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Abstract. We investigate the optimal piecewise linear interpolation of the
bivariate product xy over rectangular domains. More precisely, our aim is
to minimize the number of simplices in the triangulation underlying the
interpolation, while respecting a prescribed approximation error. First, we
show how to construct optimal triangulations consisting of up to five simplices.
Using these as building blocks, we construct a triangulation scheme called
crossing swords that requires at most

√
5/2-times the number of simplices

in any optimal triangulation. In other words, we derive an approximation
algorithm for the optimal triangulation problem. We also show that crossing
swords yields optimal triangulations in the case that each simplex has at least
one axis-parallel edge. Furthermore, we present approximation guarantees
for other well-known triangulation schemes, namely for the red refinement
and longest-edge bisection strategies as well as for a generalized version of
K1-triangulations. Thereby, we are able to show that our novel approach domi-
nates previous triangulation schemes from the literature, which is underlined
by illustrative numerical examples.

Communicated by Hande Benson

1. Introduction

We consider optimal piecewise linear (pwl.) interpolations of the bilinear
non-convex function F : R2 → R, F (x, y) = xy over the rectangular domain
D = [

¯
x, x̄]× [

¯
y, ȳ]. A pwl. interpolation f : D → R of F is uniquely defined by its

underlying triangulation T := {T1, . . . , Tk} ⊆ R2, k ∈ N of the domain D, where f
is linear over each simplex Ti. The approximation error between F and f is defined
as the maximum pointwise deviation over D. For any prescribed approximation
accuracy ε > 0, we are interested in triangulations that lead to pwl. interpolations
with an approximation error less than ε and that are minimal with respect to
the number of simplices they contain. To the best of our knowledge, finding
triangulations which are optimal in this sense is still an open problem. Furthermore,
there have been no attempts so far to prove approximation guarantees for existing
triangulation schemes in the literature either.
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Contribution. In this paper, we make several important steps towards efficient
triangulation schemes for the pwl. interpolation of bilinear functions. At first,
we construct triangulations that provably minimize the approximation error with
up to five simplices. We show that these triangulations are in turn optimal for
approximation accuracies up to (

√
5−2)/4 ≈ 0.059 over the unit box. Using these

basic triangulations as building blocks, we derive an approximation algorithm
for the optimal triangulation problem which we call crossing swords, based on
its underlying geometric idea. We prove that this scheme can be used to create
triangulations consisting of at most

√
5/2-times the number of simplices in an

optimal triangulation. To be more precise, the crossing swords algorithm is an√
5/2-approximation algorithm for all εi = 1/16i with i ∈ N. For any intermediate

value, the approximation guarantee is
√

5/2+4
√

5ε. In this sense, the crossing swords
scheme is an asymptotic

√
5/2-approximation algorithm for small prescribed accura-

cies. Furthermore, we prove that crossing swords produces optimal triangulations
for all εi = 1/16i with i ∈ N if we require each simplex to have one axis-parallel edge.
We will show that crossing swords triangulations are superior to the most-widely
used triangulation schemes in the literature, i.e. K1, J1 ([21]), longest-edge bisection
([10, 14]), maximum error bisection ([13, 20]) and red refinement ([4, 8]). Although,
we show that longest-edge bisection is also a

√
5/2-approximation algorithm, it

produces more simplices than crossing swords expect for certain specific values of
ε, where the two are equivalent. Furthermore, we introduce a generalized version
of the K1-triangulation scheme and show that it is a

√
5-approximation algorithm.

This also applies to the red refinement scheme. Since the approximation accuracies
in crossing swords triangulations can be adjusted more finely, our scheme is by a
factor of two better than previous methods in many cases. The overall dominance
of the crossing swords scheme is underlined by numerical results for an indicative
example.

Literature Review. Pwl. interpolations of bilinear functions are studied in the
literature in various contexts. On the one hand, such approximations are important
in many applications. For example, in computer visualization, non-linear surfaces
are usually represented by pwl. functions based on triangulations. This also applies
to non-linear shapes in architectural design, which in some cases can be realized
in practice only via pwl. approximations, cf. [19]. On the other hand, several very
efficient algorithmic frameworks for solving quadratic optimization problems rely on
pwl. approximations ([1, 6, 8, 13, 14]). However, finding optimal pwl. interpolations
of xy over rectangular domains is still an unsolved problem. The only attempt
to find provably minimal triangulations is represented by [15]. Here, the author
develops a mixed-integer quadratic program which models the optimal triangulation
problem. However, due to its size and inherent complexity, the presented model
cannot even be solved for trivial instances by state-of-the-art solvers. Besides that,
there exist several heuristic triangulation approaches in the literature. In [23],
the author uses regular uniform triangulations, namely J1- and K1-triangulations,
which were first presented in [21]. In [11] and [20], the authors go a step further
and develop triangulations which are specifically designed for the approximation
of xy over rectangular domains. In [9, 13, 14], triangulations are constructed
adaptively, using red, maximum error or longest-edge refinements. For all mentioned
triangulation schemes, we derive relations between the approximation accuracy
and the resulting number of simplices. Most importantly, we introduce a new,
more efficient triangulation scheme for which we can prove that it dominates the
previously known methods.
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On a more general basis, the authors of [19] are interested in optimal triangula-
tions of xy over the whole plane R2. They show how to construct so called optimal
simplices, i.e. triangles which fulfil a prescribed approximation accuracy while
maximizing their area. They prove that R2 can be tiled with optimal simplices
only and thus obtain an optimal triangulation. A natural idea would be to use
optimal simplices to triangulate rectangular domains as well. However, due to their
geometry, it is not possible to use solely optimal simplices to triangulate rectangular
regions. Instead, we will use this idea to derive a lower bound on minimal trian-
gulations over any given compact domain. This bound is essential in proving the
above-mentioned approximation guarantees for the different triangulations schemes.

Structure. Our work is structured as follows. In Section 2, we introduce
the general notation and concepts that are used throughout the article. After
that, in Section 3 we focus on optimal triangulations for the pwl. interpolation
of xy over rectangular domains. We show that the problem can be reduced from
general rectangular domains to the unit box. In Section 3.1, we construct optimal
triangulations consisting of up to five simplices. We use them as building blocks
to develop our

√
5/2-approximation algorithm called crossing swords in Section 3.2.

It even yields optimal triangulations if we require that each simplex has one
axis-parallel edge. In addition, we also prove approximation guarantees for a
generalized version of K1-triangulations, the red refinement and the longest-edge
bisection scheme. In Section 3.4, we prove the dominance of the crossing swords
triangulation compared to the known triangulations from the literature and provide
numerical results on an exemplary instance that underline the theoretical results.
Finally, we conclude in Section 4.

2. Piecewise Linear Functions and Approximations

We start by introducing the basic concepts of triangulations and piecewise linear
functions and discuss their use in approximating non-linear functions. For the sake
of simplicity, we restrict ourselves to continuous functions over polytopal domains.

A function is called piecewise linear (pwl.) if it is linear over each element of a
given domain partition. To partition a domain, it is possible to use any family of
polytopes. However, in practice most often triangulations are used, see e.g. [22]. This
is without loss of generality, since a pwl. function defined with respect to a partition
by polytopes can always be represented by a pwl. function over a triangulation,
namely by triangulating each polytope. Therefore, we define pwl. functions over
triangulations. In the following, we formally introduce the relevant definitions in
this context. Throughout this work, we use the notation V (P ) for the vertex set and
A(P ) for the area of a polytope P ⊂ Rd. The following definitions are formulated
in a general way for pwl. function in Rd. In Section 3, we only consider the special
case d = 2 and therein triangulations formed by full-dimensional simplices, i.e., the
special case d = k = 2.

Definition 2.1. A k-simplex T is the convex hull of k + 1 affinely independent
points in Rd. We call T a full-dimensional simplex if k = d holds.

A triangulation is a partition consisting of full-dimensional simplices.

Definition 2.2. A finite set of full-dimensional simplices T := {T1, . . . , Tk} ⊆ Rd,
k ∈ N, is called a triangulation of a polytope P ⊆ Rd if P = ∪ki=1Ti and the
intersection Ti ∩ Tj of any two simplices Ti, Tj ∈ T is a proper face of Ti and Tj.
Further, we denote the nodes N(T ) of the triangulation T as N(T ) := ∪ki=1V (Ti).

We use the concept of triangulations to define pwl. functions.
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Definition 2.3. Let P ⊂ Rd be a polytope. A continuous function g : P → R
is called piecewise linear if there exist vectors mi ∈ Rd and constants ci ∈ R for
i = 1, . . . , k and a triangulation T := {T1, . . . , Tk}, k ∈ N, of P such that

g(x) = m>i x+ ci if x ∈ Ti.

Pwl. functions can be used to approximate non-linear functions. We consider
the case where the pwl. approximation coincides with the non-linear function at
the nodes of the triangulations. In this way, we can ensure continuity of the
approximation if the non-linear function is continuous.

Definition 2.4. Let P ⊂ Rd be a polytope, and let T := {T1, . . . , Tk}, k ∈ N, be
a triangulation of P . We call a pwl. function g : P → R a pwl. interpolation of a
continuous function G : P → R if g(x) = G(x) holds for all x ∈ N(T ).

Usually, the error of a pwl. approximation is measured by the maximum abso-
lute pointwise deviation between the pwl. approximation itself and the non-linear
function to be approximated; see e.g. [11, 13, 18, 23]. In the following, we also use
this definition of the approximation error.

Definition 2.5. Consider a triangulation T of a polytope P ⊂ Rd and let g : P → R
be a pwl. interpolation of a function G : P → R w.r.t. to T . We call

Eg,G : P → R, Eg,G(x) := g(x)−G(x)
the error function w.r.t. g and G and

εg,G(T ) := max
x∈T
|Eg,G(x)|

the approximation error on a simplex T ∈ T . Consequently, we define the approxi-
mation error of g (or, equivalently, of T ) w.r.t. G over the domain P as

εg,G(T ) := max
T∈T

εg,G(T ).

Given some ε > 0, we call g an ε-interpolation and T an ε-triangulation if the
approximation error is smaller than or equal to ε.

Finally, we formulate the concept of optimal triangulations for pwl. interpolations
of non-linear functions; see also [15].

Definition 2.6. Let P ⊆ Rd be a polytope and g : P → R a pwl. ε-interpolation
of G : P → R with respect to the triangulation T . We call T ε-optimal if |T | is
minimal among all ε-triangulations.

It is not obvious how to determine ε-optimal triangulations in general. We tackle
this problem for bilinear functions in the following.

3. Triangulations for the interpolation of xy over box domains

In this section, we focus on finding optimal triangulations for pwl. interpolations
of the bilinear function

F : R2 → R, F (x, y) = xy

over the rectangular domain D = [
¯
x, x̄]× [

¯
y, ȳ], i.e. we treat the following problem:

Problem 1. Given some ε > 0, find an ε-optimal triangulation of D w.r.t. F .

Our main contribution will be the derivation of a novel approximation algorithm
for Problem (1). We begin by stating a known result from the literature for the
approximation of F over a single simplex.
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Lemma 3.1 (Approximation error). [19] Given a pwl. interpolation f : D → R
of F defined by a triangulation T of D, the approximation error εf,F (T ) over a
simplex T ∈ T is attained at the center of one of its facets. Further, if (x0, y0) and
(x1, y1) are the endpoints of a facet, we have

εf,F (T ) =
∣∣Ef,F (x1−x0

2 , y1−y0
2
)∣∣ = 1

4 |(x1 − x0)(y1 − y0)|. (1)

Since the error on each simplex is attained on one of its facets, we know the
following for the approximation error over D.

Lemma 3.2. Let f : D → R be a pwl. interpolation of F defined by a triangula-
tion T of D. Then the approximation error εf,F (T ) is attained on a facet of some
simplex T of T that is not on the boundary of D.

Proof. The proof follows directly from Lemma 3.1 and the fact that all boundary
facets are axis-parallel. This implies that the approximation error is zero there as
either x1 = x0 or y1 = y0 holds in Equation (1). �

A geometric view on Lemma 3.1 is sketched in Figure 1. Here, the maximum
approximation error on the facet ev1,v2 is illustrated. The yellow rectangle is the
facet enclosing axis-parallel rectangle, and the area of the red rectangle equals the
maximum approximation error on ev1,v2 . It is one quarter of the area of the yellow
rectangle.

v1

v2

v3

Figure 1. Geometrical visualization of the approximation error
on an edge of a simplex.

We use Lemma 3.1 to show that we can reduce the triangulation problem over D
to the unit box U := [0, 1]× [0, 1] by scaling the prescribed accuracy with the area of
the box. In particular, we show how to transform any ε-triangulation TU of U into
an νε-triangulation TD of D such that |TU | = |TD| holds, with ν := (x̄−

¯
x)(ȳ −

¯
y)

being the area of D. The triangulation TD is obtained by a linear mapping of the
nodes N(TU ).

Lemma 3.3 (Invariance of triangulations under scaling and shifting). Let fU : U →
R be a pwl. ε-interpolation of F defined by a triangulation TU of the unit box U .
Further, let L : R2 → R2, L(x, y) =

(
¯
x+ x(x̄−

¯
x),

¯
y + y(ȳ −

¯
y)
)
. Let TD be the

triangulation of the box D such that each simplex TD ∈ TD corresponds to a simplex
TU ∈ TU via the mapping L on the respective vertex sets, i.e. V (TD) = {L(P ) |
P ∈ V (TU )}. Further, let ν := (x̄−

¯
x)(ȳ −

¯
y) be the area of D. Then TD is a νε-

triangulation of D and |TD| = |TU |. Additionally, if TU is an ε-optimal triangulation
of U than TD is an νε-optimal triangulation of D.

Proof. By construction it is clear that |TD| = |TU | holds. We have to show that TD
is a νε-triangulation of D. Let eD be a facet of an arbitrary simplex TD ∈ TD
with endpoints (xD0 , yD0 ) and (xD1 , yD1 ). The endpoints of eD are nodes of TD and
therefore the result of a linear mapping of two vertices (xU0 , yU0 ) and (xU1 , yU1 ) that
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are the endpoints of some face eU in TU :
(xD0 , yD0 ) = L((xU0 , yU0 )) = (

¯
x+ xU0 (x̄−

¯
x),

¯
y + yU0 (ȳ −

¯
y)),

(xD1 , yD1 ) = L((xU1 , yU1 )) = (
¯
x+ xU1 (x̄−

¯
x),

¯
y + yU1 (ȳ −

¯
y)).

Further, let εe ∈ [0, ε] be the approximation error over eU . The approximation error
over eD, attained at its center (x∗, y∗), is calculated as follows:

EfD,G((x∗, y∗)) = 1
4 (xD1 − xD0 )(yD1 − yD0 )

= 1
4 (

¯
x+ xU1 (x̄−

¯
x)−

¯
x− xU0 (x̄−

¯
x))

(
¯
y + yU1 (ȳ −

¯
y)−

¯
y − yU0 (ȳ −

¯
y))

= 1
4 (xU1 − xU0 )(yU1 − yU0 )︸ ︷︷ ︸

εe

(x̄−
¯
x)(ȳ −

¯
y)︸ ︷︷ ︸

ν

= εeν.

Thus, the approximation error on each facet of TD is ν times the error on the
corresponding facet in TU . Since we assumed that TU is an ε-interpolation, εeν ≤ εν
holds for each facet e of TD. This means TD is an νε-triangulation.

Next, we prove that if TU is ε-optimal then TD is νε-optimal. Assume, TU is
ε-optimal and there exists a νε-triangulation SD of D such that |SD| < |TD|. If we
apply the inverse of L to the node set of SD we obtain a triangulation SU of U ,
i.e. for every simplex SD ∈ SD we get a simplex SU ∈ SU with V (SU ) = {L−1(P ) |
P ∈ V (SD)}. Let eU be a facet of an arbitrary simplex SU ∈ SU with endpoints
(xU0 , yU0 ) and (xU1 , yU1 ). The endpoints of eU are nodes of SU and therefore the result
of a linear mapping of two vertices (xD0 , yD0 ) and (xD1 , yD1 ) that are the endpoints of
some face eD in SD:

(xU0 , yU0 ) = L−1((xD0 , yD0 )) = (x
D
0 −¯

x
x̄−

¯
x ,

yD
0 −¯

y

ȳ−
¯
y ),

(xU1 , yU1 ) = L−1((xD1 , yD1 )) = (x
D
1 −¯

x
x̄−

¯
x ,

yD
1 −¯

y

ȳ−
¯
y ).

Further, let νεe with εe ∈ [0, νε] be the approximation error over eD. The approxi-
mation error over eU , attained at its center (x∗, y∗), is calculated as follows:

EfD,G((x∗, y∗)) = 1
4 (xU1 − xU0 )(yU1 − yU0 )

= 1
4 (x

D
1 −¯

x
x̄−

¯
x −

xD
0 −¯

x
x̄−

¯
x )(y

D
1 −¯

y

ȳ−
¯
y −

yD
0 −¯

y

ȳ−
¯
y )

= 1
4 (xU1 − xU0 )(yU1 − yU0 )︸ ︷︷ ︸

νεe

1
(x̄−

¯
x)(ȳ−

¯
y)︸ ︷︷ ︸

ν−1

= εe.

Thus, the approximation error on each facet of SU is less than or equal to ε. This
means that SU is an ε-triangulation of U with |SU | < |TU |, which contradicts the
assumption that TU is ε-optimal. It follows that under the assumption that TU is
an ε-optimal triangulation, there is no νε-triangulation of D with fewer simplices
than TD, proving that TD is νε-optimal.

�

Note that in Lemma 3.3 the bound νε is tight if ε is a tight bound for the
approximation over U , i.e. if the approximation error ε is attained at some point
(x, y) ∈ U , then an approximation error of νε is attained at L(x, y) ∈ D. As a
result of Lemma 3.3, we can consider the approximation of F over U w.l.o.g. in the
following:

Problem 2. Given some ε > 0, find an ε-optimal triangulation of U w.r.t. F .
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3.1. Solving the optimal triangulation problem for up to five simplices
and a general lower bound. In the following, we solve Problem (2) for a fixed
number of simplices up to five and give a general lower bound with respect to the
approximation quality ε > 0. Finding a general scheme that solves Problem (2)
for arbitrary values of ε is an open problem. However, in [15] it is shown that
Problem (2) can be formulated as a mixed-integer quadratically constrained
program (MIQCP). The author takes advantage of the fact that the approximation
error is attained on one of the facets of the simplices, and can therefore exploit
the representability of a triangulation by a fully connected planar graph. This
representation allows for the modelling of Problem (2) by an MIQCP with a
finite number of constraints and variables. To the best of our knowledge, this
is the only work trying to determine provably ε-optimal triangulations over box
domains. Unfortunately, due to the size of the resulting MIQCP, this approach is
computationally intractable even for trivial instances. Nevertheless, we will later
use its underlying idea of representing a triangulation as a planar graph to prove
the optimality of triangulations consisting of up to five simplices.

A lower bound for ε-optimal triangulations. We begin our examination of
Problem (2) in deriving a general lower bound for ε-optimal triangulations. This
lower bound enables us later to determine approximation guarantees for specific
triangulation schemes. The idea of the presented lower bound goes back to the
work of Pottmann et. al ([19]), who studied optimal triangulations of the plane R2.
The authors showed that an ε-optimal triangulation of R2, in the sense that the
individual simplices have maximal area, is obtained by using so-called ε-optimal
simplices. An ε-optimal simplex satisfies a prescribed accuracy ε while maximizing
its area. The area of an ε-optimal simplex is 2

√
5ε. As it is possible to tile the

R2 with ε-optimal simplices only, such triangulations are optimal. In Figure 2, we
illustrate two different 0.25-optimal simplices. For more information on ε-optimal
simplices, we refer the reader to [19] and [2]. We use the following lemma from [5],
to give a general lower bound for the triangulation of polytopal domains.
Lemma 3.4 (Lower bound). [5] Let P ⊂ R2 be a polytopal domain with an area
of A(P ). Then any ε-triangulation TP of P w.r.t. F contains at least

⌈
A(B)
2
√

5ε

⌉
simplices.

x

y
(-1,0)

(0,1)

(√
5−1
2 , 1−

√
5)

2

)

(√
5+1
2 , 3−

√
5)

2

)

Figure 2. Optimal simplices with an approximation error of 0.25.

The proof is straightforward. If we assume that we can triangulate P solely by
ε-optimal simplices, which have an area of 2

√
5ε, we obtain the indicated lower

bound immediately. For the approximation of F over U , Lemma 3.4 thus sets the
following lower bound:

Corollary 3.5. An ε-optimal triangulation T of U w.r.t. F requires at least
⌈

1
2
√

5ε

⌉
simplices.
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However, it is unclear whether or how to use ε-optimal simplices to triangulate U .
Furthermore, the lower bound from Lemma 3.4 is not always tight. In [17], the
author proves that one cannot triangulate a rectangle with an odd number of
simplices such that all simplices have the same area. This means for those prescribed
approximation accuracies ε > 0 for which the lower bound is an odd number, we
need at least one additional simplex. We now show that this lower bound can even
be improved if we require that each simplex has at least one axis-parallel edge. This
lemma has also been presented in the dissertation of the fourth author [15].

Lemma 3.6. Let ε > 0 be a prescribed approximation accuracy for the interpolation
of F over a simplex T . If T has at least one axis-parallel edge, then the maximum
area of T is 4ε.

Proof. Let T be a simplex with vertices v1 = (x1, y1), v2 = (x2, y2) and v3 = (x3, y3).
W.l.o.g., we assume ev1,v2 is parallel to the x-axis. The area of T can then be
calculated using the areas of the axis-parallel edge-enclosing rectangles of ev1,v3 and
ev2,v3 :

A(T ) = 1
2 |(x3 − x1)(y3 − y1)|+ 1

2 |(x3 − x2)(y3 − y2)| .
Further, for the edges ev1,v3 and ev2,v3 , the approximation error has to be less than
or equal to ε, i.e. ∣∣∣ (x3−x1)(y3−y1)

4

∣∣∣ ≤ ε ∧
∣∣∣ (x3−x2)(y3−y2)

4

∣∣∣ ≤ ε.
Now, obviously A(T ) attains its maximum possible value of 4ε if

(x3 − x1)(y3 − y1) = 4ε ∧ (x3 − x2)(y3 − y2) = −4ε
holds. Since we assumed ev1,v2 to be parallel to the x-axis, y1 = y2 holds and we
get a simplex of maximum area 4ε if the vertices have the following positions:

v1 = (x1, y1), v2 = (x2, y1), v3 =
(
x1+x2

2 , 8ε
x2−x1

+ y1

)
. �

Corollary 3.7. An ε-optimal triangulation T of U w.r.t. F where each simplex
has at least one axis-parallel edge requires

⌈ 1
4ε
⌉
simplices.

Euler relations for triangulations. The following optimality proofs exploit the
representation of a triangulation by a fully connected planar graph. In this sense,
the vertices and facets of the simplices become the nodes and edges of a graph.
This allows us to translate the well-known Euler relations for planar graphs to
triangulations, see also [3].

Let T be a triangulation of some polytope P ⊂ R2, then it holds that
K = 2|N(T )| − |T | − 2 (2)

and
E = 3|N(T )| −K − 3, (3)

where K is the number of vertices that lie on the boundary of P and E is the
number of edges of T . For K we further know that

K ≤ |N(T )|, (4)
which together with (2) gives

|N(T )| ≤ |T |+ 2. (5)
If P is a rectangle, then it obviously also holds that

K ≥ 4. (6)

Optimal triangulations with up to five simplices. We use the Euler rela-
tions to derive optimal triangulations of U for the interpolation of F under the
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restriction that the number of simplices is fixed a priori. These triangulations in
turn yield ε-optimal triangulations in the sense of Problem (2) for specific value
ranges of ε. Let T ∗n be a triangulation with a minimal approximation error among
all triangulations of U consisting of n simplices, and let ε∗n be the corresponding
minimal approximation error. This means that T ∗n is an ε-optimal triangulation for
all ε ∈ (ε∗n+1, ε

∗
n].

1

1

(a) Triangulation T ∗2
with approx. error
ε∗2 = 1/4.

x2

1

(b) Triangulation T ∗3 with
approx. error ε∗3 = 1/8.

x2

x3

(c) Triangulation T ∗4 with
approx. error ε∗4 = 1/16.

x2

1

(d) Triangulation with ap-
prox. error ε4 = 1/8.

x2

x3

(e) Triangulation with ap-
prox. error ε4 =
(
√

5−1)/8.

x2

x3

x2

(f) Triangulation with ap-
prox. error ε4 = 1/12.

x2

x3

(g) Triangulation with ap-
prox. error ε5 = 1/16.

x2

x3

(h) Triangulation with ap-
prox. error ε5 = 1/8.

x3

x2

x4

(i) Triangulation T ∗5 with
approx. error ε∗5 =
(
√

5−2)/4.

Figure 3. Triangulations with |T | ≤ 5; (*) Figure 3(a), Fig-
ure 3(b), Figure 3(c) and Figure 3(i) are optimal triangulations
with respect to the number of simplices used.

In the following, we determine optimal triangulations T of U for |T | = 2, 3, 4, 5.
We start with |T | = 2: Relations (2)–(6) reduce the set of possible triangulations
to those where |N(T )| = 4, K = 4 and E = 5. Therefore, only two triangulations
of U are possible, namely the ones using one of the diagonals to triangulate U . Either
diagonal leads to an optimal triangulation as they produce the same approximation
error of ε∗2 = 1/4, attained at their center. We refer to these equivalent triangulations
by T ∗2 , one example is shown in Figure 3(a).
Next we consider |T | = 3: Relations (2)–(6) only allow for triangulations with
|N(T )| ∈ {4, 5}. Assuming |N(T )| = 4, we obtain K = 3, which is a contradiction
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to Equation (4). Assuming |N(T )| = 5 instead, we obtain K = 5. The latter implies
that all nodes have to be on the boundary of U . Due to symmetry, it does not
matter if the additional node is on a facet which is either parallel to the x-axis or
the y-axis. In both cases, the following linear program defines the optimal position
of the fifth node:

ε∗3 := min
x

1
4 x1

s.t. − x1 + x2 ≤ 0
−x1 − x2 + 1 ≤ 0

x ∈ [0, 1]2.

(7)

In Problem (7) and the following optimization problems we do not give specific
names to variables. Instead, we use the variable notation xi as it is conform to the
standard definition of quadratic programs, which we use in Lemma 3.8. Nevertheless,
in Problem (7) and in the subsequent optimization problems, 1

4x1 always models
the bound on the approximation error that is minimized, see Lemma 3.1 for the
calculation of the approximation error. All further variables xi model the axis-
lengths of the inner edges which can be chosen freely in the respective configuration.
Each constraint models the approximation error on an inner edge of the considered
triangulation. The approximation error on an outer edge is always zero. Figures
3(a)–3(i) illustrate which constraint models which edge. In Figure 3(b), we have two
inner edges that both have a y-axis length of 1 and an x-axis length of x2 and 1−x2,
resulting in maximum approximation errors on these edges of 1

4x2 and 1
4 (1− x2).

Since both errors must be less than or equal to the bound 1
4x1, the constraints in

Problem (7) are obtained after transformation:
1
4x2 ≤ 1

4x1 ⇒ −x1 + x2 ≤ 0,
1
4 (1− x2) ≤ 1

4x1 ⇒ −x1 − x2 + 1 ≤ 0.
The optimal solution to Problem (7) is x∗ = ( 1

2 ,
1
2 ) with a corresponding approxima-

tion error of ε∗3 = 1
8 . We refer to these equivalent triangulation by T ∗3 , an example

is shown in Figure 3(b).
We continue with |T | = 4: Again, from relations (2)–(6) we know that |N(T )| ∈
{4, 5, 6}. If |N(T )| = 4, we obtain K = 2, which is a contradiction to (6). If
|N(T )| = 5, we obtain K = 4 and E = 8. Triangulations that fulfil this property
have one inner vertex that is connected to all four corners of U . We can find the
optimal position of the inner vertex by solving this quadratic program:

ε∗4 := min
x

1
4 x1

s.t.− x1 + x2x3 ≤ 0
−x1 + x3 − x2x3 ≤ 0

−x1 − x2 − x3 + x2x3 + 1 ≤ 0
x ∈ [0, 1]3.

(8)

In Figure 3(c), we have four inner edges with maximum approximation errors
of 1

4x2x3, 1
4 (1 − x2)x3, 1

4x2(1 − x3), and 1
4 (1 − x2)(1 − x3). All errors have to

be less than or equal to 1
4x1, which after transformation leads to the constraints

in Problem (8). The optimal solution to Problem (8) is x∗ = ( 1
4 ,

1
2 ,

1
2 ), with an

approximation error of ε∗4 = 1
16 . We refer to the corresponding optimal triangulation

by T ∗4 , see Figure 3(c). Finally, if |N(T )| = 6, we obtain K = 6, which means
that all nodes have to be on the boundary of U . Due to symmetry, the remaining
two free nodes can either be positioned on adjacent, opposite or both on the same
boundary facet. If both nodes are placed on the same boundary facet of U , we have
a similar case to |T | = 3 and the minimal possible approximation error is 1

8 . An
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example of this triangulation is shown in Figure 3(d). If the two nodes are placed
on adjacent boundary facets, we can minimize the approximation error by solving
the following quadratic program:

min
x

1
4 x1

s.t.− x1 + x2x3 ≤ 0
−x1 + x3 − x2x3 ≤ 0
−x1 − x3 + 1 ≤ 0
x ∈ [0, 1]3.

(9)

In Figure 3(d), we have three inner edges with maximum approximation errors of
1
4x2x3, 1

4 (1 − x2), 1
4x2(1 − x3), and 1

4 (1 − x3). All errors have to be less than or
equal to 1

4x1, which after transformation leads to the constraints in Problem (9).
The optimal value of Problem (9) is 1/8. Thus, this configuration can also not be
optimal, see Figure 3(e) for an example. If the two additional nodes are placed on
opposite boundary facets, we can minimize the approximation error by solving the
following linear program:

min
x

1
4 x1

s.t.− x1 − x2 ≤ 0
−x1 − x3 + 1 ≤ 0
−x1 + x3 − x2 ≤ 0

x ∈ [0, 1]3.

(10)

In Figure 3(e), we have three inner edges with maximum approximation errors of
1
4x2, 1

4 (1− x3), 1
4 (x2 − x3), and 1

4 (1− x3). All errors have to be less than or equal
to 1

4x1, which after transformation leads to the constraints in Problem (9). The
optimal solution to Problem (10) is x = ( 1

3 ,
1
3 ,

2
3 ), with an approximation error of 1

12 .
Thus, this configuration can also not yield an optimal triangulation, see Figure 3(f)
for an example. Consequently, we know that ε∗4 = 1/16 holds and that T ∗4 is optimal.
Finally, we consider the case |T | = 5: From relations (2)–(6), it follows that
|N(T )| ∈ {6, 7}. If |N(T )| = 6, we obtain K = 5. This means we have one free
node on the boundary of U and one free inner node. In this case, there are three
different ways to connect the nodes such that we have a triangulation with exactly
five simplices. It is obvious that two of them are not optimal, see Figure 3(g) and
Figure 3(h). The approximation error of the third configuration is minimized by
the following non-convex quadratically constrained quadratic program (QCQP),
visualized in Figure 3(i):

ε∗5 := min
x

1
4 x1

s.t.− x1 − x2 + 1 ≤ 0
−x3x4 + x2x3 − x1 ≤ 0

x3x4 − x1 ≤ 0
−x3x4 + x4 − x1 ≤ 0

x3x4 − x3 − x4 − x1 + 1 ≤ 0
x ∈ [0, 1]4.

(11)

In Figure 3(i), we have five inner edges with maximum approximation errors of
1
4 (1− x2), 1

4x3(x2 − x4), 1
4x3x4, 1

4 (1− x3)x4 and 1
4 (1− x3)(1− x4). All errors have

to be less than or equal to 1
4x1, which after transformation leads to the constraints
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in Problem (11). By geometric reasoning, we guess

x∗ =
(√

5− 2, 3−
√

5, (
√

5−1)
2 , (3−

√
5)

2

)T
as a candidate for an optimal solution, which entails an approximation error of
ε∗5 = (

√
5−2)
4 . In the following, we prove the optimality of x∗. In general, we can

prove that a vector is globally optimal for a non-convex QCQP by checking two
conditions which together are sufficient.

Lemma 3.8 (Global optimality in non-convex QCQPs). [16] Consider a quadratic
program of the form

min xTQ0x+ cT0 x

s.t. xTQix+ cTi x− bi ≤ 0 ∀i = 1, . . . ,m,
where all Qi are n× n real symmetric matrices and ci ∈ Rn. A vector x∗ ∈ Rn is
globally optimal for this problem if there exists a vector λ∗ ∈ Rm such that(

m∑
i=0

Qi

)
x∗ + c0 +

m∑
i=0

λ∗i ci = 0

x∗TQix
∗ + cTi x

∗ − bi ≤ 0 ∀i = 1, . . . ,m
λ∗i ≥ 0 ∀i = 1, . . . ,m

λ∗i
(
x∗TQix

∗ + cTx∗ − bi
)

= 0 ∀i = 1, . . . ,m.

(12)

and

Q0 +
m∑
i=1

λ∗iQi < 0 (13)

hold.

We use Lemma 3.8 to prove that x∗ is optimal for Problem (11).

Proposition 3.9. The vector x∗ = (
√

5 − 2, 3 −
√

5, (
√

5−1)
2 , (3−

√
5)

2 )T is globally
optimal for the non-convex quadratic program (11).

Proof. First, we show that x∗ is a locally optimal solution, applying the KKT
conditions from (12). This means we have to find a vector λ ∈ R5 that solves the
following system:

λ1 + λ2 + λ3 + λ4 + λ5 = 1

(
√

5− 1)− 2λ1 = 0
−λ5 = 0

λ4 − λ5 = 0
λ4 = 0

λ1, λ2, λ3, λ4, λ5 ≥ 0.

(14)

Note that we can neglect the dual variables for the constraints x ∈ [0, 1]4, since
they must all be zero for x∗ anyway due to 0 < x∗i < 1. We can easily check that
λ∗ = ( (

√
5−1)
2 , (1+

√
5)

2 , 0, 0, 0)T is feasible for (14), and therefore (x∗, λ∗) is feasible
for (12). According to Lemma 3.8, (x∗, λ∗) is globally optimal for the Problem (11)
if Q0 +

∑5
i=1 λ

∗
i
TQi � 0 holds. As the matrix

Q∗ := Q0 +
5∑
i=1

λ∗i
TQi =


0 0 0 0
0 0 λ∗2 0
0 0 0 −λ∗2
0 0 0 0
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is strictly upper triangular, its only eigenvalue is 0. It is therefore a positive semidefi-
nite matrix, and consequently x∗ is a globally optimal solution to Problem (11). �

As a result of Proposition 3.9, the minimal approximation error of the configura-
tion modelled in Problem (11) is ε∗5 =

√
5−2
4 . This means that the corresponding

triangulation T ∗5 is optimal for the case of five simplices.

3.2. Crossing swords: A
√

5/2-approximation algorithm for optimal tri-
angulations. We use the optimal triangulations consisting of up to five simplices
from Section 3.1 to derive our novel triangulation scheme crossing swords stated in
Algorithm 1. The algorithm takes as input an integer N and returns a triangulation
of U with N simplices that has an approximation error of less than 1

4(N−1) . We will
use this approximation accuracy depending on the number of simplices to prove
that the crossing swords scheme is a

√
5/2-approximation algorithm for Problem (2).

The general idea of crossing swords triangulations is to use the optimal trian-
gulations consisting of up to five simplices as partial triangulations to construct
arbitrarily fine triangulations of U . The algorithm takes as input a number of sim-
plices N and starts with a partition of U into n smaller rectangles, where n depends
on the modulus of N by 4. The first n − 1 rectangles must have the same area
and they are triangulated with four simplices in fashion of T ∗4 . The n-th rectangle
can have a different area, and its subtriangulation is either T ∗2 , T ∗3 , T ∗4 or T ∗5 , also
depending on the modulus of the input N by 4. The areas of the rectangles in
Algorithm 1 are chosen such that the approximation error on all simplices is equal,
which we use as a heuristic rule to minimize the (overall) approximation error. The
repeated use of the T ∗4 triangulation motivates the name crossing swords.

(a) T 16
cs with skinny

simplices
(b) T 16

cs with qua-
dratic simplices.

Figure 4. Visualization of skinny vs. quadratic crossing swords
triangulations with the same approximation error.

Lemma 3.10. (Crossing Sword Triangulations) Algorithm 1 is correct, i.e. for any
input N it returns a triangulation of U with an approximation error according to
Equation (15).

Proof. In the following, we prove the correctness of the approximation error stated
in Equation (15) with respect to the modulus of N by 4. For the sake of simplicity,
we speak of T ∗i -triangles ( T ∗

i
) whenever a rectangle is triangulated in fashion

of T ∗i with i ∈ {2, 3, 4, 5}. Via the scaling formulas established in Lemma 3.3, the
approximation error of these subtriangulations on arbitrary rectangles D with an
area of A(D) is given as follows (cf. Figure 3.1):

ε( T ∗
2

) = 1
4 ·A(D), ε( T ∗

3
) = 1

8 ·A(D),

ε( T ∗
4

) = 1
16 ·A(D), ε( T ∗

5
) =

√
5−2
4 ·A(D).

We now distinguish the four cases of Equation (15), examples of these with N =
6, 7, 8, 9 are shown in Figure 5. To this end, we check that the areas of the rectangles



14 A. BÄRMANN, R. BURLACU, L. HAGER, K. KUTZER

Algorithm 1: Crossing Sword Triangulation Scheme (for the unit box U)
Input: The number of simplices N ≥ 4.
Output: A triangulation T Ncs of U with |T Ncs | = N and a corresponding

pwl. interpolation f of F over U with an approximation error of

εf,F (T Ncs ) =


1
4

1
N , if N ≡ 0 mod 4,

1
4

√
5−2

(
√

5−2)(N−5)+1 , if N ≡ 1 mod 4,
1
4

1
N−1 , if N ≡ 2 mod 4,

1
4

1
N−1 , if N ≡ 3 mod 4.

(15)

1 if N ≡ 0 mod 4 then
2 Set n = N

4
3 Find a rectangular partition

⋃n
i=1 Ui of U

s.t. Ui has an area of A(Ui) = 4
N

4 return T Ncs :=
⋃n
i=1 T ∗4 (Ui)

5 else if N ≡ 1 mod 4 then
6 Set n = N−1

4
7 Find a rectangular partition

⋃n
i=1 Ui of U

s.t. Ui has an area of A(Ui) = 4(
√

5−2)
(
√

5−2)(N−5)+1 , i = 1, . . . , n− 1,
and Un has an area of A(Un) = 1

((
√

5−2)(N−5)+1)

8 return T Ncs :=
⋃n−1
i=1 T ∗4 (Ui) ∪ T ∗5 (Un)

9 else if N ≡ 2 mod 4 then
10 Set n = N−2

4 + 1
11 Find a rectangular partition

⋃n
i=1 Ui of U

s.t. Ui has an area of A(Ui) = 4
N−1 , i = 1, . . . , n− 1,

and Un has an area of A(Un) = 1
N−1

12 return T Ncs :=
⋃n−1
i=1 T ∗4 (Ui) ∪ T ∗2 (Un)

13 else if N ≡ 3 mod 4 then
14 n = N−3

4 + 1
15 Find a rectangular partition

⋃n
i=1 Ui iof U

s.t. Ui has an area of A(Ui) = 4
N−1 , i = 1, . . . , n− 1,

and Un has an area of A(Un) = 2
N−1

16 return T Ncs :=
⋃n−1
i=1 T ∗4 (Ui) ∪ T ∗3 (Un)

sum up to one and that the approximation error postulated in Equation (15) is
fulfilled by the returned triangulation T Ncs of Algorithm 1.
Case N ≡ 0 mod 4: Each Ui has an area of A(Ui) = 4

N , and therefore
n∑
i=1

A(Ui) = N
4 ·

4
N = 1

holds. The approximation error on each T ∗4 -triangle, and thus also the one arising
from T Ncs , is given as

ε(T Ncs ) = ε( T ∗
4

) = 1
16 ·

4
N = 1

4N .

Case N ≡ 1 mod 4: The rectangles U1, . . . , Un−1 have an area of

A(Ui) = 4(
√

5−2)
(
√

5−2)(N−5)+1 ,
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and Un has an area of A(Un) = 1
(
√

5−2)(N−5)+1 . This means
n∑
i=1

A(Ui) = N−5
4 · 4(

√
5−2)

(
√

5−2)(N−5)+1 + 1
(
√

5−2)(N−5)+1 = 1.

The corresponding approximation errors are given as

ε( T ∗
4

) = 1
16

4(
√

5−2)
(
√

5−2)(N−5)+1 = 1
4

(
√

5−2)
(
√

5−2)(N−5)+1 ,

ε( T ∗
5

) =
√

5−2
4 · 1

(
√

5−2)(N−5)+1 = 1
4

√
5−2

(
√

5−2)(N−5)+1 .

Case N ≡ 2 mod 4: The rectangles U1, . . . , Un−1 have an area of A(Ui) = 4
N−1 ,

and Un has an area of A(Un) = 1
N−1 . Therefore, we have

n∑
i=1

A(Ui) = N−2
4 · 4

N−1 + 1
N−1 = 1.

The corresponding approximation errors are given as
ε( T ∗

4
) = 1

16
4

N−1 = 1
4

1
N−1 , ε( T ∗

2
) = 1

4
1

N−1 .

Case N ≡ 3 mod 4: The rectangles U1, . . . , Un−1 have an area of A(Ui) = 4
N−1 ,

and Un has an area of A(Un) = 2
N−1 . This leads to

n∑
i=1

A(Ui) = N−3
4 · 4

N−1 + 2
N−1 = 1.

The corresponding approximation errors are given as
ε( T ∗

4
) = 1

16
4

N−1 = 1
4 ·

1
N−1 , ε( T ∗

3
) = 1

8
2

N−1 = 1
4

1
N−1 . �

(a) T 6
cs. (b) T 7

cs. (c) T 8
cs. (d) T 9

cs.

Figure 5. Congruence classes of crossing sword triangulations.

As a direct result of Lemma 3.10, for any approximation accuracy ε > 0 there
exists an ε-triangulation consisting of at most

⌈ 1
4ε
⌉

+ 1 simplices.

Proposition 3.11 (Upper bound on ε-optimal triangulations). For any approxi-
mation accuracy ε > 0, there exists an input Nε ≤

⌈ 1
4ε
⌉

+ 1 to Algorithm 1 such
that the returned triangulation T Nε

cs is an ε-triangulation.

Proof. The proof results directly from calling Algorithm 1 with Nε :=
⌈ 1

4ε
⌉

+ 1. �

We use Proposition 3.11 to prove that Algorithm 1 is an approximation algorithm
for Problem (2).

Theorem 3.12. Given an approximation accuracy ε > 0, calling Algorithm 1 with
input Nε :=

⌈ 1
4ε
⌉

+ 1 is a (
√

5
2 + 4

√
5ε)- approximation algorithm for Problem (2).
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Proof. From Proposition 3.11, we know that T Nε
cs is an ε-triangulation with |T Nε

cs | =⌈ 1
4ε
⌉

+ 1. Using the lower bound
⌈

1
2
√

5ε

⌉
for the number of simplices in an ε-optimal

triangulation from Proposition 3.5, we can prove the proclaimed approximation
guarantee of crossing swords triangulations:

|T εcs|⌈
1

2
√

5ε

⌉ =
⌈ 1

4ε
⌉

+ 1⌈
1

2
√

5ε

⌉ ≤ 1
4ε + 2

1
2
√

5ε
=
√

5
2 + 4

√
5ε.

�

This upper estimate of the approximation guarantee of crossing swords trian-
gulations can be strengthened when only considering certain discrete values of
approximation accuracies.

Theorem 3.13. Let ε := 1
16i for some i ∈ N. Then calling Algorithm 1 with input

Nε := 1
4ε is a

√
5

2 -approximation algorithm for Problem (2).

Proof. By the choice of ε, we have Nε ∈ N. Further, we know from Equation (15)
that Nε ≡ 0 mod 4 holds and that Algorithm 1 called with Nε returns an ε-
triangulation T Nε

cs . Again, by using the lower bound from Proposition 3.5, we can
prove the proclaimed approximation quality of crossing swords triangulations:

|T Nε
cs |⌈
1

2
√

5ε

⌉ =
1
4ε⌈
1

2
√

5ε

⌉ ≤ 1
4ε
1

2
√

5ε
=
√

5
2 .

�

Next, we show that crossing swords produces optimal triangulations for ε := 1
16i

with i ∈ N if we additionally require that each simplex has at least one axis-parallel
edge.

Theorem 3.14. Let ε := 1
16i for some i ∈ N. Then calling Algorithm 1 with input

Nε := 1
4ε yields an ε-optimal triangulation for Problem (2) if we require that each

simplex have at least one axis-parallel edge.

Proof. In Corollary 3.7, we showed that under the condition that each simplex has
an axis-parallel edge, the lower bound for the number of simplices in an ε-optimal
triangulation is d 1

4εe. Further, we know from Equation (15) that Nε ≡ 0 mod 4
holds and that Algorithm 1 called with Nε returns an ε-triangulation T Nε

cs , where
|T Nε

cs | = 1
4ε .

�

Note that in Algorithm 1, we do not explicitly state how to construct the
rectangular partition of the domain. In fact, a partition with given areas of the
rectangles always exists as we explain now. One way to create such a partition is to
line up rectangles along the x-axis that have a full height of one. In this arrangement,
it is easy to choose the area of these rectangles as required based on their width,
whereas it is not obvious how to do this for other arrangements. A corresponding
version of Algorithm 1 is stated in the appendix as Algorithm 2. However, this
arrangement inherently leads to very skinny simplices for large values of N , see
Figure 4 for an example with N = 16. Skinny simplices in turn can lead to numerical
difficulties in evaluating the function values of the pwl. interpolation. Although
irrelevant from a theoretical point of view, it would be desirable in practice to
partition U into rectangles that are “as square as possible” to avoid skinny simplices.
In [7], two problems are studied that address this very question of partitioning “as
square as possible”. One is called PERI-SUM, which aims at minimizing the sum of
all perimeters for a given set of rectangular areas. The second one is PERI-MAX,
which has the goal to minimize the largest perimeter over all rectangles for a given
set of rectangular areas. Both problems are NP-complete. For certain inputs, namely
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N = 4i with i ∈ N, all rectangles have the same area and a partition into squares is
possible. The longest-edge bisection scheme described in Section 3.3 yields exactly
such crossing swords triangulations with square partition elements for N = 4i. For
general areas as inputs to PERI-SUM, [12] gives a modelling as an MIQCP. In order
to find high quality solutions fast, the authors also present a polynomial time 3√

2 -
approximation algorithm.

Finally, we make the conjecture that Algorithm 1 indeed yields optimal triangu-
lations for a special sequence of errors converging to zero which we previously used
in Theorem 3.14. The following conjecture is equivalent to Theorem 3.14 without
the requirement of axis-parallel edges and yields triangulations with Nε ≡ 0 mod 4
many triangles.

Conjecture 3.15. Let ε := 1
16i for some i ∈ N. Then calling Algorithm 1 with

input Nε := 1
4ε yields an ε-optimal triangulation for Problem (2).

Remark 3.16. According to Lemma 3.3, we can apply Algorithm 1 and the lower
bound from Lemma 3.4 to general box domains D = [

¯
x, x̄]× [

¯
y, ȳ]. Therefore, the

approximation guarantees from Theorem 3.12 and Theorem 3.13 are also valid for
arbitrary box domains.

3.3. Approximation qualities of widely used triangulation schemes. In
this section, we prove approximation guarantees for several popular triangulation
schemes from the literature. For this purpose, we proceed analogously to Theo-
rem 3.13 and consider only discrete values of approximation accuracies converging
to zero.

Generalized K1-triangulations.
We start by analyzing the uniform triangulation schemes J1 and K1. Furthermore,

we develop a generalized version of the K1, for which we prove an approximation guar-
antee of

√
5. In Figure 6(a) and Figure 6(b), we show a K1- and a J1-triangulation

consisting of 32 simplices each. Both triangulation schemes are defined over a grid
that partitions the domain into axis-parallel squares. Each square is triangulated in
fashion of T ∗2 . Note that J1 and K1 only differ in the orientation of the diagonals.
However, the orientation of the diagonals does not matter for the resulting approxi-
mation error. Therefore, both triangulation schemes are equally efficient in terms of
the number of simplices.

Proposition 3.17. For any given uniform rectangular grid, K1- and J1-
triangulations have the same approximation error.

(a) Standard K1-
triangulation with 32
simplices.

(b) Standard J1-
triangulation with 32
simplices.

(c) Generalized K1-
triangulation with 16
simplices.

(d) J1-triangulation
with 32 simplices and
crossing swords with
16 simplices.

Figure 6. Uniform triangulations J1 and K1.
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In the way K1- and J1-triangulations have been used in the literature so far,
they require the same uniform partitioning along both axes. Therefore, they
offer only limited flexibility to generate good triangulations for most prescribed
approximation accuracies. To add somewhat more flexibility, we generalize the
K1-triangulation scheme by allowing subdivisions of different granularity for each
axis – see also Figure 6(c), where we show a generalized K1-triangulation over a
4× 2-grid. The approximation error of the generalized K1-triangulation scheme is
uniquely determined by the underlying grid.

Proposition 3.18. Let L be a uniform grid over U with i intervals on the x-axis
and j intervals on the y-axis. Further, let T ijK1 be a generalized K1-triangulation of
U with respect to L. Then

|T ijK1| = 2ij
and

ε(T ijK1) = 1
4ij = 1

2|T ij
K1|

hold.

Proof. Each rectangle of the underlying grid has an area of 1
ij . From Lemma 3.3,

we know that the approximation error of a T ∗2 triangulations is 1
4 times the area of

the triangulated rectangle, which finishes the proof. �

We can use the lower bound from Lemma 3.4 to prove an approximation guarantee
for generalized K1-triangulations.

Theorem 3.19. Let ε := 1
4ij for some i, j ∈ N. Then the generalized K1-

triangulation scheme is an
√

5-approximation algorithm for Problem (2).

Proof. Let L be a uniform grid over U with i intervals in x-direction and j intervals
in y-direction, and let T ijK1 be the corresponding K1-triangulation. From Proposi-
tion 3.18, it follows that ε(T ijK1) = 1

4ij = ε and |T ijK1| = 2ij. As a result, we can

prove the proclaimed approximation quality by using the lower bound
⌈

1
2
√

5ε

⌉
from

Proposition 3.5:
|T ijK1|⌈

1
2
√

5ε

⌉ = 2ij⌈
1

2
√

5ε

⌉ ≤ 2ij
1

2
√

5 1
4ij

=
√

5.
�

Together with Theorem 3.13 this means that generalized K1-triangulations need
twice the number of simplices than crossing swords triangulations to fulfil the same
approximation accuracy. This observation is visualized in Figure 6(d), where we
show how to convert a J1-triangulation with 32 simplices into a crossing swords
triangulation of 16 simplices that has the same approximation accuracy by removing
certain edges.

3.3.1. Approximation quality of iterative refinement schemes starting with T ∗2 .
In the following, we show approximation qualities for triangulations generated
by refinement schemes. A refinement scheme specifies how the simplices of a
given triangulation are subdivided into smaller simplices. In the context of
pwl. approximations, a refinement is performed to reduce the approximation
error. In the following, we always assume that the initial triangulation of U is
T ∗2 . Subsequently, we perform iterative refinements on all simplices where the
approximation error is greater than an a prescribed accuracy ε > 0 and repeat the
refinements until we end up with an ε-triangulation.
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Longest-edge bisection. The longest-edge bisection subdivides a simplex by
adding a new vertex at the center of its longest-edge and connects it with the
opposite vertex, see Figure 7. Algorithm 3 in the appendix gives a detailed version
of this procedure. We define T iL as the triangulation resulting from the i-th longest-
edge refinement of T 0

L := T ∗2 . This strategy also results in a
√

5
2 - approximation

algorithm for specific values of ε.

Theorem 3.20. Let ε := 1
2i+3 for some odd i ∈ N. Taking the triangulation

T iL resulting from the i-th refinement of T 0
L by a longest-edge bisection yields a√

5
2 -approximation algorithm for Problem (2).

Proof. The error on an edge e with endpoints (x0, y0) and (x1, y1) is always attained
at its midpoint and has a value of 1

4 |(x1 − x0)(y1 − y0)|. If e is now bisected, the
approximation error on the resulting edges reduces by a factor of 1

4 . As we start
with T 0

L = T ∗2 , the approximation error in both initial simplices is attained at the
midpoint of the diagonal edge and is 1

4 . The longest-edge bisection is now performed
on both simplices at the midpoint of the diagonal, see Figure 7(b). The resulting four
simplices each have one of the outer edges of U as their longest edge, with a constant
approximation error of 0 along that edge. However, the maximum approximation
error on each simplex is on one of the new diagonal edges and has a value of 1

16 .
If we now perform a longest-edge bisection again, we bisect exclusively on axis-
parallel edges. This is because adding a new node on an axis-parallel edge, along
which the pwl. interpolation corresponds to F anyway, leaves the pwl. interpolation
unchanged. The resulting eight simplices shown Figure 7(c) therefore have the same
approximation error as the four from the previous iteration. In this way, we continue
the refinement and obtain an increase in the number of simplices by a factor of two
in each refinement iteration, while the approximation error is reduced by a factor of
1
4 in the odd refinement iterations only. This leads to the fact that the triangulation
T iL from the i-th longest-edge refinement consists of 2i+1 simplices and has an
approximation error of 1

2i+3 . Therefore, we obtain the proclaimed approximation
guarantee of

√
5/2 only for the resulting triangulation after odd iterations of the

longest-edge refinement strategy:
|T iL |⌈

1
2
√

5ε

⌉ = 2i+1⌈
2i+3

2
√

5

⌉ ≤ √5
2 .

�

(a) Initial T ∗2 trian-
gulation.

(b) Longest-edge bi-
section: T 1

L .
(c) Longest-edge bi-
section: T 2

L .
(d) Longest-edge bi-
section: T 3

L .

Figure 7. Longest-edge bisection.

Red refinement The red refinement procedure subdivides a simplex into four
smaller simplices by adding a new vertex at the center of each edge and new edges
that connect these new vertices, see Figure 8. Algorithm 4 in the appendix gives a
detailed version of this procedure. We define T iR as the triangulation resulting from
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the i-th red refinement of T 0
R := T ∗2 . This strategy results in a

√
5-approximation

algorithm for specific values of ε.

Theorem 3.21. Let ε := 1
22i for some i ∈ N0. Taking the triangulation T iR resulting

from the i-th red refinement of T 0
R := T ∗2 yields an

√
5-approximation algorithm for

problem (2).

Proof. According to Lemma 3.1, the error on an edge e with endpoints (x0, y0) and
(x1, y1) is attained at its midpoint and has a value of 1

4 |(x1 − x0)(y1 − y0)|. The
red refinement strategy refines a simplex into four simplices by bisecting all edges
of the initial simplex. Therefore, the approximation error reduces by a factor of
1
4 . As we start with T 0

R = T ∗2 , the approximation error in both initial simplices is
attained at the midpoint of the diagonal edge and is 1

4 . The red refinement is then
performed on both simplices at the midpoints of the respective edges. The resulting
eight simplices each have an approximation error of 1

16 , and the triangulation can be
viewed as a union of four identical T ∗2 -triangulations. In this pattern, we increase
the number of simplices by a factor of four while the approximation error is reduced
by a factor of 1

4 in each iteration. Consequently, the triangulation T iR from the i-th

red refinement consists of 4i+
1
2 simplices and has an approximation error of 1

22i .
Therefore, we obtain the proclaimed approximation guarantee of

√
5 for the red

refinement scheme:
|T iR|⌈

1
2
√

5ε

⌉ = 22i+1⌈
22i

2
√

5

⌉ ≤ √5.
�

(a) Initial T ∗2 trian-
gulation.

(b) Red refinement
with 8 simplices.

(c) Red refinement
with 32 simplices.

(d) Red refinement
with 128 simplices.

Figure 8. Red refinement.

3.4. Comparison of the different triangulation schemes. We close this section
with a comparative discussion of the presented triangulation schemes and provide
exemplary numerical results on the number of simplices for several indicative
approximation accuracies.

The following corollaries show that for arbitrary approximation accuracies ε > 0
crossing swords triangulations always use at most as many simplices as the known
methods from the literature. However, in most cases, they outperform them clearly.
In Figure 3.4, these results are graphically represented as well. We see that crossing
swords stays very close to the lower bound and due to its fine adjustability dominates
the other triangulations most of the time.

Corollary 3.22 (Crossing swords dominates K1-triangulations). For any ε > 0,
the crossing swords triangulation scheme produces triangulations that have at most
the number of simplices than a generalized K1-triangulation. For ε < 1

4 , the number
is strictly lower.



APPROX. ALG. FOR OPTIMAL PWL. INTERPOLATIONS OF VARIABLE PRODUCTS 21

Figure 9. Comparison of triangulation scheme in terms of the
number of simplices for prescribed approximation accuracies.

Proof. By Proposition 3.18, the discrete approximation errors attained exactly by
the generalized K1-triangulations are all εij := 1

4ij with i, j ∈ N. For these approxi-
mation errors, we know that generalized K1 is an

√
5-approximation algorithm and

that crossing swords is an
√

5( 1
2 + 4εij)- approximation algorithm. For i, j = 1,

i.e. ε1,1 = 1
4 , both schemes produce equivalent triangulations consisting of two

simplices. For i = 1 and j = 2 or i = 2 and j = 1, i.e. ε1,2 = ε2,1 = 1
8 , the

generalized K1-triangulation produces four simplices, while crossing swords returns
only three simplices. For all other values of i and j, εi,j < 1

8 holds, and therefore
crossing swords has a guaranteed approximation quality of less than

√
5. �

Corollary 3.23 (Crossing swords dominates longest-edge bisection). For any ε > 0,
the crossing swords triangulation scheme produces triangulations that have at most
the number of simplices as a triangulation constructed by longest-edge bisection.

Proof. By Theorem 3.20, longest-edge bisection has an approximation quality of
√

5
2

for all εi := 1
2i+3 with i ∈ N. These values are a subset of the approximation errors

εj := 1
16j , for which the crossing swords triangulation also has an approximation

quality of
√

5
2 . Further, for all ε with 1

16·2i−1 < ε < 1
16·2i−1 and i ∈ N crossing

swords produces strictly less simplices. �

With a similar proof as for Corollary 3.22, we also obtain that crossing swords
outperforms red-refinement.

Corollary 3.24 (Crossing swords dominates red-refinement). For any ε > 0, the
crossing swords triangulation scheme produces triangulations that have at most the
number of simplices as a triangulation constructed by longest-edge bisection. For
ε < 1

4 , the number is strictly lower.

In addition to these theoretical proofs, we also give a numerical example that
underlines the presented properties. We consider the domain D = [0, 2]× [2, 6] and
approximation accuracies of {1, 0.5, 0.25, 0.1, 0.05}. The results are summarized in
Table 1. Here we list the prescribed approximation accuracy ε, the number of sim-
plices and the exact approximation error of the respective triangulation. The stated
results underline the efficiency and adaptability of the crossing swords triangulation
scheme. For the finest approximation accuracy ε = 0.05, the crossing swords scheme
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Table 1. Efficiencies of triangulations for D = [0, 6]× [0, 2].
(*) General pwl. approximations (not an interpolation).

Triangulation ε |T | εf,F (T ) Triangulation ε |T | εf,F (T )
Lower bound 1.00 3 Longest-edge 1.00 4 0.7500

0.5 6 bisection [8] 0.5 16 0.1875
0.25 11 (starting with T ∗2 ) 0.25 16 0.1875
0.1 27 0.1 64 0.0469
0.05 54 0.05 64 0.0469

Crossing sword 1.00 3 1.0000 Max. error [13] 1.00 4 0.7500
0.5 7 0.5000 (starting with T ∗2 ) 0.5 20 0.2344
0.25 12 0.2500 0.25 20 0.2344
0.1 31 0.1000 0.1 76 0.0615
0.05 60 0.0500 0.05 116 0.0490

Generalized K1 1.00 8 0.7500 Rebennack 1.00 4 0.7500
0.5 12 0.5000 et al. [20] (*) 0.5 12 0.4444
0.25 24 0.2500 (starting with T ∗2 ) 0.25 20 0.2344
0.1 60 0.1000 0.1 59 0.0968
0.05 120 0.0500 0.05 94 0.0490

Red refinement 1.00 8 0.7500
[8] 0.5 32 0.1875
(starting with T ∗2 ) 0.25 32 0.1875

0.1 128 0.0469
0.05 128 0.0469

(a) Red refine-
ment with 32
simplices.

(b) Generalized
K1-triangulation
with 12 simplices.

(c) Crossing
swords with 7
simplices.

(d) Longest-edge
bisection with 16
simplices.

(e) Maximum er-
ror bisection with
20 simplices.

Figure 10. Triangulations for a prescribed accuracy of ε = 0.5.

produces a triangulation with only 60 simplices, while the other schemes need a
factor of at least 1.5 times more simplices. The next best triangulation scheme is that
by [20], which is based on a maximum error bisection refinement strategy. However,
they consider general pwl. approximations instead of interpolations. Thus, since
they solve a generalization of problem (2), the results are not directly comparable.
Nevertheless, the crossing swords scheme seems to provide more efficient triangula-
tions even for this generalized problem. Crossing swords as well as generalized K1
are the only schemes which are able to fulfil the given accuracies exactly. However,
the number of simplices in generalized K1-triangulations growths much faster than
in crossing swords triangulations with increasing accuracy. For ε = 0.05, K1 requires
even factor twice as many simplices as crossing swords. The poor adaptability to
the prescribed approximation error exhibited by the refinement methods, i.e. red-
refinement, longest-edge bisection and max-error refinement, can be seen from the
fact that in order to satisfy an accuracy of ε = 0.5, they produce triangulations that
have actual approximation errors of 0.1875 and 0.2344 respectively. To visualize
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the observed results, the triangulations of the considered triangulation schemes
for an accuracy of ε = 0.5 are shown in Figure 10(a). Besides the mere number
of simplices, it is especially noticeable that the maximum error scheme produces
relatively skinny simplices, which can lead to numerical problems in the evaluation
of the approximation for small errors.

4. Conclusion

In this work, we have introduced a novel triangulation scheme called crossing
swords to interpolate bivariate products xy over rectangular domains. We showed
that a crossing swords triangulation requires at most

√
5/2 times as many simplices

as an ε-optimal triangulation for any approximation accuracy ε > 0. Crossing swords
thus outperforms all previously known triangulation schemes in the literature, which
we have proved theoretically and also underlined by exemplary numerical results.
We have also proved that crossing swords triangulations are εi-optimal under the
condition that each simplex has one axis-parallel edge and εi = 1/16i with i ∈ N holds.
Supported by computational tests, we conjecture that this also holds if the simplices
are not required to be axis-parallel. Future research could address the extension
of interpolations to general approximations. In [2] it was shown that optimal
triangulations of R2 consist of slightly fewer triangles if, instead of interpolations,
approximations with a deviation by a constant factor are considered. A similar
result is presumably achievable for box domains. In addition, triangulations for
polytopes other than the rectangular box domains are canonical candidates for
further investigations.
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Appendix A. Crossing sword triangulation aligned along the x-axis

Note that in the general version of Algorithm 1, only the areas of the rectangle
partitioning were specified. We now provide a version of this algorithm that describes
a concrete rectangle partitioning. To this end, we arrange the rectangles along the
x-axis and assume that they all have a height of one.

Algorithm 2: Crossing Sword Triangulation Scheme (for the unit box U
and rectangles aligned along the x-axis)
Input: The number of simplices N ≥ 4.
Output: A triangulation T Ncs of U with |T Ncs | = N and a corresponding

pwl. interpolation f of F over U with an approximation error of

εf,F (T Ncs ) =


1
4

1
N , if N ≡ 0 mod 4,

1
4

(
√

5−2)
(
√

5−2)(N−5)+1 , if N ≡ 1 mod 4,
1
4

1
N−1 , if N ≡ 2 mod 4,

1
4

1
N−1 , if N ≡ 3 mod 4.

(16)

1 if N ≡ 0 mod 4 then
2 Set n = N

4 and h = 1
n

3 for i = 1, . . . , n : do
4 Ui := [(i− 1)h, ih]× [0, 1]
5 return T Ncs :=

⋃n
i=1 T ∗4 (Ui)

6 else if N ≡ 1 mod 4 then
7 Set n = N−1

4 and h = 4(
√

5−2)
(
√

5−2)(N−5)+1
8 for i = 1, . . . , n− 1 : do
9 Ui := [(i− 1)h, ih]× [0, 1]

10 Un := [(n− 1)h, 1]× [0, 1]
11 return T Ncs :=

⋃n−1
i=1 T ∗4 (Ui) ∪ T ∗5 (Un)

12 else if N ≡ 2 mod 4 then
13 Set n = N−2

4 + 1 and h = 4
N−1

14 for i = 1, . . . , n− 1 : do
15 Ui := [(i− 1)h, ih]× [0, 1]
16 Un := [N−2

N−1 , 1]× [0, 1]
17 return T Ncs :=

⋃n−1
i=1 T ∗4 (Ui) ∪ T ∗2 (Un)

18 else if N ≡ 3 mod 4 then
19 Set n = N−3

4 + 1 and h = 4
N−1

20 for i = 1, . . . , n− 1 : do
21 Ui := [(i− 1)h, ih]× [0, 1]
22 Un := [N−3

N−2 , 1]× [0, 1]
23 return T Ncs :=

⋃n−1
i=1 T ∗4 (Ui) ∪ T ∗3 (Un)

Lemma A.1 (Crossing Sword Triangulations). Algorithm 2 is correct. This means
that for any input N , Algorithm 2 returns a triangulation with an approximation
error according to Equation (16).

Proof. To show the correctness of Algorithm 2, it suffices due to Lemma 3.10 to show
that the smaller rectangles U1, . . . , Un have the required areas from Algorithm 1.
As the height (y-width) of each rectangle constructed in Algorithm 2 is one, the
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area of each rectangle equals its x-width. As the x-width of the rectangles used in
Algorithm 2 is chosen to be equal to the area of the corresponding rectangle, its
correctness is certified. �

Appendix B. Refinement strategies

In this section, we give the exact refinement routines used in the longest-edge
bisection and red refinement procedures for refining simplices.

The longest edge refinement takes a simplex S as input and returns two new
simplices S′ and S′′, which come from bisecting S at its longest edge.
Algorithm 3: Longest-edge bisection refinement
Input: A simplex S ⊂ R2, a pwl. interpolation g : S → R of a non-linear

function G : S → R and an approximation accuracy ε > 0.
Output: If the approximation error over S is greater than ε, a set of two

simplices {S′, S′′} with S = S′ ∪ S′′ and int(S′) ∩ int(S′′) = ∅ is
returned. Otherwise, no refinement is performed.

1 Set e← longest edge of S with endpoints x̄a, x̄b ∈ V (S).
2 if εg,G(S) ≤ ε then
3 return V (S)
4 else
5 Set x̃← midpoint of e.
6 Set V (S′)← (V (S) \ x̄b) ∪ x̃; S′ ← conv(V (S′))
7 Set V (S′′)← (V (S) \ x̄a) ∪ x̃; S′′ ← conv(V (S′′))
8 return V (S′), V (S′′)

The red-refiniment takes a simplex S as input and returns four new sim-
plices S1, S2, S3 and S4, which come from bisecting S on each of its edges.
Algorithm 4: Red refinement
Input: A simplex S ∈ R2 with V (S) = {s0, s1, s2}, a pwl. interpolation

g : S → R of a non-linear function G : R2 → R and an approximation
accuracy ε.

Output: If the approximation error over S is greater than ε, a set of four
simplices {S1, S2, S3, S4} with S =

⋃4
i=1 Si and

int(Si) ∩ int(Sj) = ∅ for all i 6= j is returned. Otherwise, no
refinement is performed.

1 Set e← longest edge of S with endpoints x̄a, x̄b ∈ V (S).
2 if εg,G(S) ≤ ε then
3 return V (S)
4 else
5 Set V (S0)← {s0, 1/2(s0 + s1), 1/2(s0 + s2)}; S0 ← conv(V (S0))
6 Set V (S1)← {1/2(s0 + s1), s1, 1/2(s1 + s2)}; S1 ← conv(V (S1))
7 Set V (S2)← {1/2(s1 + s2), 1/2(s0 + s1), 1/2(s0 + s2)}; S2 ← conv(V (S2))
8 Set V (S3)← {s0, 1/2(s0 + s2), 1/2(s1 + s2), s2}; S3 ← conv(V (S3))
9 return V (S0), . . . , V (S3)
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