
Improving the global convergence of Inexact Restoration methods

for constrained optimization problems*

Roberto Andreani � Alberto Ramos� Leonardo D. Secchin §

March 28, 2022 (revised June 26, 2024)

Abstract

Inexact restoration (IR) methods are an important family of numerical methods for
solving constrained optimization problems with applications to electronic structures and
bilevel programming among others areas. In these methods, the minimization is divided in
two phases: decreasing infeasibility (feasibility phase) and improving optimality (optimality
phase). The feasibility phase does not require the generated points to be feasible, so it has
a practical appeal. In turn, the optimization phase involves minimize a simplified model
of the problem over a linearization of the feasible set. In this paper, we introduce a new
optimization phase through a novel linearization that carries more information about com-
plementarity than the employed in previous IR strategies. We then prove that the resulting
algorithmic scheme is able to converge globally to the so-called complementary approximate
KKT (CAKKT) points. This global convergence result improves upon all previous results
for this class of methods. In particular, convergence to KKT points is established with the
very weak CAKKT-regularity condition. Furthermore, to the best of our knowledge, this is
the first time that a method for general nonlinear programming has reached CAKKT points
without exogenous assumptions. From the practical point of view, the new optimization
phase does not require significant additional computational effort compared to the usual
one. Our theory also provides new insights, even for the classical IR method, for cases where
it is reasonable to compute exact feasible points in the feasibility phase. We present numer-
ical experiments on CUTEst problems to support our findings.
Keywords: nonlinear optimization, inexact restoration, sequential optimality conditions,
projection step

1 Introduction

We consider the optimization problem of the form

min f(x) s.t. h(x) = 0, g(x) ≤ 0 (NLP)

*This work has been partially supported by CEPID-CeMEAI (FAPESP 2013/07375-0), FAPESP (grants
2018/24293-0, 2017/18308-2 and 2023/08706-1), FAPES (grant 116/2019), CNPq (grants 306988/2021-6,
407147/2023-3 and 309136/2021-0), PRONEX - CNPq/FAPERJ (grant E-26/010.001247/2016) and ANID
(Fondecyt grant 1231188).

�Department of Applied Mathematics, University of Campinas, Campinas, SP, Brazil. Email:
andreani@ime.unicamp.br

�Departamento de Matemática, Universidad de Tarapacá, casilla 7D, Arica, Chile. Email:
aramosf@academicos.uta.cl

§Department of Applied Mathematics, Federal University of Esṕırito Santo, São Mateus, ES, Brazil. Email:
leonardo.secchin@ufes.br

1

where f : Rn → R, h : Rn → Rm and g : Rn → Rp are continuously differentiable functions.
One class of numerical methods for solving (NLP) is the Inexact Restoration (IR). Roughly
speaking, IR is an iterative method where its outer iteration is divided in two phases: feasibility
phase and optimality phase. The first phase focuses on improving feasibility from the current
point by applying a numerical method to a suitable infeasibility problem. In the second phase, a
trial point with better optimality measure is computed, for example by minimizing a quadratic
approximation of the objective function/Lagrangian over a linearization of the feasible set. Then,
the generated trial point is accepted or rejected as a new iterate if some criterion is satisfied,
commonly based on merit functions or filters, see [16, 20, 25, 27, 30]. IR methods have been
successfully applied to problems where there is a specific way to improve feasibility. For instance,
they were used for solving problems arising in electronic structure calculations [22], bilevel
optimization [7], optimal control [28] and sample average approximation [12].

Classical global convergence results state that every feasible limit point of the sequence gen-
erated by some algorithm satisfies the so-called Karush-Kuhn-Tucker (KKT) conditions (Defini-
tion 2.1 below) if some constraint qualification (CQ) is valid at that point. The situation is more
delicate when no CQ is valid. In this case, global convergence of several numerical methods has
been established by means of sequential optimality conditions, which are satisfied at every local
minimizer regardless of the validity of any CQ. See [8] and references therein. These conditions
can be viewed as asymptotic versions of KKT and differ from each other essentially by the way
the complementarity is described. Using them, we not only ensure that every feasible limit
point generated by an algorithm satisfies a necessary optimality condition stronger than Fritz-
John (FJ) [2], but we also guarantee the validity of KKT under very mild CQs; in particular,
they do not imply the boundedness or uniqueness of the Lagrange multipliers. In this context,
the global convergence of IR methods was established using the so-called approximate gradient
projection (AGP) sequential optimality condition [31, 32].

In this work, we propose a new IR method for solving (NLP). Through a new optimization
step, we improve the quality of the limit points generated by previous IR methods, showing that
the new IR strategy converges to points associated with a strong sequential optimality condi-
tion. This new step is obtained by solving a quadratic subproblem that carries information about
complementarity. Specifically, our focus is on the complementary approximate KKT (CAKKT)
condition introduced in [6] (see Definition 2.2 below). CAKKT is considered one of the tightest
sequential optimality condition as it implies others, including AGP [6, 8]. It provides the con-
nection to the KKT conditions through a very mild CQ, namely CAKKT-regularity [5], that is
strictly weaker than many others in the literature, such as constant positive linear dependence
CQ (CPLD), constant rank of the subspace component CQ (CRSC) and AKKT-regular CQ (also
known as cone-continuity property – CCP); see [5] for a complete overview. Furthermore, when
(NLP) is a convex problem, CAKKT is necessary and sufficient to optimality [6, Theorem 4.2].
So, it is desirable to develop general-purpose algorithms that converge to CAKKT points while
avoiding spurious non-local minimizers. This property makes such algorithms more preferable,
at least theoretically, compared to other methods without this property; see Section 2.

Developing methods that converge to CAKKT points without exogenous assumptions is still
a challenging task. For instance, it was shown in [6] that a safeguarded augmented Lagrangian
(AL) method generates sequences whose feasible limit points fulfill the CAKKT condition if a
certain measure of the infeasibility satisfies a generalized Kurdyka-Lojasiewicz (GKL) inequality.
Under this assumption, the same holds for the primal-dual AL method considered in [8]. Some
interior-point methods (IPM) are able to reach CAKKT points when only ordinary inequality
constraints are present [24], but this capability is lost when inequality constraints are rewritten
by inserting slack variables [8], as is commonly done in IPMs. The main feature of the proposed

2

IR method is that it reaches CAKKT points without imposing the GLK inequality or any
exogenous assumptions, that is, its global convergence analysis is addressed only using standard
hypotheses in the context of IR methods. To the best of our knowledge, this is the first method
with this property. The key is to reformulate the CAKKT condition by means of gradient
projections onto a suitable convex set that naturally fits within the IR framework. Furthermore,
we introduce a sightly more flexible line-search procedure for accepting new iterates than what
has traditionally been used.

This paper is organized as follows. Section 2 recalls some basic definitions and the main
sequential optimality conditions for (NLP). We then present a reformulation of the CAKKT
condition via gradient projections in Section 3. In Section 4, we present our IR algorithm in
detail. Its theoretical convergence is addressed in Section 5. Computational experiments are
presented in Section 6. Finally, Section 7 brings our conclusions and future research.

2 Preliminaries and notation

Our notation is standard in optimization and variational analysis. ∥ · ∥ denotes the Euclidean
norm of a vector. We use Rn

+ (respectively Rn
−) to denote the subset of vectors in Rn with

non-negative (respectively non-positive) components. Given a ∈ Rm, we set a− := min{a, 0}
and a+ := max{a, 0} understood component-wise. Given a smooth function q : Rs → Rr, ∇q(u)
is r × s the matrix whose columns are ∇qj(u), j = 1, . . . , s. We denote the vector of ones by 1.
The orthogonal projection of u ∈ Rn onto the closed convex set C is denoted by projC(u).

The Lagrangian function associated with (NLP) is

L(x, λ, µ) := f(x) + h(x)Tλ+ g(x)Tµ,

where λ ∈ Rm and µ ∈ Rp
+ are the dual variables. The feasible set of (NLP) is denoted by

Ω = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}. The set of indices of active inequality constraints is denoted
by A(x) = {j ∈ {1, . . . , p} | gj(x) = 0}. For a given set-valued mapping F : Rs ⇒ Rn, the
sequential Painlevé-Kuratowski outer/upper limit of F(u) as u→ u∗ [34] is defined as

lim sup
u→u∗

F(u) = {y∗ ∈ Rn | ∃(uk, yk)→ (u∗, y∗) with yk ∈ F(uk), ∀k ∈ N}.

2.1 Review of sequential optimality conditions

We start our discussion with the definition of the KKT conditions.

Definition 2.1. We say that KKT conditions hold at the feasible point x̄ for (NLP) if there
exist λ ∈ Rm and µ ∈ Rp

+ such that

∇f(x̄) +∇h(x̄)λ+∇g(x̄)µ = 0 and min{−gj(x̄), µj} = 0, ∀j. (1)

In this case, we say that x̄ is a KKT point, and λ, µ are the multipliers.

Unlike the KKT conditions, sequential optimality conditions are genuine optimality con-
ditions, which enables establishing global convergence of methods without mentioning CQs a
priori. Also, they provide connections with KKT under very mild CQs. See for example [3, 5].

The complementarity in (1) can be written in different ways. The above form is related to
the approximate KKT (AKKT) condition [2], which we recall next. We say that a feasible x̄

3

satisfies the AKKT condition if there exist sequences {xk} ⊂ Rn, {λk} ⊂ Rm and {µk} ⊂ Rp
+

with xk converging to x̄ such that

∇f(xk) +∇h(xk)λk +∇g(xk)µk → 0 and min{−gj(xk), µk
j } → 0, ∀j. (2)

Through AKKT it was possible to improve the global convergence of several primal-dual meth-
ods, including AL, IPM and SQP algorithms, see [4] and references therein. In the context of IR
methods, it was proposed in [32] the approximate gradient projection (AGP) condition, which
holds at a feasible point x̄ if there exists a sequence {xk} ⊂ Rn converging to x̄ such that

projLΩ(xk)(−∇f(xk))→ 0,

where

LΩ(x) :=

{
d ∈ Rn

∣∣∣ ∇hi(x)Td = 0, for all i

g−j (x) +∇gj(x)
Td ≤ 0, for all j

}
. (3)

Note that, in comparison with AKKT, AGP does not explicitly involve multipliers. Furthermore,
AGP implies AKKT [2]. Regrettably, both conditions can lead us to accept spurious solution
candidates as the next example shows, and therefore stronger conditions are desirable.

Example 2.1. Let us consider the example from [6]

min
(x2 − 2)2

2
s.t. x1 = 0, x1x2 = 0.

The unique minimizer is (0, 2). In [6], it was stated that (0, 1) is an AGP point. We affirm that
every point (0, δ), δ ∈ R, is AGP (and thus, also AKKT). In fact, taking {xk = (1/k, δ)} we have
LΩ(x

k) = {d ∈ R2 | d1 = 0, δd1 + d2/k = 0} = {(0, 0)}, and then projLΩ(xk)(−∇f(xk)) = (0, 0)
for all k.

Next we recall the complementary AKKT (CAKKT) condition defined in [6].

Definition 2.2. We say that the CAKKT condition holds at the feasible point x̄ for (NLP) if
there are sequences {xk} ⊂ Rn, {λk} ⊂ Rm and {µk} ⊂ Rp

+ such that (2) is valid, λk
i hi(x

k) →
0,∀i and µk

j gj(x
k)→ 0,∀j.

Similar to KKT, when x̄ satisfies the AKKT/AGP/CAKKT condition we say that x̄ is an
AKKT/AGP/CAKKT point, and that the corresponding sequence {xk} is an AKKT/AGP/CAKKT
sequence. In [6], it was shown that any feasible limit point x̄ of a sequence generated by
the safeguarded AL method is a CAKKT point provided that the measure of infeasibility
m(x) := ∥h(x)∥2+∥g+(x)∥2 associated with (NLP) satisfies the GKL inequality. This inequality
ensures the existence of a continuous function ϕ that satisfies ϕ(x̄) = 0 and ∥m(x) −m(x̄)∥ ≤
ϕ(x)∥∇m(x)∥ for every x near x̄. Later on, a primal-dual AL method with good convergence
properties was established [8], but it also requires further assumptions to ensure CAKKT points.

It is known that CAKKT implies AGP [6] (this is a direct consequence of the Theorem 2.1
below), and consequently AKKT. This indicates that an algorithm converging to CAKKT points
is less likely to achieve non-minimizers than one that ensures only AGP. We revisit Example 2.1
to illustrate that this difference can be drastic.

Example 2.2 (Example 2.1 revisited). Let us consider Example 2.1, whose points (0, δ) are
AGP. We affirm that only the global minimizer (0, 2) and (0, 0) are CAKKT points. In fact,

4

suppose that {xk} is a CAKKT sequence converging to (0, x̄2), with associated dual sequence
{(λk, µk)}. Thus,[

0

xk2 − 2

]
+ λk

[
1
0

]
+ µk

[
xk2
xk1

]
→

[
0
0

]
, λkxk1 → 0, µkxk1x

k
2 → 0.

Multiplying the second row of the first limit by xk2, we obtain xk2(x
k
2 − 2) + µkxk1x

k
2 → 0. So the

last limit gives xk2(x
k
2 − 2) → 0, and thus x̄2 = 2 or x̄2 = 0. Since every feasible point is of the

form (0, x̄2), the preceding discussion implies that the only CAKKT points are (0, 2) and (0, 0).

Although AGP condition does not explicitly use any multipliers in its formulation, it is
possible to reformulate it using them.

Theorem 2.1 ([8, Theorem 2.7]). Let x̄ be a feasible point of (NLP). Then, the AGP condition
holds at x̄ if and only if there exist sequences {xk} ⊂ Rn, {λk} ⊂ Rm and {µk} ⊂ Rp

+ such

that (2) holds and µk
j min{0, gj(xk)} → 0.

The main difference between sequential optimality conditions lies in how the complementary
condition is approximately satisfied. AKKT forces µk

j → 0 when gj(x
k) ̸→ 0 by requiring

min{µk
j ,−gj(xk)} → 0 (see (2)). This condition allows the sequence {µk

j } to grow at any speed

whenever gj(x
k) → 0. Besides the AKKT-like complementarity, the above theorem states that

AGP also controls the behavior of µk by imposing µk
j min{0, gj(xk)} → 0 for all j; so, the growth

of {µk
j } is controlled by the way that gj(x

k) decreases from the infeasibility. CAKKT in turn
imposes the most rigorous control on multipliers, that includes those on equality constraints,
see Definition 2.2. In view of Theorem 2.1, a natural question is whether there is a sequential
optimality condition based on the projected gradient that it is at least as strong as CAKKT.
This question will be answered affirmatively in the next section.

3 CAKKT through projections

In this section we provide a reformulation of the CAKKT condition using projections, which is
essential for the development of our new IR method. First, consider the non-empty convex set

L+
Ω(x) :=

{
(s, ℓ, d) ∈ Rm×R×Rn

∣∣∣ sihi(x) +∇hi(x)Td = 0, ∀i
g−j (x) + ℓg+j (x) +∇gj(x)

Td ≤ 0, ∀j

}
. (4)

Note that d ∈ LΩ(x) implies (0, 0, d) ∈ L+
Ω(x), but the “d-part” of these sets are generally

different. For instance, consider the problem of minimizing f(x1, x2) = (x2 − 2)2/2 subject to
x1 = 0, x1x2 ≤ 0. Clearly, LΩ(1/k, 1) = {0} × (−∞, 0] while

L+
Ω(1/k, 1) = {(s, ℓ, d) ∈ R× R× R2 | d1 = −s/k, d2 ≤ s− ℓ}.

It is straightforward to see that the sequence of projections of (0, 0,−∇f(1/k, 1)) = (0, 0, 0, 1)
onto this set converges to the non-null vector (1/3,−1/3, 0, 2/3). This is consistent with the fact
that (0, 1) is not a CAKKT point (Example 2.2). The next result shows that this is not a mere
coincidence: in fact, CAKKT can be reinterpreted in terms of projections onto L+

Ω(x).

Theorem 3.1. Let x̄ be a feasible point of (NLP). Then, CAKKT holds at x̄ if and only if
there is a sequence xk converging to x̄ such that

projL+
Ω(xk)(0, 0,−∇f(x

k))→ (0, 0, 0). (5)

5

Proof. Let us show that (5) implies CAKKT. By (5), there exists a sequence xk → x̄ such
that (sk, ℓk, d

k) := projL+
Ω(xk)(0, 0,−∇f(x

k)) → (0, 0, 0). From the definition of orthogonal

projection, (sk, ℓk, d
k) is a global minimizer of

min
1

2
∥ − ∇f(xk)− d∥2 + 1

2
∥s∥2 + 1

2
ℓ2 (6)

s.t.
sihi(x

k) +∇hi(xk)Td = 0, ∀i,
g−j (x

k) + ℓg+j (x
k) +∇gj(xk)Td ≤ 0, ∀j.

Since all the constraints are affine, the KKT conditions hold. Thus, there exist λk ∈ Rm and
µk ∈ Rp

+ such that

∇f(xk) + dk +∇h(xk)λk +∇g(xk)µk = 0, (7a)

ski + λk
i hi(x

k) = 0, ∀i, ℓk +

p∑
j=1

µk
j g

+
j (x

k) = 0, (7b)

µk
j

(
g−j (x

k) + ℓkg
+
j (x

k) +∇gj(xk)Tdk
)
= 0, ∀j, (7c)

for each k. Considering (7a) and dk → 0, we have that (2) holds. It follows from (7b) and
(sk, ℓk)→ (0, 0) that

λk
i hi(x

k)→ 0 for all i and 0 ≤
p∑

j=1

µk
j g

+
j (x

k)→ 0. (8)

Due to the non-negativity of the terms in the above sum, the last limit implies µk
j g

+
j (x

k)→ 0 for

all j/. Therefore, it is enough to show that µk
j g

−
j (x

k)→ 0 for all j to ensure that µk
j gj(x

k)→ 0

for all j, and so conclude that x̄ is CAKKT. Doing the inner product of (7a) with dk and using
(7c), we arrive at (we eventually omit “(xk)” when it is clear from the context)

p∑
j=1

µk
j g

−
j = −ℓk

p∑
j=1

µk
j g

+
j +∇fTdk +

m∑
i=1

λk
i∇hTi dk + ∥dk∥2 (9)

By the feasibility of (sk, ℓk, d
k) (see (6)) we have that λk

i∇hi(xk)Tdk = −ski λk
i hi(x

k). Now, using
the fact that (sk, ℓk, d

k)→ (0, 0, 0) and (8) we have that all terms on the right side of (9) tend
to zero. Since each term in the sum on the left-hand side of (9) is non-positive, they all also
converge to zero. Therefore, |µk

j gj(x
k)| = max{µk

j g
+
j (x

k),−µk
j g

−
j (x

k)} → 0 for all j.

Conversely, suppose that x̄ is a CAKKT point. There exist sequences xk → x̄, λ̂k ∈ Rm and
µ̂k ∈ Rp

+ such that

wk := ∇f +∇hλ̂k +∇gµ̂k → 0, λ̂k
i hi → 0,∀i, µ̂k

j gj → 0, ∀j. (10)

For each k, set (sk, ℓk, d
k) := projL+

Ω(xk)(0, 0,−∇f(x
k)). Since (sk, ℓk, d

k) is an optimal solution

of the projection problem, there exist λk ∈ Rm, µk ∈ Rp
+ so that (7a)–(7c) are valid. Mul-

tiplying (7a) by dk, the feasibility of (sk, ℓk, d
k), the inequality µk

j g
−
j (x

k) ≤ 0, (7b) and (7c)
give

∥dk∥2 = −∇fTdk +

m∑
i=1

ski λ
k
i hi + ℓk

p∑
j=1

µk
j g

+
j +

p∑
j=1

µk
j g

−
j ≤ −∇f

Tdk − ∥sk∥2 − ℓ2k,

6

which implies
∥dk∥2 + ∥sk∥2 + ℓ2k ≤ −∇f(xk)Tdk, (11)

and so −∇f(xk)Tdk ≥ 0. Now, we proceed to find an upper bound for −∇f(xk)Tdk. Note that
0 ≤ ∥∇f(xk) + dk∥2 = ∥∇f(xk)∥2 + ∥dk∥2 + 2∇f(xk)Tdk and (11) imply

2∥dk∥2 ≤ −2∇f(xk)Tdk ≤ ∥∇f(xk)∥2 + ∥dk∥2,

and thus ∥dk∥2 ≤ ∥∇f(xk)∥2. Therefore,

∥dk∥2 + ∥sk∥2 + ℓ2k ≤ ∥∇f∥2 + ∥sk∥2 + ℓ2k ≤ ∥∇f∥2 + ∥ − ∇f − dk∥2 + ∥sk∥2 + ℓ2k ≤ 2∥∇f∥2,

where in the last inequality we use the optimality of (sk, ℓk, d
k) for the projection problem

(6) and (0, 0, 0) ∈ L+
Ω(x

k). Thus, for every k, max{∥dk∥, ∥sk∥, |ℓk|} ≤ 2∥∇f(xk)∥. Define
ζk := g−(xk) + ℓkg

+(xk) + ∇g(xk)Tdk, ∀k. The feasibility of (sk, ℓk, d
k) implies ζk ∈ Rp

−, ∀k,
and hence ζkj µ̂

k
j ≤ 0, ∀j, k. Using (7a), (10) and the Cauchy-Schwarz inequality, we obtain

−∇fTdk = −(wk)Tdk +

m∑
i=1

λ̂k
i∇hTi dk +

p∑
j=1

µ̂k
j∇gTj dk

= −(wk)Tdk −
m∑
i=1

λ̂k
i s

k
i hi +

p∑
j=1

ζkj µ̂
k
j −

p∑
j=1

µ̂k
j g

−
j − ℓk

p∑
j=1

µ̂k
j g

+
j

≤ 2∥∇f∥∥wk∥+ 2∥∇f∥
m∑
i=1

|λ̂k
i hi| −

p∑
j=1

µ̂k
j g

−
j + 2∥∇f∥

p∑
j=1

µ̂k
j g

+
j ,

where in the inequality we use ζkj µ̂
k
j ≤ 0 for all j. It follows from (10) that the right-hand side

of the above inequality vanishes as k goes to infinity, and thus (sk, ℓk, d
k) → (0, 0, 0) by (11).

This concludes the proof.

Theorem 3.1 indicates that to obtain CAKKT points, one can use the gradient projection
projL+

Ω(x)(0, 0,−∇f(x)) and try to find a mechanism that forces it to vanish across iterations.

This is the essence of IR methods. Modern IR approaches that uses the traditional lineariza-
tion (3), such as the one proposed in [16], employ projections that use the gradient of Lagrangian
∇xL(x, λ, µ) instead of just ∇f(x), where the multipliers remain bounded during the execution
of the algorithm. Since one can choose null multipliers as estimates, such strategies are more
general. In order for our proposal to benefit from the use of the Lagrangian, we prove next that
forcing the projection of (0, 0,−∇xL) onto L+

Ω to vanish also guarantees CAKKT points. This
extends the first part of Theorem 3.1.

Corollary 3.2. Let x̄ be a feasible point of (NLP). Then x̄ is a CAKKT point with associated
sequence {xk} if, and only if, {xk} → x̄ and there are bounded sequences {λ̄k} ⊂ Rm, {µ̄k} ⊂ Rp

+

such that min{−g(xk), µ̄k} → 0 and

projL+
Ω(xk)(0, 0,−∇xL(xk, λ̄k, µ̄k))→ 0.

Proof. If x̄ is a CAKKT point then, by Theorem 3.1, the projection of the Lagrangian vanishes
taking λ̄k = 0 and µ̄k = 0, ∀k, since ∇xL(xk, 0, 0) = ∇f(xk).

Let us prove the converse. Following the proof of Theorem 3.1, but applied to the projection
projL+

Ω(xk)(0, 0,−∇xL(xk, λ̄k, µ̄k)), we find sequences {λk} ⊂ Rm, {µk} ⊂ Rp
+ such that

∇xL(xk, λ̄k, µ̄k) +∇h(xk)λk +∇g(xk)µk → 0, λk
i hi(x

k)→ 0,∀i, µk
j gj(x

k)→ 0,∀j. (12)

7

We define λ̂k := λk + λ̄k and µ̂k := µk + µ̄k. From the feasibility of x̄, the boundedness of {λ̄k}
and {µ̄k}, and from µ̄k

j → 0 when gj(x̄) < 0, we have λ̂k
i hi(x

k) → 0 for all i and µ̂k
j gj(x

k) → 0
for all j. Thus, the statement follows from (12).

Inspired in Corollary 3.2, we propose Algorithm 1 to solve (NLP). Note that its optimiza-
tion step carries the projection of the Lagrangian onto L+

Ω(y
k+1) and the multiplier estimates

generated are bounded by Step 2.
In Section 5 we prove that the new IR method (Algorithm 1) converges to CAKKT points

of (NLP) without exogenous assumptions. Actually, Algorithm 1 generates CAKKT sequences.
We also mention that all necessary hypotheses for the new IR method are quite common in this
context. To the best of our knowledge, our method is the first IR strategy that theoretically
improves the convergence of the IR methodology, historically linked to the weaker AGP condi-
tion. Compared to previous IR methods, notably [16], this is done with a small modification in
the optimization step.

We conclude this section by comparing the linearized sets (3) and (4). As we already mention,
while d ∈ LΩ(x) implies (0, 0, d) ∈ L+

Ω(x), the converse is not always true at infeasible points.
Regarding Step 3 of Algorithm 1, this means that we have more freedom to generate non-null
directions d than the classic IR methods, that use LΩ(x), and thus we have more chances of
decreasing the objective function or the Lagrangian. Geometrically, the possibly larger set of
directions defined by L+

Ω(x) coincides with that of LΩ(x) as (s, ℓ) → 0; see Figure 1. So, it
is expected that IR methods with L+

Ω(x) have a more stringent stopping criteria than others,
restricting the possible limit points of the method. This is illustrated by the convergence to
CAKKT points in contrast with AGP of other IR strategies. Therefore, we believe that defining
different linearizations is a fundamental step to obtain stronger IR methods.

∇g(x)

g(z) = g(x) > 0

LΩ(x)

L+
Ω(x) (ℓ < 0)

x

x+ d

Figure 1: Comparison between LΩ(x) and L+
Ω(x). In the figure, g(x) ≤ 0 is the unique constraint

and x is infeasible (i.e., g+(x) = g(x) > 0, g−(x) = 0). The cone LΩ(x) = {d | ∇g(x)Td ≤ 0} is
a proper subset of {d | ℓg(x) +∇g(x)Td ≤ 0} whenever ℓ < 0, which is the “d-part” of L+

Ω(x).
When ℓ→ 0−, these sets tend to be equal.

4 The new Inexact Restoration method

In this section, we describe our IR method. It is based on the general IR framework introduced
in [20] but employs a novel optimization step. The convergence theory will be presented in the
next section.

Consider the measure of infeasibility ϕ : Rn → R+ defined as

ϕ(x) = ∥g+(x)∥+ ∥h(x)∥

8

and the merit function Φ : Rn × Rm × Rp
+ × [0, 1]→ R define as

Φ(x, λ, µ, θ) := θL(x, λ, µ) + (1− θ)ϕ(x). (13)

This merit function is the sharp Lagrangian used in previous IR methods, see [16, 29].
Our general IR framework is presented in Algorithm 1.
Now, some comments concerning Algorithm 1:

Remark 1. As in [16], we deal with the merit function (13), which is a convex combination of
the Lagrangian and the infeasibility measure ϕ. The IR algorithm proposed in [16] does not
have safeguards for the Lagrange multiplier estimates as in Step 2 of Algorithm 1, but they
assume that the generated sequence of multipliers is bounded. Instead, we prefer to state our
algorithm with safeguards, which is a natural way to bound multiplier estimates in practical
implementations. In particular, such safeguards are used in popular implementations of AL
methods [14]. In our framework, we do not explicitly use any update rules for the multipliers,
we just require the general conditions in Step 2. In section 6 we discuss the update rule used in
our implementation.

Remark 2. Originally, in [30], the IR method was proposed using the merit function θf(x)+(1−
θ)ϕ(x) instead of (13). Therefore, no Lagrange multiplier is computed and the subproblem (14)
is stated with ∇f(yk+1) instead of ∇xL(yk+1, λk+1, µk+1). Of course, this case is recovered by
taking λmin = λmax = µmax = 0. The use of the Lagrangian was first proposed in [29]. Since
then, the merit function (13) has been used in several works; see for example [16] and references
therein. Also, it has been suggested that the use of the Lagrangian may reduce Maratos-like
effects [17].

Remark 3. The last condition on µk+1
j in Step 2 meets the requirement in Corollary 3.2. This

is natural, since Lagrange multipliers associated with inactive inequality constraints are zero.
It is worth mentioning that in previous works on IR methods, such as [16, 29], only equality
constraints are explicitly considered; inequalities are treated by inserting slack variables z ≥ 0.

In Step 3 of Algorithm 1 we require that (sk, ℓk, d
k) must be an εk–approximate solution of

(14), in the following sense:

� it is almost feasible, i.e.,

|ski hi(yk+1) +∇hi(yk+1)Tdk| ≤ εk, ∀i,
g−j (y

k+1) + ℓkg
+
j (y

k+1) +∇gj(yk+1)Tdk ≤ εk, ∀j;
(17)

� it has an almost non-positive objective value, i.e.,

∇xL(yk+1, λk+1, µk+1)Tdk +
1

2
(dk)THkd

k +
1

2
(sk)T sk +

1

2
ℓ2k ≤ εk. (18)

This is reasonable since (0, 0, 0) is feasible for (14), with null objective;

� it is almost optimal, i.e.,

∥projL+
Ω(yk+1)(−s

k,−ℓk,−∇xL(yk+1, λk+1, µk+1)−Hkd
k)∥ ≤ εk. (19)

One interpretation of (19) is the following: at the solution (ŝ, ℓ̂, d̂) of (14), the projection
of (−ŝ,−ℓ̂,−∇xL(yk+1, λk+1, µk+1) − Hkd̂) onto L+

Ω(y
k+1) vanishes. So (19) says that

(sk, ℓk, d
k) is almost as good as (ŝ, ℓ̂, d̂). Also, due to the convexity of the subproblem (as

long as some positivity on Hk is imposed, see assumption H2 or H2’ below), (ŝ, ℓ̂, d̂) is a
solution if and only if the projection vanishes.

9

Algorithm 1 General Inexact Restoration framework

Set r ∈ [0, 1), θ−1 ∈ (0, 1), −∞ < λmin ≤ λmax < ∞, µmax ≥ 0, σmin > 0 and γc ∈ (0, 1/2].
Choose a non-negative summable sequence {εk}, and x0 ∈ Rn, λ0 ∈ [λmin, λmax]

m and µ0 ∈
[0, µmax]

p. Set k ← 0.

1. Restoration step. If ϕ(xk) = 0, define yk+1 := xk. If ϕ(xk) > 0, compute, if possible, a
point yk+1 such that ϕ(yk+1) ≤ rϕ(xk). Otherwise, abort the execution declaring failure.

2. Estimation of Lagrange multipliers. Compute λk+1 ∈ [λmin, λmax]
m and µk+1 ∈ [0, µmax]

p.
The sequence {µk+1} must be chosen so that min{−g(yk+1), µk+1} → 0.

3. Optimization step. Compute a symmetric matrix Hk and find an εk–approximate solution
(defined below, see (17)–(19)) (sk, ℓk, d

k) of the quadratic problem

min ∇xL(yk+1, λk+1, µk+1)Td+
1

2
dTHkd+

1

2
sT s+

1

2
ℓ2

s.t.
sihi(y

k+1) +∇hi(yk+1)Td = 0, ∀i,
g−j (y

k+1) + ℓg+j (y
k+1) +∇gj(yk+1)Td ≤ 0, ∀j.

(14)

4. Penalty parameter computation. If

Φ(yk+1, λk+1, µk+1, θk−1) ≤ Φ(xk, λk, µk, θk−1)−
1− r

2
(ϕ(xk)− ϕ(yk+1)),

set θk := θk−1. Otherwise, compute

θk :=
(1 + r)(ϕ(xk)− ϕ(yk+1))

2(L(yk+1, λk+1, µk+1)− L(xk, λk, µk) + ϕ(xk)− ϕ(yk+1))
.

5. Globalization. If dk = 0, set tk := 1 and go to Step 6. Otherwise, compute by some
backtracking strategy tk ∈ [0, 1] such that

L(yk+1 + tkd
k, λk+1, µk+1)

≤ L(yk+1, λk+1, µk+1)− σmin

4
tk∥dk∥2 − γctk∥(sk, ℓk)∥2 + tkεk

(15)

and

Φ(yk+1 + tkd
k, λk+1, µk+1, θk)

≤ Φ(xk, λk, µk, θk)−
1− r

4
(ϕ(xk)− ϕ(yk+1)) + 2tk∥1∥εk.

(16)

Moreover, the backtracking procedure should be such that either tk = 1 or there exists
t̂k ∈ [tk, atk] (a > 1) such that (15) or (16) fail.

6. Set xk+1 := yk+1 + tkd
k. Update k ← k + 1 and go to Step 1.

Of course, if we solve (14) “exactly” then all three conditions above hold with εk = 0. Thus,
we could establish our theory just for this case, as done in previous works, e.g. [16]. However,
we consider εk ≥ 0 because (i) this opens up the possibility of using iterative methods to solve

10

(14), and (ii) the additional work needed to cover this case is negligible. It is worth mentioning
that a similar IR algorithm, allowing inexact resolution of the optimization step problem, was
considered in [18].

4.1 Well-definiteness of the method

The well-definiteness of Algorithm 1 is established under the following assumptions:

H1 ∇f , ∇h and ∇g are Lipschitz with constants LF , LH and LG, respectively.

H2 In Step 3 of Algorithm 1, the matrices Hk are chosen such that their eigenvalues are uni-
formly in [σmin, σmax], where σmax ≥ σmin.

Hypothesis H2 ensures that (14) is strictly convex, having a unique and isolated minimizer.
There are practical ways to achieve H2, for example, computing the Cholesky factorization of
Hk = ∇2

xxL(yk+1, λk+1, µk+1) + σI by successively increasing σ ≥ 0. On the other hand, (14) is
a strictly convex problem when the Hessian of its objective function,

Ĥk =

[
Hk 0
0 Im+1

]
,

satisfies ωT Ĥkω ≥ σmin∥ω∥2 for all feasible ω = (d, s, ℓ). In this sense, we enunciate the following
relaxed version of H2:

H2’ For k ∈ N, the matrix Hk from Step 3 of Algorithm 1 is chosen such that (dk)THkd
k ≥

σmin∥dk∥2, where dk is the d-part of the computed solution, and its largest eigenvalue does
not exceed σmax ≥ σmin.

Our theory is valid with the above condition in place of H2 (especially Theorem 4.3 and
Lemmas 4.2, 5.3 and 5.4), but it is not always implementable since dk depends on Hk. For this
reason, we prefer to state our results using H2. However, it is possible to achieve H2’ in certain
situations, such as when solving (14) “exactly” using an active-set method, whose equality-
constrained quadratic problems are solved through its KKT optimality system after correcting
inertia; see [33]. This approach is adopted in our implementation. It is worth mentioning that
the convexity of the subproblem (14), guaranteed by assumption H2 or H2’, typically requires
a line search strategy like that in step 5 of Algorithm 1. However, this could be avoided in
globalization techniques using trust region strategies as done in [9, 29, 30], which could favor
fast local convergence.

The next theorem establishes the well-definiteness of Algorithm 1. Its proof is analogous
to that of [16, Theorem 2.1] taking into account Lemmas 4.1 and 4.2. We remark that in [16],
the conclusions of these lemmas are embedded in the method, and the authors use a quadratic
problem related to (14) to show how such conditions can be achieved. Instead, we believe that
putting (14) directly in the algorithm turns it clearer. We start with Lemma 4.1, which bounds
the growth of infeasibility ϕ along the direction dk computed in the optimization phase.

Lemma 4.1. If H1 holds then there exists γϕ > 0, which is independent of k, such that, for
every t ∈ [0, 1],

ϕ(yk+1 + tdk) ≤ ϕ(yk+1) + t(|ℓk|+ ∥sk∥)ϕ(yk+1) + γϕt
2∥dk∥2 + 2t∥1∥εk.

11

Proof. First let us prove that

∥g+(yk+1 + tdk)∥ ≤ ∥g+(yk+1)∥+ t|ℓk|∥g+(yk+1)∥+ γgt
2∥dk∥2 + t∥1∥εk (20)

for every t ∈ [0, 1] and some γg > 0. For simplicity, we will omit the indices k and k + 1. By
Taylor’s formula and Lipschitz continuity of ∇g, for all t ≥ 0, we have

∥g(y + td)− g(y)− t∇g(y)Td∥ = t
∥∥∥∫ 1

0
(∇g(y + tsd)Td−∇g(y)Td)ds

∥∥∥
≤ t

∫ 1

0
LG∥y + tsd− y∥∥d∥ds ≤ γgt

2∥d∥2,

where γg := (1/2)LG. From (17), we have, for each t ∈ [0, 1],

g−(y)+tℓg+(y)+t∇g(y)Td−t1ε=(1− t)g−(y)+t[g−(y)+ℓg+(y)+∇g(y)Td−1ε] ≤ 0.

If gj(y + td) ≤ 0 then g+j (y + td) = 0 ≤ |gj(y + td) − zj | for all zj ∈ R. If gj(y + td) > 0 then

g+j (y + td) = gj(y + td) ≤ gj(y + td)− zj for all zj ≤ 0. Thus

∥g+(y + td)∥ ≤ ∥g(y + td)− z∥, ∀z ∈ Rp
−.

If we choose z = g−(y) + tℓg+(y) + t∇g(y)Td− t1ε, we arrive at

∥g+(y + td)∥ ≤ ∥g(y + td)−
(
g−(y) + ℓtg+(y) + t∇g(y)Td− t1ε

)
∥

≤ ∥g(y + td)− g(y)− t∇g(y)Td∥+ ∥g(y)− g−(y)− tℓg+(y)∥+ ∥t1ε∥
≤ γgt

2∥d∥2 + |1− tℓ|∥g+(y)∥+ t∥1∥ε
≤ γgt

2∥d∥2 + ∥g+(y)∥+ t|ℓ|∥g+(y)∥+ t∥1∥ε,

where in the third inequality we use the equality g(y)− g−(y) = g+(y).
Analogously, we can prove that

∥h(yk+1 + tdk)∥ ≤ ∥h(yk+1)∥+ t∥sk∥∥h(yk+1)∥+ γht
2∥dk∥2 + t∥1∥εk (21)

for every t ∈ [0, 1] and some γh > 0. The statement follows from (20)–(21) with γϕ = γg + γh.
Note that γϕ does not depend on k.

The next lemma says that dk is a direction in which L(·, λk+1, µk+1) decreases locally from
yk+1 or, at least, does not grow too much. Note that H1 implies the Lipschitz continuity of the
gradient of L(·, λk+1, µk+1) with a constant LL that is independent of k (here, we use the fact
that {λk} are {µk} are bounded sequences).

Lemma 4.2. Assume that H1 and H2 hold. Then there exists t ∈ (0, 1], which is independent
of k, such that, for every t ∈ [0, t] and γc ∈ (0, 1/2],

L(yk+1 + tdk, λk+1, µk+1)≤L(yk+1, λk+1, µk+1)− σmin

4
t∥dk∥2 − γct∥(sk, ℓk)∥2 + tεk.

Proof. For simplicity, we will omit the indices k and k + 1. From (18) and H2,

2∇xL(y, λ, µ)Td ≤ −dTHd− sT s− ℓ2 + ε ≤ −σmin∥d∥2 − ∥s∥2 − ℓ2 + 2ε.

12

So, by Taylor’s formula of x→ L(x, λk, µk) at y and the Lipschitz continuity of its gradient, we
have

L(y + td, λ, µ) ≤ L(y, λ, µ) + t∇xL(y, λ, µ)Td+ (1/2)LLt
2∥d∥2

≤ L(y, λ, µ) + (1/2)t
[
− σmin∥d∥2 − ∥s∥2 − ℓ2 + 2ε

]
+ (1/2)LLt

2∥d∥2

= L(y, λ, µ)− (1/2)t(σmin − LLt)∥d∥2 − (1/2)t∥(s, ℓ)∥2 + tε

≤ L(y, λ, µ)− (σmin/4)t∥d∥2 − γct∥(s, ℓ)∥2 + tε

for every t ∈ [0, t] and γc ∈ (0, 1/2], where t = min{1, σmin/(2LL)}.

Now, we present the main result of this section.

Theorem 4.3. Assume valid H1 and H2. If yk+1 is successfully computed in the restoration
step of Algorithm 1, then xk+1 is well-defined.

Proof. Clearly, Step 2 is accomplished by taking zero multipliers, although there are other
possibilities (see section 6.1). By H2, (14) always has a solution, so Step 3 is well-defined. If the
inequality in Step 4 does not hold, then after straightforward calculations we arrive at

θk−1

[
L(yk+1, λk+1, µk+1)− L(xk, λk, µk) + ϕ(xk)− ϕ(yk+1)

]
>

1 + r

2

(
ϕ(xk)− ϕ(yk+1)

)
≥ 0.

Therefore, Step 4 is well-defined. Lemma 4.2 guarantees that condition (15) holds for all t > 0
small enough. It remains to prove that the same occurs with (16). In this case, the requirement
over the accepted step-size tk (tk = 1 or t̂k ∈ [tk, atk]) can be achieved by a simple backtracking
procedure, see section 6.1.4.

Let yk+1 be a point computed in Step 1. By the way that θk is chosen in Step 4, we have

Φ(yk+1, λk+1, µk+1, θk) ≤ Φ(xk, λk, µk, θk)−
1− r

2
(ϕ(xk)− ϕ(yk+1)). (22)

We split the proof into two cases: first, suppose that ϕ(xk) > ϕ(yk+1). By (22) and the continuity

of Φ, we have Φ(yk+1+tdk, λk+1, µk+1, θk) ≤ Φ(xk, λk, µk, θk)−
1− r

4
(ϕ(xk)−ϕ(yk+1))+2t∥1∥εk

for all t > 0 small enough. This implies the well definiteness of the backtracking procedure in
Step 5, and the statement follows.

Now, suppose that ϕ(xk) = ϕ(yk+1). From Step 1, ϕ(xk) = ϕ(yk+1) = 0 and yk+1 = xk, and
thus (22) implies Φ(yk+1, λk+1, µk+1, θk) ≤ Φ(xk, λk, µk, θk). Furthermore, from Lemma 4.1 we
have ϕ(yk+1 + tdk) ≤ γϕt

2∥dk∥2 +2t∥1∥εk for every t ≤ 1. Thus, from the previous inequalities,
the definition of Φ and Lemma 4.2 we obtain, after straightforward calculations,

Φ(yk+1 + tdk, λk+1, µk+1, θk) ≤ Φ(xk, λk, µk, θk)

−t∥dk∥2[θk(σmin/4)− (1− θk)γϕt]− θkγct∥(sk, ℓk)∥2 + tεk[θk + 2(1− θk)∥1∥]

for all t > 0 sufficiently small. The statement follows from the above inequality, noting that
tεk[θk + 2(1− θk)∥1∥] ≤ 2t∥1∥εk. This concludes the proof.

13

5 Convergence of the proposed IR method

Now, we analyze the convergence of Algorithm 1. Throughout this section, we assume that
the IR method does not stop after a finite number of iterations. We start with the following
hypotheses:

H3 All the iterates yk stay in a bounded set.

H4 There is β > 0 such that L(yk+1, λk+1, µk+1)− L(xk, λk, µk) ≤ βϕ(xk) for all k.

Assumption H3 is satisfied, for example, if {xk} remains bounded and if we compute yk+1

within a neighborhood of xk in Step 1 (note that, due to the continuity of g, such a valid
yk+1 always exists). This can be done by applying an iterative method (or only some steps of
that) for minimizing ϕ(x) subject to such a neighborhood. On the other hand, {xk} remains
bounded if the original problem (NLP) has box-constraints, as example. Also, it can be expected
that, maintaining yk+1 near xk, assumption H4 holds whenever xk is infeasible, at least when the
multipliers do not change too much. A similar assumption was used in [16]. However, to simplify
the exposition, we have decided not to impose any additional explicit algorithmic condition on
the point yk+1 at Step 1 of Algorithm 1.

Assumption H4 is standard in the literature of IR methods, see for instance [16, 20]. In some
sense, this condition limits the increase of the objective function of (14) that might be incurred
by moving towards feasibility. It is satisfied under some CQ, see [20, Remark 3]. Recently, a
procedure to obtain H4 through a numerical method in the restoration phase was provided [18].
To simplify our presentation, we do not follow this approach; instead, we explicitly assume the
validity of H4.

5.1 Technical results

In the next lemmas, we exhibit some useful properties mainly derived from solving the problem
in Step 3 of Algorithm 1. Sequences {xk}, {yk+1}, {λk+1}, {µk+1}, {sk}, {ℓk} and {dk} are
those generated by Algorithm 1.

Lemma 5.1. Under H4, the sequence {θk} is non-increasing and bounded away from zero, that
is, there exists θ̄ ∈ (0, 1) such that θ̄ ≤ θk+1 ≤ θk for all k.

Proof. The proof is analogous to that of [16, Lemma 3.1].

Next, we prove that the line-search procedure in Step 5 of Algorithm 1 does not produce
excessively short steps.

Lemma 5.2. Under H1–H4 we have tk ≥ tk for all k, where

tk :=
1

a
min

{
t,

θ̄γd
(1− θ̄)γϕ

,
(1− r)2

4r(1− θ̄)(|ℓk|+ ∥sk∥)

}
,

γd = σmin/4 and t, γϕ, θ̄ are given by Lemmas 4.1, 4.2 and 5.1.

Proof. Let us fix the iteration index k. As t ≤ 1 and a > 1, we have tk ≤ atk ≤ 1. Let dk be
the solution of (14). If dk = 0, we have tk = 1 ≥ tk by Step 5 of Algorithm 1, and then there is
nothing left to prove.

14

Now, consider the case dk ̸= 0. For simplicity, denote νj := (λj , µj , θk) for j = k, k + 1. Let
us prove that (16) holds for every 0 < t ≤ atk. From Step 4, θk is defined so that

Φ(yk+1, νk+1) ≤ Φ(xk, νk)− 1− r

2

(
ϕ(xk)− ϕ(yk+1)

)
.

Adding and subtracting Φ(yk+1 + tdk, νk+1) to the above inequality, we arrive at

Φ(yk+1 + tdk, νk+1)− Φ(xk, νk) (23)

≤ Φ(yk+1 + tdk, νk+1)− Φ(yk+1, νk+1)− 1− r

2

(
ϕ(xk)− ϕ(yk+1)

)
.

On the other hand, we have

Φ(yk+1 + tdk, νk+1)− Φ(yk+1, νk+1) (24)

= θ
[
L(y + td, λ, µ)− L(y, λ, µ)

]
+ (1− θ)

[
ϕ(y + td)− ϕ(y)

]
≤ θ

[
tε− γdt∥d∥2

]
+ (1− θ)

[
t(|ℓ|+ ∥s∥)ϕ(y) + γϕt

2∥d∥2 + 2t∥1∥ε
]

= 2t∥1∥ε− tθε(2∥1∥ − 1) + t(1− θ)(|ℓ|+ ∥s∥)ϕ(y)− t(θγd − (1− θ)γϕt)∥d∥2

≤ 2t∥1∥ε+ t(1− θ)(|ℓ|+ ∥s∥)ϕ(y)− t(θγd − (1− θ)γϕt)∥d∥2,

for any t ∈ [0, t], where the first inequality follows from Lemmas 4.1 and 4.2 (we omit indices
k and k + 1 for simplicity). The last term on the right-hand side of (24) is non-negative if
θkγd − (1− θk)γϕt ≤ 0, in particular, as θ̄ ≤ θk by Lemma 5.1, for all

t ≤ t̃1 := min

{
t ,

θ̄γd
(1− θ̄)γϕ

}
≤ θkγd

(1− θk)γϕ
.

Thus, (24) and ϕ(yk+1) ≤ rϕ(xk) (see Step 1 of Algorithm 1) imply

Φ(yk+1 + tdk, νk+1)− Φ(yk+1, νk+1)− 2t∥1∥εk −
1− r

4

(
ϕ(xk)− ϕ(yk+1)

)
(25)

≤ t(1− θk)(|ℓk|+ ∥sk∥)ϕ(yk+1)− 1− r

4

(
ϕ(xk)− ϕ(yk+1)

)
≤ t(1− θk)(|ℓk|+ ∥sk∥)rϕ(xk)−

1− r

4

(
ϕ(xk)− rϕ(xk)

)
=

(
t(1− θk)(|ℓk|+ ∥sk∥)r −

(1− r)2

4

)
ϕ(xk)

for all t ≤ t̃1. If |ℓk| + ∥sk∥ = 0, the right side of (25) is non-positive for all t; otherwise, i.e.
|ℓk|+ ∥sk∥ > 0, it is non-positive for all

t ≤ t̃2 :=
(1− r)2

4r(1− θ̄)(|ℓk|+ ∥sk∥)
≤ (1− r)2

4r(1− θk)(|ℓk|+ ∥sk∥)
.

For convenience, define t̃2 :=∞ if |ℓk|+ ∥sk∥ = 0. In any case, (23) and (25) give

Φ(yk+1 + tdk, νk+1)− Φ(xk, νk) ≤ −1− r

4

(
ϕ(xk)− ϕ(yk+1)

)
+ 2t∥1∥εk

for all t ≤ min{t̃1, t̃2}, and hence (16) holds for all t ≤ min{t̃1, t̃2}.
Finally, from the backtracking procedure we have

tk ≥
1

a
min{t̃1, t̃2} = tk.

This concludes the proof.

15

The next result shows that under H2 and H3, the sequence of εk–approximate solutions of
(14) is bounded.

Lemma 5.3. Suppose valid H2 and H3. Then {(sk, ℓk, dk)} is a bounded sequence.

Proof. First notice that {∇xL(yk+1, λk+1, µk+1)} is bounded due to H3, the boundedness of
{λk+1} and {µk+1}, and the continuity of all gradients. We split the proof into two cases,
depending on whether {dk} is bounded or not. If it is bounded, (18) implies ∥sk∥2 + ℓ2k ≤
2∥∇xL(yk+1, λk+1, µk+1)∥∥dk∥− (dk)THkdk +2εk, and thus the sequence {(sk, ℓk)} is bounded.
Now, suppose that {dk} is unbounded. Without loss of generality, we assume that ∥dk∥ → ∞
after taking a suitable subsequence. From (18) and H2, we get 2∇xL(yk+1, λk+1, µk+1)Tdk +
σmin∥dk∥2 ≤ 2εk. Dividing this expression by ∥dk∥2 and passing to the limit we conclude that
σmin ≤ 0, contradicting H2. Thus, {dk} is bounded and so is {(sk, ℓk)} as well.

The next result complements Lemma 5.3. It reveals how ∥(sk, ℓk, dk)∥ controls the gradient
projection associated with CAKKT, which is a crucial fact for the main convergence theorem of
the next section.

Lemma 5.4. Suppose valid H2. For every σ ≥ max{1, σmax} and every k, we have
∥projL+

Ω(yk+1)(0, 0,−∇xL(yk+1, λk+1, µk+1)∥ ≤ σ∥(sk, ℓk, dk)∥+ εk.

Proof. To simplify the presentation, we omit indices k and k + 1. Let us define (ŝ, ℓ̂, d̂) :=
projL+

Ω(y)(−s,−ℓ,−∇xL(y, λ, µ)−Hd). From (19) we have ∥(ŝ, ℓ̂, d̂)∥ ≤ ε. Thus, from the non-

expansiveness of the projection,

∥projL+
Ω(y)(0, 0,−∇xL(y, λ, µ))∥

= ∥projL+
Ω(y)(0, 0,−∇xL(y, λ, µ))−projL+

Ω(y)(−s,−ℓ,−∇xL(y, λ, µ)−Hd)+(ŝ, ℓ̂, d̂)∥

≤ ∥(s, ℓ,−∇xL(y, λ, µ)) +∇xL(y, λ, µ)) +Hd)∥+ ∥(ŝ, ℓ̂, d̂)∥

= ∥(s, ℓ,Hd)∥+ ∥(ŝ, ℓ̂, d̂)∥ ≤ σ̂∥(s, ℓ, d)∥+ ε,

where σ̂ is the norm of the linear operator (s, ℓ, d)→ (s, ℓ,Hd). Finally, in view of H2 we have
σ̂ ≤ max{1, σmax}, from which follows the statement.

Observe that Lemma 5.3 ensures the boundedness of the sequence {xk}. In fact, since
xk+1 := yk+1 + tkd

k (Step 6 of Algorithm 1), we have ∥xk+1∥ ≤ ∥yk+1∥ + tk∥dk∥ and the
statement follows from Lemma 5.3, H3 and the fact that tk ≤ 1. In particular, the sequences
{f(xk)}, {ϕ(xk)} and {L(xk, λk, µk)} are bounded. Furthermore, every limit point of the IR
method is feasible as the next lemma shows.

Lemma 5.5. Under H2, H3 and H4, the sequence {ϕ(xk)} is summable.

Proof. We follow arguments similar to the proof of [16, Lemma 3.2]. From Steps 1 and 5 of
Algorithm 1 and the fact that tk ≤ 1, we have, for all k,

Φ(zk+1, θk) ≤ Φ(zk, θk)−
(1− r)2

4
ϕ(xk) + 2∥1∥εk,

where zk := (xk, λk, µk). Using the definition of Φ, and after some straightforward computations,
the above inequality implies

(1− r)2

4
ϕ(xk) ≤ θk(L(zk)− L(zk+1)) + (1− θk)(ϕ(x

k)− ϕ(xk+1)) + 2∥1∥εk.

16

By Lemma 5.1, 0 < θ̄ ≤ θk ≤ θ0 for all k. So, dividing the above inequality by θk,

(1− r)2

4θ0
ϕ(xk) ≤ L(zk)− L(zk+1) +

1− θk
θk

(ϕ(xk)− ϕ(xk+1)) + 2θ̄−1∥1∥εk. (26)

The statement follows from (26) if the sequence {ak(ϕ(xk) − ϕ(xk+1))} is summable, where
ak := (1 − θk)/θk. From Lemma 5.1, it is straightforward to verify that 0 < (1 − θ0)/θ0 ≤
ak−1 ≤ ak ≤ (1− θ̄)/θ̄ for all k. Also,

ak(ϕ(x
k)− ϕ(xk+1)) = (ak − ak−1)ϕ(x

k) + ak−1ϕ(x
k)− akϕ(x

k+1). (27)

If M := sup
k

ϕ(xk) then
K∑
k=1

(ak − ak−1)ϕ(x
k) ≤

K∑
k=1

(ak − ak−1)M = (aK − a0)M . Thus, by

summing (27) over k = 1, . . . ,K and noting that aKϕ(xK+1) ≥ 0, we obtain

K∑
k=1

ak(ϕ(x
k)− ϕ(xk+1)) ≤ (aK − a0)M + a0ϕ(x

1)− aKϕ(xK+1) ≤ (1− θ̄)

θ̄
M.

By summing (26) over k = 1, . . . ,K and using the last inequality, we arrive at

(1− r)2

4θ1

K∑
k=1

ϕ(xk) ≤ L(z1)− L(zK+1) +
(1− θ̄)

θ̄
M + 2θ̄−1∥1∥

K∑
k=1

εk.

Thus, {ϕ(xk)} is summable because {εk} is summable and {L(zk)} is bounded.

Lemma 5.6. Under H1–H4, {tk} is bounded below by some t > 0.

Proof. By Lemma 5.3, the sequence {(sk, ℓk, dk)} is bounded. Take M > 0 such that ∥sk∥+ℓk ≤
M for all k. By Lemma 5.2, we have

tk ≥ tk ≥ t :=
1

a
min

{
t,

θ̄γd
(1− θ̄)γϕ

,
(1− r)2

4r(1− θ̄)M

}
> 0

for all k, concluding the proof.

Lemma 5.7. Suppose valid H1–H4, and let {xk} be an infinite sequence generated by Algo-
rithm 1. Then (sk, ℓk, d

k)→ 0.

Proof. Let us denote νk := (λk, µk). From H4 and Lemmas 4.2 and 5.6, we have

γdt∥dk∥2 + γct∥(sk, ℓk)∥2 ≤ L(yk+1, νk+1)− L(yk+1 + tkd
k, νk+1) + tkεk

=
[
L(yk+1, νk+1)− L(xk, νk)

]
+ L(xk, νk)− L(xk+1, νk+1) + tkεk

≤ βϕ(xk) + L(xk, νk)− L(xk+1, νk+1) + tkεk

for all k, where γd = σmin/4. By summing over k = 1, . . . ,K and using the fact that tk ≤ 1, we
obtain

K∑
k=1

(γdt∥dk∥2 + γct∥(sk, ℓ2k)∥2) ≤ L(x1, ν1)− L(xK+1, νK+1) +
K∑
k=1

(βϕ(xk) + εk).

TakingK →∞, we conclude that {∥dk∥2}, {∥sk∥2} and {|ℓk|2} are summable using the definition
of {εk} in Algorithm 1, the boundedness of {(xk, λk, µk)} and Lemma 5.5.

17

5.2 The main convergence result

Next, we state the main convergence result for our IR framework, which is supported by the
previous lemmas.

Theorem 5.8. Suppose that H1–H4 hold and consider the infinite sequences {xk} and {yk}
generated by Algorithm 1. Then every limit point of {xk} (or {yk}) is a CAKKT point.

Proof. For all k, we have ∥yk − xk∥ = ∥yk − (yk + tk−1d
k−1)∥ ≤ tk−1∥dk−1∥. As dk−1 → 0 by

Lemma 5.7 and tk−1 ≤ 1, we obtain ∥yk − xk∥ → 0, and thus every limit point of {xk} is also
a limit of {yk} and vice versa. So, it is sufficient to consider a limit point of {xk}, let us say,
x̄ = lim

k∈K
xk.

By Lemma 5.5, ϕ(xk)→ 0, and thus x̄ is feasible. By Lemmas 5.4 and 5.7,

∥projL+
Ω(yk)(0, 0,−∇xL(yk, λk, µk))∥ ≤ σ∥(sk−1, ℓk−1, d

k−1)∥+ εk−1 → 0.

Step 2 ensures that lim
k∈K

µk
j = 0 whenever gj(x̄) = lim

k∈K
gj(y

k) < 0. Thus, Corollary 3.2 implies

that x̄ is a CAKKT point associated with the sequence {yk}k∈K .

Given a feasible point x that satisfies an optimality sequential condition, one may ask what
the weakest property for x is to be a KKT point, for every objective function that has x as a local
minimizer. Such a property is known as weakest strict CQ (it is indeed a CQ). In other words,
the weakest strict CQs play the role of Guignard’s CQ for sequential optimality conditions.
In [5], the weakest strict CQs for several sequential conditions were provided. In particular, the
weakest strict CQ associated with CAKKT is known as CAKKT-regularity, which we recall in
the sequel. For x ∈ Rn and α ≥ 0, define the set-valued mapping by

Kx̄(x, α) =

∇h(x)λ+∇g(x)µ

∣∣∣∣∣∣∣
m∑
i=1

|hi(x)λi|+
p∑

j=1

|gj(x)µj | ≤ α,

µ ≥ 0, µj = 0, ∀j ̸∈ A(x̄)

 .

Definition 5.1. We say that a feasible x̄ for (NLP) satisfies the CAKKT-regular condition if
lim sup

(x,α)→(x̄,0)
Kx̄(x, α) ⊂ Kx̄(x̄, 0).

CAKKT-regular is indeed a CQ since it implies Abadie’s CQ [5, Theorem 6]. On the other
hand, it is implied by very mild CQs in the literature (for a complete relationship between
various CQs, see [5, Figure 6]). The next result is a direct consequence of Theorem 5.8 and [5,
Theorem 2].

Corollary 5.9. Under the assumptions of Theorem 5.8, every limit point generated by Algo-
rithm 1 that satisfies the CAKKT-regular condition is a KKT point.

At this point, we have shown that the new optimization step (Step 3 of Algorithm 1) allows
us to ensure convergence to CAKKT points, improving the global convergence results of previous
methods. The attentive reader may ask whether the new optimization step is really necessary to
achieve CAKKT points in the IR framework. The answer is yes. We illustrate this by means of a
simple example that our linearization of the feasible set (4), where the auxiliary variables s and
ℓ are introduced, leads, under hypotheses H1 to H4, to an IR method with stronger convergence
than the usual ones using linearization (3). In other words, keeping s and ℓ in the quadratic
subproblems of Algorithm 1 is theoretically better than taking (s, ℓ) = 0.

18

Example 5.1. Let us consider the example [6]

min
(x2 − 2)2

2
s.t. x1 = 0, x1x2 = 0.

The unique minimizer is (0, 2). Hypothesis H1 is immediate and H2 is fulfilled, for example for
Hk = I. Taking λmin = λmax = µmax = 0, (14) takes the form

min (yk+1
2 − 2)d2 +

1

2
dT Id+

1

2
(s21 + s22)

s.t. s1y
k+1
1 + d1 = 0, s2y

k+1
1 yk+1

2 + yk+1
2 d1 + yk+1

1 d2 = 0,

from which we conclude that its solution (sk, dk) satisfies

dk1 = −sk1yk+1
1 and yk+1

1 dk2 = (s1 − s2)y
k+1
1 yk+1

2 .

Let us analyze the case where s is not present, or equivalently, s = (0, 0). From the above
relations, dk = (0, 0) whenever yk+1

1 ̸= 0, and thus xk+1 = yk+1. So, in this case we go back to
the restoration phase, obtaining a new restoration point yk+2 such that ϕ(yk+2) ≤ rϕ(xk+1) =
rϕ(yk+1) with r = 1/2. Note that the value of θk (Step 4 of Algorithm 1) does not matter. Thus,
the classical IR approach, without s, can generate the sequence {xk = yk = (1/2k, 1)} since

ϕ(yk+2) =
∥∥∥(1

2k+2
,

1

2k+2

)∥∥∥ ≤ 1

2

∥∥∥(1

2k+1
,

1

2k+1

)∥∥∥ =
1

2
ϕ(xk+1), ∀k ∈ N.

Also, H3 and H4 are satisfied since f(yk+1)−f(xk) = 0 for all k. However, the limit point (0, 1)
is not the solution, or even a CAKKT point [6].

On the other hand, Algorithm 1, with possibly nonzero s, can not converge to (0, 1) with a
sequence satisfying H3 and H4 due to Theorem 5.8.

We end this section with an interesting consequence of our theory. Note that if the point
yk+1 from Step 1 of Algorithm 1 is feasible, then trivially (sk, ℓk) = 0 at the optimality of
problem (14), since in this case we have h(yk+1) = 0 and g+(yk+1) = 0. Thus, we can remove
the variables s and ℓ from (14). So, under hypotheses H1–H4, Theorem 5.8 says that the usual IR
(Algorithm 1 without the variables s and ℓ) converges to CAKKT points whenever only feasible
points yk+1 are computed. We will refer to such method as exact restoration. We summarize
this result below.

Corollary 5.10. Suppose valid H1–H4 and consider the infinite sequences {xk}, {yk} generated
by the exact restoration method, i.e., Algorithm 1 without s and ℓ, and where yk+1 is always
feasible. Then every limit point of {xk} or {yk} is CAKKT. Furthermore, if such limits satisfy
the CAKKT-regular condition, then they are KKT.

Note that in Example 5.1, the sequence {yk+1} is infeasible. Exact restoration can only be
expected on very specific problems where feasibility is easy to achieve (e.g., by closed formulas).
The hard-spheres problem is an example [30]. We emphasize, however, that achieving exact
feasibility is quite unusual for general problems. Our approach, in turn, recovers good theoretical
convergence with a general inexact restoration phase.

6 Numerical tests

We implemented Algorithm 1 in Julia (v1.8.5) [10]. In this section, we discuss how the steps of
the method were addressed in practice. Numerical tests on CUTEst problems are reported.

19

6.1 Practical aspects and implementation issues

6.1.1 Restoration step

The point yk+1 must satisfy ϕ(yk+1) ≤ rϕ(xk). If ϕ(xk) is small enough (ϕ(xk) ≤ εfeas), we
choose yk+1 = xk. Otherwise, we apply the Barzilai-Borwein-like method ABBmin1 [23] with
projections on box constraints, as done in [15], to the infeasibility problem

min
y,w

1

2
∥h(y)∥2 + 1

2
∥g(y)− w∥2 + ξ

2
∥y − xk∥2 s.t. w ≤ 0, (28)

ξ ≥ 0, until ϕ(yk+1) ≤ rϕ(xk) is reached or the projected gradient sup-norm (of its objective
function) if less than or equal to 10−14. We initialize ξ = 10−4 and decrease it (ξ ← ξ/10)
whenever the projected gradient sup-norm is less than or equal to 10−7, ϕ(y) > rϕ(xk) and
ξ > 10−16. If ABBmin1 fails, we proceed with the best-found point. Finally, if the infeasibility
does not improve during ten consecutive outer iterations, we stop Algorithm 1 declaring failure.
This criterion, based solely on numerical practice, is more flexible than the criterion in Step 1.

6.1.2 Estimation of Lagrange multipliers

We initialize (λ0, µ0) = (0, 0). New multipliers (λk+1, µk+1) can be obtained from the dual
solution (λk−1

QP , µk−1
QP) of the quadratic problem of the previous iteration k− 1. In fact, from the

optimality conditions of (14), we have

∇xL(zk) +Hk−1d
k−1 +

∑
i

λk−1
QP,i∇hi(y

k) +
∑
j

µk−1
QP,j∇gj(y

k) = 0, µk−1
QP ≥ 0,

where zk := (yk, λk, µk). So, when ∥Hk−1d
k−1∥∞ is small the safeguarded multiplier vector λk+1

of iteration k can be approximated by

λk+1
i = max{λmin , min{λmax , λ

k
i + λk−1

QP,i}}, (29)

for all i (analogously for µk+1
j). The use of multiplier estimates from the subproblem was

proposed, for example, in [16]. Unfortunately, the estimative (29) may be poor if ∥Hk−1d
k−1∥

is large. We then use it if it promotes a reduction of ∥∇xL(yk+1, ·, ·)∥∞, otherwise we keep the
multipliers unchanged. Although in the early stages of the optimization process the quantity
∥Hk−1d

k−1∥ tends to be large, our numerical experience indicates that (29) is effective in reducing
∥∇xL∥. Thus, this is the main strategy for updating multiplier estimates.

The new multiplier µk+1 may not satisfy the complementarity condition. If this is the case, we
try to correct µk+1 when the feasibility tolerance is reached at yk+1 (that is,
min{ϕ(yk+1), ∥(h(yk+1), g+(yk+1))∥∞} ≤ εfeas) but the complementarity is not
(∥min{−g(yk+1), µk+1}∥∞ > εcompl), by applying the strategy described next. Let us consider
the least squares problem

min
λ,µ

∥∥∥∥[∇h(yk+1) ∇g(yk+1)

0 ρG(yk+1)

] [
λ
µ

]
+

[
∇f(yk+1)

0

]∥∥∥∥2 s.t. µ ≥ 0, (30)

where ρ > 0 and G(yk+1) is the diagonal matrix formed from g−(yk+1). The scalar ρ can be
viewed as a penalization parameter for the products µjg

−
j (y

k+1). As ρ grows, complementarity
tends to be satisfied; on the other hand, optimality tends to be lost. We then adopt the following
two-phase procedure:

20

1. we solve the unconstrained version of (30) starting with ρ = 0.1 using a suitable factoriza-
tion. Then we check if the complementarity measure of Step 2 is at most max{εcompl, 0.1 ·
∥min{−g(yk+1), µk+1}∥∞}. If yes, we stop declaring “success” if the new µ is non-negative,
otherwise we declare “failure”. In the case of complementarity was not reduced enough,
we check if the optimality measure (the sup-norm of the first row in (30)) is greater than
0.999 · ∥∇xL(yk+1, λk+1, µk+1)∥∞. If yes, we stop declaring “failure” and return the cur-
rent multiplier estimate. Otherwise, we update ρ ← 10ρ and repeat the process until
complementarity was reduced or ρ ≥ 1020;

2. if the first phase fails, we simply reset all the multipliers to zero.

Remark 4. When (NLP) has only equality constraints, (30) is an unconstrained problem. In this
case, no complementarity should be verified. However, it was observed numerically that even in
this case recomputing multipliers can be useful to improve optimality. Therefore, we apply the
above strategy if also the feasibility tolerance is reached and ∥∇xL(yk+1, λk+1, µk+1)∥∞ > εopt.
Note that in equality-constrained problems, the solution of (30) is always accepted as new the
multiplier vector λk+1.

6.1.3 Optimization step

To simplify our exposition, we start by assuming that (NLP) has only equality constraints and
that Hk = ∇2

xxL + σIn for some σ ≥ 0. The KKT system of the corresponding quadratic
problem from step 3 is (we omit yk+1, λk+1 for clarity) ∇2

xxL+ σIn 0 ∇h
0 Im diag(h)

∇hT diag(h) −ξIm

 d
s

λQP

 =

 −∇xL
0

0

 (31)

with ξ = 0, where diag(h) is the diagonal matrix formed from h(yk+1). Let M be the 2 × 2
block formed from ∇2

xxL + σIn and Im. Considering the hypothesis H2’, we want to compute
σ ≥ 0 such that M is positive definite on the kernel of [∇hT diag(h)] (note that it is not
necessary to adjust the identity Im in M). A practical way to do this is increasing successively
σ until the inertia of the matrix of coefficients of (31) is correct, that is, when such matrix has
n +m positive and m negative eigenvalues. Also, it is necessary to correct a possible deficient
rank of [∇hT diag(h)], which can be done taking a positive ξ, see [33]. Similar to [11] (see
also [33]), we compute the inertia of the matrix of coefficients of (31) by an inertia-revealing
factorization. We adopt the following procedure: we start trying σ = 0 and ξ = 0. If the inertia
is correct, we compute the solution using the available factorization. Otherwise, we update
ξ ← max{10−8, 3ξ} if the number of negative eigenvalues is less than m and σ ← max{10−8, 3σ}
if the number of positive eigenvalues is less than n+m, and recompute the factorization. This
procedure is repeated until the inertia is correct. It is worth mentioning that, although H2’
involves the lower bound σmin on the positivity of Hk, we allow Hk being ∇2

xxL without further
verification in order to favour Newton-type steps.

For the case of equality and inequality constraints, we implemented a simple primal active-
set method, see [33]. At each face, we need to solve an equality-constrained quadratic problem
compose by all equalities and by the inequality constraints with indices in a working set W

21

written as equalities, which leads to the coefficient matrix
∇2

xxL+ σIn 0 0 ∇h ∇gW
0 Im 0 diag(h) 0

0 0 1 0 (g+W)T

∇hT diag(h) 0 −ξIm 0

∇gTW 0 g+W 0 −ξ

 (32)

where g+W is the column vector formed by g+j (y
k+1), j ∈ W . Each quadratic problem is solved

analogously to the equality-constrained case. We start with W = ∅ and compute σ ≥ 0 as
before. This σ serves for all subsequent subproblems, as equality constraints are present in all
of them.

Remark 5. When ∇xL(yk+1, λk+1, µk+1) = 0, (14) does not need to be solved since trivially
(sk, ℓk, d

k) = 0 is its solution. This is in accordance with the purpose of dk, which is intended
to be a descent direction for the Lagrangian function at yk+1. So, we pass directly to Step 1
whenever ∥∇xL(yk+1, λk+1, µk+1)∥∞ ≤ 10−16.

Our implementation handles bounds on variables by treating them as ordinary inequality
constraints, except in the restoration phase, where they are handled directly by introducing
box-constraints l ≤ y ≤ u in the infeasibility problem (28). In general, solving (14) deserves
further research; for example, dual active-set methods may be preferable when the number of
constraints is large.

6.1.4 Globalization step

We implemented the simple backtracking procedure tk ← 0.5tk, starting with tk ← 1, to achieve
(15) and (16). Under the hypotheses of Lemma 5.2, this procedure is finite (for safety, we stop
it when yk+1 + tkd

k is numerically equal to yk+1). Note that if tk < 1 is the accepted step-size
and t̂ is the rejected step-size immediately before, then t̂ ∈ [tk, 2tk].

6.2 Tests with problems from CUTEst

Tests were run on a computer equipped with Intel© i5-4570 CPU 3.20GHz, GNU/Linux Ubuntu
20.04.2 LTS. We set r = 0.2, θ−1 = 0.9999, λmin = −1020, µmax = λmax = 1020, γc = 10−4,
σmin = 10−8 and the maximum number of outer iterations equals 100. Supported by Corol-
lary 3.2, the stopping criterion is

max{∥(sk, ℓk, dk)∥∞} ≤ εopt, min{ϕ(yk+1), ∥(h(yk+1), g+(yk+1))∥∞} ≤ εfeas (33)

where εopt = 10−6 and εfeas = 10−8 (note that from Step 3 of Algorithm 1, (sk, ℓk, d
k) is

associated with yk+1). In the restoration phase, we set the maximum number of ABBmin1
iterations to 50,000. Also, we stop it due to lack of progress if no improvement in the objective
function of (28) occurs during 300 consecutive iterations.

We consider the following two IR strategies:

� IR0,0: the usual IR, where we eliminate the auxiliary variables s and ℓ from the quadratic
subproblem (14) (so, it is the same as fixing (s, ℓ) = 0 in Algorithm 1). This corresponds
to projecting onto LΩ(y

k+1), see (3);

� IRs,ℓ: Algorithm 1 where (14) is solved considering s and ℓ.

22

We consider CUTEst problems with the number of constraints between 1 and 10,000. We
excluded feasibility problems, i.e., those with constant objective function. This is because we
initialize all multipliers to zero, so we always have (λk, µk) = 0 and ∇xL(yk, λk, µk) = 0.
Therefore, (14) does not need to be solved (see Remark 5), i.e., IR0,0 and IRs,ℓ behave exactly
the same.

6.2.1 Measuring the cost of the new optimization step

We are interested in determining whether the new optimization phase adds relevant computa-
tional effort compared to the usual one, that is, we want to know if solving (14) is significantly
more expensive than solving the same quadratic problem without s and ℓ. Firstly, it is worth
noting that compared to the quadratic problem without the variable s, the matrix (31) ag-
gregates only the two diagonal blocks Im and diag(h). This results in an additional storage
requirement of only 2m elements. The same applies when inequality constraints are present.

As the restoration phase represents an important portion of the total execution time that can
vary depending on the generated sequence {xk}, we performed only one iteration of ABBmin1 for
a fairer comparison (of course, we are not analyzing robustness at this time). We also disabled
the computation of multiplier estimate (section 6.1.2) by imposing µmax = λmax = λmin = 0 and
we limited the number of outer iterations to 5. To measure the effort on a more representative
set of problems, we select only those with 1,000 to 10,000 equality constraints and no inequalities
(when only equality constraints are present, the optimization phase boils down to solving exactly
one system (31)). In the 39 selected problems, the runtime of IRs,ℓ and IR0,0 were essentially
the same, that is, the costs of solving the optimality system with matrices (31) and (32) are
essentially the same. Table 1 shows the runtime comparison for the selected problems grouped
by the number of equality constraints (m) – note that for each equality constraint, there is one
additional variable si in IRs,ℓ. The first two columns indicate the interval of m considered and
the quantity of problems within each of them. The third column is obtained as follows: for
each problem p, we define the runtime T p

s,ℓ of IRs,ℓ as the average of the execution times of the

necessary runs to reach 10 seconds; T p
0,0 is defined analogously. Then, we compute the geometric

mean of T p
s,ℓ/T

p
0,0 across all problems p in the interval. This serves to measure the overall

percentage of IRs,ℓ’s runtime relative to IR0,0, which is reported in the fourth column. The last
column is the standard deviation of max{0, T p

s,ℓ − T p
0,0} across all problems in the interval; it

aims to measure the dispersion in runtime between the problems where IRs,ℓ was slower than
IR0,0. From our tests, we can say that the addition of variable s in (31) does not affect the
cost of computing a direction in the optimization step (we attribute the minor fluctuations in
the data presented in Table 1 to natural variations in execution time). Also, this conclusion
remains valid when the number of equality constraints varies. Although the number of variables
increases along with the number of equality constraints, Table 2 brings the problems grouped
by the number of variables, from which similar conclusion can be verified.

In the presence of inequality constraints we observed discrepancies in runtime either in favor
of IRs,ℓ or in favor of IR0,0, and thus no consistent conclusion could be drawn. Although an
arbitrary number of inequality constraints entails the addition of a single variable ℓ, which results
in the larger matrix (32), the effect on the number of faces explored in the active-set method may
be different from an IR variant to another. As detailed in the next section, handling inequality
constraints in inexact restoration methods remains a challenge. It is worth mentioning that the
implementation in [11] only handles equality-constrained problems with all free variables.

23

Table 1: Runtime comparison between problems only with equality constraints, categorized by
the number of constraints. IR0,0 is the reference.

number of number of geometric mean IRs,ℓ relative standard deviation of
constraints problems of T p

s,ℓ/T
p
0,0 to IR0,0 max{0, T p

s,ℓ − T p
0,0}

100–1000 4 1.0098 0.98% slower 0.04492
1001–2000 8 0.9998 0.02% faster 0.01250
2001–3000 4 0.9955 0.45% faster 0.00375
3001–4000 4 0.9998 0.02% faster 0.00419
4001–5000 5 1.0024 0.24% slower 0.00405
5001–7000 3 1.0009 0.09% slower 0.00231
7001–8000 7 0.9895 1.05% faster 0.03216
> 8000 4 0.9908 0.92% faster 0.01758

Table 2: Runtime comparison between problems only with equality constraints, categorized by
the number of variables. IR0,0 is the reference.

number of number of geometric mean IRs,ℓ relative standard deviation of
variables problems of T p

s,ℓ/T
p
0,0 to IR0,0 max{0, T p

s,ℓ − T p
0,0}

100–2000 5 1.0103 1.03% slower 0.09322
2001–3000 7 0.9981 0.19% faster 0.02132
3001–6000 4 0.9955 0.45% faster 0.00405
6001–9000 5 1.0040 0.40% slower 0.01059
9001–10000 13 0.9925 0.75% faster 0.02422
> 10000 5 0.9961 0.39% faster 0.02280

24

Figure 2: Comparison of the number outer iterations between IRs,ℓ and IR0,0 in equality-
constrained problems.

6.2.2 Comparison of IR methods

Since the cost of solving one quadratic problem in Step 3 of Algorithm 1 is essentially the
same for IRs,ℓ and IR0,0, to compare the IR methods we disregard possible variations in the
performance of the solver employed in the restoration phase. Therefore, we compare IRs,ℓ and
IR0,0 by the number of outer iterations.

We first present the results on problems with only equality constraints. From the 90 selected
problems, 11 were discarded due to unexpected errors or 1 hour runtime exceeded. In general,
both IR methods work similarly. From the 79 problems considered, IR0,0 and IRs,ℓ solved
77.21% and 78.48%, respectively. For problems MSS2 and MSS3, IR0,0 and IRs,ℓ stopped at
a stationary point of the infeasibility, respectively. We consider a point to be stationary for
infeasibility if it fails to meet the feasibility criterion in (33), but is stationary for (28) with
ξ = 0. The same situation occurred for problems MSS1 and S308NE with both strategies. IRs,ℓ

needs more iterations to converge than IR0,0 in 42.37% of the problems that were solved by
both methods. However, in 36.00% of them only one additional iteration was performed; in
28.00% two iterations, in 24.00% between three and six iterations and in 12.00%, 35 or more
iterations. On the other hand, among problems where IRs,ℓ converged with fewer iterations than
IR0,0 (32.20% of the solved problems), we observed larger discrepancies favourable to IRs,ℓ: HS56
required 66 fewer iterations and LUKVLE13, 15; LUKVLE12 and SPIN2OP were solved by IRs,ℓ, but
not by IR0,0. Figure 2 shows the performance profile [19] on problems with equality constraints
only.

When inequality constraints are present, a difficulty in implementing robust inexact restora-
tion algorithms lies in updating the multipliers in Step 2 due to complementarity. The strategy
described in Section 6.1.2 attempts to overcome this issue, but it is certainly not optimal. In par-
ticular, when complementarity is not achieved, we reset all multipliers to zero, which, although
theoretically valid, leads to a very poor numerical performance. In fact, the lack of accurate
estimates for the Lagrange multipliers is the main reason for failure in our numerical tests: when
λk+1 = 0 and µk+1 = 0 in Step 2 of Algorithm 1, the direction computed in Step 3 tends to
decrease only f , resulting in very small steps tk close to the solution (even if Hk ≈ ∇2f(yk+1),
i.e., σk ≈ 0), and in an optimality measure ∥∇L(xk+1, 0, 0)∥∞ far from zero. In this case, the
method adopted in the feasibility phase is not capable of driving the minimization process to the
solution by itself. From the 601 selected problems with inequality constraints and/or bounds on

25

variables (bounds are treated as inequality constraints in our implementation), the IR methods
stopped within 1 hour in 420 of them. Among these problems, IR0,0 converged in 53.57% of
them, while IRℓ,s solved 54.05% of them. The relationship between outer iterations of the two
variants is similar to the equality-constrained case (see Figure 2), that is, IRℓ,s typically requires
a few more iterations than IR0,0 to converge, but it is slightly more robust.

Considering that the cost of solving quadratic subproblems in both IR methods is similar and
that the new IR method has shown a slight improvement in robustness, we believe that future
implementations can benefit from using the new optimization step. In particular, the resolution
of quadratic subproblems is a crucial issue (the active set method failed in 36 problems). Finally,
we executed the IR methods on problems with inequality constraints reformulated using slacks
variables; this is common in the literature [9, 11, 13, 16, 21, 29]. We observed a worse performance
compared to treating inequalities directly. However, it is worth noting that this outcome can
vary depending on the implementation, especially in terms of how the quadratic problems in the
optimization step are solved.

Following a reviewer’s suggestion, we conducted all tests with a limit of 1,000 outer iter-
ations. The scenario for equality-constrained problems remained almost unchanged (only one
more problem was solved by the new IR algorithm). For problems with inequality constraints
and/or bounds on variables, both IR variants solved 10 additional problems, while 3 were solved
only by the standard IR and another 4 only by the new IR. This represents only 2.8% of the total
problems with inequalities. Thus, the gain from increasing the maximum number of iterations
is marginal, and it does not alter the relative comparison between the two variants. The poor
robustness exhibited by both IR methods on inequality-constrained problems suggests that spe-
cialized techniques for dealing with such constraints should be a topic of future research, as well
as an effective strategy to compute the multiplier µk+1 in Step 2. Some possible improvements
are listed in the next section.

7 Conclusion

Sequential optimality conditions are powerful tools for unifying and establishing convergence of
several numerical methods in optimization. In this work, we demonstrate how this concept can
be used as a guide for the development of new inexact restoration algorithms with a focus on im-
proving the global convergence theory. The fundamental idea behind our approach is to rewrite
the CAKKT condition [6] as a projection onto a suitable linearization of the feasible set and
incorporate it into a novel optimization step. This new step not only involves an optimality mea-
sure, but also carries additional information regarding the complementarity, a crucial ingredient
to reach CAKKT points. This is accomplished by considering the level of infeasibility at the
target point through auxiliary variables. To the best our knowledge, the resulting IR method
is the first numerical method for standard nonlinear optimization that converges to CAKKT
points without any exogenous assumptions while allowing inexact resolution of subproblems.
Furthermore, our theory enables us to establish a new CAKKT convergence status for previous
IR algorithms when exact feasibility is maintained throughout the optimization process. This
finding helps explain why inexact restoration techniques work well in problems where feasibility
can be achieved with high precision, for example the hard-spheres problem [27, 30]. However,
despite all the theoretical apparatus, the computational performance in the numerical exper-
iments of both the traditional IR and the new proposal did not present good robustness for
general-purpose problems from CUTEst.

We compared our new IR strategy to that one with the classical, well-established, optimiza-
tion step on CUTEst problems, concluding that the use of the new optimization step does not

26

imply a significant increase in runtime. This encourages us to pursue a state-of-art implemen-
tation. Based on our numerical experience, the implementation of Algorithm 1 and other IR
methods can be improved considering, among others, the following topics: (i) adopting our
novel optimization step as standard; (ii) employing a variety of specialized methods to compute
points in Step 1 for different types of constraints; (iii) refining estimates of Lagrange multipliers,
especially those associated with inequality constraints; (iv) the use of regularized quadratic sub-
problems as done in SQP methods [26]; (v) incorporating extrapolation steps and non-monotone
line searches in Step 5 to avoid excessively small steps; (vi) the possibility of using a filter ap-
proach [27]; and (vii) dealing with variable bounds directly within the quadratic subproblems.
Certainly, this involves a much careful implementation that should be considered in a future
research, and some of these improvements require adjustments to the theory. Special attention
should be devoted to specific problems where the inexact restoration philosophy has favourable
properties, such as bilevel optimization [1, 7].

References

[1] R. Andreani, S. L. C. Castro, J. L. Chela, A. Friedlander, and S. A. Santos. An inexact-
restoration method for nonlinear bilevel programming problems. Computational Optimiza-
tion and Applications, 43:307–328, 2009.

[2] R. Andreani, G. Haeser, and J. M. Mart́ınez. On sequential optimality conditions for smooth
constrained optimization. Optimization, 60(5):627–641, 2011.

[3] R. Andreani, G. Haeser, L. M. Mito, A. Ramos, and L. D. Secchin. On the best achievable
quality of limit points of augmented Lagrangian schemes. Numerical Algorithms, 90:851–
877, 2022.

[4] R. Andreani, G. Haeser, M. L. Schuverdt, and P. J. S. Silva. A relaxed constant positive
linear dependence constraint qualification and applications. Mathematical Programming,
135(1):255–273, 2012.

[5] R. Andreani, J. M. Mart́ınez, A. Ramos, and P. J. S. Silva. Strict constraint qualifica-
tions and sequential optimality conditions for constrained optimization. Mathematics of
Operations Research, 43(3):693–717, 2018.

[6] R. Andreani, J. M. Mart́ınez, and B. F. Svaiter. A new sequential optimality condition for
constrained optimization and algorithmic consequences. SIAM Journal on Optimization,
20(6):3533–3554, 2010.

[7] R. Andreani, V. A. Ramirez, S. A. Santos, and L. D. Secchin. Bilevel optimization with a
multiobjective problem in the lower level. Numerical Algorithms, 81(3):915–946, 2019.

[8] R. Andreani, A. Ramos, A. A. Ribeiro, L. D. Secchin, and A. R. Velazco. On the convergence
of augmented Lagrangian strategies for nonlinear programming. IMA Journal of Numerical
Analysis, 42(2):1735–1765, 2022.

[9] M. B. Arouxét, N. E. Echebest, and E. A. Pilotta. Inexact restoration method for nonlinear
optimization without derivatives. Journal of Computational and Applied Mathematics,
290:26–43, 2015.

27

[10] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to
numerical computing. SIAM Review, 59(1):65–98, 2017.

[11] E. Birgin, L. Bueno, and J. Mart́ınez. Assessing the reliability of general-purpose inexact
restoration methods. Journal of Computational and Applied Mathematics, 282:1–16, 2015.

[12] E. G. Birgin, N. Krejic, and J. M. Mart́ınez. Iteration and evaluation complexity for
the minimization of functions whose computation is intrinsically inexact. Mathematics of
Computations, 89:253–278, 2020.

[13] E. G. Birgin and J. M. Mart́ınez. Local convergence of an inexact-restoration method and
numerical experiments. Journal of Optimization Theory and Applications, 127(2):229–247,
2005.

[14] E. G. Birgin and J. M. Mart́ınez. Practical Augmented Lagrangian Methods for Constrained
Optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2014.

[15] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Nonmonotone spectral projected gradient
methods on convex sets. SIAM Journal on Optimization, 10(4):1196–1211, 2000.

[16] L. F. Bueno, G. Haeser, and J. M. Martinez. A flexible inexact restoration methods for
constrained optimization. Journal on Optimization Theory and Applications, 165:188–208,
2015.

[17] L. F. Bueno, G. Haeser, and J. M. Mart́ınez. An inexact restoration approach to optimiza-
tion problems with multiobjective constraints under weighted-sum scalarization. Optimiza-
tion Letters, 10:1315–1325, 2016.

[18] L. F. Bueno and J. M. Mart́ınez. On the complexity of an inexact restoration method for
constrained optimization. SIAM Journal on Optimization, 30(1):80–101, 2020.

[19] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Mathematical Programming, 91(2):201–213, 2002.

[20] A. Fischer and A. Friedlander. A new line search inexact restoration approach for nonlinear
programming. Computational Optimization and Applications, 46(2):333–346, 2010.

[21] J. B. Francisco, D. S. Gonçalves, F. S. V. Bazán, and L. L. T. Paredes. Non-monotone
inexact restoration method for nonlinear programming. Computational Optimization and
Applications, 76(3):867–888, 2019.

[22] J. B. Francisco, J. M. Mart́ınez, L. Martinez, and F. I. Pisnitchenko. Inexact restoration
methods for minimization problems that arise in electronic structure calculations. Compu-
tational Optimization and Applications, 50:555–590, 2011.

[23] G. Frassoldati, L. Zanni, and G. Zanghirati. New adaptive stepsize selections in gradient
methods. Journal of Industrial and Management Optimization, 4:299–312, 2008.

[24] P. E. Gill, V. Kungurtsev, and D. P. Robinson. A shifted primal-dual penalty-barrier
method for nonlinear optimization. SIAM Journal on Optimization, 30(2):1067–1093, 2020.

[25] C. C. Gonzaga, E. Karas, and M. Vanti. A globally convergent filter method for nonlinear
programming. SIAM Journal on Optimization, 14(3):646–669, 2004.

28

[26] A. F. Izmailov and M. V. Solodov. Stabilized SQP revisited. Mathematical Programming,
133(1):93–120, 2012.

[27] E. W. Karas, E. A. Pilotta, and A. A. Ribeiro. Numerical comparison of merit function
with filter criterion in inexact restoration algorithms using hard-spheres problems. Com-
putational Optimization and Applications, 44(3):427–441, 2009.

[28] C. Y. Kaya. Inexact restoration for Runge–Kutta discretization of optimal control problems.
SIAM Journal on Numerical Analysis, 48(4):1492–1517, 2010.

[29] J. M. Mart́ınez. Inexact-restoration method with Lagrangian tangent decrease and new
merit function for nonlinear programming. Journal of Optimization Theory and Applica-
tions, 111(1):39–58, 2001.

[30] J. M. Mart́ınez and E. A. Pilotta. Inexact-restoration algorithm for constrained optimiza-
tion. Journal of Optimization Theory and Applications, 104(1):135–163, 2000.

[31] J. M. Martinez and E. A. Pilotta. Inexact restoration methods for nonlinear programming:
Advances and perspectives. In L. Qi, K. Teo, and X. Yang, editors, Optimization and
Control with Applications, pages 271–291, Boston, MA, 2005. Springer US.

[32] J. M. Mart́ınez and B. F. Svaiter. A practical optimality condition without constraint
qualifications for nonlinear programming. Journal of Optimization Theory and Applications,
118(1):117–133, 2003.

[33] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2 edition, 2006.

[34] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317 of Grundlehren der
mathematischen Wissenschaften. Springer-Verlag Berlin Heidelberg, 1 edition, 1998.

29

	Introduction
	Preliminaries and notation
	Review of sequential optimality conditions

	CAKKT through projections
	The new Inexact Restoration method
	Well-definiteness of the method

	Convergence of the proposed IR method
	Technical results
	The main convergence result

	Numerical tests
	Practical aspects and implementation issues
	Restoration step
	Estimation of Lagrange multipliers
	Optimization step
	Globalization step

	Tests with problems from CUTEst
	Measuring the cost of the new optimization step
	Comparison of IR methods

	Conclusion

