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Abstract The interior-point method (IPM) has become the workhorse method
for nonlinear programming. The performance of IPM is directly related to the
linear solver employed to factorize the Karush-Kuhn—Tucker (KKT) system at
each iteration of the algorithm. When solving large-scale nonlinear problems,
state-of-the art IPM solvers rely on efficient sparse linear solvers to solve the
KKT system. Instead, we propose a novel reduced-space IPM algorithm that
condenses the KKT system into a dense matrix whose size is proportional
to the number of degrees of freedom in the problem. Depending on where
the reduction occurs we derive two variants of the reduced-space method:
linearize-then-reduce and reduce-then-linearize. We adapt their workflow so
that the vast majority of computations are accelerated on GPUs. We provide
extensive numerical results on the optimal power flow problem, comparing our
GPU-accelerated reduced space IPM with Knitro and a hybrid full space IPM
algorithm. By evaluating the derivatives on the GPU and solving the KKT
system on the CPU, the hybrid solution is already significantly faster than the
CPU-only solutions. The two reduced-space algorithms go one step further by
solving the KKT system entirely on the GPU. As expected, the performance of
the two reduction algorithms depends intrinsically on the number of available
degrees of freedom: their performance is poor when the problem has many de-
grees of freedom, but the two algorithms are up to 3 times faster than Knitro
as soon as the relative number of degrees of freedom becomes smaller.
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1 Introduction

Most optimization problems in engineering consist on minimizing a cost sub-
ject to a set of equality constraints that represent the physics of the problem.
Often, only a subset of the problem variables are actionable. A particular in-
stance of these types of problems is the Optimal Power Flow (OPF), which
formulates as a large-scale nonlinear nonconvex optimization problem. It is
one of the critical power system analysis carried out multiple times per day
by any electrical power system market operator [I5]. In brief, it selects the op-
timal real power of dispatchable resources (typically power plants) subject to
physical constraints (the power flow constraints, or power balance), and oper-
ational constraints (e.g voltage or line flow limits) [6]. It is challenging to solve
to optimality, particularly since its solution is needed within a prescribed and
fairly tight time limit. Since the 1990s, the efficient solution of OPF has relied
on the interior-point method (IPM). In particular, state-of-the-art numerical
tools developed for sparse IPMs can efficiently handle the sparse structure of
typical OPF problems. At each iteration of the IPM algorithm, the descent di-
rection is computed by solving a Karush—-Kuhn—-Tucker (KKT) system, which
requires the factorization of large-scale ill-conditioned unstructured symmetric
indefinite matrices [20]. For that reason, current state-of-the-art OPF solvers
combine a mature IPM solver [38,[39] together with a sparse Bunch-Kaufman
factorization routine [I132]. Along with an efficient evaluation of the deriva-
tives, this method is able to solve efficiently OPF problems with up to 200,000
buses on modern CPU architectures [22].

1.1 Interior-point method on GPU accelerators: state of the art

Most upcoming HPC architectures are GPU-centric, and we can leverage these
new parallel architectures to solve very-large OPF instances. However, port-
ing IPM to the GPU is nontrivial because GPUs are based on a different
programming paradigm from that of CPUs: instead of computing a sequence
of instructions on a single input (potentially dispatched on different threads
or processes), GPUs run the same instruction simultaneously on hundreds of
threads (SIMD paradigm: Single Instruction, Multiple Data). Hence, GPUs
shine when the algorithm can be decomposed into simple instructions run-
ning entirely in parallel where the same instruction is executed on different
data in lockstep (as is the case for most dense linear algebra). In general, not
all algorithms are fully amenable to this paradigm. One notorious example is
branching in the control flow: when the instructions have multiple conditions,
dispatching the operations on multiple threads makes execution in lockstep
impossible.

Unfortunately, factorization of unstructured sparse indefinite matrix is one
of these edge cases: unlike dense matrices, sparse matrices have unstructured
sparsity, rendering most sparse algorithms difficult to parallelize. Thus, im-
plementing a sparse direct solver on the GPU is nontrivial, and the perfor-
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mance of current GPU-based sparse linear solvers lags far behind that of their
CPU equivalents [36l[37]. Previous attempts to solve nonlinear problems on
the GPU have circumvented this problem by relying on iterative solvers [7,[33]
or on decomposition methods [23]. Here, we have chosen instead to revisit the
original reduced-space algorithm proposed in [I0]: this method condenses the
KKT system into a dense matrix, whose size is small enough to be factorized
efficiently on the GPU with dense direct linear algebra.

1.2 Reduced-space interior-point method

Reduced-space algorithms have been studied for a long time. In [I0] the au-
thors introduced a reduced-space algorithm, one of the first effective methods
to solve the OPF problem. The method has several first-order variants, known
as the generalized reduced-gradient algorithm [I] or the gradient projection
method [30], whose theoretical implications are discussed in [16]. The exten-
sion of the reduced-space method to second-order comes later [31]—as well
as its application to OPF [5]—the method becoming during the 1980s a par-
ticular case of the sequential quadratic programming algorithm [9[13]25]18].
However, the (dense) reduced Hessian has always been challenging to form
explicitly, favoring the development of approximation algorithms for second-
order derivatives, based on quasi-Newton [3] or on Hessian-vector products [4].
The reduced-space method was extended to IPM in the late 1990s [8] and was
already adopted to solve OPF [20]. We refer to [2I] for a recent report describ-
ing the application of reduced-space IPM to OPF.

1.3 Contributions

Our reduced-space algorithm is built on this extensive previous work. In Sec-
tion [2| we propose a tractable reduced-space IPM algorithm, allowing the OPF
problem to be solved entirely on the GPU. Instead of relying on a direct
sparse solver, our reduced-space IPM condenses the KKT system into a dense
linear system whose size depends only on the number of control variables
in the reduced problem (here the number of generators). When the number
of degrees of freedom is much smaller than the total number of variables,
the KKT system size can be dramatically reduced. In addition, we estab-
lish a formal connection between the reduced IPM algorithm and the seminal
reduced-gradient method of Dommel and Tinney [I0]. Depending on whether
the reduction occurs at the KKT system level or directly at the nonlinear level,
we propose two different reduced-space algorithms: Linearize-then-reduce and
Reduce-then-linearize. We describe a parallel implementation of the reduction
algorithm in Section [3] and show how we can exploit efficient linear algebra
kernels on the GPU to accelerate the algorithm. We discuss an application of
the proposed method to the OPF problem in Section [4} our numerical results
show that both the reduced IPM and its feasible variant are able to solve
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large-scale OPF instances—with up to 70,000 buses—entirely on the GPU.
This result improves on the previous results reported in [21L27]. As expected,
the reduced-space algorithm is competitive when the problem has fewer de-
grees of freedom, but it achieves respectable performance (within a factor of 3
compared with state-of-the-art methods) even on the less favorable instances.
To the best of our knowledge, this is the first time a second-order GPU-based
NLP solver matches the performance of state-of-the art CPU-based solvers on
the resolution of OPF problems.

2 Reduced interior-point method

In we introduce the problem formulation under consideration. In this
problem the independent variables (the control, associated to the problem’s
degrees of freedom) are split from the dependent variables (the state). The
reduction is akin to a Schur complement reduction and can occur at the linear
algebra or the nonlinear levels. In we present our first method, linearize-
then-reduce, performing the reduction directly on the KKT system. In we
show that we can reduce equivalently the nonlinear model using the implicit
function theorem, giving our second method: reduce-then-linearize.

2.1 Formalism

The problem we study in this section has a particular structure: the optimiza-
tion variables are divided into a control variables u € R™ and a state variables
x € R™. The control and the state variables are coupled together via a set of
equality constraints:

g(mvu):()? (1)

with g : R" x R"™» — R"= (note that we choose the dimension of the output
space to be equal to n,, the dimension of the state). The function g is often
related to the physical equations of the problem; and, depending on the ap-
plications, it can encode balance equations (optimal power flow, the primary
object of study in this work), but also discretizations of dynamics (optimal
control), or partial differential equations (PDE-constrained optimization).

We call Equation the state equation of the problem. Further, an ob-
jective function f : R™ x R™ — R and a set of generic constraints h :
R" x R™ — R™ are given. The optimization problem in state-control form
can be expressed as

min f(xz,u) subject to
,u

)

u>0, x>0,
{ 0

g(z,u) =0, h(x,u)<0.

The focus of this paper is the efficient solution of using the IPM. For that
reason one often prefers to introduce slack variables s € R™ for the nonlinear
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inequality constraints. Then can be rewritten as

u>0, >0, s>0

g(x,u) =0, h(z,u)+s=0. (3)

T, u,s

min f(xz,u) subject to {

The Lagrangian of the problem is

L(m? u’ 8; A’ y? v’ w’ Z) = f(m’ u) Jr A—r-{](m7 u)
+y' (h(z,u) +s) — vie—wlu—2z"s, (4)

where A € R"* is the multiplier associated with the state equation , Yy €
R™ the multiplier associated with the inequality constraints h(x,u) + s = 0,
and v € R" w € R", z € R™ the multipliers associated with the bound
constraints.

In what follows, we assume that f, g, and h are twice continuously differ-
entiable on their domain. Throughout the article we denote

9=Vauwflx,u)c Retnu gradient of the objective
A = Oguyh(z,u) € R™X (etnu) Jacobian of the inequality cons.
G = Ozuw)9(x,u) € R7e X (Retnu) Jacobian of the equality cons.
W = V%E’U)L(ac, U, 8$;\, Y, v, W, Z) Hessian of Lagrangian.

We partition the first- and second-order derivatives into the blocks associated
with the state variables  and the control variables w; that is,

A=A, A, , wa
g— [g] 7 Aude] 0w [WWWM} _
9 G=1[G,G

2.2 Linearize-then-reduce

Now we discuss the first reduction method: linearize-then-reduce. This method
exploits the structure of the problem directly at the linear algebra level.
2.2.1 Successive reductions of the KKT system

We first present the KKT system in an augmented form and show how we can

reduce it by removing from the formulation first the equality constraints and
then the inequality constraints.



6 Pacaud et al.

KKT conditions. The KKT conditions associated with the standard formula-
tion are

Gu+ Gy A+ Ay —w=0, (5a)
g: +GIXN+Aly —v=0, (5b)
y—2z=0, (5¢)
gl u) =0, (5d)
h(z,u)+ s =0, (5e)
Xv=0, z,v>0, (51)
Uw=0, u,w >0, (5g)
Sz=0, 5,z>0. (5h)

Augmented KKT system. The interior-point method replaces the complemen-
tarity conditions by using a homotopy approach. In particular, with a fixed
barrier o > 0 the complementary conditions — give Xv = pe,,,Uw =
uen,,Sz = ue,, [26]. Here e, is the vector of all ones of dimension n. By
linearizing , we obtain the following (nonsymmetric) linear system, which
is used for the step computation within interior-point iterations.

(Wuu Wae 0 GT A =T 0 07 [pa] (g, + G A+ Aly —w]
Waew Wew 0 GIT AT 0 =1 0 | | pa ge +GIA+ Aly —v

0 0 0 0 —I 0 0 —I| |ps y—z

G, G 0 0 0 0 0 O] |pr| _ g(z,u)

A, A, =1 0 0 0 0 0] |py| h(z,u) + s

o vV 0 0 0 X 0 0 Do Xv — ey,

w 0 0 0 0 0 U 0 Puw Uw — pe,,
L0 0 Z2 0 0 0 0 S| |p:] i Sz — uey, ]

(6a)

In IPM, it is standard to eliminate the last three block rows from (asso-
ciated with (py, pw,P-)). The elimination yields the following reduced, sym-
metric linear system.

Wow Wee+Ze 0 Gl ALl | P g: +GIA+Aly —pX e,
0 0 Yo 0 —I| |ps| =— y—pS ey,
Gy G 0 0 0] |px 9(z,u)
A, A, -I 0 0 Dy h(xz,u) + s
Kaug
(6b)

Here, ¥, :== U™'W , ¥, := X'V, and X, := S™'Z. The matrix Ky, is
sparse and symmetric indefinite and is typically factorized by a direct linear
solver at each iteration of the interior-point algorithm. As discussed before,
however, this form is not amenable to the GPU, motivating us to reduce further

the system (6D).
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Reduced KKT system. The reduction strategy adopted in the linearize-then-
reduce method exploits the invertibility of G,. In many applications, such
as optimal power flow, optimal control, and PDE-constrained optimization,
the state variables are completely determined by the control variables. This
situation leads to the structure in the Jacobian block, and in many applications
G block is invertible. In the next theorem, we show how the invertibility of
G, allows the reduction of the KKT system . For ease of notation, we
denote by r := (r1, 79, 73,74, 75) the right-hand side vector in .

Theorem 2.1 If at (z,u) € R™ x R" the Jacobian G is invertible, then
we define the reduced Hessian Wy, and the reduced Jacobian A, as

W = Wau — WauG3 'Gy — GGy "Wy + G Gy T (Way + 5,)G, Gy
A, = A, — AG;G,, .
Then, the augmented KKT system is equivalent to

Wuu + Eu 0 AI yun 7:1
0 Zs -1 Ds| = — 7:2 ) (73‘)
Au -1 0 Dy 1:3
Kred

where
Fr=11—G Gy 'ro— (Wuy — Gy Gy T (Wap + 22)) G, 1
'f'Q =73,
123 =75 — AmG;17‘4 .
Further, the state and adjoint descent directions can be recovered as
Dz = _G;1 (7'4 + Gupu) )
-7 T (7b)

Proof. Using the fourth block of rows in , we can remove the variable p,
in the system using G, as a pivot. We get

Wou + Xu — W G 1Gy 0 GI A [pu r1 — WG lry
Wew — Wae + Ex)GglGu 0 GI. AI Ps| ro — (Wae + Em)G;1r4
0 Es 0 —I P - T3
A, — A:,;GglGu -1 0 0 Dy rs — AzG;I’m

The descent direction w.r.t. & can be recovered with an additional linear solve:
pr = —G; ' (r4+Gypy). In the system (2.2.1]) we can eliminate the third block
of columns (associated with p,), with G ' as a pivot. We recover the linear

system in . The descent direction py now satisfies
— *G;T (’I"2 + AIpy + qupu + (me + Ex)px)

by rearranging the terms, thus completing the proof. O
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Condensed KKT system. The left-hand side matrix K,.q in has a size
(2n,, +m) X (2n, +m), which can be prohibitively large if the number of con-
straints m is substantial. Fortunately, can be condensed further, down to
a system with size n, X n,. This additional reduction requires the invertibility
of X5, which is always the case for interior point algorithms.

Theorem 2.2 We suppose that X is nonsingular. Then the linear system
is equivalent to

(Ww FAT 25,21“) Pu=— (1 + Al Sifs — AT#y) | (8a)

Kcona

the slack and multiplier descent directions being recovered as
Py = Ss(Aupu + 73— E7'0) . po= X7 (py —72) - (8b)

Proof. In we eliminate the second block of columns (associated with the
slack descent py) to get

[IZT —fgl} L’u} - {f'g —7};1%2] : 9)

The slack descent direction is recovered as p; = X' (p, — 72) . In the last
block of rows we can reuse X1 as a pivot to simplify further @:

(Wuu n AIZSAu)pu = (i + Al iy — Al i) (10)
with p, = X (Aupy + 73 — T ). 0

Discussion. The final matrix K.,,q has a size n, X n, and is dense, meaning
that it can be factorized efficiently by any LAPACK library. We note that the
reduction has proceeded in two steps: first, we have reduced the system by
eliminating the state variables, and then we have condensed it by eliminating
the slacks, giving the order Kquy — Kreqd — Keona- We have opted for this
order to simplify the comparison with the reduce-then-linearize approach pre-
sented in the next section 2:3] In practice, however, it is more convenient to
first condense the linear system and then reduce it: Kqug = Keond — Kred-
This equivalent approach avoids the allocation of the dense reduced Jacobian
Au, which has a size m xn,, and is expensive to store in memory. The reduction
Kaug = Keond = Kyea 1s illustrated in Figure [T}

We establish the last condition to guarantee that we compute a descent
direction at each iteration. For any symmetric matrix M € R"™*", we note
its inertia I(M) = (n4,n_,no) as the numbers of positive, negative, and zero
eigenvalues.

Theorem 2.3 The step p in s a descent direction if

— I(Kaug) = (ng + ny + m,ng +m,0), equivalent to



Title Suppressed Due to Excessive Length 9

. et
- . e
P
. e
- —.MM__.—“
[
1323 X 1323 . 469'X 469 107 x 107

Fig. 1. Successive reductions Kaqug — Kcond — Kreq associated with 118ieee.

— I(Kyeq) = (ny +m,m,0), equivalent to

— I(Kcond) = (ny,0,0) (the condensed matriz K.onq is positive definite).
The equivalence of the three conditions can be verified via the Haynsworth
inertia additivity formula.

2.2.2 Linearize-then-reduce algorithm (LinRed IPM)

Now that the different reductions have been introduced, we are able to present
the linearize-then-reduce (LinRed) algorithm in Algorithm|[I] following [8]. The
reduction step is in itself an expensive operation, as we will explain in
The other bottlenecks are the factorization of the dense condensed matrix
Keona (which amounts to a Cholesky factorization if the matrix is positive
definite) and the factorization of the sparse Jacobian G.

Data: Initial primal variables (zo, ®o, s0) and dual variables (Ao, yo)

for £ =0,... do

Evaluate the derivatives W, G, A at (xg, ug) ;

Reduction: Condense the KKT system in Keond ;

Control step: Factorize and solve the system to find p,, ;

Dual step: py = ES(Aupu + 73 — Es_l'f'g);

Slack step: ps = Es_l(py — P2);

State step: p, = ngl(T'4 + Gupu) ;

Adjoint step: py = =Gz | (12 + A Py + Waubu + Was + Zu)pz) ;
Line search: Update primal-dual direction (wx+1, Tr+1,Sk+1; No+15 Yk+1)
using a filter line-search along direction (pu,Pa,Ps, Pxr; Py);

end
Algorithm 1: Linearize-then-reduce algorithm

2.3 Reduce-then-linearize

We now focus on our second reduction scheme, operating directly at the level
of the nonlinear problem . This method can be interpreted as an interior-
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point alternative of the reduced-gradient algorithm of Dommel and Tinney [10]
and was explored recently in [21].

2.8.1 Nonlinear reduction

Nonlinear projection. Instead of operating the reduction in the linearized KKT
system as in §2.2] Dommel and Tinney’s method uses the implicit function

theorem to remove the state variables from the problem.

Theorem 2.4 (Implicit function theorem). Let g : R"™ x R™ — R" g
continuously differentiable function, and let (x,u) € R"™ x R™ such that
g(x,u) = 0. If the Jacobian G, is invertible, then there exist an open set
U CR™ (withu € U) and a unique differentiable function x : U — R such
that g(z(u),u) =0 for allu € U.

The implicit function theorem gives, under certain assumptions, the existence
of a local differentiable function z : U — R"= attached to a given control w. If
we assume that on the feasible domain g(z, w) = 0 is solvable and the Jacobian
is invertible everywhere, we can derive the reduced-space problem as

u>0, z(u)>0

h(z(u),u) <0. (11)

mgn f(z(u),u) subject to {
In contrast to , the problem optimizes only with relation to the con-
trol u, the state being defined implicitly via the local functionals z. By def-
inition g(z(u),u) = 0, the state equation is automatically satisfied in the
reduced-space. However, the reduced-space problem is tied to the assumptions
of the implicit function theorem: in some applications, finding a control u
invertible w.r.t. the state equations can be challenging.

Reduced derivatives. We define the reduced objective and the reduced con-
straints as

fo(w) o= Fla(w) ), () = [h(““)’)“)} , (12)

—z(u

and we note the reduced Lagrangian L, (u, s;y) := f.(u) +y' (h.(u) +s) —
w'u — z's. By exploiting the implicit function theorem, we can deduce the

derivatives in the reduced-space.

Theorem 2.5 (Reduced derivatives [17, Chapter 15.]) Let u € R™ such that
the conditions of the implicit function theorem hold. Then,

— The functions f, and h, are continuously differentiable, with

Ay — Axleau}

G-lc. . (13a)

vfr(u) =Gu — GIG;TQGJ» Au = ahr(u> = |:

— The Hessian of the reduced Lagrangian L, satisfies
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Reduced-space KKT system. The KKT conditions associated with the reduced
problem are
Vufr+AIy_w:07 ( )
Yy—z= Oa ( )
h-(u) +s=0, (14c)
Uw=0, u,w >0, (14d)
§2=0, 8,220, (14e)

translating, at each iteration of the IPM algorithm, to the following augmented
KKT system:

Wou+ 20 0 Al [pu VoL, —pU e,
0 X —I Ds| = Y- NS_lem . (15)
A, -1 0] |py hy(u) + s

We note that we can apply Theorem to get a condensed form of the KKT
system . The KKT system has a structure similar to that of
but with minor differences. (i) The state & and the adjoint A are updated
independently of , respectively by solving the state equation and by
solving a linear system. (ii) The bounds @ > 0 are incorporated inside the
function h,., whereas handles them explicitly in the KKT system (leading
to an additional term X, in the reduced Hessian W,,). (iii) The right-hand
side in incorporates additional second-order terms that do not appear in
. Indeed, as here with r4 = g(x,u) = 0, all the terms associated with ry
disappeared in the right-hand side of , including the second-order terms.

2.3.2 Reduce-then-linearize algorithm (RedLin IPM)

At each iteration k, the reduce-then-linearize (RedLin) algorithm proceeds
in two steps. First, given a new control uy, the algorithm finds a state xy
satisfying g(@y,ur) = 0 by using a nonlinear solver. Then, once x; has been
computed, the reduced derivatives are updated, and the condensed form of the
system is solved to compute the next iterate. This process is summarized
in Algorithm [2l We note that compared with Algorithm [I} the state step
and the adjoint step are computed before solving the KKT system, since
we first have to solve . In addition, the algorithm gives no guarantee that
at iteration k there exists a state @y such that g(xy,ur) = 0, which can be
problematic on certain applications. On the other hand, even if interrupted
early, the algorithm produces state variables that are feasible for the state
equation , which may be important in real-time applications.

3 Implementation of reduced IPM on GPU

In this section we present a GPU implementation of the reduced-space algo-
rithm. To avoid expensive data transfers between the host and the device, we
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Data: Initial primal variable (ug, so) and dual variable (yo)

for £ =0,... do

Projection: Find @y satisfying g(xg, ux) =0 ;

Adjoint step: Solve A = —G3 "VaL ;

Reduction: Condense the KKT system in Keond

Control step: Factorize K.,,q and solve the system to find py, ;

Dual step: py = ZS(Aupu + 73 — E;l'f'g);

Slack step: ps = E;l(py — 72);

Line search: Update primal-dual direction (wg41,Sk+1,Yk+1) using a filter
line-search along direction (pu,Ps,Py);

end

Algorithm 2: Reduce-then-linearize algorithm

have designed our implementation to run as much as possible on the GPU,
comprising (i) the evaluation of the callbacks, (ii) the reduction algorithm,
and (iil) the dense factorization of the condensed KKT system. At the end,
only the interior-point routines (line search, second-order correction, etc.) run
on the host. In particular, our method does not require transferring dense ma-
trices between device and host, and most of the operations performed on the
host are simple scalar operations.

3.1 GPU operations

The key idea is to exploit efficient computation kernels on the GPU to imple-
ment the reduction algorithm. To the extent possible, we avoid writing custom
kernels and rely instead on the BLAS and LAPACK operations, as provided
by the vendor library (CUDA in our case).

We list below the specific kernels we are targeting (Sp stands for sparse,
Dn for dense).

— SpMV/SpMM (sparse matriz-vector product/sparse matriz-dense matriz prod-
uct). On the GPU, sparse matrices are stored in condensed sparse row
(CSR) format, allowing the sparse multiplication kernels to be run fully in
parallel.

— SpSV/SpSM (sparse triangular solve). Once an LU factorization is computed
(for instance with SpRF), a sparse matrix A is decomposed as PAQ = LU,
with P and @ two permutation matrices, L and U being respectively a lower
and an upper triangular matrix. The routine SpSV solves the triangular
systems L~'b and U~'b efficiently. The extension to multiple right-hand
sides is directly provided by the SpSM kernel.

— SpRF (sparse LU refactorization). GPUs are notoriously inefficient at fac-
torizing a sparse matrix M. If the sparse matrix M has always the same
sparsity pattern, however, we can compute the initial factorization on the
CPU and move the factors back to the GPU. Then, if the nonzero coeffi-
cients of the matrix changes, the matrix can be refactorized entirely on the
GPU, by updating directly the L and U factors.
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3.2 Porting the callbacks to the GPU

In nonlinear programming, the evaluation of the callbacks is often one of the
most time-consuming parts, and the OPF problem is not immune to this is-
sue. Most of the time, the derivatives of the OPF model are provided ex-
plicitly [40], evaluated by using automatic differentiation [I2[14] or symbolic
differentiation [19]. Here we have chosen to stick with automatic differentia-
tion. We have streamlined on the GPU the evaluation of the objective and
of the constraints by adopting the vectorized model proposed in [24]. This
model factorizes all the nonlinearities inside a single basis function, which can
be evaluated in parallel inside a single GPU kernel. In addition, we have de-
signed our implementation to be differentiable with ForwardDiff.jl [29]. In
total, each iteration of the reduced IPM algorithm requires one evaluation of
the objective’s gradient (=one reverse pass), one evaluation of the Jacobian of
the constraints (=one forward pass), and one evaluation of the Hessian of the
Lagrangian (=one forward-over-reverse pass).

The OPF comes with two decisive advantages. (i) Its structure is super-
sparse, rendering all the SpMV operations efficient (we have at most a dozen
of nonzeroes on each rows of the sparse matrices). (ii) The sparsity of the Ja-
cobian G, is fixed (it is associated with the structure of the power network),
allowing for efficient refactorization with SpRF.

3.3 Porting the reduction algorithm to the GPU

Once the derivatives are evaluated in the full space, it remains to build the
condensed KKT system . The algorithm has to be repeated at each it-
eration of the IPM algorithm, and its performance is critical. If we denote
K =W + AT X, A, then we note that

T
S T i I Kuu Kux I —
Wou + Al S,A, = {_ cia| |k k| |t | = Kw 00)

Evaluating requires three different operations: (i) factorizing the Jacobian
G, (SpRF), (ii) triangular solves G;'b (SpSV/SpSM), and (iii) sparse-matrix
matrix multiplications with K (SpMM). The order in which the operations are
performed is important, affecting the complexity of the reduction algorithm.

The naive idea is to evaluate first the sensitivity matrix S = —G;1G,, in
order to reduce the total number of linear solves to n,. However, the matrix
S is dense, with size n, x n,, and the cross-product S' K,,S requires storing
another intermediate dense matrix with size n, X n, to evaluate the dense
product ST (K,,S) (which is itself slow when n, is large). This renders the
algorithm not tractable on the largest instances.

Hence, we avoid computing the full sensitivity matrix S and rely instead
on a batched variant of the adjoint-adjoint algorithm [28]. First, we compute
an LU factorization of G, as PG,Q = LU, with P and ) two permutation
matrices and L and U being respectively a lower and an upper triangular
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matrix (using SpRF, the factorization can be updated entirely on the GPU if the
sparsity pattern of G, is the same along the iterations). Once the factorization
is computed, solving the linear solve G 'b translates to 2 SpMV and 2 SpSV
routines, as G, 'b = QU 'L~ ' Pb.

Second, we build the sparse matrix K € R« +nu)x(ne+nu) (nontrivial but
doable in one sparse addition and one sparse-sparse multiplication SpGEMM).
Then, for a batch size N, the algorithm takes as input a dense matrix V €
R™*N and evaluates the Hessian-matrix product KUUV with three successive
operations.

1. Solve Z = -G Y(G, V). (3 SpMM, 2 SpSM)
Hu _ Kuu Kuac |4

2. Evaluate [HJ = [Kw ij [Z] (1 SpMM)

3. Solve ¥ = G; T H, and get Ky = Hy, — Gy V. (3 SpMM, 2 SpSM)

One Hessian-matrix product KoV requires 2N linear solves (streamlined in
four SpSM operations), giving a total of 7 SpMM and 4 SpSM operations. Evaluat-
ing KoV requires 3 x ng X N storage for the two intermediates Z,¥ € R™=*N
as well as an additional buffer to store the permuted matrix in the LU trian-
gular solves. Overall, the evaluation of the full reduced matrix Kuu requires
div(n,, N) + 1 Hessian-matrix products, giving a complexity proportional to
the number of controls n,,.

4 Numerical results

In this section we assess the performance of the reduced IPM algorithm on the
various OPF instances presented in First, we evaluate in the scala-
bility of the GPU-accelerated reduction algorithm initially presented in §3.3]
Next, we present in §4.3] a detailed assessment of the reduced IPM algorithm
on the GPU, by comparing its performance with that of a state-of-the-art full-
space IPM working on the CPU. Then, we present in a comparison of
our two reduced-space algorithms: linearize-then-reduce (LinRed) and reduce-

then-linearize (RedLin).

4.1 Benchmark instances

We benchmark the reduced IPM algorithm on the OPF problem. We select
in Table [1| a subset of the MATPOWER cases provided in [40], whose size
varies from medium to large scale. In addition, we add three cases from the
PGLIB benchmark [2] with fewer degrees of freedom (as indicated by the ratio
n;f:nu) Our algorithms have been implemented in Julia for portability. All
the benchmarks presented have been generated on our workstation, equipped
with an NVIDIA V100 GPU and using CUDA 11.4. The code, open source, is

available on https://github.com/exanauts/Argos. j1/.
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Case | ny ny ng | ne Ny nu/(Ne +nu)
118icee 118 186 54 181 107 0.37
300ieee 300 411 69 530 137 0.21
ACTIVSg500 500 597 56 943 111 0.11
1354pegase 1,354 1,991 260 2,447 519 0.17
ACTIVSg2000 2,000 3,206 432 3,607 783 0.18
2869pegase 2,869 4,582 510 5,227 1,019 0.16
9241pegase 9,241 16,049 1,445 17,036 2,889 0.14
ACTIVSglOk 10,000 12,706 1,937 18,544 2,909 0.14
13659pegase 13,659 20,467 4,092 23,225 8,183 0.26
ACTIVSg25k 25,000 32,230 3,779 47,246 5,505 0.10
ACTIVSg70k 70,000 88,207 8,107 | 134,104 11,789 0.08
9591 _goc 9,591 15,915 365 19,013 335 0.02
10480_goc 10,480 18,559 7 20,620 677 0.03
19402_goc 19,402 34,704 971 38,418 769 0.02

Table 1. Case instances

obtained from MATPOWER

4.2 How far can we parallelize the reduction algorithm on the GPU?

We first benchmark the reduction algorithm on the instances in Table [I} For
SpRF, the reduction algorithm uses the library cusolverRF (with an initial
factorization computed by KLU), the kernels SpSM and SpMM being provided
by cuSPARSE. We show in Figure [2| (a) that cusolverRF is able to refactor-
ize efficiently the Jacobian G, on the GPU (its sparsity pattern is constant,
and given by the structure of the underlying network). In Figure [2| (b), we
depict the performance of the reduction algorithm against the batch size N.
We observe that the greater the size N, the better is the performance, un-
til we reach the scalability limit of the GPU. For instance, on ACTIVSg70k
we reach the limit when N = 512, meaning we cannot parallelize the algo-
rithm further on the GPU. This limits the performance of the reduction since
div(11789,512) 4+ 1 = 24 batched Hessian-matrix products remain to be com-
puted to evaluate the reduced Hessian of ACTIVSg70k. We note that, overall,
it makes no sense to use a batch size greater than N = 256.

Time to refactorize Jacobian Gy Scaling of reduction algorithm

« cusolverhF -~
101 UMFPACK e .
R e
»- e
. -
100 . o
102 — .
o = ~__ >0 o
H < ‘\’ -
E 15 s
£ £ 107 \g\& ——3—3
-
1073 . - e A
. : b T
» 1002 —
* &
- A =
. @&
10 107243 ~e
10° 10t 10° 25 7
State dimension ny Batch size N
(a) (b)

Fig. 2. Performance of the reduction algorithm: (a) time spent refactorizing the Jacobian G
in cusolverRF and in UMFPACK; (b) performance of the reduction algorithm against the batch
size N.
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4.3 Linearize-then-reduce or full-space interior-point?

We have implemented the linearize-then-reduce (LinRed) inside the MadNLP
solver [35]. As a reference, we benchmark our code against Knitro 13.0 [39)
and MATPOWER [40]. We note that the performance is consistent with that
reported in the recent benchmark [22]. Our implementation uses the vector-
ized OPF model introduced in which runs entirely on the GPU (including
the evaluation of the derivatives). MadNLP runs in inertia-based mode: Theo-
remstates that the inertia is correct if and only if the reduced matrix K.onq
is positive-definite. This fact is exploited in LinRed. At each iteration the al-
gorithm factorizes the matrix K y,q with the dense Cholesky solver shipped
with cusolver; if the factorization fails, we apply a primal-dual regularization
to Kcong until it becomes positive-definite. In addition, we use the reduction
algorithm presented in with a batch size N = 256. We compare LinRed
with a hybrid full-space IPM algorithm using also the GPU-accelerated OPF
model but solving the original augmented system on the CPU with the
linear solver MA27 (hence combining the best of both worlds). The hybrid
full-space TPM and LinRed both use the same model and the same derivatives
and are equivalent in exact arithmetic unless we run into a feasibility restora-
tion phase. In that edge case, the algebra of LinRed can be adapted but no
longer follows the workflow we presented above. In that circumstance, LinRed
applies the dual regularization only on the inequality constraints, to fit the
linear algebra framework we introduced in §2.2

Concerning scaling, MadNLP uses the same approach as Ipopt, based on
the norm of the first-order derivatives [38]. The initial primal variables (g, ug)
are specified inside the MATPOWER file, and the initial dual variables are set
to zero: yo = 0. The algorithm stops when the primal and dual infeasibilities
are below 1078, The results of the benchmark are presented in Table [2} Here,
the dagger sign t indicates that the IPM algorithm runs into a feasibility
restoration: this is the case both for ACTIVSg10k and for ACTIVSg70k (even
Knitro struggles on these two instances, with numerous conjugate gradient
iterations performed).

We make the following observations. (i) Hybrid full-space IPM is slightly
faster than Knitro, but only because it evaluates the derivatives on the GPU.
(ii) LinRed is able to solve all the instances, including ACTIVSg70k. (iii) As
expected, we get the same number of iterations between Full-space IPM and
LinRed except on 13659pegase. This case is indeed ill-conditioned, and the
convergence is sensitive to the linear solver employed (even MA27 and MA57
give different results on this case). (iv) Despite the good performance of the
Cholesky factorization, LinRed is negatively impacted by the scalability of the
reduction algorithm: the larger the relative number of controls with respect
to the total number of variables, the less competitive is the reduction. On
the largest instances, LinRed beats Full-space IPM only on the three goc
instances, which have fewer degrees of freedom (see Table .
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‘ Knitro Hybrid full-space IPM LinRed
Case | #it Time (s) | #it Time (s) MA27 (s) | #it Time (s) Chol. (s) Reduction (s)
ieeell8 10 0.06 16 0.17 0.01 16 0.26 0.01 0.02
ieee300 10 0.12 22 0.28 0.06 22 0.42 0.02 0.03
ACTIVSg500 20 0.51 24 0.29 0.06 24 0.45 0.02 0.03
1354pegase 22 1.17 40 0.85 0.35 40 1.16 0.09 0.29
ACTIVSg2000 18 1.62 43 1.95 1.42 43 2.40 0.24 0.65
2869pegase 22 2.11 50 2.03 1.18 50 2.69 0.20 0.97
9241pegase 102 31.7 69 10.65 6.14 69 23.72 1.17 16.23
ACTIVSgl0k | 130 39.3 | 767 7.9 5.66 | 88t 21.9 1.5 14.7
13659pegase 120 116.0 | 346 98.31 67.13 | 145 242.69 19.23 202.89
ACTIVSg25k 47 36.1 86 24.70 16.86 86 84.96 4.27 68.11
ACTIVSg70k 101 242.0 | 90t 89.8 65.7 | 857 658.2 215 606.5
9591goc 37 22.5 43 11.66 10.38 43 7.69 2.13 1.61
10480goc 40 25.7 50 13.98 11.95 50 11.46 3.93 3.34
19402goc 45 66.5 47 30.75 26.83 47 19.52 4.86 7.24

Table 2. Benchmarking LinRed with Full-space IPM

4.4 Linearize-then-reduce or reduce-then-linearize?

Now we benchmark LinRed with its feasible variant, RedLin. In contrast to
LinRed, RedLin follows a feasible path w.r.t. the state equations : the algo-
rithm can be stopped at any time and return a feasible point, an advantageous
feature if the resolution is time-constrained. LinRed uses the same setting
as before, and RedLin is also using the MadNLP solver, using the reduced
derivatives defined in . RedLin solves the state equations (the power
flow balance equations) at each iteration with a Newton-Raphson algorithm,
with a tolerance of 1071, The algorithm has two drawbacks: (i) this approach
requires evaluating the reduced Jacobian Au, with size m X n,, and (ii) the
default scaling computed by MadNLP depends on G, !, rendering the scaling
inappropriate if G, has a poor conditioning. To ensure that the comparison
is fair, we have modified our implementation so that RedLin uses the same
scaling as LinRed. The results are presented in Figure (the time spent in the
reduction is omitted since it is the same as in LinRed).

Objective lgtx. )l

74800

as0 Case | #it Time (s) Chol. (s) PF (s)
b casel18 16 0.40 0.01 0.13
a0 100 case300 24 0.55 0.02 0.20
10 - AT ACTIVSg500 22 0.58 0.01 0.23

Dual infeasibility Conditioning 1354pegase 32 1.34 0.05 0.35

. ACTIVSg2000 | 33 2.25 0.07 0.65
w0 2869pegase 34 2.62 0.08 0.67
9241pegase 48 28.30 0.78 3.05
ACTIVSglok | 140  90.53 3.60 5.51
w 13659pegase 167  944.04 3319  15.78
w ACTIVSg25k 52 156.17 1.79 5.36
v 1o ACTIVSgT70k - - - -

b) Performance of RedLin.
(a) Convergence of RedLin (blue) and LinRed ®)

(red) on 1354pegase.

Fig. 3. Benchmarking LinRed with RedLin.
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Comparing with Table [2| we make the following observations. (i) RedLin
is able to solve instances with up to 25,000 buses, which, to the best of our
knowledge, is a net improvement compared with previous attempts to solve
the OPF in the reduced-space [2IL27]. (ii) On the largest instances, RedLin
is penalized compared with LinRed, since it has to deal with the reduced
Jacobian A,. For that reason, RedLin breaks on ACTIVSg70k, since we are
running out of memory. (iii) From case118 to 9241pegase, RedLin converges
in fewer iterations than does LinRed. (iv) The time to solve the power flow
(column PF) is a fraction of the time spent in the reduction algorithm. (v)
On ACTIVSgl0k, RedLin does not run into the feasibility restoration we en-
countered in LinRed: on this difficult instance, the convergence of RedLin is
smoother, even if it requires more iterations. (vi) the Newton—Raphson is not
guaranteed to converge, but empirically we find this is not an issue when a
second-order method is employed.

In Figure[3a) we compare the convergence of the two algorithms on 1354pegase.
We observe that RedLin converges faster than LinRed, the latter satisfying the
power flow equations only at the final iterations. Interestingly, the condition-
ing of the KKT matrix K.,,q does not blow up at the final iterations and
remains below 103, a reasonable value for an interior-point algorithm.

5 Conclusion

This paper has presented an efficient implementation of the IPM on GPU ar-
chitectures, based on a Schur reduction of the underlying KKT system. We
have derived two practical algorithms, linearize-then-reduce and reduce-then-
linearize, adapted their workflows to be efficient when the vast majority of
their computation is run on the GPU, and detailed their respective perfor-
mance on different large-scale OPF instances. We also discussed the benefits
of a hybrid full space IPM solver — computing the derivatives on the GPU
and the linear algebra on the CPU — and demonstrated that this approach
generally outperforms Knitro, running exclusively on the CPU. The relative
performance of the reduced-space algorithms is highly dependent on the ratio
of controls with respect to the total number of variables. Their performance
lags behind both Knitro and the hybrid full space solver when the problem has
many control variables (as it is the case on the MATPOWER benchmark) but
is significantly ahead — up to a factor of 3 — when the problem has a relatively
lower number of control variables. Moreover, the reduce-then-linearize algo-
rithm has the added benefit of producing a feasible solution to the power flow
equations at any iteration, which makes it a great candidate for real time ap-
plications. To improve the performance of reduction algorithms, we believe the
most important item is to alleviate the dependence on the number of control
variables. We plan to explore a way to accelerate the reduction by exploiting
the exponentially decaying structure of the reduced Hessian [34].
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