are connected to the origin node, i P N and the destination

node, j P N respectively. Let dijkm represent the cost per unit flow of traversing from the origin

i to destination j, through hubs k and m, in that order. Then, dijkm “ αcik ` δckm ` γcmj ,

where α, δ, and γ are the discount factors on collection, transshipment, and distribution links,

respectively and cik, ckm, and cmj represent the cost of traversing from node i to k, k to m,

and m to j, respectively. Typically, δ ă α and δ ă γ due to economies of scale arising from

consolidation of flows on inter-hub links. Let r denote the number of hubs from the existing set

H of p hubs to be interdicted.

We model the r-hub interdiction problem as a Stackelberg game in which the leader (at-

tacker) makes the first move by interdicting a subset of r hubs from the existing set H of p

hubs with the objective to maximize the follower’s (defender’s) optimal routing/transportation

cost through the p ´ r surviving hubs in the network post-interdiction. We assume r ă p

since the attacker usually has limited resources to interdict the hubs. We also assume that

an interdicted hub is completely disabled, i.e., partial flows through an interdicted hub is not

permitted. We formulate the problem as a bilevel program. We use Xijkm as a decision variable

5



to denote the fraction of flows from the origin i to the destination j through hubs k and m post-

interdiction. Let zk be a binary decision variable that equals 1 if hub k survives interdiction (is

not interdicted), 0 otherwise.

3.1. r-hub median interdiction problem

In the r-hub median interdiction problem (r-HMIP), the attacker makes the first move by

interdicting a subset of r hubs from the existing set H of p hubs with the objective to maximize

the defender’s optimal routing/transportation cost through the p ´ r surviving hubs in the

network post-interdiction. The bilevel formulation of r-HMIP is as follows:

pr-HMIP2Lq : max
z

T1 (1)

s.t.
ÿ

kPH

zk “ p´ r (2)

zk P t0, 1u @k P H (3)

T1 “ min
X

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

WijdijkmXijkm (4)

s.t.
ÿ

kPH

ÿ

mPH

Xijkm “ 1 @i, j P N (5)

ÿ

mPH

Xijkm `
ÿ

mPHztku

Xijmk ď zk @i, j P N ; k P H (6)

Xijkm ě 0 @i, j P N ; k,m P H (7)

The attacker’s objective function (1) maximizes the defender’s optimal total transportation

cost post-interdiction, which the follower wants to minimize in its objective function (4). The

constraint (2) ensures that p ´ r hubs remain open post-interdiction. Problem T1 from (4)

to (7) form the follower’s problem at the lower level. The constraint set (5) ensures that the

demand between every O-D pair (i, j) is satisfied using paths containing at most two hubs, while

constraint set (6) ensures that this demand is routed only via surviving hubs post-interdiction.

3.2. r-hub center interdiction problem

In the r-hub center interdiction problem (r-HCIP), the attacker makes the first move by

interdicting a subset of r hubs from the existing set H of p hubs with the objective of maximizing

the defender’s objective. The defender’s objective at the second level is to minimize the maximal

transportation cost between all O-D pairs. The bilevel formulation of r-HCIP is as follows:

pr-HCIP2Lq : max
z

T2 (8)

s.t. (2), (3)

T2 “min
ÿ

iPN

ÿ

jPN

Zij (9)

s.t. (5)´ (7)

Zij ě
ÿ

kPH

ÿ

mPH

DijkmXijkm @i, j P N (10)
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Zij ě 0 @i, j P N (11)

The attacker’s objective function (8) maximizes the defender’s objective. The defender’s

objective (9) along with constraints (10) and (11) minimizes the maximal distance between any

source destination pair.

3.3. r-hub maximal covering interdiction problem

In the r-hub maximal covering interdiction problem (r-HMXCIP), the attacker makes the

first move by interdicting a subset of r hubs from the existing set H of p hubs with the objective

of minimizing the defender’s total covered flows post-interdiction, which the defender wants to

maximize. To model, we define Vijkm as a binary parameter that indicates if a source-destination

pair pi, jq is covered by hub pair pk,mq or not. For this purpose, we define a coverage radius

β and if Dijkm ď β, the source-destination pair pi, jq is considered covered by hubs k and m

(Vijkm “ 1), and if they are not covered then Vijkm is set to 0. The bilevel formulation for

r-HMXCIP is as follows:

pr-HMXCIP2Lq : min
z

T3 (12)

s.t. (2), (3)

T3 “ max
ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

WijVijkmXijkm (13)

s.t. (5), (7)

The attacker’s objective function (12) minimizes the objective function of the defender. The

defender’s objective (13) maximizes the demand covered through the remaining hubs after

interdiction of r hubs by the attacker.

In the following section, we present single level dual based reformulations of the three bilevel

hub interdiction problems. Here, we take dual of the lower level linear program to construct

a single level reformulation. The resultant single level reformulation is bilinear, which is then

linearized. We also study several ways to strengthen the dual based reformulation.

4. Dual Based Reformulations

Dual reformulations of max-min or min-max bilevel programs are possible in cases where

the objective function of both the levels are the same and the lower level problem is a linear

program. Israeli and Wood (2002), Lim and Smith (2007), Ramamoorthy et al. (2018), among

others, have employed this technique to reduce the bilevel network interdiction problems to

single level. In the bilevel formulations of the hub interdiction problems described above, the

lower level problem in all the variants is an LP and the objective functions at both the levels are

the same. Therefore, the bilevel formulations can be directly reduced to single level formulations

by taking the dual of the lower level problem. We present the single-level reformulations in the

following subsections.
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4.1. Dual based reformulation of r-hub median interdiction problem

In the bilevel formulation r-HMIP2L, the lower level problem, represented by (4)-(7), is a

linear program. By associating dual variables φ1ij and δ1ijk with the constraint sets (5) and (6)

respectively, we get the following single-level bilinear formulation:

(r-HMIPND) : max
ÿ

i

ÿ

j

φ1ij ´
ÿ

i

ÿ

j

ÿ

k

δ1ijkqk (14)

s.t. (2)´ (3)

φ1ij ´ δ
1
ijk ďWijdijkm @i, j P N ; k,m P H 1, k “ m (15)

φ1ij ´ δ
1
ijk ´ δ

1
ijm ďWijdijkm @i, j P N ; k,m P H 1, k ‰ m (16)

´8 ď φ1ij ď 8, @i, j P N (17)

δ1ijk ě 0 @i, j P N ; k P H 1 (18)

The bilinear terms in (14) can be linearized using auxiliary variables V 1
ijk as follows:

(r-HMIPDD) : max
ÿ

i

ÿ

j

φ1ij ´
ÿ

i

ÿ

j

ÿ

k

V 1
ijk (19)

s.t. (2)´ (3)

(15)´ (18)

V 1
ijk ďM1

ijkqk @i, j P N,@k P H 1 (20)

V 1
ijk ě δ1ijk ´M

1
ijkp1´ qkq @i, j P N,@k P H 1 (21)

V 1
ijk ě 0 @i, j P N,@k P H 1 (22)

where M1
ijk is a sufficiently large number.

Note that Ramamoorthy et al. (2018) presented a linear formulation of r-HMIPND which

is an aggregated version of the above formulation r-HMIPDD. However, the disaggregated

version presented above yields a better LP relaxation than the aggregated version presented in

Ramamoorthy et al. (2018). Hence, we use the above disaggregated formulation.

To ensure that the formulation r-HMIPDD is valid, M1
ijk has to be sufficiently large. How-

ever, a very large value of M1
ijk can lead to a weaker LP relaxation. In the following propositions,

we present different values for M1
ijk and study their strengths in improving the LP relaxation

of r-HMIPDD. First, we present M̃1
ijk which is a disaggregated version of the big M studied

in Ramamoorthy et al. (2018).

Proposition 1. For a given O-D pair pi, jq, let dijk1m1 “ maxk,mtdijkmu and dijkm2 “

minmtdijkmu. Then, M̃1
ijk “ Wij pdijk1m1 ´ dijkm2q is a valid value of M1

ijk for the formu-

lation r-HMIPDF .

Proof. Equations (20)-(22) ùñ M1
ijk ě δijk and δijk ď Wijdijk1m1 ´Wijdijkm2 (since δijk is

the shadow price of the constraint (6), which is obtained by observing the maximum possible
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change in the objective function value (4) when changing the right hand side of the constraint

(6) by a unit). Hence, M̃1
ijk “ δijk “ pdijk1m1 ´Wijdijkm2q is a valid value of M̃1

ijk for the

formulation r-HMIPDF .

Next, we explore an alternate value of M1
ijk. First, we observe that for a given O-D pair (i, j)

and p hubs, there are p2 possible paths. We define an ordered setAij = ta1ij , a
2
ij , a

3
ij , a

4
ij , . . . , a

f
ij , . . . , a

p2

ij | a
1
ij ď

a2ij ď a3ij ď . . . ď ap
2

ij u, where afij “ dijkfmf
pkf ,mf P H

1q denote the fth least routing cost for

the O-D pair pi, jq.

Proposition 2. For a given O-D pair pi, jq, let dijkm2 “ minmtdijkmu. Then, ĎMijk “

Wij

´

a
p2´pp´rq2`1
ij ´ dijkm2

¯

is a valid value of M1
ijk for the formulation r-HMIPDD.

Proof. For this proof, we provide the following economic interpretation of the dual variables φ1ij

and δ1ijk:

φ1ij : Minimum cost of routing the flows Wij (since it is the dual variable associated with

constraint (5))

δ1ijk: Penalty for routing the flows between origin i to destination j through an interdicted

hub k (follows from (6))

By strong duality, φ1ij = Wij mintdijkm | qk = qm “ 1u.

Further, from (15) - (16), δ1ijk “ maxt0, φ1ij ´Wijdijkk, φ
1
ij ´Wijdijkm ´ δ1ijm @mym“0,m ‰

k P H 1, φ1ij ´Wijdijkm @mym“1,m ‰ k P H 1u, and to ensure validity of the formulation, (20) -

(22), M1
ijk ě δ1ijk.

To get a valid upper bound on the variable δ1ijk, the minuend term (φ1ij) should be as large as

possible while the subtrahend (Wijdijkk, Wijdijkm`δijm1 @mym“0,m ‰ k P H 1, Wijdijkm @mym“1,m ‰

k P H 1) should be as small as possible. The largest possible value for φ1ij in r-HMIPDD is

Wija
p2´pp´rq2`1
ij .

If r hubs are interdicted, then there are pp´ rq2 remaining possible paths between the O-D

pair pi, jq. In the worst case for the defender, the set of pp´rq2 remaining paths post-interdiction

is given by A1ij = ta
p2´pp´rq2`1
ij , . . . , ap

2

ij u (i.e., the last pp´ rq2 elements from the set Aij). Since

φ1ij = min{a
p2´pp´rq2`1
ij , . . . , ap

2

ij u.

φ1ij “Wija
p2´pp´rq2`1
ij pa

p2´pp´rq2`1
ij is the first element in the setA1ijq.

Similarly, the smallest subtrahend term is:

min
m

Wijdijkm psince δijm ą“ 0q

Therefore, ĎM1
ijk “Wij

´

a
p2´pp´rq2`1
ij ´ dijkm2

¯

is a valid value of M1
ijk and the proof follows.

In the following proposition, We show that ĎM1
ijk is good enough to produce a tighter LP

relaxation for r-HMIPDD.
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Proposition 3. For the formulation r-HMIPDD, ĎM1
ijk “ δ1ijk for some O-D pair (i, j) and hub

k.

Proof. The proof is straightforward. For any O-D pair pi, jq such thatA1ij “ ta
p2´pp´rq2`1
ij , . . . , ap

2

ij u,

ĎM1
ijk “ δ1ijk.

In the following proposition, we compare ĎM1
ijk with M̃1

ijk and show that ĎM1
ijk ď M̃1

ijk =

Wijdijk1m1 ´Wijdijkm2 .

Proposition 4. ĎM1
ijk ď M̃1

ijk

Proof. By definition, we have

ĎMijk “Wij

´

a
p2´pp´rq2`1
ij ´min

m
tdijkmu

¯

M̃1
ijk “Wijdijk1m1 ´Wijdijkm2

where,

dijk1m1 “ maxk,mPHdijkm

dijkm2 “ minmPHdijkm

In other words,

M̃1
ijk “Wij

´

ap
2

ij ´ dijkm2

¯

Comparing the minuends,

Wija
p2´pp´rq2`1
ij ďWija

p2

ij

Since the subtrahends are the same, ĎM1
ijk ď M̃1

ijk follows.

For the single level reformulation r-HMIPDD we use ĎMijk since it gives tighter LP relaxation

than the one presented in Ramamoorthy et al. (2018).

4.2. Dual based reformulation of r-hub center interdiction problem

Associating dual variables φ2ij , δ
2
ijk and α2

ij with constraint sets (5), (6) and (10) respectively,

we get the following dual formulation of r-HCIP2L:

(r-HCIPND) : max
ÿ

iPN

ÿ

jPN

φ2ij ´
ÿ

iPN

ÿ

jPN

ÿ

kPH

δ2ijkqk (23)

s.t. (2)´ (3)

φ2ij ´ δ
2
ijk ď dijkmα

2
ij @i, j P N ; k,m P H 1, k “ m (24)

φ2ij ´ δ
2
ijk ´ δ

2
ijm ď dijkmα

2
ij @i, j P N ; k,m P H 1, k ‰ m (25)

α2
ij ď 1 @i, j P N (26)

´8 ď φ2ij ď 8 @i, j P N (27)

δ2ijk ě 0 @i, j P N ; k P H 1 (28)

α2
ij ě 0 @i, j P N (29)
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The objective function (23) is bilinear and can be linearized by using a set of auxiliary variables

V 2
ijk as follows:

(r-HCIPDD) : max
ÿ

iPN

ÿ

jPN

φ2ij ´
ÿ

iPN

ÿ

jPN

ÿ

kPH

V 2
ijk (30)

s.t. (2)´ (3)

(24)´ (29)

V 2
ijk ďM2

ijkqk @i, j P N, k P H 1 (31)

V 2
ijk ě δ2ijk ´Mijkp1´ qkq @i, j P N, k P H 1 (32)

V 2
ijk ě 0 @i, j P N, k P H (33)

where M2
ijk is a sufficiently large number. In the following proposition, we present a possible

value of M2
ijk.

Proposition 5. For a given O-D pair pi, jq and 0 ď α2
ij ď 1, ĚM2

ijk “

´

ap
2

ij ´ a
pp´rq2

ij

¯

is a

valid value of M2
ijk for the formulation (r-HCIPDD).

Proof. The proof to the proposition is similar to the proof for the proposition 4.1. Maximum

possible shadow price for δijk is the difference between it’s worst case value and the best case

value. The worst case value for δ2ijk is ap
2

ij and similarly the best case value is a
pp´rq2

ij and the

proof follows. Since, to ensure validity of r-HCIPDD, M2
ijk ą δ2ijk, pa

p2

ij ´a
pp´rq2

ij q is a valid value

for M2
ijk.

Proposition 6. For the formulation r-HCIPDD, ĎM2
ijk “ δ2ijk for some O-D pair (i, j) and hub

k.

Proof. For any O-D pair pi, jq such that A1ij “ ta
p2´pp´rq2`1
ij , . . . , ap

2

ij u,
ĎM2
ijk “ δ2ijk.

4.3. Dual based reformulation of r-hub maximal covering interdiction problem

Associating dual variables φ3ij and δ3ijk with constraints (5) and (6) respectively, we get the

following bilinear formulation.

(r-HMXCIPND) : min
ÿ

i

ÿ

j

φ3ij `
ÿ

i

ÿ

j

ÿ

k

δ3ijkqk (34)

s.t. (2)´ (3)

φ3ij ` δ
3
ijk ěWijVijkm @i, j P N ; k,m P H 1, k “ m (35)

φ3ij ` δ
3
ijk ` δ

3
ijm ěWijVijkm @i, j P N ; k,m P H 1, k ‰ m (36)

´8 ď φ3ij ď 8 @i, j P N (37)

δ3ijk ě 0 @i, j P N ; k P H 1 (38)
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The objective function (34) is bilinear which is linearized as follows:

(r-HMXCIPDD) : min
ÿ

iPN

ÿ

jPN

φ3ij `
ÿ

iPN

ÿ

jPN

ÿ

kPH

V 3
ijk (39)

s.t. (2)´ (3)

(35)´ (38)

V 3
ijk ďM3

ijkqk @i, j P N, k P H 1 (40)

V 3
ijk ě δ3ijk ´M

3
ijkp1´ qkq @i, j P N, k P H 1 (41)

V 3
ijk ě 0 @i, j P N, k P H (42)

In the following proposition, we present a possible value of M3
ijk.

Proposition 7. For a given O-D pair, ĚM3
ijk “Wij is a valid value of M3

ijk for the formulation

r-HMCIPDD.

Proof. The maximum possible shadow price for δ3ijk is the difference between it’s worst case

value and the best case value. The worst case value for δ3ijk is Wij when V co
ijkm “ 1 and similarly

the best case value is 0 when V co
ijkm “ 0 and the proof follows. Since, to ensure validity of

r-HMCIPDD, M3
ijk ą δ3ijk, therefore Wij is a valid value for M3

ijk.

5. Penalty based Reformulations

Note that the dual based reformulations discussed in the previous section involves bilinear

terms in the objective functions (14), (23), and (34) due to the upper level binary variable

in the constraint set (6) of the lower level problem. Linearizing these bilinear terms required

additional variables V 1
ijk, V

2
ijk and V 3

ijk. We now present alternate reformulations of bilevel

HIPs that obviate such bilinear terms, and hence the need for additional variables for their

linearization. For this, we relax the complicating constraint set (6). However, this relaxation

may result in flows through interdicted hubs. To prevent these flows, we penalize such flows in

the objective function. We present the penalty based reformulations for the median, center and

maximal covering versions of HIPs.

5.1. Penalty based reformulation of r-hub median interdiction problem

Let M1
ij be a sufficiently large penalty associated with the flows through the interdicted

hubs. The resulting formulation, r-HMIPPF , is given as:

(r-HMIPPF ) : max
q

Z (43)

s.t. (2), (3)

Z “ min
Y

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

!

Wijdijkm ` p1´ qkqM
1
ij ` p1´ qmqM

1
ij

)

Yijkm (44)

s.t. (5), (7)
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The lower level problem of the bilevel model r-HMIPPF is an LP. Hence, by taking the dual

of the lower level problem, we get the following single level formulation r-HMIPP :

(r-HMIPP ) : max
ÿ

iPN

ÿ

jPN

ηij (45)

s.t. (2), (3)

ηij ďWijdijkm ` p2´ qk ´ qmqM
1
ij @i, j P N ; k,m P H 1 (46)

´8 ď ηij ď 8; qk P t0, 1u @i, j P N ; k P H 1 (47)

where η is the vector of dual variables corresponding to the constraint set (5).

We propose a valid value of M1
ij in proposition 9. To state the proposition, we first present

the following lemma.

Lemma 8. For the formulation r-HMIPPF , Yijkm ą 0 only if qk “ qm “ 1.

Proof. The lower level defender’s problem can be decomposed into an independent (minimum

cost network flow) problem for each O-D pair (i, j). Consider the network flow problem for an

O-D pair pi, jq with qk “ qm1 “ 1 and qm2 “ 0. Let dijkm1 “ dijkm2 “ mink,mtdijkmu. Then, in

(44),

Wijdijkm1 ` p1´ qkqMij ` p1´ qm1qM
1
ij ăWijdijkm2 ` p1´ qkqM

1
ij `W p1´ qm2qM

1
ij

Hence, Yijkm1 “ 1 and Yijkm2 “ 0 from (5), (7).

Proposition 9. For the formulation r-HMIPPF , M̃1
ij “ Wija

p2´pp´rq2`1
ij ´Wija

1
ij ` ε, where

ε is an infinitesimal quantity, is the tightest value of M1
ij.

Proof. Proof: To prove the above proposition, we first prove that M̃ij is a valid value for r-

HMIPPF following which we also prove that it is the tightest Mij value for the formulation.

When r hubs are interdicted, a
p2´pp´rq2`1
ij is the worst case routing cost for the defender for

a given O-D pair (i, j). This follows directly from the discussion of the proof for proposition

4.1. Similarly, a1ij is the best case routing cost for the defender for the O-D pair (i, j). To

prevent flows through any interdicted path, the value of Mij has to be chosen such that the

cost of such a path should be greater than the cost of any available path axij , such that 1 ď

x ď p2 ´ pp ´ rq2. The best possible cost for a given O-D pair (i, j) for the defender is a1ij ,

while the worst cost for an available path is a
p2´pp´rq2`1
ij . Therefore, a valid value for Mij is

M̃ij “Wija
p2´pp´rq2`1
ij ´Wija

1
ij ` ε.

To prove that M̃ij is the tightest value for r-HMIPPF , we show that subtracting an infinitesimal

quantity ε from M̃ij makes it invalid as a value of Mij . Let us denote that value after subtraction

as 9Mij “Wija
p2´pp´rq2`1
ij ´Wija

1
ij . Let us consider the defender’s minimum cost network flow

problem corresponding to O-D pair (i, j). Further, assume the worst case routing path be

13



available post-interdiction, while the best routing cost path be unavailable due to one of the

hubs (either k1 or m1) on this path being interdicted. In that case, we have

Wija
1
ij `Mij “Wija

p2´pp´rq2`1
ij ,

which implies

M1
ij ąWija

p2´pp´rq2`1
ij ´Wija

1
ij . (to ensure validity of the formulation.)

However, 9Mij does not satisfy the above inequality, and therefore, it is an invalid value of Mij .

We have already shown that M̃ij , which is infinitesimally greater than 9Mij , is a valid value of

Mij . Therefore, M̃ij is the tightest value of Mij .

5.2. Penalty based reformulation of r-hub center interdiction problem

We present the penalty counterpart of r-HCIP2L. Defining M2
ij as a very large value, the

bilevel penalty counterpart of r-HCIP2L can be written as:

(r-HCIPPF ) : max
q

T2 (48)

s.t. (2), (3)

T2 “ min
X

ÿ

iPN

ÿ

jPN

Z2
ij ` p

ÿ

kPH

ÿ

mPH

!

p1´ qkqM
2
ij ` p1´ qmqM

2
ijq

)

Xijkm (49)

s.t. (5), (7), (10), (11)

Assigning dual variable ηij and α for constraint sets we present the single-level penalty formu-

lation of r-HCIP2L.

(r-HCIPP ) : max
ÿ

iPN

ÿ

jPN

ηij (50)

s.t. (2), (3)

ηij ď dijkmαij ` p2´ qk ´ qmqM
2
ij @i, j P N ; k,m P H 1 (51)

αij ď 1 @i, j P N (52)

´8 ď ηij ď 8; qk P t0, 1u; αij ě 0 @i, j P N ; k P H 1 (53)

We propose a valid value of M2
ij in proposition 9. To state the proposition, we first present the

following lemma.

Lemma 10. For the formulation r-HCIPPF , Xijkm ą 0 only if qk “ qm “ 1.

Proof. Consider the network flow problem for an O-D pair pi, jq with qk “ qm1 “ 1 and qm2 “ 0.

Let dijkm1 “ dijkm2 “ mink,mtdijkmu. Then, in (49),

dijkm1 ` p1´ qkqM
2
ij ` p1´ qm1qM

2
ij ă dijkm2 ` p1´ qkqM

2
ij ` p1´ qm2qM

2
ij

Hence, Xijkm1 “ 1 and Xijkm2 “ 0 from (5), (7).
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Proposition 11. For a given O-D pair pi, jq and 0 ď α2
ij ď 1, M̃2

ij “

´

ap
2

ij ´ a
pp´rq2

ij ` ε
¯

is the

tightest valid value of M2
ij for the formulation r-HCIPPD.

Proof. When r hubs are interdicted, ap
2

ij and a
pp´rq2

ij are the worst and best case objective for

any O-D pair pi, jq, which implies the value of the optimal objective function value is either ap
2

ij

or a
pp´rq2

ij any ax between them. Therefore adding a penalty that equals to
´

ap
2

ij ´ a
pp´rq2

ij ` ε
¯

prohibits choosing an interdicted path.

To prove that M̃2
ij is the tightest value for r-HCIPPF , we show that subtracting an in-

finitesimal quantity ε from M̃2
ij makes it invalid as a value of M2

ij . Let us denote that value

after subtraction as 9M2
ij “ ap

2

ij ´a
pp´rq2

ij . Let us consider the defender’s problem corresponding

to O-D pair (i, j). Further, assume the maximum of the available path is ap
2

ij post-interdiction,

while there is an unavailable path a
pp´rq2

ij such that

axij `
9M2
ij “ ap

2

ij

but,

M2
ij ą ap

2

ij ´ a
pp´rq2

ij . (to ensure validity of the formulation.)

Therefore, 9M2
ij does not satisfy the above inequality, and therefore, it is an invalid value of M2

ij .

We have already shown that M̃2
ij , which is infinitesimally greater than 9M2

ij , is a valid value of

M2
ij . Therefore, M̃2

ij is the tightest value of M2
ij .

5.3. Penalty based reformulation of r-hub maximal covering interdiction problem

Next, we present penalty counterpart of r-HMXCIP2L. Defining Mij as a very large value

the bilevel penalty counterpart of r-HMXCIP2L is given below.

(r-HMXCIPPF ) : min
q

Z (54)

s.t. (2)´ (3)

Z “ max
Y

ÿ

iPN

ÿ

jPN

ÿ

kPH

ÿ

mPH

!

WijVijkm ´ p1´ qkqM
3
ij ´ p1´ qmqM

3
ij

)

Yijkm (55)

s.t. (5), (7)

Associating dual variables ηij for constraint set (5), the single-level dual equivalent of the bilevel

penalty formulation is as follows:

(r-HMXCIPP ) : min
ÿ

iPN

ÿ

jPN

ηij (56)

s.t. (2), (3) (57)

ηij ěWijVijkm ´ p2´ qk ´ qmqM
3
ij @i, j P N ; k,m P H 1 (58)

´8 ď ηij ď 8; @i, j P N ; k P H 1 (59)

We propose a valid value of M3
ij in proposition 13. To state the proposition, we first present

the following lemma.
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Lemma 12. For the formulation r-HMXCIPPF , Yijkm ą 0 only if qk “ qm “ 1.

Proof. Consider the network flow problem for an O-D pair pi, jq with qk “ qm1 “ 1 and qm2 “ 0.

Let Vijkm1 “ Vijkm2 “ 1. Then, in (55),

WijVijkm1 ´ p2´ qk ´ qm1qM
3
ij ąWijVijkm2 ´ p2´ qk ´ qm2qM

3
ij

Hence, Yijkm1 “ 1 and Yijkm2 “ 0 from (5), (7).

Proposition 13. For the formulation r-HMXCIPPF , M̃3
ij “Wij, is the tightest value of Mij.

Proof. To prove the above proposition, we first prove that M̃3
ij is a valid value for r-HMXCIPPF

following which we also prove that it is the tightest M3
ij value for the formulation.

Consider a hub pair pk,mq such that Vijkm “ 1, qk “ 1 and qm “ 0, it is easy to say that

the objective function term for the corresponding hub pair is zero and since the objective is to

maximize the optimal solution will not include such a path. Hence, the above value of M̃ij is

valid for r-HMCXIPPD.

To prove that M̃ij is the tightest value for r-HMCXIPPF , we show that subtracting an infinites-

imal quantity ε from M̃ij makes it invalid as a value of Mij . Let us denote that value after

subtraction as 9Mij “ Wij ´ ε. Consider a hub pair pk,m1q such that Vijkm1 “ 1, qk “ 0 and

q1m = 1. The demand between the O-D pair pi, jq is not covered by this hub pair pk,m1q due to

the unavailability of hub m1. The corresponding objective function term is :

WijVijkm1 ´
9Mij “Wij ´Wij ` ε

For this case, Yijkm1 “ 1 since the presence of a positive demand ε in the objective, which is a

contradiction. Hence, M̃ij is the tightest value of Mij for r-HMXCIPPF .

6. Dominance Relationship

We compare the linear programming relaxations of the dual and penalty formulations of

r-HMIP, r-HCIP and r-HMXCIP and identify the stronger formulation between them. The

comparison shows that the dual versions are stronger than the penalty formulations for all the

three variants. We also validate our results through extensive computational experiments.

In the following proposition, we prove that the value of big M proposed for r-HMIPDD is

strictly lesser than the big M proposed for r-HMIPPF .

Proposition 14. M̃1
ij ą

ĎM1
ijk, where M̃ij “ Wija

p2´pp´rq2`1
ij ´Wija

1
ij ` ε, is the tightest value

of M1
ij for the formulation r-HMIPPF and ĎMijk “ maxt0, φ̂ij ´Wijdijkk, φ̂ij ´Wijdijkm´ δ̂ijmu

is a tight value of M1
ijk for the formulation r-HMIPDD.

Proof. By definition,

M̃1
ij “Wija

p2´pp´rq2`1
ij ´Wija

1
ij ` ε

ĎM1
ijk “ maxt0, φ̂ij ´Wijdijkk, φ̂ij ´Wijdijkm ´ δ̂ijmu
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Trivially,

Wija
p2´pp´rq2`1
ij ´Wija

1
ij ` ε ą 0

Also,

φ̂ij “Wija
p2´pp´rq2`1
ij

and

mintWijdijkk,Wijdijkm ` δ̂ijmu ąWija
1
ij ´ ε “Wijdijk1m1 ´ ε

Therefore, M̃1
ij ą

ĎM1
ijk.

In the following proposition, we state that dominance relationship between the dual and

penalty reformulations of r-HMIP.

Proposition 15. For a given value of M̃ij, LPR(r-HMIPDD) ď LPR(r-HMIPP ), where LPR(r-HMIPDD)

and LPR(r-HMIPP ) denote the optimal objective function values of LP relaxations of reformu-

lations r-HMIPDD and r-HMIPP respectively.

Proof. For any O-D pair pi, jq and hub pairs pk,mq such that, 0 ă qk ă 1 and 0 ă qm ă 1, let

ODD and OP denote the objective function values of LP relaxations of r-HMIPDD and r-HMIPP

respectively.

ODD “ φij ´ Vijk ´ Vijm (60)

OP “ νij (61)

From (15) and (16), φij “ WijDijkm ` δijk ` δijm or WijDijkk ` δijk or WijDijmm ` δijm and

from (21), Vijk “ δijk ´Mijkp1´ qkq.

Substituting the values of φij , Vijk and Vijm in (19) we get,

ODDkm
“WijDijkm `Mijkp1´ qkq `Mijmp1´ qmq

ODDk
“WijDijkk `Mijkp1´ qkq

ODDm “WijDijmm `Mijmp1´ qmq

ODD “ maxpODDkm
, ODDk

, ODDmq

From (45), νij “ maxpWijDijkm` p2´ qk ´ qmqMij ,WijDijkk ` p2´ 2qkqMij ,WijDijmm` p2´

2qmqMijq. In other words, OP “ maxpOPk,m
, OPk

, OPmq where,

OPk,m
“WijDijkm `Mijp1´ qkq `Mijp1´ qmq

OPk
“WijDijkk `Mijp1´ qkq `Mijp1´ qkq

OPm “WijDijmm `Mijp1´ qmq `Mijp1´ qmq

From above it is clear that, ODDk,m
ă OPk,m

, ODDk
ă OPk

and ODDm ă OPm since Mijk ăMij

and Mijm ăMij .
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For the case where, ODD “ ODDk,m
, OP “ OPk,m

or ODD “ ODDk
, OP “ OPk

or ODD “

ODDm , OP “ OPm it is evident that LPR(r-HMIPDD) ď LPR(r-HMIPP ).

We now prove for the cases where optimal ODD and OP are dissimilar. For example where,

ODD “ ODDk,m
and OP “ OPk

. In this case, OPk
ě ODDk,m

since OPk
ě OPk,m

and OPk,m
ě

ODDk,m
. Therefore, LPR(r-HMIPDD) ď LPR(r-HMIPP ). Using similar arguments, one can

prove for other dissimilar cases of ODD and OP .

In the following proposition, we state that dominance relationship between the dual and

penalty reformulations of r-HCIP.

Proposition 16. For a given value of M̃ij, LPR(r-HCIPDD) dominates LPR(r-HCIPP ) or

LPR(r-HCIPDD) ď LPR(r-HCIPP ), where LPR(r-HCIPDD) and LPR(r-HCIPP ) denote the

optimal objective function values of LP relaxations of r-HCIPDD and r-HCIPP respectively.

Proof. For any O-D pair pi, jq and hub pairs pk,mq such that, 0 ă qk ă 1 and 0 ă qm ă 1, Let

ODD and OP denote the objective function values of LP relaxations of HCIPDD and HCIPPD

respectively.

ODD “ φij ´ Vijk ´ Vijm (62)

OP “ νij (63)

From (24) and (25), φij “ αijDijkm`δijk`δijm or φij “ αijDijkm`δijm or φij “ αijDijkm`δijk

and from (32), Vijk “ δijk ´Mijkp1´ qkq. Substituting the values of φij , Vijk and Vijm in (62)

we get,

ODDk,m
“ αijDijkm `Mijkp1´ qkq `Mijmp1´ qmq

ODDk
“ αijDijkk `Mijkp1´ qkq

ODDm “ αijDijmm `Mijmp1´ qmq

ODD “ maxpODDkm
, ODDk

, ODDmq

From (50), ηij “ maxpαijDijkm ` p2 ´ qk ´ qmqMij , αijDijkk ` p2 ´ 2qkqMij , αijDijmm ` p2 ´

2qmqMijq. In other words, OP “ maxpOPk,m
, OPk

, OPmq where,

OPk,m
“ αijDijkm `Mijp1´ qkq `Mijp1´ qmq

OPk
“ αijDijkk `Mijp1´ qkq `Mijp1´ qkq

OPm “ αijDijmm `Mijp1´ qmq `Mijp1´ qmq

From the above relations it is clear that, ODDk,m
ă OPk,m

, ODDk
ă OPk

and ODDm ă OPm

since Mijk ăMij and Mijm ăMij .

For the case where, ODD “ ODDk,m
, OP “ OPk,m

or ODD “ ODDk
, OP “ OPk

or ODD “

ODDm , OP “ OPm it is evident that LPR(r-HCIPDD) ď LPR(r-HCIPP ).

We now prove for the cases where optimal ODD and OP are dissimilar. For example where,

ODD “ ODDk,m
and OP “ OPk

. For this case, OPk
ě ODDk,m

since OPk
ě OPk,m

and OPk,m
ě
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ODDk,m
. Therefore, LPR(r-HCIPDD) ď LPR(r-HCIPP ). By using similar arguments, one can

prove, for other dissimilar cases of ODD and OP that LPR(r-HCIPDD) ď LPR(r-HCIPP ).

In the following proposition, we state that dominance relationship between the dual and

penalty reformulations of r-HMXCIP.

Proposition 17. For a given value of M̃ij, LPR(r-HMXCIPDD) dominates LPR(r-HMXCIPP ),

where LPR(r-HMXCIPDD) and LPR(r-HMXCIPP ) denote the optimal objective function values

of LP relaxations of r-HMXCIPDD and r-HMXCIPP respectively. In other words, LPR(r-HMXCIPDD)

ě LPR(r-HMXCIPP ) (since r-HMXCIPDD and r-HMXCIPP are both minimization problems).

Proof. For any O-D pair pi, jq and hub pairs pk,mq such that, 0 ă qk ă 1 and 0 ă qm ă 1,

let ODD and OP denote the objective function values of LP relaxations of r-HMXCIPDD and

r-HMXCIPP respectively.

ODD “ φij ` Vijk ` Vijm (64)

OP “ νij (65)

From (35) and (36), φij “WijVijkm ´ δijk ´ δijm and from (41), Vijk “ δijk ´Mijkp1´ qkq.

Substituting the values of φij , Vijk and Vijm in (64) we get,

ODDk,m
“WijVijkm ´Mijp1´ qkq ´Mijp1´ qmq

ODDk
“WijVijkk ´Mijp1´ qkq

ODDm “WijVijmm ´Mijp1´ qmq

ODD “ minpODDkm
, ODDk

, ODDmq

From (58), νij “WijVijkm ` p2´ qk ´ qmqMij

Substituting νij in (65) we get,

OPk,m
“WijVijkm ´ p2´ qk ´ qmqMij

OPk
“WijVijkm ´ p2´ 2qkqMij

OPm “WijVijkm ´ p2´ qmqMij

OP “ minpOPkm
, OPk

, OPmq

From the above relations it is clear that, ODDk,m
“ OPk,m

, ODDk
ą OPk

and ODDm ą OPm .

For the case where, ODD “ ODDk,m
, OP “ OPk,m

or ODD “ ODDk
, OP “ OPk

or ODD “

ODDm , OP “ OPm it is evident that LPR(r-HMXCIPDD) ě LPR(r-HMXCIPP ) .

We now prove for the cases where optimal ODD and OP are dissimilar. We take an example

where, ODD “ ODDk,m
and OP “ OPk

. For this case, OPk
ď ODDk,m

since OPk
ď OPk,m

and OPk,m
“ ODDk,m

. Therefore, LPR(r-HMXCIPDD) ě LPR(r-HMXCIPP ). Using similar

arguments, one can prove for other dissimilar cases of ODD and OPD.
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7. Computational Results

We conduct computational experiments to compare the performance of the penalty and dual

based reformulations of the three variants of the hub interdiction problem. All the formulations

are coded in C++ and run on a Dell workstation with a 2.60GHz Intel Xeon-e5 processor and

64 gigabytes of RAM. The models are solved using the branch-and-cut solver of CPLEX 12.8

with its default settings using only one thread.

Our experiments are performed using the Australian Post (AP) data set obtained from the

OR library (http://mscmga.ms.ic.ac.uk/jeb/orlib/phubinfo.html). These instances comprise

the postal flow and Euclidean distances between 200 postal districts in the metro Sydney area.

In our experiments, we select instances with |N | = 50, 100, and 200 nodes. The number

of hubs in the network is set to p = 10 and 15. For each of the variants, the hub network

configuration,.i.e. the optimal location of the hubs is an input. This hub network configuration

is set as per the optimal solution to the uncapacitated multiple allocation r-hub median location

problem, r-hub covering problem and p-maximal covering problem for r-HMIP, r-HCIP and r-

HMXCIP respectively. The problem instances are generated by varying the number of hubs

to interdict (r) in the set r P t3, 4, 5, 6, 7u for p = 10 and in the set r P t5, 6, 7, 8, 9, 10, 11, 12u

for p = 15. The discount factor for the flows on hub arcs pδq is varied from 0.25 (high), 0.50

(moderate), to 0.75 (low), while it is set to 3 for collection arcs pαq and 2 for distribution arcs

pγq. For r-HMXCIP, we set the radius (β) to 15. The time limit is set to 36,000 seconds.

Table 1 presents a summary of the results of our experiments, whereas the detailed results

are presented in Tables 2 to 4. In Table 1, for every variant of the problem, we report the num-

ber of instances solved to optimality and the minimum, average and the maximum computation

time (in seconds). Using the dual based reformulation, we are able to solve 137 (out of 156)

instances of r-HMIP to optimality compared to 96 instances using the penalty based reformu-

lation. Using the dual based reformulation, we are able to solve 109 (out of 156) instances of

r-HCIP to optimality compared to 94 instances using the penalty based reformulation. Sim-

ilarly, using the dual based reformulation, we are able to solve 137 (out of 156) instances of

r-HMXCIP to optimality compared to 117 instances using the penalty formulation. Further-

more, we observe that there is a significant reduction in computational time using the dual

based reformulation for all the three problem variants. Overall, our results depict that the dual

based reformulation is computationally efficient compared to the penalty based reformulation.

The superior performance of dual based reformulation is attributed to its better LP relaxation

compared to penalty based reformulation.

Tables 2 to 4 present the detailed results of our experiments. The first three columns in these

tables list the problem parameters such as the number of hubs (pre-interdiction) p, the number

of hubs to be interdicted r, and discount factor δ for each instance. The top row indicates

the number of nodes |N | of the hub network. The column “time(s)” report the computation

time (in seconds) for the corresponding formulation. The column marked “% red.” refers to the

percentage reduction in the CPU time of the dual formulation over penalty formulation. It is

computed as follows: {time(r-HMIPP ) - time(r-HMIPDD) ˆ100% } /(r-HMIPP ). The column

“gap(%)” reports the optimality gap for the instances that could not be solved to optimality
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within the time limit.

7.1. Results for r-hub median interdiction problems

Table 2 presents the results of the the penalty and dual based reformulations of r-hub median

interdiction problem. Results show that we are able to solve all the thirty nine instances

for |N | = 50 and 100 nodes each to optimality using both the reformulations. In the case

of 150-node instances, dual based reformulation solves all instances, while the penalty based

reformulation solves only 18 of the 39 instances. For the 200-node instances, note that the

penalty based reformulation could not solve any of the 39 instances to optimality within the time

limit. Therefore, for 200-node instances, we report the results for the dual based formulation

only. For 200-node instances, dual based reformulation is able to solve 20 out of 39 (51%)

instances to optimality within the time limit.

For the 50-node instances, the average computation time using the penalty formulation is 176

seconds compared to 53 seconds for p = 10, and 695 seconds compared to 165 for p = 15 using

the dual formulation. The computation time of the penalty formulation ranges from 139 to 213

seconds for p = 10, whereas the range for the dual formulation is 41 to 68 seconds. Similarly, the

range for p = 15 is 479 - 990 seconds for the penalty formulation and 110 -229 seconds for the

dual formulation. On average, the dual formulation is approximately four times faster or yields

a 73% reduction in computation time. As expected, for the moderate-size 100-node instances,

the computation times are comparatively higher than 50-node instances. For example, the

computation time of the penalty formulation ranges from 1,941 to 4,530 seconds for p = 10 and

8,532 to 27,785 seconds for p = 15, whereas the similar figures for dual formulation is 405 to

1,684 and 1,713 to 7498 seconds respectively. The average computation time using the penalty

formulation is 3,030 seconds compared to 817 seconds for p = 10 and 14,135 compared to 3,593

for p = 15, using the dual formulation, i.e. dual formulation is approximately 4 times faster.

This accounts for 73% reduction in computation time, on average. For the instances with |N | =

150 and p = 10, the range of penalty formulation is from 6,118 to 20,535 seconds while similar

figures for dual formulation is 1,349 to 5,104 seconds. The average time comparison of 12,502

seconds for penalty formulation over 2,663 seconds shows again that dual is faster than penalty

formulation by approximately five times.

For the large-size instances with |N | = 150 and p = 15, the penalty based reformulation

could solve only 3 of the 24 instances within the time limit, while the dual based reformulation

could solve all problem instances. For the large-size instances with |N | = 200 nodes, it is worth

pointing that the penalty formulation could not solve any of the 39 instances to optimality

within the time limit. Hence, we report the optimality gap and computation times using the

dual formulation only. Even with dual formulation, we were able to solve 20 out of 39 (i.e.

51%) instances to optimality within the time limit. Out of these 20 instances that were solved

to optimality, 15 instances belong to p = 10, and 5 (out of 24) instances belong to p = 15. For

the remainder of the 19 instances, the optimality gap is in the range of 60% to 175%, with an

average gap of 123%. These results and observations confirm the strength of the dual based

reformulation.
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Table 1: Summary of results for the variants of the hub interdiction problem

No. of Min. Avg. Max.
Problem Formulation Instance Ins. Opt. time (s) time (s) time (s)

r-HMIP Penalty |N |=50, p=10 15/15 139 176 213
|N |=50, p= 15 24/24 479 695 990
|N |=100, p=10 15/15 1,941 3,030 4,530
|N |=100, p= 15 24/24 8,532 14,135 27,785
|N |=150, p=10 15/15 6,118 12,502 20,535
|N |=150, p=15 3/24 29,546 30,441 31,264
|N |=200, p=10 0/15 - - -
|N |=200, p= 15 0/24 - - -

Total 96/156
Dual |N |=50, p=10 15/15 41 53 68

|N |=50, p= 15 24/24 110 165 229
|N |=100, p=10 15/15 405 817 1,684
|N |=100, p= 15 24/24 1,713 3,593 7,498
|N |=150, p=10 15/15 1,349 2,663 5,104
|N |=150, p=15 24/24 6,549 13,033 25,116
|N |=200, p=10 15/15 7,042 13,554 28,064
|N |=200, p= 15 5/24 - - -

Total 137/156

r-HCIP Penalty |N |=50, p=10 15/15 118 240 316
|N |=50, p= 15 24/24 654 1,194 4,265
|N |=100, p=10 15/15 2,687 4,475 7,116
|N |=100, p= 15 24/24 7,345 12,939 29,539
|N |=150, p=10 15/15 11,333 18,385 27,828
|N |=150, p=15 1/24 33,685 33,685 33,685
|N |=200, p=10 0/15 - - -
|N |=200, p= 15 0/24 - - -

Total 94/156
Dual |N |=50, p=10 15/15 88 111 148

|N |=50, p= 15 24/24 395 694 1,186
|N |=100, p=10 15/15 1,128 2,467 3,830
|N |=100, p= 15 24/24 7,165 12,208 27,568
|N |=150, p=10 15/15 6,635 14,469 30,212
|N |=150, p=15 1/24 29,863 29,863 29,863
|N |=200, p=10 15/15 36,276 36,297 36,304
|N |=200, p= 15 0/24 - - -

Total 109/156

r-HMXCIP Penalty |N |=50, p=10 15/15 27 43 63
|N |=50, p= 15 24/24 92 138 376
|N |=100, p=10 15/15 266 357 525
|N |=100, p= 15 24/24 740 1,199 1,744
|N |=150, p=10 15/15 347 670 1,047
|N |=150, p=15 3/24 1,743 4,420 15,986
|N |=200, p=10 15/15 780 1210 1876
|N |=200, p= 15 24/24 2,266 4,622 7,367

Total 156/156
Dual |N |=50, p=10 15/15 8 14 18

|N |=50, p= 15 24/24 20 31 46
|N |=100, p=10 15/15 66 137 292
|N |=100, p= 15 24/24 224 320 402
|N |=150, p=10 15/15 155 281 482
|N |=150, p=15 24/24 384 768 1,972
|N |=200, p=10 15/15 360 1,007 1,544
|N |=200, p= 15 24/24 654 1,179 1,502

Total 156/156
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Table 2: Results for the penalty and dual formulations of r-hub median interdiction problem.

|N | = 50 |N | = 100 |N | = 150 |N | = 200
Parameters r-HMIPP r-HMIPDD r-HMIPP r-HMIPDD r-HMIPP r-HMIPDD r-HMIPDD

p r δ time(s) time(s) % red. time(s) time(s) % red. gap (%) time(s) time(s) % red. gap (%) time(s)
10 3 0.25 182 61 66 2,652 1,660 37 0 6118 2,596 57 0 19,605

0.50 213 50 77 2,402 626 74 0 9,958 1,669 83 0 28,064
0.75 204 42 79 3,062 795 74 0 15,423 1,349 91 0 14,773

4 0.25 202 68 66 2,916 1,684 42 0 9,350 3,821 59 0 21,387
0.50 200 53 74 3,185 644 80 0 18,268 1,863 90 0 10,351
0.75 215 58 73 3,169 676 79 0 20,535 1,856 91 0 7,455

5 0.25 185 61 67 2,911 1,268 56 0 9,788 4,851 50 0 27,497
0.50 169 46 73 3,050 740 76 0 11,242 2,081 81 0 10,600
0.75 166 53 68 4,530 656 86 0 17,705 1,750 90 0 8,767

6 0.25 156 57 63 2,255 742 67 0 16,518 5,104 69 0 11,875
0.50 154 55 64 4,153 589 86 0 13,739 2,658 80 0 10,139
0.75 139 42 70 2,960 533 82 0 8,455 3,004 64 0 7,235

7 0.25 162 57 65 1,941 696 64 0 10,984 3,674 66 0 9,762
0.50 152 52 66 3,796 536 86 0 10,278 2,322 77 0 8,767
0.75 142 41 71 2,479 405 84 0 9178 2,155 76 0 7,042

Min 139 41 63 1,941 405 37 0 6,118 1,349 57 0 7,042
Avg. 176 53 70 3,030 817 71 0 12,502 2,663 75 0 13,554
Max. 213 68 79 4,530 1,684 86 0 20,535 5,104 91 0 28,064

15 5 0.25 754 229 70 25,030 6,694 73 102 limit 14,949 - 144 limit
0.50 976 177 82 19,854 5,403 73 109 limit 12,046 - 128 limit
0.75 838 148 82 13,908 4,470 68 121 limit 6,549 - 85 limit

6 0.25 981 212 78 17,653 7,223 59 109 limit 14,890 - 171 limit
0.50 859 146 83 12,670 5,036 60 135 limit 12,403 - 167 limit
0.75 663 198 70 15,651 3,165 80 175 limit 9,704 - 101 limit

7 0.25 990 157 84 19,552 7,498 62 140 limit 13,398 - 175 limit
0.50 719 168 77 12,430 3,441 72 157 limit 17,465 - 155 limit
0.75 777 177 77 14,420 3,022 79 132 limit 9,138 - 110 limit

8 0.25 784 165 79 20,754 5,033 76 121 limit 13,070 - 155 limit
0.50 761 147 81 11,980 2,831 76 153 limit 16,514 - 146 limit
0.75 843 215 74 13,692 2,395 83 161 limit 8,659 - 139 limit

9 0.25 563 216 62 13,180 4,734 64 167 limit 25,116 - 113 limit
0.50 571 179 69 13,351 2,451 82 204 limit 15,079 - 121 limit
0.75 608 127 79 10,558 1,860 82 140 limit 13,149 - 0 23,051

10 0.25 578 164 72 11,334 3,432 70 170 limit 21,246 - 102 limit
0.50 479 154 68 8,532 2,490 71 104 limit 12,758 - 107 limit
0.75 577 110 81 10,783 1,764 84 185 limit 9,040 - 0 31,296

11 0.25 620 168 73 9,659 2,158 78 0 31,264 12,826 59 69 limit
0.50 584 153 74 27,785 1,813 93 85 limit 17,174 - 90 limit
0.75 571 125 78 8,234 1,713 79 222 limit 12,156 - 0 32,766

12 0.25 550 155 72 10,051 2,380 76 0 29,546 9,577 68 0 21,759
0.50 566 132 77 9,295 2,714 71 0 30,515 7,307 76 0 31,951
0.75 481 127 74 8,891 2,706 70 167 limit 8,582 - 61 limit

Min 479 110 62 8,532 1,713 59 85 29,546 6,549 59 69 21,759
Avg. 695 165 75 14,135 3,593 74 146 30,441 13,033 68 123 28,164
Max. 990 229 84 27,785 7,498 93 222 31,264 25,116 76 175 32,766
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7.2. Results for r-hub center interdiction problem

Table 3 presents the results for the r-HCIP. Results show that using the penalty and dual

formulations, we are able to solve all the 39 instances for |N | = 50 to optimality. However,

for the 100-node instances, we are able to solve only 34 (out of 39) instances to optimality

using the penalty formulation compared to all the 39 instances using the dual formulation. For

150-node instances, penalty formulation could solve 16 while dual could only solve 14 instances

to optimality. For the large-scale instances with |N | = 200 nodes, it is worth pointing that the

penalty based reformulation could not solve any of the 39 instances to optimality within the

time limit. Hence, we report the results of the dual based reformulation only. Using with the

dual based reformulation, we solve 15 (out of 39) instances to optimality within the time limit.

For the remainder of the 24 instances, the optimality gap is in the range of 58% to 116%, with

an average gap of 91%.

The results for 50-node, p = 10 instances show that the computation time of the penalty

formulation is in the range of 118 to 316 seconds with an average of 240 seconds, whereas

for the dual based reformulation, the range is from 88 to 148 seconds with an average of 111

seconds. The reduction in computation time ranges from 3% to 71%. Similarly for p = 15, the

computational time for penalty based formulation is in the range of 654 to 4,265 seconds with

an average of 1,194 seconds while for dual based formulation the range is from 395 to 1,186

seconds with an average of 694 seconds. Hence, the dual based reformulation is approximately

faster by a factor of two. This amounts to a 61% reduction in the computational time, on

average. The dual based reformulation outperforms penalty based reformulation on 34 (out

of 39) instances. For the |N | = 100 and p = 10 instances, both the reformulations solve all

15 instances to optimality within the time limit, whereas for the 100-node, p = 15 instances,

penalty based reformulation could solve only 19 (out of 24) instances to optimality within the

time limit. The optimality gap for the instances that are not solved to optimality is in the

range of 69% to 143%. On the contrary, the dual based reformulation, is able to solve all the

(39 out of 39) instances to optimality within the time limit. The dual based reformulation

outperforms penalty formulation on 29 (out of 39) instances. The average computation time

using the penalty based reformulation is 4,475 seconds compared to 2,467 seconds using the dual

based reformulation for p = 10, and similarly 12,939 seconds compared to 12,208 seconds for p

= 15. The former represents a 13% reduction while the latter, 23% reduction, in computational

time on average.

For the large instances with |N | = 150 nodes and p = 10, the computational time of penalty

based reformulation varies between 11,333 to 27,828 while it is between 6,635 to 30,212 with

an average of 14,469 for the dual based reformulation. With p = 15, both formulations could

solve only one instance while the optimality gap of dual based reformulation is almost always

better than that of the penalty formulation except for one single instance. For the large-scale

instances with |N | = 200 nodes, we report the results (optimality gaps and times) for the dual

based reformulation only as the penalty based reformulation was unable to solve any instance

to optimality within the time limit. Although the dual based reformulation could solve all (15

out of 15) instances with p = 10 to optimality, it could not solve any of the 24 instances with p
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= 15 to optimality within the time limit. For the 24 instances with p = 15, the optimality gap

is in the range from 58% to 116%, with an average gap of 91%.
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Table 3: Results for the penalty and dual formulations of r-hub center interdiction problem.

|N | = 50 |N | = 100 |N | = 150 |N | = 200
Parameters r-HCIPP r-HCIPDD r-HCIPP r-HCIPDD r-HCIPP r-HCIPDD r-HCIPDD

p r δ time(s) time(s) % red. %gap time(s) %gap time(s) % red. %gap time(s) %gap time(s) %red. %gap time(s)

10 3 0.25 265 115 56 0 5,081 0 2,151 58 0 16,175 0 12,510 23 0 36,276
0.50 246 101 59 0 4,410 0 1,128 74 0 15,309 0 8,982 41 0 36,297
0.75 245 91 60 0 6,393 0 1,545 76 0 15,248 0 6,635 58 0 36,304

4 0.25 316 122 61 0 7,116 0 3,236 55 0 20,572 0 21,577 * 0 36,289
0.50 307 101 67 0 3,609 0 2,085 42 0 25,705 0 10,389 60 0 36,304
0.75 307 88 71 0 6,367 0 1,780 72 0 26,767 0 9,240 65 0 36,302

5 0.25 315 120 62 0 4,771 0 3,156 34 0 23,835 0 17,831 25 0 36,277
0.50 282 112 60 0 6,645 0 2,031 69 0 27,828 0 22,564 19 0 36,300
0.75 251 101 60 0 5,947 0 2,317 61 0 22,193 0 10,280 52 0 36,302

6 0.25 232 148 36 0 6,818 0 3,608 47 0 21,967 39 limit * 0 36,286
0.50 172 108 37 0 3,650 0 2,000 45 0 21,147 0 30,212 * 0 36,299
0.75 271 103 62 0 7,084 0 2,283 68 0 18,935 0 9,766 48 0 36,303

7 0.25 133 138 0 0 3,606 0 3,234 10 0 18,565 73 limit * 0 36,293
0.50 118 113 0 0 4,362 0 3,830 12 0 11,333 0 16,016 * 0 36,304
0.75 137 112 18 0 2,687 0 2,622 2 0 12,164 0 12,102 0 0 36,313

Min 118 88 0 0 2,687 0 1,128 2 0 11,333 39 6,635 0 0 36,276
Avg. 240 111 47 0 4,475 0 2,467 13 0 18,385 56 14,469 39 0 36,297
Max. 316 148 71 0 7,116 0 3,830 76 0 27,828 73 limit * 0 36,304

15 5 0.25 3576 757 79 69 limit 0 11,938 - 62 limit 34 limit 93 limit
0.50 4265 1100 74 0 28,044 0 11,226 60 71 limit 29 limit 90 limit
0.75 3738 884 76 0 7,348 0 7,165 2 71 limit 0 29,863 78 limit

6 0.25 3894 1186 70 140 limit 0 14,886 - 75 limit 32 limit 116 limit
0.50 2450 730 70 0 27,707 0 13,424 52 101 limit 37 limit 103 limit
0.75 3048 564 81 0 9,171 0 8,917 3 109 limit 45 limit 58 limit

7 0.25 3128 699 78 129 limit 0 27,568 - 87 limit 39 limit 115 limit
0.50 2532 691 73 143 limit 0 11,457 - 121 limit 60 limit 116 limit
0.75 2558 561 78 0 10,555 0 10,196 3 136 limit 39 limit 108 limit

8 0.25 2337 736 69 0 35,316 0 25,525 28 100 limit 45 limit 113 limit
0.50 1510 610 60 0 29,539 0 20,678 30 135 limit 45 limit 109 limit
0.75 1534 587 62 121 limit 0 13,362 - 126 limit 72 limit 86 limit

9 0.25 2496 782 69 0 20,577 0 17,562 15 122 limit 56 limit 95 limit
0.50 2098 612 71 0 21,628 0 20,728 4 153 limit 65 limit 105 limit
0.75 1253 395 68 0 15,841 0 12,307 22 120 limit 75 limit 73 limit

10 0.25 654 450 31 0 34,010 0 11,889 65 155 limit 67 limit 90 limit
0.50 1161 849 27 0 22,104 0 12,548 43 154 limit 67 limit 96 limit
0.75 716 319 55 0 12,613 0 11,623 8 0 33685 59 limit 77 limit

11 0.25 931 906 3 0 26,058 0 9417 64 156 limit 62 limit 85 limit
0.50 745 716 4 0 14,025 0 10133 28 135 limit 55 limit 91 limit
0.75 769 559 27 0 19,418 0 13887 29 121 limit 65 limit 72 limit

12 0.25 881 872 0 0 9,341 0 7072 24 95 limit 57 limit 76 limit
0.50 697 623 11 0 9,584 0 9927 * 131 limit 38 limit 72 limit
0.75 880 483 45 0 8,485 0 10707 * 128 limit 40 limit 63 limit

Min 654 395 0 0 7,345 0 7,165 * 58 limit
Avg. 1194 694 61 15 12,939 0 12,208 23 91 limit
Max. 4,265 1,186 81 143 limit 0 36,277 - 116 limit

* - r-HCIPP is faster than r-HCIPDD
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7.3. Results for r-hub maximal covering interdiction problem

The results for 50, 100, and 200-node instances of r-hub maximal covering interdiction

problem are presented in Table 4. Unlike the other two variants, where we were not able to

solve most of the 200-node instances to optimality (for p “ 15) using the dual formulation, and

any of the instances using penalty formulation, results in the Table 4 show that the both the

formulations solved all the 156 (i.e. 39 instances for each of |N | = 50, 100 and 200) instances

to optimality.

Note that for all the fifteen 50-node 10-hub instances, the computation time of the penalty

based reformulation is in the range from 27 to 63 seconds with an average of 43 seconds,

whereas the range for the dual based reformulation the range is between 8 to 18 seconds with

an average of 13 seconds. Similarly for the 50-node 15-hub instances, the computational times

for penalty based reformulation varies between 92 to 376 seconds with an average around 138

seconds, while the corresponding figures for the dual based reformulation is from 66 to 91

seconds with an average of 85 seconds. For 50-node instances, the results clearly show that the

dual based reformulation outperforms penalty based reformulation by being at least one and a

half times faster. For 100-node, 10-hub instances, the computational times with penalty based

reformulation is in the range between 266 to 525 seconds with an average of 357 seconds, while

the similar figures for dual based reformulation is 66 to 292 with an average of 137 seconds, at

least being 2.5 times faster. For 100-node instances with p = 15, we see a similar scenario. Here

penalty based reformulation’s computational time varies from 740 to 1,744 seconds, while for

dual it is 224 to 492 seconds. The average computational time reduction is 68%.

For instances with |N | = 150 and p = 10, dual formulation outperforms penalty formulation

in all but one instance. Here, computational time of penalty formulation ranges from 347 to

1,070 seconds, while for dual it varies from 155 to 482 seconds. For p = 15, dual formulation

outperforms penalty formulation in all instances with an average computational time reduction

of 78%. The computational time comparison shows that dual is at least 6 times faster than the

penalty formulation on average. Finally, for large scale instances with |N | = 200 and p = 10

and 15, our computational results show that both the dual and penalty based reformulations

could solve all 39 instances. For instances with |N | = 200 and p = 10, the computational

time for dual based reformulation is between 360 to 1,544 seconds, while for penalty based

reformulation the range is between 780 and 1,876 seconds. Here, dual based reformulation gives

an average improvement of 45%. Similarly for instances with N = 200 and p = 15, we see

that the computational times for dual based reformulation is between 654 to 1,502 seconds,

while for penalty based reformulation the range is between 2,266 to 7,367 seconds. The average

improvement of using dual based reformulation in this case is 71%.
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Table 4: Results for the penalty and dual formulations of r-hub maximal covering interdiction problem.

|N |=50 |N |=100 |N |=150 |N |=200
Parameters r-HMXCIPP r-HMXCIP DD r-HMXCIP P r-HMXCIP DD r-HMXCIP P r-HMXCIP DD r-HMXCIP P r-HMXCIP DD
p r δ time(s) time(s) % red. time(s) time(s) % red. time(s) time(s) % red. time(s) time(s) % red.

10 3 0.25 27 8 70 344 72 79 499 176 65 1,181 482 59
0.50 31 11 65 284 66 77 437 165 62 1,118 606 46
0.75 54 9 83 411 84 80 486 155 68 958 360 62

4 0.25 48 9 81 318 80 75 626 252 60 1,847 586 68
0.50 34 12 65 283 112 60 606 210 65 1,120 934 17
0.75 59 12 80 363 120 67 581 238 59 1,081 675 38

5 0.25 63 12 81 408 200 51 662 350 47 1,677 686 59
0.50 37 15 59 525 130 75 755 244 67 1,876 513 73
0.75 54 15 72 312 161 48 906 241 73 1,071 566 47

6 0.25 32 15 53 353 151 57 1034 371 64 1,176 1,245 *
0.50 36 14 61 375 145 61 823 346 58 971 731 25
0.75 60 14 77 319 148 54 802 257 68 968 639 34

7 0.25 37 17 54 474 175 63 1047 377 64 1,393 600 57
0.50 34 16 53 322 292 9 347 482 * 780 781 0
0.75 44 18 59 266 131 51 435 348 20 937 1,544 *

Min. 27 8 53 266 66 9 347 155 20 780 360 0
Avg. 43 24 67 357 137 60 670 281 56 1,210 1,007 45
Max. 63 18 83 525 292 80 1047 482 73 1,876 1,544 73

15 5 0.25 92 20 78 1,102 246 78 6227 384 94 5,436 961 82
0.50 132 21 84 1,102 227 79 2633 502 81 2,645 739 72
0.75 84 20 76 740 232 69 3003 400 87 2,769 654 76

6 0.25 104 25 76 1,270 224 82 4536 398 91 5,156 1,200 77
0.50 139 22 84 1,121 228 80 3287 477 85 3,811 954 75
0.75 116 25 78 1,181 303 74 2905 517 82 3,342 954 71

7 0.25 116 29 75 1,713 339 80 4955 643 87 6,295 1,341 79
0.50 156 27 83 1,296 311 76 3886 548 86 4,674 1,260 73
0.75 108 26 76 1,049 343 67 3632 656 79 6,047 1,207 80

8 0.25 134 33 75 1,744 374 79 7655 774 90 7,156 1,419 80
0.50 160 30 81 1,181 369 69 3818 579 85 5,366 1,252 77
0.75 123 31 75 1,200 376 69 3084 858 72 3,817 1,134 70

9 0.25 121 37 69 1,722 402 77 5413 1,001 81 7,367 1,173 84
0.50 161 31 81 1,681 375 78 6936 885 87 5,934 1,502 75
0.75 133 33 75 1,204 321 73 4666 1,400 70 5,921 1,336 77

10 0.25 116 36 69 1,649 358 78 5188 1,332 74 5,960 1,278 79
0.50 170 38 78 897 325 64 1653 1,247 24 6,358 1,275 80
0.75 121 32 74 1,214 311 74 4391 1,972 55 5,394 1,268 76

11 0.25 124 32 74 1,282 368 71 2599 609 76 2,266 1,492 34
0.50 159 35 78 770 327 58 2253 573 74 2,860 1,362 52
0.75 132 39 70 984 356 64 3013 695 77 3,344 1,071 68

12 0.25 122 46 62 859 328 62 15986 887 94 3,280 1,303 60
0.50 376 34 91 862 321 63 2614 575 78 3,102 1,205 61
0.75 125 42 66 953 331 65 1743 525 70 2,735 975 64

Min. 92 20 66 740 224 62 1743 384 24 2,266 654 34
Avg. 138 31 85 1199 320 68 4420 768 78 4,622 1,179 71
Max. 376 46 91 1,744 402 82 15986 1,972 94 7,367 1,502 84
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8. Conclusion

In this paper, we studied three variants of the hub interdiction problem on a multiple alloca-

tion, uncapacitated hub network, namely the r-hub median interdiction problem, r-hub center

interdiction problem, and the r-hub maximal covering interdiction problem. The problems were

formulated as bilevel MIPs and reduced to single-level MIPs using dual and penalty based refor-

mulations. We further exploit the properties of the models to derive tighter reformulations. We

also compare the linear programming relaxations of dual and penalty based reformulations to

establish the dominance relationship between them. Our theoretical analysis show that the dual

based reformulations dominate the penalty based reformulations. Our computational results on

instances with up to 200 nodes and 15 hubs confirm the strength and efficiency of the proposed

dual based reformulations over penalty based reformulations for all the three variants of the

hub interdiction problem.
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